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Abstract. Motivated by some results for linear programs and complementarity problems, this
paper gives some new characterizations of the central path conditions for semidefinite programs.
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1. Introduction. In this paper we describe an algorithm for the solution of
semidefinite programs (SDPs). Using some standard notation that will be defined
formally at the end of this section, a semidefinite program is a constrained optimiza-
tion problem that is typically given in primal form by

min C •X subject to (s.t.) Ai •X = bi, i = 1, . . . ,m, X � 0,(1.1)

or in its dual form by

max bTλ s.t.

m∑
i=1

λiAi + S = C, S � 0;(1.2)

here, the vector b ∈ R
m as well as the symmetric matrices C ∈ R

n×n and Ai ∈
R
n×n (i = 1, . . . ,m) are the given data, whereas the symmetric matrix X ∈ R

n×n

denotes the variable for the primal SDP (1.1), and the vector λ ∈ R
m together with

the symmetric matrix S ∈ R
n×n denote the variables of the dual SDP (1.2).

It is easy to see that the (primal) SDP is a convex minimization problem. Under
a suitable constraint qualification, this SDP is therefore equivalent to its optimality
conditions. These optimality conditions can be written as follows:∑m

i=1 λiAi + S = C,
Ai •X = bi ∀i = 1, . . . ,m,
X � 0, S � 0, XS = 0.

(1.3)

Motivated by the groundbreaking work of Nesterov and Nemirovskii [24], several
authors suggest solving the optimality conditions (1.3) by (primal-dual) interior-point
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methods. These interior-point methods typically consider the following perturbation
of the optimality conditions (1.3), usually called the central path conditions:∑m

i=1 λiAi + S = C,
Ai •X = bi ∀i = 1, . . . ,m,
X � 0, S � 0, XS = τ2I,

(1.4)

where τ denotes a positive parameter. (Note that we parameterize the central path
conditions by τ2 instead of τ .) Typical interior-point methods now apply a Newton-
type method to (a symmetrized version of) the equations within the central path
conditions, dealing with the X � 0 and S � 0 constraints explicitly by a suitable line
search. The interested reader is referred to [15, 2, 28, 33], for example.

The method to be discussed here is also a Newton-type method. However, before
applying Newton’s method, we first reformulate the optimality conditions or the cen-
tral path conditions as a nonlinear system of equations. This reformulated system does
not contain any explicit inequality constraints like X � 0, S � 0 or X � 0, S � 0, and
Newton’s method applied to this system automatically generates symmetric search
directions without any further transformations (unlike interior-point methods).

We believe that our method is of particular interest for the solution of some
difficult combinatorial optimization problems. In fact, SDPs are known to provide
very good lower bounds for some combinatorial problems. However, solving such a
semidefinite relaxation by an interior-point method within a branch-and-bound strat-
egy may not result in the most efficient way to solve the underlying combinatorial
problem, since the solution of one semidefinite relaxation may not be used as a start-
ing point for a neighboring problem because interior-point methods require strictly
feasible starting points. On the other hand, the method to be presented here does
not have such a restriction regarding its starting point.

Our method may be viewed as a generalization of some smoothing-type methods
for linear programs and complementarity problems to the framework of SDPs. While
such a generalization has already been suggested in a recent paper by Chen and Tseng
[8], we stress that there are differences between that paper and ours. For example, we
present a new characterization of the central path conditions which may be viewed as
the basis for our method. Furthermore, our method is based on an essentially smooth
reformulation of the optimality conditions (1.3) themselves (and this is what we really
want to solve), while Chen and Tseng [8] consider a reformulation of the central path
conditions. This may also explain why our approach seems to give better numerical
results than the one from [8].

The organization of this paper is as follows. Section 2 contains some new charac-
terizations of the central path conditions (1.4). These characterizations are based on a
certain function φ, whose further properties are discussed in section 3. Our algorithm
is described in section 4, and its global and local convergence properties are analyzed
in section 5. We then present some very promising numerical results in section 6 and
close this manuscript with some final remarks in section 7.

Throughout this paper, we use the following notation: For two matrices A,B ∈
R
n×n, we define the scalar product A • B := 〈A,B〉 := tr(ABT ), where tr(C) :=∑n
i=1 cii denotes the trace of a matrix C ∈ R

n×n. (Warning: The related symbol ◦ is
used for the composition of two mappings; it does not denote the Hadamard product
of two matrices!) We denote by Sn×n,Sn×n+ , and Sn×n++ the sets of symmetric, sym-
metric positive semidefinite, and symmetric positive definite matrices, respectively, of
dimension n× n. We also write A � 0 and A � 0 to indicate that A belongs to Sn×n+
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and Sn×n++ , respectively. Furthermore, A � B or A � B means that A − B � 0 or

A−B � 0. If A � 0, we denote by A1/2 the unique positive semidefinite square root
of A. In our analysis, we will use both the spectral norm ‖A‖2 and the Frobenius
norm ‖A‖F for a matrix A ∈ R

n×n. We endow the vector space R
n×n × R

m × R
n×n

with the norm

|||(X,λ, S)||| :=
√
‖X‖2F + ‖λ‖22 + ‖S‖2F .

We use the same symbol for the norm

|||(X,λ, S, τ)||| :=
√
‖X‖2F + ‖λ‖22 + ‖S‖2F + τ2

in the vector space R
n×n × R

m × R
n×n × R.

2. Reformulations of the central path. The aim of this section is to give two
new reformulations of the central path conditions (1.4) for SDPs. These reformula-
tions can be obtained by generalizing existing reformulations for linear programs and
complementarity problems in a suitable way.

Before we deal with the central path conditions (1.4), however, we first consider
the optimality conditions (1.3). In order to motivate our approach, let us define a
mapping ϕ : R× R→ R by

ϕ(a, b) := a+ b−
√
a2 + b2.

This mapping was introduced by Fischer [13] and is usually called the Fischer–Bur-
meister function. It is well known (and easy to verify) that it has the following
property:

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.(2.1)

Now let us define a mapping φ : Sn×n × Sn×n → Sn×n by

φ(X,S) := X + S − (X2 + S2)1/2,(2.2)

which is an obvious extension of the definition of ϕ, with the arguments being sym-
metric matrices rather than two real numbers. It has been shown by Tseng [30,
Lemma 6.1] that the mapping φ has a property similar to (2.1), namely,

φ(X,S) = 0⇐⇒ X � 0, S � 0, XS = 0.(2.3)

In the following, we will include a proof for this equivalence. We stress that our proof
is somewhat different from the one given by Tseng [30] and that a similar technique
will later be used to prove our new characterizations of the central path conditions. To
verify the equivalence (2.3), we will exploit the following simple result from Alizadeh
[1, Lemma 2.9].

Lemma 2.1. Let X,S ∈ Sn×n+ be two symmetric positive semidefinite matrices.
Then XS = 0 if and only if X • S = 0.

Proposition 2.2. Let φ be the Fischer–Burmeister function defined in (2.2).
Then

φ(X,S) = 0 ⇐⇒ X � 0, S � 0, XS = 0.
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Proof. First assume that X � 0, S � 0, XS = 0 holds. This implies XS+SX = 0
and therefore

(X + S)2 = X2 + S2.

Using the fact that X and S are symmetric positive semidefinite, it follows that

X + S = (X2 + S2)1/2,

since the square root of a symmetric and positive semidefinite matrix is uniquely
defined within the space of symmetric and positive semidefinite matrices. Obviously,
this implies φ(X,S) = 0.

Conversely, assume that φ(X,S) = 0 holds for two symmetric matrices X,S ∈
Sn×n. This means that X + S = (X2 + S2)1/2. Squaring both sides of this equation
gives

X2 + S2 = (X + S)2 and X + S ∈ Sn×n+ .

This is equivalent to

XS + SX = 0 and X + S ∈ Sn×n+ .(2.4)

LetX = QTDQ, withQ ∈ R
n×n orthogonal andD = diag(λ1, . . . , λn), be the spectral

decomposition of the symmetric matrix X. Then (2.4) can be rewritten as

QTDQS + SQTDQ = 0 and QTDQ+ S ∈ Sn×n+ .

If we premultiply this equation by Q and postmultiply it by QT , we obtain

DQSQT +QSQTD = 0 and D +QSQT ∈ Sn×n+ .

Using the abbreviation A := QSQT , we get

DA+AD = 0 and D +A ∈ Sn×n+ .(2.5)

Componentwise, this can be rewritten as

(λi + λj)aij = 0 and D +A ∈ Sn×n+(2.6)

for all i, j = 1, . . . , n. In particular, taking i = j, we obtain 2λiaii = 0 and λi+aii ≥ 0
for all i = 1, . . . , n. Obviously, this implies λi ≥ 0 for all i = 1, . . . , n, which in turn
means that X is positive semidefinite. Using a symmetric argument (based on a
spectral decomposition of S), we see that S is also positive semidefinite.

To see that XS = 0, we observe that (2.4) implies X • S = tr[XS] = 1
2 tr[XS +

SX] = 0. In view of Lemma 2.1, we therefore have XS = 0.
We now want to modify the definition of φ so that it can be used to characterize

the central path conditions (1.4). To this end, let τ ≥ 0 be any nonnegative number
that will be viewed as a parameter within this section. Then define ϕτ : R× R→ R

by

ϕτ (a, b) := a+ b−
√
a2 + b2 + 2τ2.

This is the so-called smoothed Fischer–Burmeister function since it is obviously contin-
uously differentiable for every τ > 0 and since it coincides with the Fischer–Burmeister
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function ϕ for τ = 0. The mapping ϕτ was introduced in [19] and has the following
interesting property:

ϕτ (a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = τ2.

This simple observation was made in [19], and it shows that several smoothing-type
methods for linear programs and related problems are closely related to interior-point
methods.

We now generalize the smoothed Fischer–Burmeister function ϕτ in an obvious
way: Define φτ : Sn×n × Sn×n → Sn×n by

φτ (X,S) := X + S − (X2 + S2 + 2τ2I)1/2.(2.7)

Then we can state the following result.
Proposition 2.3. Let τ > 0 be any positive number, and let φ be defined by

(2.7). Then

φτ (X,S) = 0 ⇐⇒ X � 0, S � 0, XS = τ2I.

Proof. First assume that X � 0, S � 0, XS = τ2I holds. This implies XS+SX =
2τ2I and therefore (X + S)2 = X2 + S2 + 2τ2I. Using the fact that X and S are
symmetric positive definite, it follows that X + S = (X2 + S2 + 2τ2I)1/2. This, in
turn, implies φτ (X,S) = 0.

Conversely, let φτ (X,S) = 0 for two symmetric matrices X,S ∈ Sn×n. This
means that X + S = (X2 + S2 + 2τ2I)1/2. Squaring both sides of this equation gives

X2 + S2 + 2τ2I = (X + S)2 and X + S ∈ Sn×n++ .

This is equivalent to

XS + SX = 2τ2I and X + S ∈ Sn×n++ .(2.8)

LetX = QTDQ, withQ ∈ R
n×n orthogonal andD = diag(λ1, . . . , λn), be the spectral

decomposition of the symmetric matrix X. Following the proof of Proposition 2.2 and
using the abbreviation A := QSQT , we see that (2.8) can be rewritten as

DA+AD = 2τ2I and D +A ∈ Sn×n++ .(2.9)

Componentwise, this becomes

(λi + λj)aij = 2τ2δij and D +A ∈ Sn×n++(2.10)

for all i, j = 1, . . . , n, where δij is the standard Kronecker symbol. In particular,
taking i = j, we obtain 2λiaii = 2τ2 and λi + aii > 0 for all i = 1, . . . , n. Obviously,
this implies λi > 0 for all i = 1, . . . , n. Hence the symmetric matrix X is positive
definite. In a similar way (using a spectral decomposition of S), we can show that S
is also positive definite.

In order to verify that XS = τ2I, we observe that (2.10) implies aij = 0 for all
i �= j, since λi + λj > 0 according to our previous argument. Hence A is a diagonal
matrix. In particular, we therefore have DA = AD. Consequently, we obtain from
(2.9) that DA = τ2I. Premultiplying this equation by QT and postmultiplying it by
Q gives XS = QTDQS = QTDAQ = τ2I.
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We next want to introduce a second function with properties similar to those of
the (smoothed) Fischer–Burmeister function. To this end, let

ϕ(a, b) := 2 min{a, b}
for a, b ∈ R. For obvious reasons, this mapping is called the minimum function. It is
easy to see that it satisfies the equivalence

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

In order to extend its definition to the class of symmetric matrices, it is helpful to
reformulate the minimum function in the following way:

ϕ(a, b) = 2 min{a, b} = a+ b− |a− b| = a+ b−
√

(a− b)2.
Motivated by the expression on the right-hand side, we now define the function φ :
Sn×n × Sn×n → Sn×n by

φ(X,S) := X + S − ((X − S)2)1/2.(2.11)

It turns out that this function shares the property (2.3) with the Fischer–Burmeister
function from (2.2). This observation is similar to the one made by Tseng [30,
Lemma 2.1] and can alternatively be verified by following the proof of Proposition 2.2.
We skip the details here and just state the result.

Proposition 2.4. Let φ be the minimum function defined in (2.11). Then

φ(X,S) = 0 ⇐⇒ X � 0, S � 0, XS = 0.

We now want to modify the definition of the minimum function in such a way
that we get a characterization of the central path conditions (1.4). To this end, we
first recall that there is a suitable modification of the minimum function for scalar
variables, namely,

ϕτ (a, b) := a+ b−
√

(a− b)2 + 4τ2,

where τ denotes a nonnegative number. This smoothed minimum function is usually
called the Chen–Harker–Kanzow–Smale smoothing function in the literature [6, 19,
25], and it was noted in [19] that it has the following property for each τ > 0:

ϕτ (a, b) = 0 ⇐⇒ a > 0, b > 0, ab = τ2.

This observation motivates us to define a mapping φτ : Sn×n × Sn×n → Sn×n by

φτ (X,S) := X + S − ((X − S)2 + 4τ2I)1/2.(2.12)

It turns out that this function has the desired property.
Proposition 2.5. Let τ > 0 be any positive number, and let φ be defined by

(2.12). Then

φτ (X,S) = 0 ⇐⇒ X � 0, S � 0, XS = τ2I.

Proof. It is easy to see that X � 0, S � 0, XS = τ2I implies φτ (X,S) = 0.
Conversely, if φτ (X,S) = 0 for two matrices X,S ∈ Sn×n, we get X + S = ((X −
S)2 +4τ2I)1/2 and therefore (X −S)2 +4τ2I = (X +S)2 and X +S ∈ Sn×n++ . This is
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equivalent to XS+SX = 2τ2I and X+S ∈ Sn×n++ . Hence we can follow the argument
from the proof of Proposition 2.3 in order to show that X � 0, S � 0, and XS = τ2I
holds.

Let φτ denote either the smoothed Fischer–Burmeister function from (2.7) or the
smoothed minimum function from (2.12). Then define a mapping Φτ : Sn×n ×R

m ×
Sn×n → Sn×n × R

m × Sn×n by

Φτ (X,λ, S) :=




∑m
i=1 λiAi + S − C

Ai •X − bi (i = 1, . . . ,m)
φτ (X,S)


 .(2.13)

Then Propositions 2.3 and 2.5 immediately give the following new characterization of
the central path conditions (1.4) for SDPs.

Theorem 2.6. Let Φτ be defined by (2.13), with φ given by (2.7) or (2.12), and
let τ > 0. Then the following statements are equivalent:

(a) (X,λ, S) satisfies the central path conditions (1.4).
(b) (X,λ, S) is a solution of the nonlinear system of equations Φτ (X,λ, S) = 0.
We close this section by noting that some further properties of the functions φ

discussed in this section may be found in [7, 8, 14, 26, 27, 32].

3. Properties of φ. In this section we will state some properties of the functions
φτ introduced in the previous section. In particular, we will show that these functions
are differentiable (in the sense of Fréchet).

However, in contrast to the approach of the previous section, we will view the
nonnegative number τ as an independent variable from now on. In order to make this
clear in our notation, we set φ(X,S, τ) := φτ (X,S); i.e., we now write

φ(X,S, τ) := X + S − (X2 + S2 + 2τ2I)1/2(3.1)

for the smoothed Fischer–Burmeister function from (2.7), and

φ(X,S, τ) := X + S − ((X − S)2 + 4τ2I)1/2(3.2)

for the smoothed minimum function from (2.12). Taking τ as a variable rather than a
parameter is motivated by some computational considerations and will be explained
in more detail in our next section when we present our smoothing-type method for
the solution of the optimality conditions (1.3).

We begin our analysis of the functions φ with the following two results, whose
proofs can be found in [8, Lemma 1 and Corollary 1].

Lemma 3.1. Let φ denote one of the functions defined in (3.1) or (3.2). Then,
for any X,S ∈ Sn×n and any τ > ν > 0, we have

κ (τ − ν)I � φ(X,S, ν)− φ(X,S, τ) � 0,
κ τI � φ(X,S, 0)− φ(X,S, τ) � 0,

where κ denotes a (known) positive constant independent of X,S, τ, and ν.
Corollary 3.2. Let φ be given by (3.1) or (3.2), and let κ be the constant from

Lemma 3.1. Then the following inequalities hold:
(a) ‖φ(X,S, ν)− φ(X,S, τ)‖F ≤ κ

√
n(τ − ν) ∀X,S ∈ Sn×n ∀ τ > ν > 0.

(b) ‖φ(X,S, 0)− φ(X,S, τ)‖F ≤ κ
√
n τ ∀X,S ∈ Sn×n ∀ τ > 0.

We next want to show that the two functions φ from (3.1) and (3.2) are con-
tinuously differentiable in their arguments X,S, and τ , at least under suitable as-
sumptions. This result was essentially given by Chen and Tseng [8, Lemma 2] (who,
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however, view τ as a parameter) and can alternatively be derived from the recent
paper [26] by Sun and Sun.

Here we give a somewhat different proof for the differentiability of the functions
φ. The reason is that, at least in our opinion, the proof given in, e.g., [8] is not very
constructive, in the sense that it is not clear how to obtain the somewhat complicated
formulas for the derivatives of the functions φ. We hope that the reader will find our
approach more constructive. It is based on the following lemma from [16, section 7.2].

Lemma 3.3. Let A ∈ Sn×n++ , B ∈ Sn×n+ be two given matrices. Then

‖A1/2 −B1/2‖2 ≤ ‖A−1/2‖2 · ‖A−B‖2 .
We are now in the position to derive a formula for the derivatives of the mappings

φ. To be specific, assume that φ denotes the smoothed Fischer–Burmeister function
from (3.1). We have to show that

‖φ(X + U, S + V, τ + µ)− φ(X,S, τ)−∇φ(X,S, τ)(U, V, µ)‖2 = o(|||(U, V, µ)|||)
holds for all (U, V, µ) ∈ Sn×n×Sn×n×R tending to (0, 0, 0), where∇φ(X,S, τ) denotes
a suitable linear operator standing for the derivative of φ at the point (X,S, τ). To
this end, we decompose the mapping φ into φ(X,S, τ) = φ1(X,S, τ) − φ2(X,S, τ)
with

φ1(X,S, τ) := X + S, φ2(X,S, τ) := (X2 + S2 + 2τ2I)1/2.(3.3)

Then it is easy to see that φ1 is differentiable with ∇φ1(X,S, τ)(U, V, µ) = U + V .
The situation for φ2 is more complicated. Let us define

E :=
(
X2 + S2 + 2τ2I

)1/2
and assume that E is positive definite. Let

LE [X] := EX +XE(3.4)

denote the corresponding Lyapunov operator. Then the positive definiteness of E
guarantees that the Lyapunov equation LE [X] = H has a unique solution within the
set of symmetric matrices for every H ∈ Sn×n; cf. [17, Theorem 2.2.3]. Hence we can
define the inverse L−1

E of LE ; i.e., L−1
E [H] denotes the unique element X satisfying

EX +XE = H. Let us further define the matrix

D :=
(
(X + U)2 + (S + V )2 + 2(τ + µ)2I

)1/2
.

An easy calculation shows that D2 −E2 = LE [D −E] + (D −E)2. Applying L−1
E to

this equation and rearranging terms yields

E −D = L−1
E [(D − E)2 − (D2 − E2)]

= L−1
E [(E −D)2 − (XU + UX + SV + V S + 4τµI + U2 + V 2 + 2µ2I)].

Using the linearity of L−1
E then gives

φ2(X + U, S + V, τ + µ)− φ2(X,S, τ)−∇φ2(X,S, τ)(U, V, µ)
= −∇φ2(X,S, τ)(U, V, µ)− (E −D)
= −∇φ2(X,S, τ)(U, V, µ) + L−1

E [XU + UX + SV + V S + 4τµI]
+L−1

E [U2 + V 2 + 2µ2I]− L−1
E [(E −D)2].

(3.5)
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Obviously, we have ‖L−1
E [U2+V 2+2µ2I]‖F = O(|||(U, V, µ)|||2). In view of Lemma 3.3,

we also have

‖(E −D)2‖F ≤ ‖E −D‖2F ≤ γ1‖E2 −D2‖2F
= γ1‖XU + UX + SV + V S + 4τµI + U2 + V 2 + 2µ2I‖2F
= O(|||(U, V, µ)|||2)

for some constant γ1 > 0 independent of U, V, and µ. This implies

‖L−1
E [(E −D)2]‖F = O(|||(U, V, µ)|||2).

Therefore, setting

∇φ2(X,S, τ)(U, V, µ) := L−1
E [XU + UX + SV + V S + 4τµI],

it follows immediately from (3.5) that φ2 is differentiable at (X,S, τ). This, in turn,
implies that φ itself is differentiable at this point. This proves the main part of the
first statement in the following result.

Theorem 3.4. Let X,S ∈ Sn×n be two given matrices and τ ∈ R+.
(a) If φ is given by (3.1) and X2 + S2 + 2τ2I � 0, then φ is continuously

differentiable in (X,S, τ) with

∇φ(X,S, τ)(U, V, µ) = U + V − L−1
E [XU + UX + SV + V S + 4τµI],(3.6)

where E := (X2 + S2 + 2τ2I)1/2.
(b) If φ is given by (3.2) and (X − S)2 + 4τ2I � 0, then φ is continuously

differentiable in (X,S, τ) with

∇φ(X,S, τ)(U, V, µ) = U + V − L−1
E [(X − S)(U − V ) + (U − V )(X − S) + 8τµI],

(3.7)

where E := ((X − S)2 + 4τ2I)1/2.
Proof. (a) The differentiability of the smoothed Fischer–Burmeister function fol-

lows from our preceding discussion. Since E = (X2 +S2 +2τ2I)1/2 � 0 is continuous
in (X,S, τ) by Lemma 3.3, it is readily seen that∇φ(X,S, τ) is continuous in (X,S, τ);
see also [8]. Hence φ is continuously differentiable in (X,S, τ). Part (b) can be verified
in a similar way.

Note that Theorem 3.4 implies that if τ > 0, then both functions φ are continu-
ously differentiable everywhere.

4. Description of the algorithm. We now want to exploit our previous results
to obtain a suitable algorithm for the solution of the optimality conditions (1.3) and,
therefore, for the solution of the underlying primal and dual SDPs. The most obvious
way would be to utilize the mapping

Φ(X,λ, S) :=




∑m
i=1 λiAi + S − C

Ai •X − bi (i = 1, . . . ,m)
φ(X,S)


 ,

with φ being the Fischer–Burmeister function (2.2) or the minimum function (2.11),
since then Propositions 2.2 and 2.4 immediately imply that

(X∗, λ∗, S∗) solves (1.3) ⇐⇒ (X∗, λ∗, S∗) solves Φ(X,λ, S) = 0.
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However, solving the nonlinear system of equations Φ(X,λ, S) = 0 is a nontrivial task
because φ, and therefore Φ, is nonsmooth in general. Hence we do not follow this
idea here, although some recent theoretical results [26, 7, 14, 27] indicate that such
an approach might be possible.

The next idea is to replace the nondifferentiable mapping Φ by the smooth func-
tion

Φτ (X,λ, S) :=




∑m
i=1 λiAi + S − C

Ai •X − bi (i = 1, . . . ,m)
φτ (X,S)


 ,

where φτ denotes either the smoothed Fischer–Burmeister function from (2.7) or the
smoothed minimum function from (2.12). This (specialized to the framework of SDPs)
is precisely the approach followed by Chen and Tseng [8], although they have not
observed the equivalence between the nonlinear system of equations Φτ (X,λ, S) =
0, on the one hand, and the central path conditions (1.4), on the other hand; cf.
Theorem 2.6.

In this paper we follow an idea by Jiang [18] (in the context of nonlinear comple-
mentarity problems) and view τ as an independent variable. To this end, we define
the mapping Θ : Sn×n × R

m × Sn×n × R→ Sn×n × R
m × Sn×n × R by

Θ(X,λ, S, τ) :=




∑m
i=1 λiAi + S − C

Ai •X − bi (i = 1, . . . ,m)
φ(X,S, τ)

τ


 ,(4.1)

where φ denotes one of the functions given by (3.1) or (3.2). Apart from the fact that
τ is an independent variable rather than a parameter, the function Θ also differs from
the function Φτ because we have added one more line so that

Θ(X,λ, S, τ) = 0(4.2)

becomes a square system of equations. This additional line immediately implies τ = 0,
so that the system (4.2) is equivalent to the optimality conditions (1.3) themselves
(and not to the central path conditions (1.4)). This might be an advantage compared
with the reformulation Φτ (X,λ, S) = 0, since we really want to solve the optimality
conditions (1.3) and not the central path conditions (1.4). Furthermore, it follows from
Theorem 3.4 that Θ is a continuously differentiable function at any point (X,λ, S, τ)
with τ > 0, and the positivity of τ will be guaranteed automatically by our method.
This is an advantage compared with the nonsmooth reformulation Φ(X,λ, S) = 0.
Moreover, according to our numerical experience with some related methods for the
solution of linear programs (cf. [10, 11, 9]), the reformulation (4.2) has the best nu-
merical behavior. It also has some better theoretical properties in the context of linear
complementarity problems (see Burke and Xu [5, 4]), although it is currently not clear
whether this can be extended to SDPs.

The main idea of our algorithm is to solve the system of equations (4.2) by
Newton’s method. Global convergence of this method is achieved by following a
suitable neighborhood of the central path. The neighborhood used here is given by

N (β) =

{
(X,λ, S, τ)

∣∣∣ Ai •X = bi ∀i = 1, . . . ,m,

m∑
i=1

λiAi + S = C, ‖φ(X,S, τ)‖F ≤ βτ
}
,
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where β denotes a positive number. Local fast convergence will be guaranteed by
using a suitable predictor step. To simplify the formulation of our algorithm as well
as the notation used in the subsequent analysis, let us introduce the abbreviation
W k := (Xk, λk, Sk), where k denotes the iteration index. We are now in a position
to give a formal statement of our smoothing-type method for the solution of SDPs.

Algorithm 4.1.
(S.0) (Initialization)

ChooseW 0 = (X0, λ0, S0) ∈ Sn×n×R
m×Sn×n with

∑m
i=1 λ

0
iAi+S

0 = C and
Ai •X0 = bi (i = 1, . . . ,m). Choose τ0 > 0, β > 0 with ‖φ(X0, S0, τ0)‖F ≤
βτ0, and set k := 0. Choose σ̂, α1, α2 ∈ (0, 1).

(S.1) (Predictor step)
Let (∆W k,∆τk) = (∆Xk,∆λk,∆Sk,∆τk) ∈ Sn×n × R

m × Sn×n × R be a
solution of the system

∇Θ(W k, τk)

(
∆W
∆τ

)
= −Θ(W k, τk).(4.3)

If ‖φ(Xk + ∆Xk, Sk + ∆Sk, 0)‖F = 0, STOP.
Otherwise, if ‖φ(Xk + ∆Xk, Sk + ∆Sk, τk)‖F > βτk, then let Ŵ k := W k,
τ̂k := τk, and ηk := 1; else let ηk = αs1, where s is the nonnegative number
with

‖φ(Xk + ∆Xk, Sk + ∆Sk, αr1τk)‖F ≤ βτkαr1, r = 0, 1, 2, . . . , s,

‖φ(Xk + ∆Xk, Sk + ∆Sk, αs+1
1 τk)‖F > βτkαs+1

1 ,

and set

τ̂k := ηkτk and Ŵ k :=

{
W k if s = 0,
W k + ∆W k otherwise.

(S.2) (Corrector step)

Let (∆Ŵ k,∆τ̂k) = (∆X̂k,∆λ̂k,∆Ŝk,∆τ̂k) be a solution of

∇Θ(Ŵ k, τ̂k)

(
∆Ŵ
∆τ̂

)
= −Θ(Ŵ k, τ̂k) +

(
0

(1− σ̂)τ̂k
)
.(4.4)

Let η̂k be the maximum of the numbers 1, α2, α
2
2, . . . , with

‖φ(X̂k + η̂k∆X̂
k, Ŝk + η̂k∆Ŝ

k, τ̂k + η̂k∆τ̂k)‖F ≤ (1− σ̂η̂k)βτ̂k.(4.5)

Set W k+1 := Ŵ k + η̂k∆Ŵ
k, τk+1 := (1− σ̂η̂k)τ̂k, k ← k+1, and go to (S.1).

It can easily be seen that all iterates (Xk, λk, Sk) and (X̂k, λ̂k, Ŝk) generated by
Algorithm 4.1 are feasible for the optimality conditions (1.3) in the sense that

m∑
i=1

λkiAi + Sk = C, Ai •Xk = bi (i = 1, . . . ,m)(4.6)

and
∑m
i=1 λ̂

k
iAi + Ŝk = C and Ai • X̂k = bi (i = 1, . . . ,m) hold for all k ∈ N.

Moreover, we will see below that all matrices Xk, Sk and X̂k, Ŝk are automatically
symmetric; cf. section 6. This is in contrast to interior-point methods, which first
have to symmetrize the central path conditions in order to guarantee that they get
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symmetric search directions. On the other hand, our matrices are not necessarily
positive definite or positive semidefinite.

Note that the predictor step (S.1) will be responsible for the local fast convergence
of Algorithm 4.1, whereas the corrector step (S.2) will be used in order to prove global
convergence.

The termination criterion used in (S.1) is justified by Propositions 2.2 and 2.4.
Together with our previous note on the feasibility of the iterates, these results imply
that ∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)

∥∥
F

= 0 ⇐⇒ W k + ∆W k is a solution of (1.3).

For our theoretical analysis of Algorithm 4.1, we will always assume that this criterion
never holds so that Algorithm 4.1 generates an infinite sequence. Furthermore, the
updating rule for τk+1 in (S.2) is equivalent to the more standard formula τk+1 =
τ̂k + η̂k∆τ̂k; this observation follows immediately from the last row of the linear
system (4.4) in the corrector step, which gives ∆τ̂k = −σ̂τ̂k.

Finally, we stress that we have to solve a linear system of equations in both the
predictor and the corrector steps, with possibly different matrices ∇Θ(W, τ), and this
is more costly than what is usually done by interior-point methods. However, an easy
inspection of our subsequent analysis shows that all convergence results remain true for
the following modification of Algorithm 4.1: If the predictor step has been accepted
with ηk < 1, then skip the corrector step; i.e., set W k+1 := W k + ∆W k, τk+1 :=
ηkτk, k ← k+1, and return to (S.1). This modified algorithm either has to solve only
one linear system of equations in the predictor step or it has to solve two systems,
but then these two systems have the same coefficient matrix. This modification has
been implemented in order to obtain the numerical results in section 6.

We now start to analyze the properties of Algorithm 4.1 more formally. The
aim of the remaining part of this section will be to show that Algorithm 4.1 is well
defined. To this end, we first want to show that the linear systems (4.3) and (4.4) have
a unique solution. In order to verify this statement, we need some further properties
of the Lyapunov operator from (3.4). These properties are therefore summarized in
our next result.

Lemma 4.2. Let A,B ∈ Sn×n++ be two symmetric positive definite matrices, and

let LA, LB be the corresponding Lyapunov operators defined by (3.4), with L−1
A , L

−1
B

denoting their inverses. Then the following statements hold:
(a) LA and LB are self-adjoint.
(b) L−1

A and L−1
B are self-adjoint.

(c) LA ◦ LB and LB ◦ LA are strongly monotone.
(d) L−1

A ◦ LB and L−1
B ◦ LA are strongly monotone.

Proof. (a) We have to verify only that LA is self-adjoint. This follows directly
from the fact that

LA[X] • Y = tr(LA[X]Y ) = tr ((AX +XA)Y ) = tr(AXY ) + tr(XAY )

= tr(XY A) + tr(XAY ) = tr (X(AY + Y A)) = tr(XLA[Y ]) = X • LA[Y ]

for all X,Y ∈ Sn×n.
(b) We show that L−1

A is self-adjoint. Noting that L−1
A is the inverse of LA and

exploiting part (a), we obtain

L−1
A [X] • Y = L−1

A [X] • LA
[
L−1
A [Y ]

]
= LA

[
L−1
A [X]

] • L−1
A [Y ] = X • L−1

A [Y ]
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for all X,Y ∈ Sn×n.
(c) Using the first statement, we obtain

(LA ◦ LB [X]) •X = LB [X] • LA[X] = tr(LB [X]LA[X])
= tr((BX +XB)(AX +XA))
= tr(BXAX +XBAX +BXXA+XBXA)
= tr(2BXAX +X2(BA+AB))
= 2 tr(BXAX) + tr(X2(BA+AB))
= 2‖B1/2XA1/2‖2F + tr(X(BA+AB)X)

(4.7)

for all X ∈ Sn×n. Since BA (AB) is similar to B1/2AB1/2 (A1/2BA1/2) and A,B
are symmetric positive definite, it follows that BA and AB have real and positive
eigenvalues. Hence the symmetric matrix BA+AB is positive definite. Consequently,
X(BA+AB)X is positive semidefinite, so that

tr
(
X(BA+AB)X

) ≥ 0(4.8)

for all X ∈ Sn×n. Furthermore, since the mapping X �→ ‖B1/2XA1/2‖F defines a
norm and all norms are equivalent in finite-dimensional spaces, there exists a constant
µ > 0 such that

‖B1/2XA1/2‖F ≥ µ ‖X‖F(4.9)

for all X ∈ Sn×n. Putting together the inequalities (4.7)–(4.9), we obtain

(LA ◦ LB [X]) •X ≥ 2‖B1/2XA1/2‖2F ≥ 2µ2 ‖X‖2F ,

i.e., LA ◦ LB is strongly monotone on Sn×n. In order to see that LB ◦ LA is also
strongly monotone, we just have to change the roles of A and B.

(d) Since LA is self-adjoint by part (a), we obtain for every X ∈ Sn×n (by setting
Y := L−1

A [X])(
L−1
A ◦ LB [X]

) •X =
(
L−1
A ◦ LB ◦ LA[Y ]

) • LA[Y ] =
(
LB ◦ LA[Y ]

) • Y.
However, LB ◦LA is strongly monotone by part (c). Hence (d) follows from (c).

In order to see that the linear systems (4.3) and (4.4) have a unique solution, we
will show that the linear mapping ∇Θ(X,λ, S, τ) is invertible. To this end, we state
the following standard assumption.

Assumption 4.3. The matrices Ai (i = 1, . . . ,m) are linearly independent.
Exploiting Lemma 4.2 and Assumption 4.3, we can now show that

∇Θ(X,λ, S, τ) is a bijection, i.e., it is both one-to-one and onto. Note that this im-
plies that the predictor direction (∆Xk,∆λk,∆Sk,∆τk) and the corrector direction

(∆X̂k,∆λ̂k,∆Ŝk,∆τ̂k) are well-defined.
Proposition 4.4. Suppose that Assumption 4.3 holds. Then the linear mapping

∇Θ(X,λ, S, τ), with φ given by (3.1) or (3.2), is bijective for all (X,λ, S, τ) ∈ Sn×n×
R
m × Sn×n × R++.

Proof. We only consider the case in which the function φ is given by (3.1). The
proof for the smoothed minimum function is similar and therefore omitted here.

Let (X,λ, S, τ) ∈ Sn×n × R
m × Sn×n × R++ be fixed. Since ∇Θ(X,λ, S, τ) is

a linear mapping from the finite-dimensional vector space Sn×n × R
m × Sn×n × R

into itself, we only have to verify that this mapping is one-to-one. To this end, it is
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sufficient to show that the system ∇Θ(X,λ, S, τ)(∆X,∆λ,∆S,∆τ) = (0, 0, 0, 0) or,
equivalently, the system ∑m

i=1∆λiAi + ∆S = 0,(4.10)

Ai •∆X = 0 (i = 1, . . . ,m),(4.11)

∇φ(X,S, τ)(∆X,∆S,∆τ) = 0,(4.12)

∆τ = 0(4.13)

has (∆X,∆λ,∆S,∆τ) = (0, 0, 0, 0) as its only solution. From (4.13) we immediately
obtain ∆τ = 0. Setting E := (X2 + S2 + 2τ2I)1/2, we therefore get from (4.12) and
Theorem 3.4 that

∆X + ∆S − L−1
E [X∆X + ∆XX + S∆S + ∆S S] = 0.

Applying LE to both sides of the equation and rearranging terms yields

LE−X [∆X] + LE−S [∆S] = 0.

Since E−S � 0 (see [30, Lemma 6.1(c)] for a formal proof), the inverse L−1
E−S exists,

and we get

L−1
E−S ◦ LE−X [∆X] + ∆S = 0.(4.14)

Using (4.10) and (4.11) and taking the scalar product with ∆X yields

0 = L−1
E−S ◦ LE−X [∆X] •∆X −

m∑
i=1

∆λiAi •∆X︸ ︷︷ ︸
=0

= L−1
E−S ◦ LE−X [∆X] •∆X.

(4.15)

Using the fact that E − X � 0 and E − S � 0, it follows from Lemma 4.2(d) that
the operator L−1

E−S ◦LE−X is strongly monotone. Therefore, (4.15) immediately gives
∆X = 0. This implies ∆S = 0 by (4.14). The assumed linear independence of the
matrices Ai and (4.10) shows that ∆λ = 0, and this completes the proof.

Based on the previous results, it is possible to show that Algorithm 4.1 is well
defined under Assumption 4.3. Since the proof is rather standard, we skip it here and
refer the reader to the preprint version of this paper [20] for further details.

Theorem 4.5. Algorithm 4.1 is well defined under Assumption 4.3. Furthermore,
the iterates W k = (Xk, λk, Sk) and τk and Ŵ k = (X̂k, λ̂k, Ŝk) and τ̂k belong to the
neighborhood N (β).

5. Global and local superlinear convergence. We first state the main global
convergence result for Algorithm 4.1. Again, its proof is more or less standard, so we
skip it here and refer the interested reader once more to the preprint version [20] for
more details. The only thing we note here is that the updating rules for the smooth-
ing parameter τ in Algorithm 4.1 guarantee that this parameter is monotonically
decreasing and positive at all iterations.

Theorem 5.1. If the sequence {W k} = {(Xk, λk, Sk)} generated by Algorithm
4.1 has an accumulation point, then the sequence {τk} converges to zero. In partic-
ular, every accumulation point of the sequence {W k} is a solution of the optimality
conditions (1.3).



SMOOTHING-TYPE METHODS FOR SEMIDEFINITE PROGRAMS 15

We next investigate the local properties of Algorithm 4.1. Our aim is to show
that the sequence {τk} converges superlinearly to zero. Since this result depends on
certain properties of the predictor step in Algorithm 4.1, we first state the following
assumption.

Assumption 5.2. The sequence {τk} generated by Algorithm 4.1 converges to
zero, and we have ∣∣∣∣

∣∣∣∣
∣∣∣∣
(

∆W k

∆τk

)∣∣∣∣
∣∣∣∣
∣∣∣∣ = O(τk),(5.1)

where (∆W k,∆τk) denotes the search direction computed in (4.3).
In order to justify Assumption 5.2, we first note that Theorem 5.1 provides a

sufficient condition for the sequence {τk} to converge to zero. To understand the sec-
ond condition, assume that the sequence of inverse operators ∇Θ(W k, τk)

−1 remains
bounded for k → ∞. Then we obtain from the linear system (4.3) that (5.1) holds,
provided that the right-hand side in (4.3) is of the order O(τk). This, however, is
rather obvious since the feasibility of the iterates (cf. (4.6)) together with the fact
that all iterates belong to the neighborhood N (β) (cf. Theorem 4.5) show that

∣∣∣∣∣∣Θ(W k, τk)
∣∣∣∣∣∣ =√‖φ(Xk, Sk, τk)‖2F + τ2

k ≤
∥∥φ(Xk, Sk, τk)

∥∥
F

+ τk

≤ βτk + τk = O(τk).

In addition, such a relation also holds if we replace the right-hand side in (4.3) by
−Θ(W k, 0), since then Corollary 3.2 and Theorem 4.5 imply∣∣∣∣∣∣Θ(W k, 0)

∣∣∣∣∣∣ = ∥∥φ(Xk, Sk, 0)
∥∥
F

≤ ∥∥φ(Xk, Sk, τk)− φ(Xk, Sk, 0)
∥∥
F

+
∥∥φ(Xk, Sk, τk)

∥∥
F

≤ κ√nτk + βτk

= O(τk),

where κ > 0 denotes the constant from Lemma 3.1. In particular, all global and local
convergence properties of Algorithm 4.1 remain true if we use this modification of the
right-hand side in (4.3).

In order to state a sufficient condition for Assumption 5.2 to be satisfied, we
introduce the following assumption.

Assumption 5.3. Let (X∗, λ∗, S∗) be a solution of the optimality conditions (1.3)
such that

(a) (Strict complementarity) X∗ + S∗ � 0;
(b) (Nondegeneracy) for any (∆X,∆λ,∆S) satisfying

∑m
i=1 ∆λiAi+∆S = 0 and

Ai •∆X = 0 (i = 1, . . . ,m), the following implication holds:

X∗∆S + ∆XS∗ = 0 =⇒ (∆X,∆S) = (0, 0).

Assumption 5.3(a) is rather standard, and Assumption 5.3(b) was introduced
by Kojima, Shida, and Shindoh [22]. As noted in [22], Haeberly showed that this
assumption is equivalent to the primal and dual nondegeneracy conditions considered
by Alizadeh, Haeberly, and Overton [2].

The next result implies that Assumption 5.2 holds under Assumptions 4.3 and 5.3,
provided that the iterates (Xk, λk, Sk) generated by Algorithm 4.1 converge to a so-
lution (X∗, λ∗, S∗) satisfying these two conditions. The convergence of the iterates to
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this single point is not at all restrictive since it is known that the two Assumptions 4.3
and 5.3 together imply that (X∗, λ∗, S∗) is the unique solution of the optimality con-
ditions (1.3).

Theorem 5.4. Suppose that Assumptions 4.3 and 5.3 hold at a solution
(X∗, λ∗, S∗) of (1.3). Then the linear mapping ∇Θ(X∗, λ∗, S∗, 0) is bijective.

Proof. We consider only the case in which φ is defined via the smoothed Fischer–
Burmeister function from (3.1). The proof for the smoothed minimum function from
(3.2) is similar.

Let us define E := ((X∗)2 + (S∗)2)1/2. In view of the assumed strict comple-
mentarity, it is easy to see that E is a positive definite matrix. Hence Theorem 3.4
implies that Θ is continuously differentiable at (X∗, λ∗, S∗, 0). In order to see that
∇Θ(X∗, λ∗, S∗, 0) is bijective, we have only to verify that it is one-to-one. To this
end, we consider the equation

∇Θ(X∗, λ∗, S∗, 0) (∆X,∆λ,∆S,∆τ) = (0, 0, 0, 0)

and show that (∆X,∆λ,∆S,∆τ) = (0, 0, 0, 0) is its only solution. The last row gives

∆τ = 0.(5.2)

Taking this into account and using Theorem 3.4, the first three block rows can be
rewritten as follows: ∑m

i=1∆λiAi + ∆S = 0,(5.3)

Ai •∆X = 0 (i = 1, . . . ,m),(5.4)

∆X + ∆S − L−1
E [X∗∆X + ∆XX∗ + S∗∆S + ∆SS∗] = 0.(5.5)

Equation (5.5) implies

LE−X∗ [∆X] + LE−S∗ [∆S] = 0;(5.6)

cf. the proof of Proposition 4.4. Now, using the fact that (X∗, λ∗, S∗) is a strictly
complementary solution of (1.3) so that, in particular, we haveX∗S∗ = 0, i.e., X∗ and
S∗ commute, it follows that these two matrices can be diagonalized simultaneously
by an orthogonal transformation. This means that we can find a single orthogonal
matrix Q ∈ R

n×n and diagonal matrices DX ∈ R
n×n and DS ∈ R

n×n such that
X∗ = QTDXQ and S∗ = QTDSQ. Taking this into account, an easy calculation
shows that E − X∗ = S∗ and E − S∗ = X∗. Hence (5.6) can be rewritten as
S∗∆X + ∆XS∗ +X∗∆S + ∆SX∗ = 0. Using (5.3), (5.4), and Assumption 5.3, we
therefore obtain from [23, Lemma 6.2] that (∆X,∆S) = (0, 0). Since the matrices Ai
are linearly independent by Assumption 4.3, it follows from (5.3) that ∆λ = 0. In
view of (5.2), this completes the proof.

We stress that Theorem 5.4 provides only a sufficient condition for Assumption 5.2
to be satisfied. Since the assumptions used in Theorem 5.4 do imply that the solution
set of the optimality conditions (1.3) is just a singleton, Theorem 5.4 is somewhat
restrictive. However, some recent results obtained for linear programs and complemen-
tarity problems indicate that Assumption 5.2 may also hold under weaker conditions
that do not necessarily imply the unique solvability of (1.3); cf. [31] and [11].

We now start to analyze the local behavior of Algorithm 4.1, starting with the
following technical result.
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Lemma 5.5. Suppose Assumption 5.2 holds. Then we have∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk + ∆τk)
∥∥
F

= o(τk).

Proof. Since ∇φ(Xk, Sk, τk)
(
∆Xk,∆Sk,∆τk

)
= −φ(Xk, Sk, τk) by (4.3), we

obtain from the integral mean value theorem that∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk + ∆τk)
∥∥
F

=

∥∥∥∥∥∥
∫ 1

0

∇φ(Xk + η∆Xk, Sk + η∆Sk, τk + η∆τk)


 ∆Xk

∆Sk

∆τk


dη + φ(Xk, Sk, τk)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
∫ 1

0

[∇φ(Xk + η∆Xk, Sk + η∆Sk, τk + η∆τk)−∇φ(Xk, Sk, τk)
] ∆Xk

∆Sk

∆τk


dη

∥∥∥∥∥∥
F

≤
∫ 1

0

∥∥∥∥∥∥
[∇φ(Xk + η∆Xk, Sk + η∆Sk, τk + η∆τk)−∇φ(Xk, Sk, τk)

] ∆Xk

∆Sk

∆τk



∥∥∥∥∥∥
F

dη

= o



∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

 ∆Xk

∆Sk

∆τk



∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

 ,

where the last equality follows from the continuous differentiability of the mapping
φ. Using Assumption 5.2, we therefore get ‖φ(Xk + ∆Xk, Sk + ∆Sk, τk + ∆τk)‖F =
o(τk).

The main step required to prove local superlinear convergence of the sequence
{τk} is contained in the following result.

Lemma 5.6. Suppose Assumption 5.2 holds, and let the constant β satisfy the
inequality β > κ

√
n, where κ denotes the constant from Lemma 3.1. Then the sequence

{ηk} converges to zero.
Proof. Let ε > 0 be arbitrarily given. Using the fact that ∆τk = −τk because of

(4.3), we obtain from Lemma 5.5 that∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)
∥∥ =

∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk + ∆τk)
∥∥
F

= o(τk).

Hence there is an index Kε ∈ N such that ‖φ(Xk + ∆Xk, Sk + ∆Sk, 0)‖F ≤ ετk for
all k ≥ Kε. Then we get for all η > 0 and all k ≥ Kε∥∥φ(Xk + ∆Xk, Sk + ∆Sk, ητk)

∥∥
F

≤ ∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)
∥∥
F

+
∥∥φ(Xk + ∆Xk, Sk + ∆Sk, ητk)− φ(Xk + ∆Xk, Sk + ∆Sk, 0)

∥∥
F

≤ ετk + κ
√
nητk,

where the last inequality follows from Corollary 3.2. Since ετk + κ
√
nητk ≤ βητk

holds for all η ≥ ε
β−κ√n , the definition of ηk shows that ηkα1 does not satisfy this

inequality, i.e., ηk < ε/((β − κ
√
n)α1). Since β − κ√n > 0 by assumption and ε > 0

was chosen arbitrarily, this implies ηk → 0.
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We are now in a position to state the main local convergence result for Algo-
rithm 4.1.

Theorem 5.7. Under Assumption 5.2 we have τk+1 = o(τk); i.e., the smoothing
parameter converges locally superlinearly to zero.

Proof. Using Lemma 5.6 and the definition of τk+1 and τ̂k in Algorithm 4.1, we
obtain τk+1 ≤ τ̂k = ηkτk = o(τk), i.e., τk → 0 superlinearly.

We close this section with a few remarks concerning Theorem 5.7: First, The-
orem 5.7 still holds if we replace the right-hand side in (4.3) by −Θ(W k, 0). This
follows from the analysis carried out in [8] (so we skip the details here) and does not
follow immediately from our previous discussion since Lemmas 5.5 and 5.6 depend
on the fact that the right-hand side of (4.3) is given by −Θ(W k, τk). Furthermore,
a more involved analysis (see [8] once again) may be used to show that ∇φ is locally
Lipschitzian. This observation may then be applied to show that we actually have a
quadratic rate of convergence in Theorem 5.7. Finally (and this observation is cred-
ited to one of the referees) one can borrow a result from [27] to show that the mapping
Θ is strongly semismooth, at least if Θ is defined via the minimum function. Using
this fact together with a strong regularity assumption at a solution of the optimality
conditions implies that our method is locally quadratically convergent without assum-
ing the strict complementarity condition from Assumption 5.3(a). So far, however,
we do not have a handy criterion for the strong regularity assumption to be satisfied.

6. Numerical results. In order to test the numerical performance of Algo-
rithm 4.1, we implemented the method in Matlab. To simplify the programming
work, we borrowed the data structure, problem input, and some linear algebra rou-
tines from the SDPT3 (version 2.1) Matlab code; see [29].

In our Matlab implementation of Algorithm 4.1, we choose φ to be the smoothed
minimum function from (3.2). (The results for the smoothed Fischer–Burmeister
function seem to be similar.) Furthermore, we take α1 = α2 = 0.5. The centering
parameter σ̂ gets updated dynamically, using a procedure suggested in [12] for the
solution of linear programs.

In order to see how the Newton directions can be computed, let us first consider
one iteration of the predictor step. Dropping the superscript k and using the abbre-
viation Rd = C −∑m

j=1 λjAj − S, the predictor step (4.3) (with the modification
mentioned in section 5 that the right-hand side −Θ(W, τ) gets replaced by −Θ(W, 0))
becomes

∑m
j=1∆λjAj + ∆S = Rd,(6.1)

Ai •∆X = bi −Ai •X (i = 1, . . . ,m),(6.2)

∇φ(X,S, τ)(∆X,∆S,∆τ) = −φ(X,S, 0),(6.3)

∆τ = 0 .(6.4)

Writing E := ((X − S)2 + 4τ2I)1/2 (cf. Theorem 3.4), applying the corresponding
Lyapunov operator LE on both sides of (6.3), and using (6.4), we obtain

LE−(X−S)[∆X] + LE+(X−S)[∆S] = −LE [φ(X,S, 0)]

or, equivalently,

∆X = −L−1
E−(X−S)

[
LE+(X−S)[∆S] + LE [φ(X,S, 0)]

]
.(6.5)
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Substituting ∆S from (6.1) and rearranging terms yields

∆X =

m∑
j=1

∆λj L
−1
E−(X−S)

[
LE+(X−S)[Aj ]

]
−L−1

E−(X−S)

[
LE+(X−S) [Rd] + LE [φ(X,S, 0)]

]
.

Taking inner products with Ai (i = 1, . . . ,m) and using the fact that L−1
E−(X−S) is

self-adjoint by Lemma 4.2(b), we obtain from (6.2)

m∑
j=1

∆λjLE+(X−S)[Aj ] • L−1
E−(X−S)[Ai] = bi −Ai •X

+
(
LE+(X−S)[Rd] + LE [φ(X,S, 0)]

) • L−1
E−(X−S)[Ai], i = 1, . . . ,m.

(6.6)

This is a linear equation in the variables ∆λ ∈ R
m. After solving this system, we

immediately get ∆S from (6.1). Note that ∆S is obviously symmetric, since Rd and
all Ai are symmetric. In view of (6.5), ∆X can then be obtained as a solution of a
Lyapunov equation with a symmetric right-hand side and is therefore also symmetric;
cf. [17, Theorem 2.2.3]. The solution of this Lyapunov equation may be computed by
using a spectral decomposition of X−S, which in turn yields a spectral decomposition
of E − (X − S) and which may also be used to compute the matrix from the linear
system (6.6); see [17, p. 100].

The computation of the search direction in the corrector step (4.4) is similar to

the one of the predictor step. The main difference is that we compute the vector ∆λ̂
by solving the linear system

m∑
j=1

∆ λ̂jLÊ+(X̂−Ŝ)[Aj ] • L−1

Ê−(X̂−Ŝ)
[Ai] = bi −Ai • X̂

+ (LÊ+(X̂−Ŝ)[R̂d] + LÊ [φ(X̂, Ŝ, τ̂)] + 8στ̂2I) • L−1

Ê−(X̂−Ŝ)
[Ai], i = 1, . . . ,m,

(6.7)

rather than (6.6), where, of course, we have used the notation (X̂, λ̂, Ŝ) := (X̂k, λ̂k, Ŝk),

R̂d := C −∑m
j=1 λ̂jAj − Ŝ, and Ê := ((X̂ − Ŝ)2 + 4τ̂2I)1/2. Note, however, that the

corrector step is not carried out when the predictor step is accepted with ηk < 1.
Hence, either the algorithm uses only a predictor step in one iteration, or the two
matrices in (6.6) and (6.7) coincide.

In order to describe the way we compute our starting point (X0, λ0, S0), let us
call a triple (X,λ, S) feasible for the optimality conditions (1.3) if it satisfies the linear
equations

∑m
i=1 λiAi + S = C (this will be called dual feasibility) and Ai • X = bi,

i = 1, . . . ,m (this will be called primal feasibility). Note that we do not require X � 0
or S � 0 for such a feasible triple. Of course, our starting point (X0, λ0, S0) should
be feasible in this sense.

To this end, we define a symmetric matrix A ∈ R
m×m by Aij = Ai • Aj for

i, j = 1, . . . ,m and solve the linear system Ay = b to obtain y0 ∈ R
m. Then we define

X0 =
∑m
i=1 y

0
iAi and compute λ0 as a solution of the system Aλ = (A1 •C, . . . , Am •

C)T . Finally, setting S0 = C −∑m
i=1 λ

0
iAi, we obtain a starting point (X0, λ0, S0)

that is obviously feasible.
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Having computed this starting point, the remaining parameters of Algorithm 4.1
are initialized by

τ0 =

∥∥φ(X0, S0, 0)
∥∥

5
and β = max

{
2.1 · √n, 1.5 · ‖φ(X,S, τ0)‖

τ0

}
.

We terminate the iteration if τk/n < 10−6 (recall that we parameterize the central
path conditions by τ2) and if the feasibility measure

max

{∥∥[bi −Ai •Xk
]m
i=1

∥∥
2

max{1, ‖b‖2} ,

∥∥C − Sk −∑m
i=1 λ

k
iAi
∥∥
F

max{1, ‖C‖2}

}

is smaller than 10−10. The reason for dividing τk by n is based on the fact that
‖φ(Xk, Sk, 0)‖F = O(τk). Since we want to have ‖φ(Xk, Sk, 0)‖F small, it seems
reasonable to terminate if τk gets small. However, getting ‖φ(Xk, Sk, 0)‖F small
becomes increasingly difficult the larger the dimension of the matrices Xk and Sk

are, since we take the Frobenius norm. In order to make our termination criterion
more or less independent of the dimension of Xk and Sk, we therefore decided to use
the above-mentioned stopping rule.

Note that, theoretically, this feasibility measure is always zero for our method.
Numerically, however, the situation is different. While the dual feasibility does not re-
ally cause any troubles (mainly because Sk gets defined in such a way that the dual fea-
sibility is zero), we sometimes observed difficulties with respect to the primal feasibil-
ity. In order to decrease the primal infeasibility, we therefore exploit a projection tech-
nique also used in SDPT3: After computing a Newton direction (∆X,∆λ,∆S,∆τ),
we check whether the inequality ‖[Ai • (X + ∆X)]mi=1 − b‖ > ‖[Ai •X]mi=1 − b‖ holds.
If this inequality is satisfied, we replace ∆X by its orthogonal projection onto the
nullspace {U ∈ Sn×n |Ai •U = 0, i = 1, . . . ,m}. As a consequence of this procedure,
the feasibility stays close to the machine precision for all test problems.

In the SDPT3 code, there are eight test problems. The results for different sizes
are shown in Tables 1–2. To compare our results with those from interior-point
methods, the number of iterations for the infeasible path following algorithm from
the SDPT3 package are also printed; more precisely, we present the results for the
three most popular interior-point methods, namely, those based on the AHO-, HKM-,
and NT-directions; see, e.g., [29] for some further details.

In Tables 1–2 we report the average iteration counts for the first ten instances
of each problem using different problem dimensions. (Note that all test problems
depend on some random numbers, so we decided to give the average results over ten
runs for each problem.) For most smaller problems, it seems that Algorithm 4.1 needs
fewer iterations than all interior-point methods. On the other hand, the termination
criterion is different and not directly comparable. Furthermore, we should note that
one iteration of Algorithm 4.1 is (usually) more expensive than one iteration of an
interior-point method due to the fact that we have to calculate a matrix square root. In
any case, we stress that the results we obtain for Algorithm 4.1 seem to be considerably
better than those reported for a related method by Chen and Tseng [8].

Finally, Table 3 gives some results for the application of Algorithm 4.1 to some
test problems from the SDPLIB; cf. Borchers [3]. In this table, we present for each test
problem the number of iterations, the final value of the smoothing parameter τ , the
relative duality gap, as well as the feasibility measure at the final iterate. Note that
the duality gap is negative for many test problems because the matrices generated by
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Table 1
Average number of iterations for small SDPs.

AHO HKM NT Alg. 4.1
Problem n m Iter Iter Iter Iter
random 10 10 8.2 13.5 12.6 6.5
Norm min 20 6 8.0 9.3 10.1 6.7
Cheby 20 11 7.9 9.8 9.9 5.9
Maxcut 10 10 7.4 8.2 8.4 5.5
ETP 20 10 11.8 14.7 12.2 10.8
Lovasz 10 ≈ 25 7.6 8.7 8.7 9.1
LogCheby 60 6 10.4 10.9 11.1 10.8
ChebyC 40 11 7.6 8.5 9.0 5.2

Table 2
Average number of iterations for medium-sized SDPs.

AHO HKM NT Alg. 4.1
Problem n m Iter Iter Iter Iter
random 20 20 10.2 14.4 13.1 8.9
Norm min 40 11 8.5 10.1 10.7 7.7
Cheby 40 21 7.7 9.7 10.0 6.1
Maxcut 21 21 8.2 9.6 9.6 6.3
ETP 40 20 12.6 16.7 13.3 14.0
Lovasz 21 ≈ 105 9.7 10.1 10.4 12.7
LogCheby 120 11 12.3 13.2 13.1 13.5
ChebyC 80 21 8.3 9.2 9.4 6.1

our method are not necessarily positive semidefinite. (This, in fact, was the reason
why we had to take a different termination criterion than interior-point methods.)

7. Final remarks. We have presented two new characterizations of the central
path conditions for SDPs. These characterizations were used to derive a smoothing-
type method for the solution of SDPs. The search directions generated by these
methods are automatically symmetric, and the method was shown to be globally and
locally superlinearly convergent under suitable assumptions. The numerical results
are very promising, and it will certainly be worthwhile to improve these methods. For
example, it is interesting to investigate the question of how the matrix square roots
could be computed in a more efficient way.

Furthermore, we note that, for the purposes of this paper, both the smoothed
minimum function and the smoothed Fischer–Burmeister function can be handled in
the same way, since the method discussed here has exactly the same theoretical (and
similar numerical) properties for both functions. However, it was pointed out by one
of the referees that, in general, these two functions might have very different properties
when applied to SDPs. In fact, it has been shown in [27] that the minimum function
is (strongly) semismooth, whereas it is currently not known whether this is true for
the Fischer–Burmeister function. Moreover, the very recent paper [21] shows that
the matrix of the linear system (6.6) is symmetric positive definite for the smoothed
minimum function, whereas it is only positive definite (usually not symmetric) for the
smoothed Fischer–Burmeister function.

Acknowledgement. The authors would like to thank the referees for useful com-
ments and for pointing out some recent references on related Newton-type methods
for SDPs.
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Table 3
Selected problems from SDPLIB.

Problem n m Iter τ Rel. gap. Feas. measure
arch0 335 174 44 5.9e-05 -1.037695e-05 3.499271e-13
arch2 335 174 43 9.4e-05 5.195117e-05 6.384054e-13
arch4 335 174 47 1.3e-04 7.104246e-05 4.250081e-13
arch8 335 174 78 1.1e-04 -3.542500e-06 9.052898e-13
gpp100 100 101 18 9.9e-05 -3.042351e-06 2.123789e-15
gpp124-1 124 125 19 1.0e-04 -1.912270e-05 1.195466e-14
gpp124-2 124 125 19 7.0e-05 -2.615799e-06 2.176315e-15
gpp124-3 124 125 16 1.1e-04 -2.025964e-06 1.887616e-15
gpp124-4 124 125 20 6.5e-05 -4.630696e-06 1.331054e-14
gpp250-1 250 250 19 2.1e-04 -1.294246e-05 2.476407e-14
gpp250-2 250 250 17 1.9e-04 -5.718274e-06 2.130110e-14
gpp250-3 250 250 16 1.7e-04 -3.424270e-06 1.258957e-14
gpp250-4 250 250 17 2.2e-04 -2.061362e-06 3.875924e-14
mcp100 100 100 10 1.8e-06 -2.068888e-09 6.683366e-16
mcp124-1 124 124 15 2.6e-05 -5.421892e-09 5.389812e-16
mcp124-2 124 124 10 8.6e-05 -2.899952e-07 7.948236e-16
mcp124-3 124 124 9 2.9e-05 -8.401942e-08 6.089117e-16
mcp124-4 124 124 9 5.8e-07 -1.672955e-09 7.768182e-16
mcp250-1 250 250 14 5.7e-05 -9.849429e-08 9.333300e-16
mcp250-2 250 250 11 1.1e-04 -4.597849e-07 1.003759e-15
mcp250-3 250 250 11 8.7e-05 -1.589781e-07 1.081043e-15
mcp250-4 250 250 11 4.9e-05 -1.219282e-07 1.007461e-15
mcp500-1 500 500 26 3.7e-04 -5.734057e-07 1.087701e-15
mcp500-2 500 500 14 1.4e-04 -3.508263e-07 1.429353e-15
mcp500-3 500 500 11 3.7e-04 -1.295995e-06 1.526598e-15
mcp500-4 500 500 10 5.6e-05 -7.792705e-08 1.574678e-15
theta1 50 104 13 3.9e-05 -1.307451e-07 6.261965e-17
theta2 100 498 15 1.7e-05 -1.766186e-07 1.049632e-14
theta3 150 1106 15 7.8e-05 -1.009075e-06 1.998401e-15
theta4 200 1949 15 9.5e-06 -1.006602e-07 3.996803e-15
truss1 13 6 8 3.3e-09 -3.003989e-09 3.621438e-15
truss2 133 58 13 1.3e-05 -7.869353e-06 2.209316e-14
truss3 31 27 14 5.0e-06 -5.614971e-10 2.660288e-15
truss4 19 12 7 1.3e-05 -3.397473e-05 1.324462e-15
truss5 331 208 16 2.1e-04 -6.840872e-07 1.803378e-14
truss6 451 172 21 2.5e-04 -2.430952e-04 4.601362e-13
truss7 301 86 25 5.9e-05 -2.316906e-07 3.795188e-13
truss8 628 496 20 1.7e-04 -4.805725e-06 3.038575e-14
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1. Introduction and preliminaries. For convenience, we first set notations
that will be used throughout the paper. X,Y denote Banach spaces, and C is a
closed convex cone in Y introducing a partial order in the usual way: for y1, y2 ∈ Y

y1 � y2 if and only if y2 − y1 ∈ C.

F denotes a continuous convex function on X, and S := {x ∈ X : F (x) � 0}. A
denotes a bounded linear operator on X into Y , and b denotes a vector in Y . For
A, b as above, we have a continuous convex function ϕA,b (henceforth denoted by ϕb

if there is no need to emphasize A):

ϕb(x) = dist(Ax− b,−C) ∀x ∈ X;(1.1)

let Sb
C denote the set of all x satisfying ϕb(x) � 0, that is,

Sb
C = {x : Ax− b � 0}.(1.2)

We will use (A,C, b) to denote the abstract inequality system

Ax− b � 0.(1.3)

It is said to have an error bound (and τ is called an error bound for the system) if
there exists a τ > 0 such that

dist(x, Sb
C) � τϕb(x) ∀x ∈ X;
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this is clearly the case if and only if ϕb has an error bound [7, 2, 9, 12, 10, 11].
V will denote a nonempty closed convex set in X. Let x̄ ∈ V . If there exists a

continuous linear functional f on X with norm 1 such that

f(x̄) = max{f(x) : x ∈ V },
then x̄ is called a support point of V , and f is called a (normalized) supporting
functional of V at x̄. The set of all support points of V will be denoted by supp(v).

Given a point x in the topological boundary bd(V) of V , h ∈ X\{0} is called
a normal (direction) of V at x if dist(x + h, V ) = ‖h‖; in view of the variational
inequality, this is the case if and only if

dist(x+ th, V ) = t‖h‖ ∀t ∈ [0, 1].(1.4)

More generally, for γ ∈ (0, 1], h ∈ X is called a γ-normal of V at x if

dist(x+ th, V ) � tγ‖h‖ ∀t ∈ [0, 1].(1.5)

The set of all γ-normals of V at x will be denoted by NV (x, γ). Note that sometimes
NV (x) has been used to denote NV (x, 1), and that N

1
V (x) denotes the set of all unit

vectors in NV (x). Thus NV (x, 1) equals the cone generated by N
1
V (x), considered

in [9]. Another closely related concept concerns the so-called Bishop–Phelps cone
P (f, γ), which is defined by

P (f, γ) = {h ∈ X : γ‖h‖ � f(h)},
where f is a continuous linear functional on X with norm 1. P (f, γ) is nonempty
whenever 0 < γ < 1. (P (f, 1) is also nonempty if X is assumed reflexive.) Note also
that

P (f, γ) =
⋂

0<γ′<γ

P (f, γ′).(1.6)

For γ ∈ (0, 1] and x ∈ supp(V), let N ′
V (x, γ) denote the union⋃
f

P (f, γ),(1.7)

where f runs over all normalized continuous linear functionals on X supporting V at
x.

Lemma 1.1. Let x ∈ supp(V) and γ ∈ (0, 1]. Then

N
′
V (x, γ) ⊆ NV (x, γ).(1.8)

Proof. Let 0 	= h ∈ N ′
V (x, γ); there exists an f ∈ X∗ with ‖f‖ = 1 such that f

supports V at x and γ‖h‖ � f(h). Then, for any v ∈ V and t > 0,
‖x+ th− v‖ � f(x+ th− v) � f(th) � tγ‖h‖,

showing that dist(x + th, V ) � tγ‖h‖, and hence that (1.5) holds and h ∈
NV (x, γ).

Recall that the tangent cone TV (x) of V at x is defined by

TV (x) =

{
h ∈ X : lim

t→0+

dist(x+ th, V )

t
= 0

}
.(1.9)



26 KUNG FU NG AND WEI HONG YANG

Lemma 1.2. Let x ∈ bd(V) and γ ∈ (0, 1]. Then

NV (x, γ)\{0} ⊆ X\TV (x).(1.10)

Proof. Let 0 	= h ∈ NV (x, γ); then (1.5) holds. It follows that

dist(x+ th, V )

t
� γ‖h‖ > 0 ∀t ∈ (0, 1],

and hence h 	∈ TV (x) by (1.9).
We have observed that NV (x, 1) is simply the set of all normals to V at x and has

played an important role in the error bound problems (cf. [9, 12, 10]). In attempting
to generalize this study to the general setting of Banach spaces (in place of finite
dimensional or reflexive spaces ), one must bear in mind that NV (x, 1) can very well
be empty for each x ∈ supp(V). The following result shows the nonemptiness of
NV (x, γ) for many x if γ < 1. Our proof is based on a standard Banach space theory
technique (cf. [13, Proposition 3.20]).

Proposition 1.3. Let 0 < γ < 1, and let y ∈ X\V . Then there exists x ∈
supp(V) such that

y − x ∈ N ′
V (x, γ)(1.11)

(in particular, y−x ∈ NV (x, γ) and y−x /∈ TV (x)). Moreover, if X is reflexive, then
the result also holds for γ = 1.

Proof. Write d for the distance of y to V . Take ε > 0 such that

γ � d−√ε(d+ ε+√ε)
(1 + ε)(d+ ε+

√
ε)
.(1.12)

By the separation theorem, take x∗0 ∈ X∗ of norm 1 such that

sup〈x∗0, V 〉 = inf〈x∗0, y + dB〉 = 〈x∗0, y〉 − d,(1.13)

where B denotes the closed unit ball in X. Pick x0 ∈ V such that
‖x0 − y‖ � d+ ε.(1.14)

Then, (1.13) and (1.14) imply that, for each v ∈ V ,
〈x∗0, v〉 � 〈x∗0, y〉 − d � ‖x∗0‖‖y − x0‖+ 〈x∗0, x0〉 − d � ε+ 〈x∗0, x0〉,

showing that x∗0 is in the ε-subdifferential ∂εf(x0) of f at x0, where f denotes the
indicator function of V (defined by f(x) = 0 or +∞ according to x ∈ V or x ∈ X\V ).
By the Bronstead–Rockafellar theorem (cf. [13]), there exist xε ∈ dom f = V and

x∗ε ∈ ∂f(xε) (and thus sup〈x∗ε , V 〉 = 〈x∗ε , xε〉 and xε ∈ supp(V))(1.15)

such that ‖xε − x0‖ � √ε , ‖x∗ε − x∗0‖ � √ε. Then one has from (1.14) that
‖xε − y‖ � d+ ε+

√
ε,(1.16)

and it follows from (1.13) that

〈x∗ε , xε − y〉 = 〈x∗ε − x∗0, xε − y〉+ 〈x∗0, xε − y〉 �
√
ε(d+ ε+

√
ε)− d;
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therefore we have, by (1.16), that〈
x∗ε
‖x∗ε‖

, y − xε
〉

� d−√ε(d+ ε+√ε)
1 + ε

� d−√ε(d+ ε+√ε)
1 + ε

‖xε − y‖
d+ ε+

√
ε

� γ‖xε − y‖,

showing that y−xε ∈ N ′
V (xε, γ). Together with Lemmas 1.1 and 1.2, the first assertion

of Proposition 1.3 is proved. Moreover, suppose that X is reflexive. Then there exists
x0 ∈ V satisfying (1.14) with ε = 0; hence the supremum in (1.13) is attained at x0,
and the whole argument is then seen to be valid with γ = 1, ε = 0.

2. Error bounds for convex functions. We continue to use the notations
introduced in section 1; in particular, F is a continuous convex function on X, and
S = {x : F (x) � 0}. To avoid triviality, we assume throughout that ∅ 	= S 	= X.
Suppose that G is another continuous convex function such that G(x) � 0 if and only
if F (x) � 0:

S = {x : F (x) � 0} = {x : G(x) � 0}(2.1)

(e.g., the function x→ dist(x, S) has this property of G). Recall that the directional
derivative F ′(x;h) = limt→0+

F (x+th)−F (x)
t always exists for x, h ∈ X, and similarly

for G. We begin with a general result for the existence of error bounds for F .
Theorem 2.1. Assume (2.1); let γ ∈ (0, 1) and M > 0 be such that, for each

x ∈ supp(S) and h ∈ N ′
S(x, γ),

G′(x;h) �M F ′(x;h).(2.2)

Suppose that G has an error bound: there exists τ > 0 such that

dist(x, S) � τ [G(x)]+ ∀x ∈ X.(2.3)

Then F also has an error bound:

dist(x, S) � γ−1τM [F (x)]+ ∀x ∈ X.(2.4)

Moreover, if X is reflexive, then the result remains true for γ = 1.
Proof. Let y ∈ X\S. By Proposition 1.3 (which is valid for γ ∈ (0, 1) and also for

γ = 1 if X is reflexive), take x ∈ supp(S) such that h := y − x ∈ N ′
S(x, γ); thus by

(1.5) and (1.8) one has for each t ∈ (0, 1] that

dist(x+ th, S) � tγ‖h‖ � tγdist(x+ h, S) > 0,(2.5)

showing, in particular, that x+ th /∈ S. It follows from (2.3) that

τG(x+ th) � dist(x+ th, S) � tγdist(x+ h, S),

which implies that τG′(x;h) � γdist(x + th, S) > 0 because G(x) = 0. Since F is
convex and F (x) = 0, it follows from (2.2) that

MτF (x+ h) �MτF ′(x;h) � τG′(x;h) � γdist(x+ h, S),
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that is, MτF (y) � γdist(y, S) is valid for each y ∈ X\S. Therefore (2.4) is seen to
hold.

Let D be the convex function on X defined by

D(x) = dist(x, S) ∀x ∈ X.(2.6)

It is trivial to see that D has an error bound τ = 1. By applying the preceding
theorem to G = D, we have the following generalization of a theorem of Lewis and
Pang [9].

Theorem 2.2. Let τ > 0 and γ ∈ (0, 1). Then one has (i) ⇒ (ii) ⇒ (iii) ⇒
(iv)⇒ (i∗) among the following:

(i) γτ is an error bound for F .
(ii) D′(x;h) � γτF ′(x;h) for each x ∈ supp(S) and h ∈ X\TS(x).
(iii) D′(x;h) � γτF ′(x;h) for each x ∈ supp(S) and h ∈ NS(x, γ).
(iv) D′(x;h) � γτF ′(x;h) for each x ∈ supp(S) and h ∈ N ′

S(x, γ).
(i∗) τ is an error bound for F .

Moreover, the result remains true for γ = 1 if X is reflexive.
Proof. By Theorem 2.1 (applied to γτ, 1 in place of M, τ), (iv) ⇒ (i∗). In view

of Lemmas 1.1 and 1.2, it is trivial that (ii) ⇒ (iii) ⇒ (iv). To prove (i) ⇒ (ii), let
x ∈ bd(S) and h ∈ X\TS(x). Then D(x+ th) > 0 and so x+ th /∈ S for all t > 0. By
(i), one has

D(x+ th) � γτ [F (x+ th)]+ = γτF (x+ th);

since D(x) = 0 = F (x), it follows from taking limits (after dividing by t) that

D′(x;h) � γτF ′(x;h).

Remark 2.2.1. For γ = 1, it is clear from (1.4) that D′(x;h) = ‖h‖. Thus the
implications (i) ⇒ (iii) ⇒ (i∗) provide an extension of [9, Theorem 1], in which the
case of X = R

n was considered.
Corollary 2.3. τ is an error bound for F if and only if

(ii∗) D′(x; h) � τF′(x; h) for each x ∈ supp(S) and h ∈ X\TS(x).

Proof. Apply Theorem 2.2 and let γ → 1.
3. Error bounds for abstract linear inequality systems. We continue to

use the notation set from section 1. In particular, A is a bounded linear operator
from X into Y , which is partially ordered by a closed convex cone C. Let b ∈ Y ; let
ϕb, S

b
C , and (A,C, b) be defined by (1.1), (1.2), and (1.3). Note that

ϕb(x) = g(Ax− b) ∀x ∈ X,(3.1)

where g : Y → R is defined by

g(y) = dist(y,−C).(3.2)

By the chain rules [3, Theorem 2.3.10],

ϕ′
b(x;h) = g

′(Ax− b;Ah), ∂ϕb(x) = {A∗y∗ : y∗ ∈ ∂g(Ax− b)}.(3.3)

Let M := Im(A) and, for any y∗ ∈ Y ∗, let ‖y∗‖M denote the norm of the restriction
y∗|M of y∗ to M :

‖y∗‖M := sup{|〈y∗, y〉| : y ∈M, ‖y‖ = 1}.
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Here and throughout, we assume that A 	= 0, so that M 	= {0}.
Lemma 3.1. Let M := Im(A), y∗ ∈ Y ∗, and let A∗y∗ ∈ X∗ be defined by

(A∗y∗)(x) = y∗(Ax) ∀x ∈ X.
Then

‖A∗y∗‖ � ‖A‖‖y∗‖M .(3.4)

If Im(A) is assumed closed, then there exists λ > 0 such that

‖y∗‖M � λ‖A∗y∗‖.(3.5)

Proof. The proof for (3.4) is straightforward. To prove (3.5), we let

λ := sup{dist(0, A−1y) : y ∈ Im(A), ‖y‖ = 1}.(3.6)

Since Im(A) is closed, it follows from the open mapping theorem that λ < +∞. By
(3.6), for each y ∈ Im(A) with ‖y‖ < 1 there exists a z with ‖z‖ � λ such that Az = y.
Then

|y∗(y)| = |A∗y∗(z)| � λ‖A∗y∗‖,
which implies (3.5).

Theorem 3.2. Suppose that Sb
C is nonempty and that M = Im(A) is closed.

Then (A,C, b) has an error bound if and only if

inf
x∈X\SbC

η∈∂g(Ax−b)

‖η‖M > 0.(3.7)

Proof. Clearly ϕb is continuous and convex, and S
b
C = {x ∈ X : ϕb(x) � 0}.

Therefore (A,C, b) has an error bound if and only if ϕb also does. By [5, Theorem 2.2]
and (3.3), this is the case if and only if

inf
x∈X\SbC

y∗∈∂g(Ax−b)

‖A∗y∗‖ > 0.(3.8)

Take λ > 0 as in (3.6). Then, by (3.4) and (3.5), one has

λ−1 inf
x∈X\SbC

y∗∈∂g(Ax−b)

‖y∗‖M � inf
x∈X\SbC

y∗∈∂g(Ax−b)

‖A∗y∗‖ � inf
x∈X\SbC

y∗∈∂g(Ax−b)

‖A‖‖y∗‖M ,

showing that (3.7) and (3.8) are equivalent.
The following result shows that, when Im(A) is closed, for the consideration of the

existence of error bounds of (A,C, b) one may replace X, A by Im(A), IA, respectively,
where IA denotes the identity operator from Im(A) into Y .

Corollary 3.3. Suppose that Im(A) is closed in Y . Then (A,C, b) has an error
bound if and only if (IA, C, b) has an error bound.

Proof. Let M := Im(A). Then M = Im(IA). Note also that the solution set for
(IA, C, b) equalsM ∩ (b−C). Thus, applying Theorem 3.2 to (IA, C, b), one finds that
(IA, C, b) has an error bound if and only if

inf
y∈M\(b−C)
η∈∂g(IAy−b)

‖η‖M > 0,
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which is seen to be exactly (3.7) by writing Ax for y in M .
The next result deals with the special case in which C is a polyhedral cone: there

exist f1, f2, . . . , fr ∈ Y ∗ such that

−C = {y ∈ Y : fi(y) � 0 ∀i = 1, 2, . . . , r}.(3.9)

That is,

−C = {y ∈ Y : ψ(y) � 0},
where ψ : Y → R is the max function defined by

ψ(y) = max fi(y) ∀y ∈ Y.(3.10)

Further, define Ψ : X → R by

Ψ(x) = ψ(Ax− b) ∀x ∈ X.(3.11)

Thus

x ∈ Sb
C ⇐⇒ Ψ(x) � 0 ⇐⇒ (A∗fi)(x)− fi(b) � 0 ∀i = 1, 2, . . . , r.(3.12)

The following theorem extends a result of Robinson [14, pp. 759–760] from the
finite dimensional case to general Banach spaces.

Theorem 3.4. Suppose that C is a polyhedral cone in Y . Then the system
(A,C, b) has an error bound for any b ∈ Y .

Proof. By Ioffe’s Theorem [8], there exists a τ > 0 such that

dist(x, Sb
C) � τ [Ψ(x)]+, x ∈ X.(3.13)

By Corollary 2.3, one has

D′(x;h) � τΨ′(x;h), h ∈ X\TSbC (x),(3.14)

where D : X → R is defined by D(x) = dist(x, Sb
C). Letting F (x) := dist(Ax−b,−C)

and ξ := max{‖f1‖, . . . , ‖fr‖}, we claim that
Ψ′(x;h) � ξF ′(x;h) ∀x ∈ bd(Sb

C), h ∈ X\TSbC (x).(3.15)

By the chain rules and (3.11), Ψ′(x;h) = ψ′(Ax − b;Ah) and similarly F ′(x;h) =
g′(Ax− b;Ah), where g : Y → R is defined by

g(y) = dist(y,−C) ∀y ∈ Y.
Hence (3.15) holds if and only if

ψ′(Ax− b;Ah) � ξg′(Ax− b;Ah) ∀x ∈ bd(Sb
C), h ∈ X\TSbC (x).(3.16)

Thus (3.15) follows from

ψ′(y; k) � ξg′(y; k) ∀y ∈ bd(−C), k ∈ Y,(3.17)

which in turn is seen to hold because ψ(y) = g(y) for y ∈ bd(−C) and
fi(y + tk) � fi(y + tk − w) � ξ‖y + tk − w‖ ∀w ∈ (−C),

that ψ(y+ tk) � ξg(y+ tk) for any k ∈ Y . Therefore (3.15) is established. Combining
(3.14) and (3.15), it follows from Corollary 2.3 that

dist(x, Sb
C) � τξ[F (x)]+ ∀x ∈ X.
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4. Angle conditions. The aim of this section is to interpret the condition given
in (3.7) by virtue of an angle condition, and hence to seek further consequence geo-
metrically. The angle condition given in Theorem 4.3 is more intuitive and sometimes
easier to apply (see Example 4.10.1 and Corollary 4.5, for example). While we retain
all the notation introduced in the preceding section, we will assume throughout that
M := Im(A) is closed and that the norm for Y is induced by an inner product 〈·, ·〉;
that is, Y is a Hilbert space. M⊥ denotes the orthogonal complement of M . For any
y, z ∈ Y \{0} we define �(y, z) ∈ [0, π2 ] by

�(y, z) = arccos
{ |〈y, z〉|
‖y‖‖z‖

}
.(4.1)

If Z 	= {0} is a closed vector subspace of Y , we also define
�(y, Z) = min{�(y, z) : z ∈ Z, ‖z‖ = 1},(4.2)

i.e.,

cos�(y, Z) = max
{〈

y

‖y‖ , z
〉
: z ∈ Z, ‖z‖ = 1

}
.(4.3)

We recall that, for y ∈ Y ,
‖y‖Z := sup

z∈Z
‖z‖=1

{〈y, z〉} = max
z∈Z
‖z‖=1

{〈y, z〉}.

Lemma 4.1. Let y ∈ Y with ‖y‖ = 1, let Z 	= {0} be a closed vector subspace of
Y , and let PZ denote the orthogonal projection of Y onto Z. Then

‖y‖Z = ‖PZ(y)‖ = cos�(y, Z).(4.4)

Proof. Write y = p+ q with p ∈ Z and q ∈ Z⊥, the orthogonal complement of Z.
Then

‖y‖Z = max{〈p+ q, z〉 : z ∈ Z, ‖z‖ = 1}
= max{〈p, z〉 : z ∈ Z, ‖z‖ = 1}
= ‖p‖,

since p ∈ Z and because of the Cauchy–Schwarz inequality. Combining this with
(4.3), (4.4) is seen to hold.

Recall that g : Y → R is defined by g(y) = dist(y,−C) for each y ∈ Y , and that
P−C(y) denotes the projection of y to −C.

Lemma 4.2. ∂g(y) = { y−P−C(y)
‖y−P−C(y)‖} for each y ∈ Y \(−C).

The proof given in [3, Proposition 2.5.4] can easily be adopted for our infinite
dimensional setting (cf. [1, pp. 522–526]).

Theorem 4.3. Let b ∈ Y . The system (A,C, b) has an error bound if and only if

sup
x∈X\SbC

�(Ax− b− P−C(Ax− b), Im(A)) < π
2
.(4.5)

In particular, if −b + C ⊆ Im(A) (e.g., A is onto Y ), then the system (A,C, b) has
an error bound.
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Proof. Let M := Im(A). By Lemma 4.2 and (4.3) we have

inf
x∈X\SbC

η∈∂g(Ax−b)

{‖η‖M} = inf
x∈X\SbC

∥∥∥∥ Ax− b− P−C(Ax− b)
‖Ax− b− P−C(Ax− b)‖

∥∥∥∥
M

= inf
x∈X\SbC

cos�(Ax− b− P−C(Ax− b),M)

= cos

(
sup

x∈X\SbC
�
(
Ax− b− P−C(Ax− b),M

))
,

which is positive if and only if (4.5) holds. Thus Theorem 4.3 follows from Theo-
rem 3.2.

Theorem 4.4. Suppose that for some b ∈ Y ,

sup
x∈X\SbC

�
(
Ax− b− P−C(Ax− b), Im(A)

)
<
π

2
.(4.6)

Then

sup
x∈X\S0

C

�
(
Ax− P−C(Ax), Im(A)

)
<
π

2
.

Proof. Let M := Im(A). Assume that there exists a sequence {xn} with Axn /∈
−C for each n such that

lim
n→∞�

(
Axn − P−C(Axn),M

)
=
π

2
.

Assuming without loss of generality that Axn − P−C(Axn) is of norm 1, it follows
from (4.4) that

lim
n→∞cos�

(
Axn − P−C(Axn),M

)
= lim

n→∞ ‖PM (Axn − P−C(Axn))‖
= 0.

Let U := {y ∈ Y |‖y‖ � 1/4}. Then for each y ∈ U, (Axn − y) 	∈ −C because Axn is
of distance 1 to −C. Let ηn(y) := Axn − y − P−C(Axn − y) and

φn(y) :=
‖PM (ηn(y))‖
‖ηn(y)‖ ∀y ∈ U.

Obviously |ηn(y)−ηn(y′)| � 2‖y−y′‖; letting y′ = 0, it follows from ‖ηn(0)‖ = 1 that
‖ηn(y)‖ � 1/2 for each y ∈ U . Then φn(y) is a sequence of equicontinuous functions
of y from U to R. Let {εn} be a sequence of real numbers decreasing to 0. For each
n we can therefore find a large enough integer kn such that

b
kn
∈ U and

∣∣∣∣arccosφm
(
b

kn

)
− arccosφm(0)

∣∣∣∣ � εn for each m ∈ N.(4.7)
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Then, by Lemma 4.1, one has

lim
n→∞�(A(knxn)− b− P−C(A(knxn)− b),M)

= lim
n→∞�

(
Axn − b

kn
− P−C

(
Axn − b

kn

)
,M

)

= lim
n→∞ arccosφn

(
b

kn

)
= lim

n→∞ arccosφn(0)(4.8)

= lim
n→∞�(Axn − P−C(Axn),M)

=
π

2
.

Here (4.8) follows from (4.7). Note further that since b
kn
∈ U , Axn − b

kn
/∈ −C, and

so knxn ∈ X\Sb
C . This contradicts (4.6).

Combining Theorems 4.3 and 4.4, we have the following.
Corollary 4.5. Suppose that the system (A,C, b) has an error bound for some

b ∈ Y . Then the system (A,C, 0) has an error bound.
The converse of the above corollary is inexact, as the following example shows.
Example 4.5.1. Let X = Y = R

3, C = {(x, y, z) ∈ R
3|z �

√
x2 + y2}. Let A :

X → Y be defined by A(x, y, z) = (x, 0, 0) for each (x, y, z) ∈ X, and let b = (0, 1, 1).
Then

Sb
C = {(x, y, z) ∈ R

3|A(x, y, z)− b ∈ −C} = {(x, y, z) ∈ R
3 : x = 0}.

Let ek = (
1
k , 0, 0). Then dist(ek, S

b
C) =

1
k . Pick hk := (

1
k ,−1,−

√
1 + 1

k2 ) ∈ −C; then

dist(Aek − b,−C) � ‖Aek − b− hk‖ =
√
1 +

1

k2
− 1 < 1

k2
.

Therefore, dist(ek, S
b
C) � k dist(Aek−b,−C), showing that the system (A,C, b) has no

error bound. On the other hand, one can show that (A,C, 0) does have an error bound.
(This can be seen immediately by applying Proposition 5.4 because Im(A)∩C = {0}.)

Extending (4.2) and (4.3), we consider the angles between two vector subspaces
(cf. [4]). Let M , N be closed vector subspaces of Y . If M ⊆ N or N ⊆ M , then
we stipulate that �(M,N) = 0. Suppose that M � N and N � M (equivalently,
M ∩ (M ∩N)⊥ and N ∩ (M ∩N)⊥ are not {0}). Then we define

�(M,N) := inf{�(x, y) : x ∈M ∩ (M ∩N)⊥, y ∈ N ∩ (M ∩N)⊥ and x, y 	= 0}.

Recall that C denotes a closed convex cone in Y ; to avoid triviality, we assume that
{0} 	= C 	= Y . We say that a hyperplane supports C if H ∩C is nonempty and C lies
on one side of H: there exists y∗ ∈ Y ∗\{0} such that

sup
h∈H
〈y∗, h〉 = inf

c∈C
〈y∗, c〉;(4.9)

note that the above supremum and the infimum are attained at the origin 0 ∈ H ∩C
(and so H is a vector subspace). If, in addition, H ∩ C = {0}, then H is called a
vertex supporting hyperplane of C; otherwise it is a nonvertex one. There exist many
nonvertex supporting hyperplanes of C. For example, pick a nonzero boundary point
c of C and d ∈ Y \C such that ‖d− c‖ < 1

2‖c‖. Then 0 	= PC(d) ∈ (d−PC(d))⊥∩ (C);
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hence (d−PC(d))⊥ is a nonvertex supporting hyperplane. Let C+, C+i, respectively,
denote

C+ = {y ∈ Y : 〈y∗, c〉 � 0 ∀c ∈ C},
C+i = {y ∈ Y : 〈y∗, c〉 > 0 ∀c ∈ C\{0}}.

The following result follows immediately from (4.9).
Lemma 4.6.
(a) H ⊂ Y is a supporting hyperplane of C if and only if it can be expressed in

the form H = ξ⊥ for some ξ ∈ C+\{0}.
(b) H ⊂ Y is a hyperplane supporting C at some c̄ ∈ C\{0} if and only if it can

be expressed in the form H = ξ⊥ for some ξ ∈ C+\{0} with ξ(c̄) = 0.
(c) H ⊂ Y is a vertex supporting hyperplane of C if and only if it can be expressed

in the form H = ξ⊥ for some ξ ∈ C+i.
The following lemma follows easily from the variational inequalities.
Lemma 4.7. Let ξ ∈ Y with ‖ξ‖ = 1. Let c̄ ∈ bd(C). Then the following

statements are equivalent:
(i) ξ ∈ −C+ and ξ(c̄) = 0.
(ii) ξ ∈ N1

C(c̄).
(iii) −ξ ∈ N1

−C(−c̄).
To prepare for the proof of our next theorem, we define a function φ : Y → R by

φ(y) = max{〈x, y〉 : x ∈ −C, ‖x‖ = 1}, y ∈ Y.
It is easy to see that φ is a convex function. Moreover, in view of the variational
inequalities, one has the following claim.

Lemma 4.8. Let y ∈ Y \ − C. Then
(i) φ(y) � 0⇔ P−C(y) = 0.
(ii) φ(y) = 0⇔ P−C(y) = 0 and there exists a x̄ ∈ −C, x̄ 	= 0 such that 〈y, x̄〉 = 0.
(iii) φ(y) < 0⇔ P−C(y) = 0 and 〈y, z〉 < 0 for any z ∈ −C, z 	= 0.
Theorem 4.9. Let b ∈ Y , x ∈ X\Sb

C , and M := Im(A). Then the following
assertions hold:

(i) �(Ax− b− P−C(Ax− b),M) < π
2 .

(ii) There exists a nonvertex supporting hyperplane H of C such that

�(Ax− b− P−C(Ax− b),M) + �(H,M) � π

2
.(4.10)

Proof. For simplicity, we write z, q for Ax − b and P−C(Ax − b), respectively.
Then for any y ∈ −C one has by the variational inequality that

〈z − q, y − q〉 � 0.

By considering y = 0 and y = 2q separately, we have 〈z − q, q〉 = 0. Thus, for any
y ∈ −C,

〈z − q, y〉 � 〈z − q, q〉 = 0 < 〈z − q, z − q〉 = 〈z − q, z〉.(4.11)

If �(z − q,M) = π
2 , then 〈z − q,Au〉 = 0 for any u ∈ X, and so

〈z − q,Au− b〉 = 〈z − q, z〉 > 0;(4.12)

it follows from (4.11) that Au−b /∈ −C for any u ∈ X; this contradicts the assumption
that Sb

C 	= ∅, and proves (i). Moreover, if q = 0 and b ∈ M , then the first term of
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the left-hand member of (4.10) is zero, and hence (4.10) is seen to hold with any
nonvertex supporting hyperplane H of C.

The remainder of the proof is devoted to showing (ii), and we consider the fol-
lowing two cases.

Case 1: φ(z) � 0. TakeH to be (z−q)⊥, which is clearly a supporting hyperplane
of C and q ∈ H∩(−C). We claim that it is nonvertex. Indeed, if φ(z) > 0, then q 	= 0
by Lemma 4.8(i), and thus 0 	= q ∈ H ∩ (−C); if φ(z) = 0, then by Lemma 4.8(ii),
q = 0 and there exists x̄ ∈ (−C)\{0} such that 〈z, x̄〉 = 0; hence 0 	= x̄ ∈ H ∩ (−C).
Therefore our claim is proved.

Moreover, whether q = 0 or not, we have PM (z − q) 	= 0 by (i), and, from the
definitions,

�(z − q,M) = �(z − q, PM (z − q)).(4.13)

If z − q ∈ M , then (4.10) holds trivially. We can therefore assume that z − q /∈ M .
Write p for PM (z−q), and let V = span(z−q, p). Since z−q ⊥ H and (z−q−p) ⊥M ,
these two vectors are perpendicular to H ∩M , and hence

V ⊥ (H ∩M);(4.14)

in particular,

p ⊥ (H ∩M).(4.15)

Since (z − q) /∈ H, V ∩ H is a one dimensional space, there exists v 	= 0 such that
V ∩H = {λv|λ ∈ R}. Then 〈z − q, v〉 = 0 since v ∈ H. By (4.14) we have

v ⊥ (H ∩M).(4.16)

Combining (4.15) and (4.16), it follows from the definition of the angle between two
subspaces that

�(H,M) � �(v, p).(4.17)

Moreover,

�(z − q, p) + �(p, v) = �(z − q, v) = π
2
,(4.18)

since the three vectors involved lie in the same plane (the two dimensional subspace
V ). From (4.13), (4.17), and (4.18), we have

�(z − q,M) + �(H,M) � π

2
,

showing that (4.10) is satisfied by H.
Case 2: φ(z) < 0. By Lemma 4.8, one has q = P−C(Ax− b) = 0. We can assume

that b /∈ M (otherwise, the results of the theorem have already been shown). Then
φ(PMb− b) > 0. In fact,

〈PMb− b, Au− b〉 = ‖PMb− b‖2 > 0
for any u ∈ X because (PMb − Au) ∈ M ⊥ (PMb − b). Picking ū ∈ Sb

C and letting
z̄ = Aū − b, it follows that z̄ ∈ −C and 〈PMb − b, z̄〉 > 0; hence φ(PMb − b) > 0



36 KUNG FU NG AND WEI HONG YANG

by definition of φ. Since φ takes values of opposite signs at the end points of the
line-segment [z, PMb − b] ⊂ M − b, there exists a w in that line-segment such that
φ(w) = 0; write

w := tz + (1− t)(PMb− b) ∈M − b,(4.19)

with some t ∈ (0, 1). Note that z, w 	∈M because b 	∈M . Since φ(w) = 0, one has that
w /∈ −C; otherwise, the definition of φ would imply that φ(w) � 〈w, w

‖w‖ 〉 = ‖w‖ > 0.
According to (4.4),

cos�(w,M) = ‖PM (w)‖‖w‖ .

Since (w − PM (w)) ⊥ PM (w), it follows that

cot�(w,M) = ‖PM (w)‖
‖w − PM (w)‖ .(4.20)

Similarly,

cot�(z,M) = ‖PM (z)‖
‖z − PM (z)‖ .(4.21)

Let y ∈M − b: y = Au− b for some u ∈ X. Note that
y − PMy = Au− b− PM (Au− b) = Au− b− [Au− PM (b)] = PMb− b.

Considering z and w separately for the above y, we arrive at

z − PMz = w − PMw = PMb− b.(4.22)

From (4.19) one has ‖PMw‖ = ‖tPMz‖. Together with (4.20), (4.21), and (4.22), we
have cot�(z,M) > cot�(w,M), that is,

�(z,M) < �(w,M).(4.23)

By Case 1 (applied to w in place of z) there exists a nonvertex supporting hyperplane
H of C such that

�(w,M) + �(H,M) � π

2
.(4.24)

Combining (4.23) and (4.24), (4.10) is seen to hold.
Theorem 4.10. Let T consist of all nonvertex supporting hyperplanes of C. If

inf
H∈T

�(H, Im(A)) > 0,(4.25)

then system (A,C, b) has an error bound, provided that Sb
C 	= ∅.

Proof. Let α denote the infimum in (4.25). Then (4.10) implies that

�(Ax− b− P−C(Ax− b),M) � π

2
− α < π

2
∀x ∈ X\Sb

C .

Thus the result follows immediately from Theorem 4.3.
The following example provides an application of Theorem 4.10.



ERROR BOUND OF ABSTRACT LINEAR INEQUALITY SYSTEMS 37

Example 4.10.1. Let X = Y = R
2, C = {(x, y) ∈ R

2|x � 0 and y � 0}. Let
A : X → Y be defined by A(x, y) = (−x, x). Then there are only two non–vertex
supporting hyperplane (lines) of C: they are respectively defined by x = 0 and y = 0.
Since the angles between Im(A) and these two lines are equal to π

4 , Theorem 4.10
implies that the system (A,C, b) has an error bound for each b ∈ Y satisfying Sb

C 	= ∅.
The following example shows that the converse of Theorem 4.10 is not true.
Example 4.10.2. Let X = Y = R

2, C = {(x, y) ∈ R
2|x � 0 and y � 0}. Let

A : X → Y be defined by A(x, y) = (x, 0). Let H be the line defined by y = 0. Then
�(Im(A), H) = 0, and thus (4.25) is not satisfied. But by Theorem 3.4, the system
(A,C, b) has an error bound for any b ∈ R

2 with Sb
C 	= ∅.

The following lemma gives a simple method for computing �(H, Im(A)).
Lemma 4.11. Let H be a hyperplane of Y and l ⊥ H. Let M be a proper subspace

of Y . Then

�(H,M) + �(l,M) = π
2
.(4.26)

Proof. It is easy to see that (4.26) is equivalent to

cos2 �(H,M) + cos2 �(l,M) = 1.(4.27)

We assume that ‖l‖ = 1. If l ∈M or M ⊂ H, (4.26) is obvious. We can therefore
assume that l 	∈M andM 	⊂ H. Let N = (M∩H)⊥∩M . FromM 	⊂ H we know that
N 	= {0}. Since N ∩H = (M ∩H)⊥∩(M ∩H) = {0} and H is a hyperplane, it follows
that dim(N) = 1: there exists a unit vector n0 which linearly spans N . Because the
unit sphere of a Hilbert space is weak compact, there exists h0 ∈ (M ∩ H)⊥ ∩ H,
‖h0‖ = 1, such that

�(H,M) = �(h0, n0).(4.28)

We can express n0 in the form n0 = αl+βh, where h ∈ H, ‖h‖ = 1, and α2+β2 = 1,
αβ 	= 0. Since l ⊥ (M ∩H), we have h ⊥ (M ∩H). By definition and from (4.28),
we have |〈n0, h0〉| � |〈n0, h〉|, which implies that |β〈h, h0〉| � |β〈h, h〉|. Replacing h0

by −h0, if necessary, it follows that βh = βh0, and thus n0 = αl + βh0. Thus, from
(4.28),

cos�(H,M) = cos�(h0, n0) = |β|.(4.29)

Note that m ∈ M can be written in the form m = sn0 + tk, where k ∈ M ∩H and
‖k‖ = 1; hence |〈l,m〉| = |s〈l, n0〉| � ‖m‖ · |〈l, n0〉|. It follows from (4.3) that

cos�(l,M) = |〈l, n0〉| = |α|.(4.30)

Thus (4.27) and hence (4.26) hold.
Theorem 4.12. Let C+ denote the set of all x satisfying 〈x, c〉 � 0 for each

c ∈ C. If

sup
l∈bd(C+)

l �=0

�(l, Im(A)) < π
2
,(4.31)

then system (A,C, b) has an error bound, provided that Sb
C 	= ∅.

Proof. Let β denote the supremum in (4.31). Let H ∈ T : H is a hyperplane in
Y supporting C at some c̄ ∈ C\{0}. Take l ∈ H⊥ with ‖l‖ = 1. By Lemma 4.6(a)
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and replacing l by −l if necessary, we can suppose that l ∈ C+ and l(c̄) = 0. Then l
must not be in the interior of C+. Hence it follows from Lemma 4.11 that

�(H, Im(A)) = π
2
− �(l, Im(A)) � π

2
− β > 0,

showing that (4.25) holds. Therefore by Theorem 4.10, the system (A,C, b) has an
error bound, provided that Sb

C 	= ∅.
Next we give an example which shows the application of Theorem 4.12.
Example 4.12.1. Let X = R

3, C = {(x, y, z) : z �
√
x2 + y2}. Let A(x, y, z) =

(x, y, 0). The boundary of C+ is {(x, y, z) : z =
√
x2 + y2}. For l ∈ bd(C+), l 	= 0,

�(l, Im(A)) = �(l, PIm(A)l). We have

sup
l∈bd(C+)

l �=0

�(l, Im(A)) = π
4
<
π

2
.

By Theorem 4.12 we know that system (A,C, b) has an error bound for each b such
that Sb

C 	= ∅.
5. The ice-cream cone. We continue to use the notations defined in the pre-

ceding section; in particular, Y is a Hilbert space: infinite dimensional or finite di-
mensional. We assume throughout that M := Im(A) is closed. Let V be a closed
convex set in Y and x ∈ bd(V). NV (x) equals the normal cone of V at x in the
following sense:

v ∈ NV (x) if and only if 〈v, t〉 � 0 for t ∈ TV (x).
Lemma 5.1. Let V be a closed convex set in a Hilbert space Y and x ∈ bd(V).

Let dV (y) be defined by dV (y) = dist(y, V ). Then for each h ∈ Y , the maxima below
are attained and

max{|〈ξ, h〉| : ξ ∈ N1
V (x)} = max{|〈η, h〉| : η ∈ ∂dV (x)}.

If max{〈η, h〉 : η ∈ ∂dV (x)} � 0 for some h, then

max{〈ξ, h〉 : ξ ∈ N1
V (x)} = max{〈η, h〉 : η ∈ ∂dV (x)}.

Proof. We assume that h 	= 0. According to the result in [6, p. 259],
∂dV (x) = NV (x) ∩B(0, 1),(5.1)

where B(0, 1) denotes the closed unit ball in Y . In particular, ∂dV (x) is weak compact
and contains N1

V (x); hence there exists an η̄ ∈ ∂dV (x) such that
sup{|〈ξ, h〉| : ξ ∈ N1

V (x)} � max{|〈η, h〉| : η ∈ ∂dV (x)} = 〈η̄, h〉.
From (5.1), it follows that η̄ is of norm 1, that is, η̄ ∈ N1

V (x). This proves the first
assertion of the theorem. The proof for the second assertion is similar.

Let b ∈ Y , and assume as before that Sb
C 	= ∅. For simplicity, let Ω denote

(b − C) ∩ M , where M := Im(A). Note that Ω 	= ∅. Let IA denote the identity
operator from M into Y . Then Ω = {y ∈ M : IAy − b � 0}. Let bdM (Ω) denote the
boundary of Ω relative to M , and N 1

Ω(y) denote N
1
Ω(y) ∩M . That is,

N 1
Ω(y) = {h : h ∈ Im(A) and dist(x+ th,Ω) = t‖h‖ ∀t ∈ [0, 1]}.

We have the following theorem.
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Theorem 5.2. The following statements are equivalent:
(i) The system (A,C, b) has an error bound.
(ii) infx∈bd(SbC)u∈N1

Sb
C

(x)max{〈ξ, Au〉 : ξ ∈ N1
−C(Ax− b)} > 0.

(iii) infy∈bdM (Ω)h∈N 1
Ω(y)max{〈ξ, h〉 : ξ ∈ N1

−C(y − b)} > 0.
Proof. Let ϕb(x) and g be defined by (3.1) and (3.2). By the chain rules and [3,

Proposition 2.1.2], we have

ϕ′
b(x;u) = g

′(Ax− b;Au) = max{〈ξ, Au〉 : ξ ∈ ∂g(Ax− b)} ∀x, u ∈ X.

If x ∈ bd(Sb
C), then Ax− b ∈ bd(−C), and it follows from Lemma 5.1 that

ϕ′
b(x;u) = max{〈ξ, Au〉 : ξ ∈ N1

−C(Ax− b)},

which together with Theorem 2.2 and Remark 2.2.1 implies (i)⇔ (ii). Similarly, (iii)
holds if and only if the system (IA, C, b) has an error bound. Thus the result now
follows from Corollary 3.3.

Corollary 5.3. Suppose that there exist ȳ ∈ bdM (Ω) and a hyperplane H
satisfying the properties:

(a) N1
−C(ȳ − b) is a singleton.

(b) M ⊂ H, and H supports −C at ȳ − b.
Then the system (A,C, b) has no error bound.

Proof. Write c̄ for b− ȳ. Then c̄ ∈ bd(C) and, by assumption, take a hyperplane
H ⊃ M such that it supports −C at −c̄. By Lemmas 4.6 and 4.7, there exists an ξ̄
of norm 1 such that ξ̄(c̄) = 0 and ξ̄ ∈ H⊥ ∩ N1

−C(−c̄). Hence, since N1
−C(−c̄) is a

singleton by assumption,

max
{〈ξ, h〉 : ξ ∈ N1

−C(−c̄)
}
= 〈ξ̄, h〉 ∀h ∈ Y.(5.2)

Note that, since ξ̄ ∈ H⊥ ⊂ M⊥, 〈ξ̄, l〉 = 0 for each l ∈ M . Pick h̄ ∈ N 1
Ω(ȳ). Since

N 1
Ω(ȳ) ⊂M , it follows that 〈ξ̄, h̄〉 = 0. Combining this with (5.2), one has

max
{〈ξ, h̄〉 : ξ ∈ N1

−C(ȳ − b)
}
= 0.

Since ȳ ∈ bdM (Ω) and h̄ ∈ N 1
Ω(ȳ), this implies that Theorem 5.2(iii) does not hold,

and therefore we conclude from Theorem 5.2 that the system (A,C, b) has no error
bound.

Proposition 5.4. Suppose that Y is finite dimensional, and that Im(A) ∩ C =
{0}. Then the system (A,C, 0) has an error bound.

Proof. Suppose that (A,C, 0) has no error bound. Then according to Theorem 4.2,
there exists a sequence {xk} ⊂ X\S0

C such that

lim
k→∞

�(Axk − P−C(Axk), Im(A)) =
π

2
.(5.3)

Without loss of generality we can assume that ‖Axk‖ = 1 for each k. Since Y is
finite dimensional, {Axk} has a cluster point, which will be denoted by z. It is clear
that ‖z‖ = 1 and that z = Ax̄ for some x̄ ∈ X because Im(A) is closed. From
Im(A) ∩ −C = {0} we know that z /∈ −C and hence that x̄ /∈ S0

C . But (5.3) implies
that

�(Ax̄− P−C(Ax̄), Im(A)) =
π

2
,
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contradicting Theorem 4.9(i).
Lemma 5.5. Suppose that Y is finite dimensional. Let b ∈ Y . If (Im(A) − b) ∩

(−C) is bounded and (Im(A) − b) ∩ int(−C) 	= ∅, then the system (A,C, b) has an
error bound.

Proof. WriteM for Im(A). Denote (b−C)∩M by Ω. By [16, Theorem 2.5] there
exists a constant κ > 0 such that for any y ∈M ,

dist(y,Ω) = dist(y − b,Ω− b) � κ
[
dist(y − b,−C) + dist(y − b,M − b)]

= κ
[
dist(y − b,−C)].(5.4)

Note that this just means that the system (IA, C, b) has an error bound, and therefore
it follows from Corollary 3.3 that the system (A,C, b) has an error bound.

We conclude our paper with a discussion of the special case in which C is an
“ice-cream” cone. Here the so-called ice-cream cone is defined by Sice = f

−1(−∞, 0],
where f is defined by

f(x) =

√√√√n−1∑
i=1

x2
i − xn, x ∈ R

n.(5.5)

Any set that is not a singleton will be referred to as a ray if it can be expressed in the
form {y0 + th : t � 0}. A ray that is an extreme subset of Sice is called an extreme
ray. The following lemma is stated for our easy reference; it is elementary and we
need not give a proof here.

Lemma 5.6. Let Sice be the ice-cream cone in R
n, and let f be defined by (5.5).

Then
(i) Sice = S

+
ice, that is, ξ belongs to Sice if and only if ξ ∈ R

n and

〈ξ, y〉 � 0 ∀y ∈ Sice.
(ii) The union of the extreme rays of Sice equals the topological boundary bd(Sice).
(iii) If s′ ∈ bd(Sice)\{0}, s ∈ Sice, and s is not a multiple of s′, then the open

line-segment (s, s′) is contained in int(Sice), the topological interior of Sice.
(iv) If x ∈ bd(Sice) and x 	= 0, then ∂f(x) = {�f(x)}, where

�f(x) =

 x1√∑n−1

i=1 x
2
i

, . . . ,−1



and N1
Sice
(x) =

{ �f(x)
‖�f(x)‖

}
. Moreover, 〈�f(x), x − x′〉 is strictly positive

whenever x′ ∈ int(Sice).
(v) If x ∈ −Sice, then dist(x, Sice) = ‖x‖.
In what follows we will identify exactly when (A,Sice, b) has an error bound (and

when it has none), where A is a linear operator from X into Y , and Y = R
n is

equipped with the partial order defined by Sice. As in the preceding section, let
M := Im(A). Also we use K to denote the cone Sice. It will be shown that there are
three possible cases.

Case I. M contains an interior point of K;
Case II. M ∩ K = {0};
Case III. M ∩ K is an extreme ray of K.
These cases are respectively dealt with in the next three theorems.
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Theorem 5.7. Suppose that

Im(A) ∩ int(K) 	= ∅.(5.6)

Then the system (A,K, b) has an error bound for each b ∈ R
n.

Proof. Let b ∈ R
n and Ω :=M∩(b−K). We proceed as in the proof of Lemma 5.5.

By virtue of (5.6), one can apply [16, Theorem 2.6] (instead of [16, Theorem 2.5]) to
obtain (5.4), completing the proof.

Theorem 5.8. Suppose that

M ∩ K = {0}.(5.7)

Let b ∈ R
n be such that

(M − b) ∩ (−K) 	= ∅.(5.8)

Then the following assertions hold:
(a) If (M − b) ∩ int(−K) 	= ∅, then (A,K, b) has an error bound.
(b) If b ∈M , then (A,K, b) has an error bound.
(c) If (M − b) ∩ int(−K) = ∅ and b 	∈M , then (A,K, b) has no error bound.
Proof. By (5.7) and [15, Corollary 8.4.1], (M − b) ∩ (−K) is bounded. Thus (a)

holds by Lemma 5.2.
(b) By (5.7) and Proposition 5.4, (A,K, 0) has an error bound: there exists τ > 0

such that

dist(x, S0
K) � τdist(Ax,−K) ∀x ∈ X,(5.9)

where S0
K := {x ∈ X : Ax ∈ −K}. Since b ∈M , take x̄ ∈ X such that Ax̄ = b. Then

Sb
K = x̄+ S

0
K. Writing z for x+ x̄, it follows from (5.9) that

dist(z, Sb
K) � τdist(Az − b,−K) ∀z ∈ X,

proving (b).
To prove (c), we take s̄ ∈ (M−b)∩(−K) by (5.8). By assumption in (c), it follows

that s̄ ∈ bd(−K). By Lemma 5.6(iv), N1
−K(s̄) is certainly a singleton (consisting of

�f(s̄)
‖�f(s̄)‖ ).

Moreover, by the separation theorem, take ξ ∈ R
n of norm 1 such that

sup
y∈M−b

〈ξ, y〉 = 〈ξ, s̄〉 � inf
y∈−K

〈ξ, y〉.

Since −K is a cone, it follows that 〈ξ, s̄〉 = 0, and hence that ξ⊥ supports −K at s̄.
Note also that ξ is bounded on M and hence vanishes on M , that is, ξ⊥ ⊃M .

We claim further that (M − b)∩ (−K) is the singleton {s̄}. Indeed, let s ∈ (M −
b)∩ (−K). Then the segment [s, s̄] is also contained in (M − b)∩ (−K); in particular,
0 	∈ [s, s̄] as b 	∈ M . By assumption in (c), it follows that [s, s̄] ⊂ bd(−K). By
Lemma 5.6(iii), it follows that s̄ = ts for some t > 0. If t > 1, then s̄− s ∈M ∩ (−K),
contradicting (5.7). Similarly t < 1 is also not possible. Therefore s̄ = s, and our
claim stands. Let Ω =M ∩ (b−K); then Ω = {s̄+ b}. By Corollary 5.3, (A,K, b) has
no error bound.

Theorem 5.9. Suppose that

{0} 	=M ∩ K ⊂ bd(K).(5.10)
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Let b ∈ R
n be such that

(M − b) ∩ (−K) 	= ∅.(5.11)

Then the following assertions hold:
(a) If dim(M) 	= 1, then (A,K, b) has no error bound.
(b) If dim(M) = 1, then (A,K, b) has an error bound.
Proof. Pick s̄ ∈ M ∩ K, s̄ 	= 0. By Lemma 5.6(iii) any element s of M ∩ K must

be a multiple of s̄ (because by (5.10) we know that (s̄, s) does not contain any interior
point of K); therefore M ∩ K is an extreme ray of K. Separating M and int(K), one
obtains a hyperplane H containing M and supporting K at s̄.

(a) Suppose that dim(M) 	= 1. Then the ray M ∩ K cannot contain any relative
interior point in M . Let Ω = M ∩ (−K). Then −s̄ ∈ bdM (Ω), and N1

−K(−s̄) is a
singleton by Lemma 5.6(iv). Hence, by Corollary 5.3, (A,K, 0) has no error bound.
In view of Corollary 4.5, this implies that (A,K, b) has no error bound for any b ∈ R

n.
(b) Suppose that dim(M) = 1. We consider the system (IA,K, b), where b satisfies

(5.11). In light of Corollary 3.3, it is sufficient to show that (IA,K, b) has an error
bound, that is, to show that there exists τ > 0 such that

dist(m,S) � τdist(m− b,−K) ∀m ∈M,(5.12)

where S := {m ∈M : m− b ∈ −K} =M ∩ (b−K). Note from Lemma 5.6(v) that if
L is a line containing an extreme ray R of K, then, for each l ∈ L\R,

dist(l,K) = dist(l, L ∩ K)(= ‖l‖).
Therefore, if b ∈M ,

dist(m,M ∩ (b−K)) = dist(m− b, (M − b) ∩ (−K))
= dist(m− b,−K) ∀m ∈M.

Therefore (5.12) holds with τ = 1, and hence we may suppose henceforth that b 	∈M .
We recall from the first paragraph of the proof that there exists s̄ ∈ K, ‖s̄‖ = 1,

such that

M ∩ (−K) = {−ts̄ : t � 0}
is an extreme ray of −K. By (5.11), take s0 ∈ (m − b) ∩ (−K). Then it is easily
shown that s0 + t(−s̄) also belongs to (m− b) ∩ (−K) for each t � 0. It follows that
(m− b)∩ (−K) is a ray; we suppose without loss of generality that its end point is s0:

(m− b) ∩ (−K) = {s0 + t(−s̄) : t � 0}.(5.13)

Since s0 ∈M − b and M − b is disjoint from M , s0 is not a multiple of s̄. Hence, for
each t > 0, s0 + t(−s̄) is not multiple of s̄. By Lemma 5.6(iii), s0 + t(−s̄) ∈ int(−K),
and hence

〈N−K(s0),−s̄〉 < 0.(5.14)

This implies that (5.12) holds for some constant τ > 0. Indeed, if not, then for each
k ∈ N there exists an mk ∈M such that

dist(mk − b, (m− b) ∩ (−K)) > k · dist(mk − b,−K).
Writing s0 + tks̄ (with tk > 0) for mk − b, it follows that

tk > k · dist(s0 + tks̄,−K) ∀k.
Since −K is convex, it follows that 0 must be a cluster point of {tk}. This implies
that s̄ ∈ T−K(s0) and 〈N−K(s0), s̄〉 � 0, contradicting (5.14).
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Abstract. A mechanism for proving global convergence in SQP–filter methods for nonlinear
programming (NLP) is described. Such methods are characterized by their use of the dominance
concept of multiobjective optimization, instead of a penalty parameter whose adjustment can be
problematic. The main point of interest is to demonstrate how convergence for NLP can be induced
without forcing sufficient descent in a penalty-type merit function.

The proof relates to a prototypical algorithm, within which is allowed a range of specific algorithm
choices associated with the Hessian matrix representation, updating the trust region radius, and
feasibility restoration.

Key words. nonlinear programming, global convergence, filter, multiobjective optimization,
SQP

AMS subject classifications. 65K05, 49M37, 90C30, 90C26
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1. Introduction. In Fletcher and Leyffer [5] a new technique for globalizing
methods for nonlinear programming (NLP) is presented. The idea is referred to
as an NLP filter and is motivated by the aim of avoiding the need to choose penalty
parameters, such as would occur with the use of l1 penalty functions or augmented La-
grangian functions. Numerical experience with the technique in a sequential quadratic
programming (SQP) trust region algorithm is reported in [5] and is very promising.
However, no global convergence proof is given in [5], although a number of heuris-
tics are suggested to eliminate obvious situations in which the method might fail to
converge.

This paper shows that the filter technique does provide a mechanism for forcing
global convergence when used in an appropriate way. The proof relates to an NLP
problem with both equations and inequality constraints and shows that there exists
an accumulation point that satisfies first order (Kuhn–Tucker, or KT) conditions.
The result requires that a Mangasarian–Fromowitz constraint qualification hold at the
accumulation point. Other nontrivial assumptions that are made are that the Hessian
matrices of the quadratic programming (QP) subproblems are uniformly bounded and
that a global solution of the subproblem is found by the QP solver. None of these
qualifications to the result are readily circumvented.

The proposed algorithm contains an inner iteration for calculating a suitable trust
region radius. In some ways this resembles the use of a backtracking line search along
a piecewise linear trajectory. This approach enables us to guarantee that certain
conditions used in the convergence proof are met. To a large extent, however, the
approach allows the use of conventional ideas of halving or doubling (say) the previous
trust region radius.
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An interesting feature of the proof is that various of the heuristics used in [5] are
shown to be unnecessary. These include the NW corner rule, the need to unblock
the filter in some cases, and the consequent decision to reduce the strict upper bound
on constraint infeasibility. In this paper we also use a way of defining the sufficient
reduction condition slightly different from that used in [5]. Another new feature of
some interest is that some points may be accepted by the algorithm, without a new
entry in the filter being made. This contributes to the nonmonotonic properties of
the algorithm. In common with [5], we do use a feasibility restoration technique but
are not prescriptive as to how this is done.

Subsequent to the work described in this paper, there have been a number of
more recent developments in regard to global convergence of filter-related methods
for NLP. The authors have contributed to other papers that prove global convergence
for different algorithmic structures such as an SLP-EQP approach or an approach
in which approximate solutions of the SQP step are used, based on a decomposition
into normal and tangential steps. Recent work of other authors proves the global
convergence of filter-related methods in a variety of other contexts such as interior
point and line search barrier methods. A brief discussion of these developments is
given in section 4.

2. A filter–SQP algorithm. In this paper we consider an NLP problem of the
form

P




minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≤ 0, i ∈ I,

where the index sets E and I reference the equality and inequality constraints, re-
spectively. We denote the cardinality of E ∪ I by m. We assume for the purposes
of our convergence proof that all points that are sampled by the algorithm lie in a
nonempty closed and bounded set X. Because the points generated by our algorithm
satisfy the linear constraints of the problem, it is readily possible to ensure that this
condition holds by including suitable simple upper and lower bounds on x among the
constraints of P . The QP subproblem in our algorithm depends upon the value of
the current iterate x and trust region radius ρ (ρ > 0) and is defined by

QP (x, ρ)




minimize
d∈Rn

q(d) := gTd+ 1
2dTBd

subject to ci + aTi d = 0, i ∈ E ,
ci + aTi d ≤ 0, i ∈ I,
‖d‖∞ ≤ ρ.

where we define g = grad f(x), ci = ci(x), and ai = grad ci(x). The l∞ norm is used
to define the trust region because it is readily implemented by adding simple bounds
to the QP subproblem. The QP subproblem also requires the specification of a matrix
B, although this plays a relatively minor part in the analysis of global convergence.
For this reason we do not make the dependence on B explicit in the notation. We let
d denote the global solution (if it exists) of QP (x, ρ). Then we denote

∆q = q(0)− q(d) = −gTd− 1
2dTBd(2.1)

as the predicted reduction in f(x), and

∆f = f(x)− f(x+ d)(2.2)
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as the actual reduction in f(x). The measure of constraint infeasibility that we use
in this paper is

h(c) = ‖c+
I ‖1 + ‖cE‖1,(2.3)

where c+i = max(0, ci), using the notation that cE and cI are partitions of c corre-
sponding to equality and inequality constraints, respectively.

The algorithm that we propose is iterative, and the index k is used throughout
to refer to the iteration number. The sequence of points accepted by the algorithm is
referred to by {x(k)}, and quantities derived from x(k) are superscripted in a similar
manner; for example, h(k) refers to h(c(x(k))), and f (k) to f(x(k)). The matrix B
usually differs from iteration to iteration and is generally referred to as B(k). Within
the inner loop of the iterative process, B(k) is a constant matrix.

We now turn to the definition of an NLP filter as introduced in [5]. The two
aims in an NLP problem are to minimize f(x) and to satisfy the constraints, that
is, to minimize h(c(x)). In a filter we consider pairs of values (h, f) obtained by
evaluating h(c(x)) and f(x) for various values of x. A pair (h(i), f (i)) obtained on
iteration i is said to dominate another pair (h(j), f (j)) if and only if both h(i) ≤ h(j)

and f (i) ≤ f (j), indicating that the point x(i) is at least as good as x(j) with respect
to both measures. The NLP filter is defined to be a list of pairs (h(i), f (i)) such that
no pair dominates any other. This is illustrated by the solid lines in Figure 1. We
use F (k) to denote the set of iteration indices j (j < k) such that (h(j), f (j)) is an
entry in the current filter. (In practice we do not need to store the index set F (k);
the notation is just for theoretical convenience.) A point x is said to be “acceptable
for inclusion in the filter” if its (h, f) pair is not dominated by any entry in the filter.
This is the condition that

either h < h(j) or f < f (j)(2.4)

for all j ∈ F (k). We may also wish to “include a point x in the filter,” by which we
mean that its (h, f) pair is added to the list of pairs in the filter, and any pairs in
the filter that are dominated by the new pair are removed. We use the filter as an
alternative to a penalty function as a means of deciding whether or not to accept a
new point in an NLP algorithm.

In fact this definition of a filter is not adequate for proving convergence, as it
allows points to accumulate in the neighborhood of a filter entry that has h(i) > 0.
This is readily corrected by defining a small envelope around the current filter, in
which points are not accepted. This idea is suggested in the original paper of Fletcher
and Leyffer [5]. A similar acceptability test is analyzed by Fletcher, Leyffer, and Toint
[6] in proving the global convergence of an SLP–filter algorithm. This is the condition
that a point is acceptable to the filter if its (h, f) pair satisfies

either h ≤ βh(j) or f ≤ f (j) − γh(j)(2.5)

for all j ∈ F (k), where β and γ are preset parameters such that 1 > β > γ > 0, with β
close to 1 and γ close to zero. Because 1− β and γ are very small, there is negligible
difference in practice between (2.5) and (2.4).

In fact, it has more recently become apparent that a slightly different form of the
acceptability test, due to Chin and Fletcher [2], allows stronger convergence results to
be proved, and it is this that we analyze here. In this test a pair (h, f) is acceptable
if

either h ≤ βh(j) or f + γh ≤ f (j)(2.6)
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for all j ∈ F (k). This slanting envelope test ensures that pairs with the same f value
have the same envelope in the f direction. This is illustrated in Figure 1, using the
values γ = 0.1 and β = 1 − γ, although in practice a value of γ much closer to zero
would be used. (Typical values that we have used are γ = 10−5 and β = 1 − γ.)
The test provides an important inclusion property that if a pair (h, f) is added to the
filter, then the set of unacceptable points for the new filter always includes the set of
unacceptable points for the old filter. This is not always the case for (2.5).

f

h
Fig. 1. An NLP filter with slanting envelope.

The left-hand inequality in (2.6) and also in (2.5) is an obvious way of defining
a sufficient reduction in h. The right-hand inequality in (2.6) asks for a sufficient
reduction in f , defined in such a way that it provides a mechanism whereby iterates
are forced towards feasibility. This is shown in the following lemma and its corollary.

Lemma 1. Consider sequences {h(k)} and {f (k)} such that h(k) ≥ 0 and f (k) is
monotonically decreasing and bounded below. Let constants β and γ satisfy 0 < γ <
β < 1. If, for all k,

either h(k+1) ≤ βh(k) or f (k) − f (k+1) ≥ γh(k+1),

then h(k) → 0.

Proof. If h(k+1) ≤ βh(k) for all k sufficiently large, then h(k) → 0. Otherwise
there exists an infinite subsequence S on which f (k) − f (k+1) ≥ γh(k+1). Because
f (k) is monotonically decreasing and bounded below, it follows that

∑
k∈S h

(k+1) is

bounded, and hence h(k+1) → 0 for k ∈ S. But h(k+1) ≤ βh(k) holds for iterations
k �∈ S, so it follows that h(k) → 0 on the main sequence.
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Corollary. Consider an infinite sequence of iterations on which (h(k), f (k)) is
entered into the filter, where h(k) > 0 and {f (k)} is bounded below. It follows that
h(k) → 0.

Proof. If h(k+1) ≤ βh(k) for all k sufficiently large, then h(k) → 0. Otherwise
we define a subsequence S as follows. The initial index in S is the first iteration on
which h(k+1) > βh(k). For any k ∈ S, its successor k+ ∈ S is the least j > k such
that h(j) > βh(k). It is a consequence of the inclusion property that (h(k+), f (k+)) is
acceptable to (h(k), f (k)), even if the latter pair has been deleted from the filter on an

intermediate iteration. Hence f (k) − f (k+) ≥ γh(k+) > 0. Thus f (k) is monotonically
decreasing for k ∈ S and it follows from Lemma 1 that h(k) → 0 for k ∈ S. But
intermediate iterations j such that k < j < k+ have the property that h(j) ≤ βh(k),
so it follows that h(k) → 0 on the main sequence.

It is also convenient to allow an upper bound

h(c(x)) ≤ βu(2.7)

(u > 0) on constraint infeasibility, and this is readily implemented by initializing the
filter with the entry (u,−∞). Existence of this upper bound is not necessary to the
proof of convergence but is a useful practical feature that can be used to prevent
iterates from becoming too infeasible. In practice we have set a large default value
of u = 104, which usually has negligible impact on performance, but there are a few
problems for which a much smaller value is desirable, say u = 1.

A common feature in a trust region algorithm for unconstrained minimization is
the use of a sufficient reduction criterion

∆f ≥ σ∆q,(2.8)

where ∆q is positive and σ ∈ (0, 1) is a preset parameter. However, in an NLP
algorithm, ∆q may be negative or even zero, in which case this test is no longer
appropriate. A feature of the algorithm in this paper is that it uses (2.8) only when
∆q is positive. A typical value of σ that we have used is σ = 0.1.

We are now in a position to state our filter–SQP algorithm, which we do by means
of the flow diagram of Figure 2. We observe that at the start of iteration k, the pair
(h(k), f (k)) is not in the current filter F (k) but must be acceptable to it. It can be
seen that there is an inner loop in which the trust region radius ρ is successively
reduced until either certain tests are satisfied or the current QP subproblem becomes
incompatible. (For clarity we avoid the use of the word “infeasible” in this context.)
The inner loop is initialized with any value of ρ ≥ ρ◦, where ρ◦ > 0 is a preset
parameter. The inner loop chooses a decreasing geometric sequence of values of ρ
and generates corresponding values of d, ∆q, and ∆f (unsubscripted). The inner
loop contains a test “is x(k) + d acceptable to the filter and (h(k), f (k))?” By this
we mean that x(k) + d has to be acceptable to the filter formed of the current filter
and (h(k), f (k)), so that if (h(k), f (k)) is subsequently entered into the filter, then
(h(k+1), f (k+1)) will still be acceptable to the new filter. When the inner iteration
terminates, the current values of ρ, d, ∆q, and ∆f are denoted, respectively, by ρ(k),
d(k), ∆q(k), and ∆f (k). We observe that all points that are generated by the algorithm
lie in the region generated by the subset of linear constraints in the NLP problem.

Following our multiobjective thinking, we regard a step d that satisfies ∆q > 0 as
being an f-type step (having the primary aim of improving f , and possibly allowing
an increase in h). If d is accepted and becomes d(k), then an f-type iteration is said
to have occurred. In this case we insist that the sufficient reduction condition (2.8) be
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Initialize with a point x, k = 1,

and only (u,−∞) in the filter

❄
enter restoration phase to find

a point x(k) acceptable to the filter

such that QP (x(k), ρ̃) is compatible

for some ρ̃ ≥ ρ◦, and initialize ρ = ρ̃

❄

initialize ρ ≥ ρ◦

❄
try to solve QP (x(k), ρ)

incompatible

❄

include (h(k), f (k))

in the filter
(h-type iteration)

solution d

❄
if d = 0, then finish

(KT point)

❄
k := k + 1

✛

✲

❄
evaluate f(x(k) + d)

and c(x(k) + d)

❄
is x(k) + d acceptable to

the filter and (h(k), f (k))?

no✲ ρ := ρ/2

✛

yes

❄
is ∆f < σ∆q and

∆q > 0?

yes
✲

no

❄
ρ(k) = ρ, d(k) = d,

∆q(k) = ∆q, ∆f (k) = ∆f

❄

if ∆q(k) ≤ 0, then include

(h(k), f (k)) in the filter

(h-type iteration)

❄
x(k+1) = x(k) + d(k),

k := k + 1

✲

✛

Fig. 2. A filter–SQP algorithm.
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satisfied. Thus a necessary condition for a step d to give rise to an f -type iteration
is that both

∆f ≥ σ∆q and ∆q > 0(2.9)

are satisfied. If ∆q(k) ≤ 0, or if the current QP subproblem is incompatible, then the
primary aim of the iteration is to reduce h (possibly allowing an increase in f), and
we refer to the resulting iteration as an h-type iteration. As ρ is reduced in the inner
loop, the value of ∆q is reduced (a consequence of having found a global minimizer of
QP (x(k), ρ)). Thus the status of the test ∆q > 0 may go from true to false, but not
vice-versa. Consequently, the inner loop always samples the possibility for an f -type
iteration before that of an h-type iteration. This is a key argument in the convergence
proof.

This algorithm differs in one important respect from that in [5]: not all points
x(k) are included in the filter, even though they are acceptable to the filter. The
point x(k) is included in the filter at the end of the iteration if and only if that
iteration is an h-type iteration. A consequence is that all the current filter entries
have h(j) > 0, j ∈ F (k). This is because if h(k) = 0, then QP (x(k), ρ) must be
compatible, and hence, if x(k) is not a KT point, then ∆q > 0 holds. Thus if h(k) = 0,
the resulting iteration is an f -type iteration and x(k) is not entered into the filter. It
is convenient to define

τ (k) = min
j∈F(k)

h(j) > 0.(2.10)

It can be seen that our algorithm includes the provision for a feasibility restoration
phase if the current QP subproblem becomes incompatible. Any method for solving a
nonlinear algebraic system of inequalities can be used to implement this calculation,
such as, for example, a Newton-like scheme for minimizing h(c(x)). The restoration
phase terminates if it finds a point that both is acceptable to the filter and for which
QP (x, ρ) is compatible for some ρ ≥ ρ◦. (Essentially the latter condition requires only
that QP (x(k),∞) be compatible, since we can always take ρ =∞.) There are various
existing algorithms that might be used to implement this calculation: that of Madsen
[12] (with suitable changes to include inequality constraints) has a convergence proof
and is close to the spirit of this paper. Alternatively, we can make use of the ideas
expressed in [5], which have performed well in practice. Note that the restoration
phase makes no demands on the resulting value of f(x), which could be significantly
worse than that at the previous point. If the restoration phase does terminate, then
the point of termination becomes x(k+1), and the resulting step from x(k) to x(k+1)

is deemed to be an h-type iteration.
Of course, it may not always be possible to find a point which satisfies both the

above conditions, and the restoration phase might converge to an infeasible point, for
example if there exists a nonzero local minimum of h(c(x)). This is often an indication
that the original problem P is incompatible. This is the situation typified by case (A)
of Theorem 7 that follows in the next section. If, on the other hand, the restoration
phase is converging to a feasible point, then it is usually able to terminate. This is so
because QP (x,∞) is usually compatible if x is sufficiently close to the feasible region
and because τ (k) > 0 allows such a point to be acceptable to the filter. However,
this outcome is not guaranteed, as it is possible for QP (x,∞) to be incompatible for
any infeasible point x. Such an example is the pathological problem min(x2 − 1)2
subject to x2

1 = 0 and x3
1 = 0, starting from x = (1, 0)T . A Newton-like iteration
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for feasibility restoration is likely to converge to the feasible point x = 0, which is
not a solution of the NLP, without finding a point at which the QP subproblem is
compatible. However, such a pathological problem (P ) has the property that there
exists an arbitrarily small perturbation to P for which P is incompatible. Thus in
this paper we content ourselves with the possibility that the restoration phase may
fail to terminate, and we regard this as an indication that the constraints of P are
incompatible (in a local sense) to within round-off error.

3. A global convergence proof. In this section we present a proof of global
convergence of the SQP–filter algorithm of Figure 2 when applied to problem P . We
make the following assumptions.

Standard assumptions.

1. All points x that are sampled by the algorithm lie in a nonempty closed and
bounded set X.

2. The problem functions f(x) and c(x) are twice continuously differentiable on
an open set containing X.

3. There exists anM > 0 such that the Hessian matrices B(k) satisfy ‖B(k)‖2 ≤
M for all k.

It is a consequence of the standard assumptions that the Hessian matrices of f and
the ci are bounded on X, and without loss of generality we may assume that they
also satisfy bounds ‖∇2f(x)‖2 ≤M , ‖∇2ci(x)‖2 ≤M , i ∈ E ∪ I, for all x ∈ X.

Our global convergence theorem concerns KT necessary conditions under a
Mangasarian–Fromowitz constraint qualification (MFCQ) (see, for example, Man-
gasarian [9]). This is essentially an extended form of the Fritz John conditions for a
problem that includes equality constraints. A feasible point x◦ of problem P satisfies
MFCQ if and only if both (i) the vectors a◦

i , i ∈ E , are linearly independent and (ii)
there exists a vector s that satisfies sTa◦

i = 0, i ∈ E , and sTa◦
i < 0, i ∈ A◦, where

A◦ ⊂ I denotes the set of active inequality constraints at x◦. Necessary conditions
for x◦ to solve P are that x◦ is a feasible point and, if MFCQ holds, that then the
set of directions

{s|sTg◦ < 0,(3.1)

sTa◦
i = 0, i ∈ E ,(3.2)

sTa◦
i < 0, i ∈ A◦ }(3.3)

is empty. If x◦ solves P and MFCQ holds, then these conditions are equivalent to the
existence of KT multipliers (although we do not use that result in this paper), and it
has been shown (Gauvin [8]) that the multiplier set is bounded.

Before proving our main theorem, we need some results that describe the behavior
of QP subproblems in the neighborhood of a feasible point x◦ at which the vectors
a◦
i , i ∈ E , are linearly independent. First, however, we prove two simple lemmas that
enable us to handle the second order terms in the analysis.

Lemma 2. Consider minimizing a quadratic function φ(α) (R → R) on the
interval α ∈ [0, 1] when φ′(0) < 0. A necessary and sufficient condition for the
minimizer to be at α = 1 is φ′′ + φ′(0) ≤ 0. In this case it follows that φ(0)− φ(1) ≥
− 1

2φ
′(0).
Proof. Using φ(α) = φ(0) + αφ′(0) + 1

2α
2φ′′, the minimizer is at α = 1 either if

φ′′ ≤ 0 or if φ′′ > 0 and −φ′(0)/φ′′ ≥ 1, from which the result follows.
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Lemma 3. Let the standard assumptions hold, and let d be a feasible point of
QP (x(k), ρ). It then follows that

∆f ≥ ∆q − nρ2M,(3.4)

|ci(x(k) + d)| ≤ 1
2nρ

2M, i ∈ E ,(3.5)

and

ci(x
(k) + d) ≤ 1

2nρ
2M, i ∈ I.(3.6)

Proof. These results follow from the intermediate value form of Taylor’s theorem;
for example,

f(x(k) + d) = f (k) + g(k)Td+ 1
2dT∇2f(y)d,

where y denotes some point on the line segment from x(k) to x(k)+d. It follows from
(2.2) and (2.1) that

∆f = ∆q + 1
2dT (B(k) −∇2f(y))d,

and (3.4) follows from the Hessian bounds and the inequality ‖d‖22 ≤ n‖d‖2∞ ≤ nρ2.
Also, for i ∈ I, it follows that

ci(x
(k) + d) = c

(k)
i + a

(k)T
i d+ 1

2dT∇2ci(yi)d ≤ 1
2dT∇2ci(yi)d

by feasibility of d, and (3.6) then follows in a similar way. The result (3.5) follows for
i ∈ E by regarding an equation as two opposed inequality constraints.

Lemma 4. Let standard assumptions hold. If d solves QP (x(k), ρ), then x(k)+d
is acceptable to the filter if ρ2 ≤ 2βτ (k)/(mnM).

Proof. It follows from (2.3), (3.5), and (3.6) that h(c(x(k) + d)) ≤ 1
2mnρ2M .

If ρ2 ≤ 2βτ (k)/(mnM), it then follows that h(c(x(k) + d)) ≤ βτ (k). Hence, by the
definition of τ (k), the filter acceptance test (2.6) is satisfied.

Lemma 5. Let standard assumptions hold and let x◦ ∈ X be a feasible point of
problem P at which MFCQ holds but which is not a KT point. Then there exists a
neighborhood N ◦ of x◦ and positive constants ε, µ, and κ such that for all x ∈ N ◦∩X
and all ρ for which

µh(c(x))) ≤ ρ ≤ κ(3.7)

it follows that QP (x, ρ) has a feasible solution d at which the predicted reduction (2.1)
satisfies

∆q ≥ 1
3ρε,(3.8)

the sufficient reduction condition (2.8) holds, and the actual reduction (2.2) satisfies

∆f ≥ γh(c(x+ d)).(3.9)

Proof. Since x◦ is a feasible point at which MFCQ holds but it is not a KT point,
it follows that the vectors a◦

i , i ∈ E , are linearly independent, and there exists a
vector s◦, for which ‖s◦‖2 = 1, that satisfies (3.1), (3.2), and (3.3). We note that these
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conditions imply that the cardinality |E| < n. We use the notation A+ = (ATA)−1AT ,
and let AE denote the matrix with columns ai, i ∈ E , evaluated at some point x. By
linear independence and continuity there exists a neighborhood of x◦ in which A+

E is
bounded. If E is not empty, we denote p = −A+T

E cE , which is the closest point in the
linearized equality constraint manifold to d = 0, and let p = ‖p‖2. Also we denote
s = (I −AEA+

E )s
◦/‖(I −AEA+

E )s
◦‖2, which is the closest unit vector to s◦ in the null

space of ATE . If E is empty, we let p = 0, p = 0, and s = s◦. It follows from (3.1)
and (3.3) by continuity that there exists a (smaller) neighborhood N ◦ and a constant
ε > 0 such that

sTg ≤ −ε and sTai ≤ −ε, i ∈ A◦,(3.10)

when g, ai, and s are evaluated for any x ∈ N ◦. By definition of p, it follows that
p = O(h(c)), and thus we can choose the constant µ in (3.7) sufficiently large so that
ρ > p for all x ∈ N ◦.

We now consider the solution of QP (x, ρ) and, in particular, the line segment
defined by

dα = p+ α(ρ− p)s, α ∈ [0, 1],(3.11)

for a fixed value of ρ > p. We note that dα satisfies the equality constraints cE+ATE d =
0 of QP (x, ρ) for any value of α. Because the vectors p and s are orthogonal, it follows
that

‖d1‖2 =
√
p2 + (ρ− p)2 =

√
ρ2 − 2ρp+ 2p2 ≤ ρ

since ρ > p. Consequently ‖d1‖∞ ≤ ρ, and hence d1 satisfies the trust region con-
straint of QP (x, ρ).

Next we look at the inactive constraints i ∈ I/A◦. If x ∈ N ◦ ∩ X, then there
exist positive constants c̄ and ā, independent of ρ, such that

ci ≤ −c̄ and aTi s ≤ ā

for all vectors s such that ‖s‖∞ ≤ 1, by the continuity of ci and boundedness of ai
on X. It follows that

ci + aTi d ≤ −c̄+ ρā, i ∈ IA◦ ,

for all vectors d such that ‖d‖∞ ≤ ρ. Thus inactive constraints do not affect the
solution to QP (x, ρ) if ρ satisfies ρ ≤ c̄/ā.

For active inequality constraints i ∈ A◦, we have from (3.10) and (3.11) that

ci + aTi d1 = ci + aTi p+ (ρ− p)aTi s ≤ ci + aTi p− (ρ− p)ε ≤ 0

if

ρ ≥ p+
(ci + aTi p)

ε
.

By the definition of p, the right-hand side of this inequality is O(h(c)), and thus we
can choose the constant µ in (3.7) sufficiently large so that ci+aTi d1 ≤ 0, i ∈ A◦. Thus
d1 is feasible in QP (x, ρ) with respect to the active inequality constraints, and hence
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to all the constraints, using results from above. Hence we have shown that QP (x, ρ)
is compatible for all x ∈ N ◦ and all ρ satisfying (3.7) for any value of κ ≤ c̄/ā.

Next we aim to obtain a bound on the predicted reduction ∆q and hence show
that (3.8), (2.8), and (3.9) hold. First we consider the line segment (3.11) and define
φ(α) = q(p+ α(ρ− p)s). It follows that

φ′(α) = (ρ− p)sT∇q(p+ α(ρ− p)s) = (ρ− p)sT (g +B(p+ α(ρ− p)s)).

Hence, using (3.10), bounds on B and p, and ρ > p,

φ′(0) = (ρ−p)sT (g+Bp) ≤ (ρ−p)(sTBp−ε) ≤ (ρ−p)(Mp−ε) < (ρ−p)(Mρ−ε) ≤ 0

if ρ ≤ ε/M . Now φ′′ = (ρ− p)2sTBs ≤ (ρ− p)2M , and thus

φ′′ + φ′(0) ≤ (ρ− p)2M + (ρ− p)(Mp− ε) = (ρ− p)((ρ− p)M +Mp− ε) ≤ 0

if ρ ≤ ε/M . In this case, applying Lemma 2, the minimum value of φ(α) occurs at
α = 1, and the reduction in q satisfies φ(0) − φ(1) ≥ − 1

2φ
′(0). After adding in a

contribution for the change in q along p, we may express

q(0)− q(d1) ≥ 1
2 (ρ− p)(ε− sTBp) +O(p) ≥ 1

2ρε+O(p).

Since d1 is feasible and p = O(h(c)), it follows that the predicted reduction (2.1)
satisfies

∆q ≥ 1
2ρε+O(h(c)) ≥ 1

2ρε− ξh(c)

for some ξ sufficiently large and independent of ρ. Thus (3.8) is satisfied if ρ ≥
6ξh(c)/ε. This condition can be achieved by making the constant µ in (3.7) sufficiently
large. It follows from (3.4) and (3.8) that

∆f

∆q
≥ 1− nρ2M

∆q
≥ 1− 3nρ2M

ρε
= 1− 3nρM

ε
.

Then, if ρ ≤ (1− σ)ε/(3nM), it follows that (2.8) holds.
Finally, we deduce from (2.3), (3.5), (3.6), (2.8), and (3.8) that

f (k) − f − γh(c(x+ d)) = ∆f − γh(c(x+ d)) ≥ 1
3σρε− 1

2γmnρ2M ≥ 0

if ρ ≤ 2
3σε/(γmnM). Thus we may define the constant κ in (3.7) to be the least of

2
3σε/(γmnM) and the values (1 − σ)ε/(3nM), ε/M , and c̄/ā, as required earlier in
the proof.

Now we proceed to analyze the algorithm of Figure 2. First we need a result that
is similar to Lemma 2 of [6]. Here x(k) and B(k) are fixed, and we consider what
happens to the solution of QP (x(k), ρ) as ρ is reduced.

Lemma 6. Let the standard assumptions hold; then the inner iteration terminates
finitely.

Proof. If x(k) is a KT point of problem P , then d = 0 solves QP (x(k), ρ) and the
algorithm terminates. Otherwise, if the inner iteration does not terminate finitely,
then the rule for decreasing ρ ensures that ρ → 0. Two cases need to be considered,
depending on whether h(k) > 0 or h(k) = 0.
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If h(k) > 0 and i ∈ E ∪ I is an index for which c
(k)
i > 0, then for all d such that

‖d‖∞ ≤ ρ it follows that

c
(k)
i + a

(k)T
i d ≥ c

(k)
i − ρ‖a(k)

i ‖1 > 0

if either ‖a(k)
i ‖1 = 0 or ρ < c

(k)
i /‖a(k)

i ‖1. Thus for sufficiently small ρ, constraint i
cannot be satisfied and QP (x(k), ρ) is incompatible. A similar conclusion is obtained

for i ∈ E if c(k)i < 0. Thus the inner iteration terminates finitely if h(k) > 0.
If h(k) = 0, then by a similar argument, inactive constraints at x(k) are inactive

at any point for which ‖d‖∞ ≤ ρ, for sufficiently small ρ. Thus we need consider only
constraints i ∈ E ∪ A(k). The rest of the proof is now similar to that of Lemma 5 in
the case p = 0. Because x(k) is not a KT point, there exists a vector s, ‖s‖2 = 1,

and an η > 0 such that sTg(k) = −η, sTa
(k)
i = 0, i ∈ E , and sTa

(k)
i ≤ 0, i ∈ A(k).

We consider the QP-feasible line segment dα = αρs for α ∈ [0, 1] and construct the
function φ(α) = q(dα). It follows that φ

′(0) = −ρη and φ′′ = ρ2sTB(k)s ≤ ρ2M .
Hence if ρ ≤ η/M , it follows that φ′′ + φ′(0) ≤ 0. It then follows from Lemma 2 that
φ(0)−φ(1) ≥ 1

2ρη. Therefore, by the global optimality of the solution d toQP (x(k), ρ),
the actual reduction ∆q also satisfies ∆q ≥ 1

2ρη, and if ρ ≤ (1−σ)η/(2nM), it follows
from (3.4) that ∆f ≥ σ∆q > 0 and the necessary condition (2.9) for an f -type
iteration is satisfied. Also, from (3.4), (3.5), and (3.6),

f (k)−f(x(k)+d)−γh(c(x(k)+d)) = ∆f −γh(c(x(k)+d)) ≥ 1
2σρη− 1

2γmnρ2M ≥ 0

if ρ ≤ ση/(γmnM). In this case it follows that x(k) + d is acceptable relative to
(h(k), f (k)). Finally, from Lemma 4, x(k) + d is acceptable to the filter if ρ2 ≤
2βτ (k)/(mnM). Thus, if ρ is sufficiently small, all the conditions for an f -type step
are satisfied and the inner iteration terminates finitely.

We are now in a position to state our main theorem.
Theorem 7. If standard assumptions hold, the outcome of applying the filter–

SQP algorithm of Figure 2 is one of the following.
(A) The restoration phase fails to find a point x which is both acceptable to the

filter and for which QP (x, ρ) is compatible for some ρ ≥ ρ◦.
(B) A KT point of problem P is found. (d = 0 solves QP (x(k), ρ) for some k.)
(C) There exists an accumulation point that is feasible and either is a KT point

or fails to satisfy MFCQ.
Proof. We need consider only the case in which neither (A) nor (B) occurs.

Because the inner loop of each iteration is finite (Lemma 6), the outer iteration
sequence indexed by k is infinite. All iterates x(k) lie in X, which is bounded, so
it follows that the sequence has one or more accumulation points.

First, we consider the case that the main sequence contains an infinite num-
ber of h-type iterations, and we consider this subsequence. For an h-type iteration,
(h(k), f (k)) is always entered into the filter at the completion of the iteration, so it
follows from the Corollary to Lemma 1 that h(k) → 0 on this subsequence. It must
also follow that τ (k) → 0. Moreover, only h-type iterations can reset τ (k), so there ex-
ists a thinner infinite subsequence on which τ (k+1) = h(k) < τ (k) is set. Because X is
bounded, there exists an accumulation point x∞ and a subsequence indexed by k ∈ S
of h-type iterations for which x(k) → x∞, h(k) → 0, and τ (k+1) = h(k) < τ (k). One
consequence is that x∞ is a feasible point. If MFCQ is not satisfied at x∞, then (C) is
established in this case. We therefore assume that MFCQ is satisfied and consider the
proposition (to be contradicted) that x∞ is not a KT point. In this case, the vectors
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a∞
i , i ∈ E , are linearly independent, and the set defined by (3.1), (3.2), and (3.3) is
not empty. For sufficiently large k ∈ S it follows that x(k) is in the neighborhood
N∞, as defined in Lemma 5. We show that this leads to a contradiction.

Lemma 5 provides conditions on ρ which ensure that QP (x(k), ρ) is compatible,
and the resulting step d satisfies ∆f ≥ σ∆q > 0 and f (k) ≥ f + γh, where f and
h denote f = f(x(k) + d) and h = h(c(x(k) + d)), respectively. This shows that
the necessary condition (2.9) for an f -type step is satisfied, and the entry (h, f) is
acceptable to (not dominated by) (h(k), f (k)). Moreover, it follows from Lemma 4
that x(k) + d is acceptable to the filter if ρ2 ≤ 2βτ (k)/(mnM). Thus we deduce that
if ρ satisfies

µh(k) ≤ ρ ≤ min
{√

2βτ (k)

mnM
, κ

}
,(3.12)

then (h, f) satisfies all the conditions for an f -type iteration.
Now we need to show that a value of ρ in this range will be located by the inner

iteration. It follows for k ∈ S sufficiently large that τ (k) → 0 and the range (3.12)
becomes

µh(k) ≤ ρ ≤
√
2βτ (k)

mnM
.(3.13)

In the limit, because h(k) < τ (k), and because of the square root, the upper bound in
(3.13) is more than twice the lower bound. Now consider how the inner loop of the
algorithm works. Initially a value ρ ≥ ρ◦ is chosen, which in the limit will be greater
than the upper bound in (3.13). Then successively halving ρ in the inner loop will
eventually locate a value in the interval (3.13), or to the right of this interval, which
provides the conditions for an f -type step to occur. It is not possible for any value of
ρ ≥ µh(k) to produce an h-type step since ∆q decreases monotonically as ρ decreases
(this is a consequence of the global optimality of d). Thus if k ∈ S is sufficiently
large, an f -type iteration will result. This contradicts the fact that the subsequence
is composed of h-type iterations. Thus x∞ is a KT point and (C) is established in
this case.

Next we consider the alternative case that the main sequence contains only a finite
number of h-type iterations. Hence there exists an index K such that all iterations are
f -type iterations for all k ≥ K. It follows that (h(k+1), f (k+1)) is always acceptable
to (h(k), f (k)), and also that ∆f (k) ≥ σ∆q(k) > 0, so that the sequence of function
values {f (k)} is strictly monotonically decreasing for k ≥ K. It therefore follows
from Lemma 1 that h(k) → 0 and hence that any accumulation point x∞ of the
main sequence is a feasible point. Because f(x) is bounded on X, it also follows that∑
k≥K ∆f

(k) is convergent. As above, we now aim to contradict the proposition that
there exists an accumulation point at which MFCQ holds that is not a KT point.

Because all iterations k ≥ K are f -type, no filter entries are made, so τ (k) = τ (K)

is constant. For sufficiently large k ≥ K it follows that x(k) is in the neighborhood
N∞ defined in Lemma 5. It follows as above that sufficient conditions for accepting
an f -type step are that ρ satisfies

µh(k) ≤ ρ ≤ min
{√

2βτ (K)

mnM
, κ

}
.(3.14)

This time the right-hand side of (3.14) is a constant, ρ̄ say (ρ̄ > 0) independent of k,
while the left-hand side converges to zero. Thus, for sufficiently large k, the upper
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bound must be greater than twice the lower bound. In this case, as ρ is reduced in
the inner loop, either it must eventually fall within this interval or a value to the right
of the interval is accepted. Hence we can guarantee that a value ρ(k) ≥ min( 1

2 ρ̄, ρ
◦)

will be chosen. We then deduce from (2.8) and (3.8) that ∆f (k) ≥ 1
3σεmin(

1
2 ρ̄, ρ

◦),
which contradicts the fact that

∑
k≥K ∆f

(k) is convergent. Thus x∞ is a KT point,
and (C) is established in this case also.

4. Discussion. Of course, the algorithm of Figure 2 is only a guide to what
might be successfully implemented in practice, and it is incomplete in various ways.
For example, it is necessary to make a specific choice of algorithm to implement
the restoration phase. Also, the rule for adjusting ρ in the inner iteration could be
more intricate, based partly on interpolation. Another possibility is to allow the
pair (h(k), f (k)) to be entered into the filter on an f -type step if h(k) ≥ τ (k), as this
does not affect the convergence proof. An overall strategic decision is that of how to
specify the matrix B(k). One possibility is to use a Lagrangian Hessian based on exact
second derivatives and estimates of Lagrange multipliers. A disadvantage of this is
that the matrices B(k) may be indefinite, in which case finding the global minimizer
of the QP subproblem is problematic. An alternative possibility is to use some quasi-
Newton formula to update B(k), in which case it might be possible to ensure that
B(k) is positive semidefinite, and hence any KT point of the QP subproblem is a
global solution. It is also not easy to prove that B(k) is bounded. However, when
MFCQ holds, it can be expected that Lagrange multiplier estimates are bounded
and hence that B(k) is bounded. In practice, the algorithm has been implemented
with an exact Hessian with very satisfactory performance, akin to that reported in
[5]. Preliminary practical experience with a quasi-Newton form of the algorithm is
also promising. There are other ways in which the potential difficulty of finding
the global minimizer of the QP subproblem might be avoided, while retaining the
rapid convergence normally associated with an SQP algorithm, and some of these are
described later in the section.

The choice of an initial value of ρ for the inner iteration requires that the condition
ρ ≥ ρ◦ be satisfied but is otherwise unspecific. We envisage that in practice ρ◦ is close
to zero (say 10−4) so that the effect of this restriction is small. Thus to a large extent
the algorithm of Figure 2 allows the more usual trust region procedure in which one
may double or halve (say) the value of ρ from the previous iteration, setting ρ = ρ◦

only if it would otherwise be less than ρ◦. The potential danger of just taking ρ from
the previous iteration is that the existence of a successful f -type step may not be
recognized. By starting with ρ ≥ ρ◦, we ensure that ρ is greater than twice the lower
bound µh(k) in the limit and hence that an f -type step will be taken if the range
allows. Adjusting the trust region in this sort of way has featured in other recent
work; see, for example, [10], [11] and references contained therein.

Another important aspect that we have not addressed in this paper is to consider
the asymptotic behavior of the algorithm to ensure that the second order convergence
property of the SQP iteration is not compromised. We have already given some
thought to this, but it is not yet clear how to make progress. The algorithm in [5]
allows the use of a second order correction step, although it is not clear in practice
whether this is necessary or even beneficial. We shall continue to study such issues in
our future work.

The referees for the paper both made the point that the link between f and c
that is implicit in the second inequality of (2.6) is undesirable. Aesthetically we agree
that it would be preferable not to have this link, although we submit that its effect
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is minimal. We stress that the parameter γ is intended to be close to zero (typically
10−5), so that this inequality is little different in practice from that in (2.4), in which
case there is no linkage. We have successfully implemented this type of algorithm in
practice, with results of a quality similar to those in [5], and changing to f < f (j)

causes negligible difference in the outcome. It may well be desirable to take the
relative scaling of f and h into account, but this is readily done.

In any event, it is by no means clear how to avoid the linkage between f and
c. The step d that solves the QP subproblem is not a descent direction for f when
∆q ≤ 0, so we cannot use any analogue of the Goldstein or Wolfe–Powell tests from
unconstrained optimization. We feel that our proposals are noteworthy in that they
enable a convergence proof to be made in such a way that the linkages between f and
h are small and the impact on practical performance is negligible.

The authors of this paper have also contributed to other papers that suggest
filter-type algorithms for which global convergence can be proved. One paper uses
ideas akin to those suggested by Fletcher and Sainz de la Maza [7], in which an
LP trust region subproblem is solved in order to obtain an estimate of the active
set, which can then be used in an equality QP calculation to determine a trial step.
The theoretical and practical properties of this approach have been investigated by
a student, C. M. Chin, and are reported in Chin and Fletcher [2], [3]. Another
approach, suggested by Fletcher, Gould, Leyffer, and Toint [4], is a trust region SQP
algorithm using a filter but which allows the use of an approximate solution d to the
QP subproblem. The algorithm is based on a decomposition of the step d into its
normal and tangential components. A proof of global convergence to a first order
critical point is given in that report. The proof is significantly different from that
in this paper and provides a different outlook on the problem, more related to the
familiar Cauchy point decrease condition that appears elsewhere in the trust region
literature (see, for example, Conn, Gould, and Toint [1]). It is an advantage that
the proof allows an approximate solution to the QP subproblem, but there is also
a disadvantage that it relies on certain conditions that may require an expensive
projection calculation to verify. Also, the filter envelope (2.5) is used rather than
the slanting filter envelope (2.6) used in this paper. No practical experience with the
Cauchy-type of algorithm is as yet available.

Global convergence proofs for other filter-related algorithms that do not use merit
functions have also been set out in recent papers. Ulbrich, Ulbrich, and Vicente [14]
use a decomposition into normal and tangential components of a primal-dual inte-
rior point step, as well as a filter to decide on acceptability. The work of Ulbrich
and Ulbrich [13] uses nonmonotonic improvement conditions on both the normal and
tangential steps and obtains global convergence using an acceptance test based on
comparing the normal and tangential predicted reductions with a suitably chosen
weighting parameter. Encouraging numerical results of a preliminary MATLAB pro-
gram on a range of CUTE test problems are presented. Wächter and Biegler [15]
describe a line search method in which the NLP problem is converted into equations
and simple bounds, and a filter is used to balance the contributions of a barrier func-
tion for the simple bounds and a constraint violation function for the equations. Both
[14] and [15] present additional results relating to second order convergence.
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Abstract. We consider the problem of constructing mean-risk models which are consistent with
the second degree stochastic dominance relation. By exploiting duality relations of convex analysis
we develop the quantile model of stochastic dominance for general distributions. This allows us to
show that several models using quantiles and tail characteristics of the distribution are in harmony
with the stochastic dominance relation. We also provide stochastic linear programming formulations
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1. Introduction. The relation of stochastic dominance is one of the fundamen-
tal concepts of decision theory (cf. [32, 14]). It introduces a partial order in the space
of real random variables. While theoretically attractive, stochastic dominance order is
computationally very difficult, as it involves a multiobjective model with a continuum
of objectives.

The practice of decision making under uncertainty frequently resorts to mean-
risk models (cf. [18]). The mean-risk approach uses only two criteria: the mean,
representing the expected outcome, and the risk, a scalar measure of the variability of
outcomes. This allows a simple trade-off analysis, analytical or geometrical. However,
for typical dispersion statistics used as risk measures, the mean-risk approach may lead
to inferior conclusions; that is, some efficient (in the mean-risk sense) solutions may
be stochastically dominated by other feasible solutions. It is of primary importance to
construct mean-risk models which are in harmony with stochastic dominance relations.

The classical Markowitz model [17] uses the variance as the risk measure in the
mean-risk analysis. Since its introduction, many authors have pointed out that the
mean-variance model is, in general, not consistent with stochastic dominance rules. In
our preceding paper [22] we have proved that the standard semideviation (square root
of the semivariance) or the mean absolute deviation (from the mean) as risk measures
make the corresponding mean-risk models consistent with the second degree stochastic
dominance, provided that the trade-off coefficient is bounded by a certain constant.
These results were further generalized in [7, 23], where it was shown that mean-risk
models using higher order central semideviations as risk measures are in harmony
with the stochastic dominance relations of the corresponding degree.

When applied to portfolio selection or similar optimization problems with poly-
hedral feasible sets, the mean-variance approach results in a quadratic programming
problem. Following Sharpe’s [31] work on a linear programming (LP) approxima-
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tion to the mean-variance model, many attempts have been made to linearize the
portfolio optimization problem. This resulted in the consideration of various risk
measures which were LP computable in the case of finite discrete random variables.
Yitzhaki [33] introduced a mean-risk model using the Gini mean (absolute) differ-
ence as a risk measure. Konno and Yamazaki [12] analyzed a model in which risk
is measured by the (mean) absolute deviation. Young [34] considered the minimax
approach (the worst case performances) to measure risk. If the rates of return are
multivariate and normally distributed, then most of these models are equivalent to
the Markowitz mean-variance model. However, they do not require any specific type
of return distributions, and, as opposed to the mean-variance approach, they can be
applied to general (possibly nonsymmetric) random variables. In the case of finite
discrete random variables, all these mean-risk models have LP formulations and are
special cases of the multiple criteria LP model [21] based on majorization theory
[10, 19] and Lorenz-type orders [16, 1].

In this paper we analyze a dual model of stochastic dominance by exploiting
duality relations of convex analysis (see, e.g., [27]). These transformations allow us to
show the consistency with stochastic dominance of mean-risk models, using quantiles
and tail characteristics of the distribution as risk measures. We also show that these
models are equivalent to certain stochastic LP problems, thus opening a new area of
applications for stochastic programming.

The paper is organized as follows. In section 2 we formally define stochastic
dominance relations and the concept of the consistency of mean-risk models with
these relations. Section 3 introduces dual formulations of stochastic dominance and
exploits Fenchel duality to characterize dominance in terms of quantile performance
functions. In section 4 we consider several risk measures based on quantiles and
tail characteristics of the distribution, and we analyze their relation to stochastic
dominance. Section 5 is devoted to the analysis of mean-risk models using these risk
measures. In section 6 we present stochastic LP formulations of these models. Finally,
we draw some conclusions in section 7.

We use (Ω,B,P) to denote an abstract probability space. For a random variable
X : Ω → R, we denote by P

X
the measure induced by it on the real line. For

a convex function F : R → R̄, we denote by F ∗ its convex conjugate (see [27]),
F ∗(p) = supξ{pξ − F (ξ)}.

2. Stochastic dominance and mean-risk models. Stochastic dominance is
based on an axiomatic model of risk-averse preferences [5]. It originated in the ma-
jorization theory [10, 19] for the discrete case and was later extended to general
distributions [25, 8, 9, 29]. Since that time it has been widely used in economics and
finance (see [3, 14] for numerous references).

In the stochastic dominance approach, random variables are compared by point-
wise comparison of some performance functions constructed from their distribution
functions. For a real random variable X, its first performance function is defined as
the right-continuous cumulative distribution function itself:

F
X
(η) = P{X ≤ η} for η ∈ R.

In the definition below, and elsewhere in this paper, we assume that larger outcomes
are preferred to smaller.

The weak relation of the first degree stochastic dominance (FSD) is defined as
follows (see [13, 25]):

X �
FSD

Y ⇔ F
X
(η) ≤ F

Y
(η) for all η ∈ R.
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Fig. 2.1. The O-R diagram.

The second performance function F (2)
X

: R → R+ is given by areas below the distri-
bution function F

X
,

F (2)
X

(η) =

∫ η

−∞
F
X
(ξ) dξ for η ∈ R,(2.1)

and defines the weak relation of the second degree stochastic dominance (SSD):

X �
SSD

Y ⇔ F (2)
X

(η) ≤ F (2)
Y

(η) for all η ∈ R(2.2)

(see [8, 9]). The corresponding strict dominance relations 

FSD

and 

SSD

are defined
by the standard rule

X 
 Y ⇔ X � Y and Y �� X.(2.3)

Thus, we say that X dominates Y under the FSD rules (X 

FSD

Y ) if F
X
(η) ≤ F

Y
(η)

for all η ∈ R, where at least one strict inequality holds. Similarly, we say that X
dominates Y under the SSD rules (X 


SSD
Y ) if F (2)

X
(η) ≤ F (2)

Y
(η) for all η ∈ R, with

at least one inequality strict.
Stochastic dominance relations are of crucial importance for decision theory. It

is known that X �
FSD

Y if and only if EU(X) ≥ EU(Y ) for any nondecreasing
function U(·) for which these expected values are finite. Also, X �

SSD
Y if and

only if EU(X) ≥ EU(Y ) for every nondecreasing and concave U(·) for which these
expected values are finite (see, e.g., [14]).

For a set Q of random variables, a variable X ∈ Q is called SSD-efficient (or
FSD-efficient) in Q if there is no Y ∈ Q such that Y 


SSD
X (or Y 


FSD
X).

The SSD relation is crucial for decision making under risk. As mentioned above,
if X 


SSD
Y , then X is preferred to Y within all risk-averse preference models that

prefer larger outcomes. The function F (2)
X

can also be expressed as the expected
shortfall (see [22]): for each target value η we have

F (2)
X

(η) =

∫ η

−∞
(η − ξ) P

X
(dξ)

= E {max(η −X, 0)} = P{X ≤ η}E{η −X|X ≤ η}.(2.4)

The function F (2)
X

is continuous, convex, nonnegative, and nondecreasing. Its
graph, referred to as the Outcome-Risk (O-R) diagram and illustrated in Figure 2.1,
has two asymptotes which intersect at the point (µ

X
, 0): the horizontal axis and

the line η − µ
X
. In the case of a deterministic outcome (X = µ

X
), the graph of
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F (2)
X

coincides with the asymptotes, whereas any uncertain outcome with the same
expected value µ

X
yields a graph above (precisely, not below) the asymptotes. Hence,

the space between the curve (η, F (2)
X

(η)), η ∈ R, and its asymptotes represents the
dispersion (and thereby the riskiness) ofX in comparison to the deterministic outcome
of µ

X
. It is referred to as the primal dispersion space.

It is convenient to introduce also the vertical distance to the right asymptote,

F
(2)

X
(η) = F (2)

X
(η)− (η − µ

X
),(2.5)

which can be rewritten as

F
(2)

X
(η) =

∫ ∞

η

(ξ − η) P
X
(dξ)

= E {max(X − η, 0)} = P{X ≥ η}E{X − η|X ≥ η},(2.6)

thus expressing the expected surplus for each target outcome η (see [22]). The vertical
diameter of the primal dispersion space at a point η is given as

d
X
(η) = min(F (2)

X
(η), F

(2)

X
(η)).(2.7)

While SSD is a sound theoretical concept, its application to real world decision
problems is difficult, because it requires a pairwise comparison of all possible outcome
distributions. We would prefer to use simple mean-risk models and deduce from them
whether a particular outcome distribution is dominated or not.

In general, considering a mean-risk model with the risk of a random outcome X
measured by some nonnegative functional r

X
, we can introduce the following defini-

tion.
Definition 2.1. We say that the mean-risk model (µ

X
, r
X
) is consistent with

SSD if the following relation holds:

X �
SSD

Y ⇒ µ
X
≥ µ

Y
and r

X
≤ r

Y
.

It is known that the first inequality on the right-hand side is true: X �
SSD

Y ⇒
µ
X
≥ µ

Y
(see [14]). The inequality for the risk term, though, is not true for some

popular risk measures, like the variance or absolute deviation.
Directly from (2.4) we see that the mean-risk model with the risk functional

defined as the expected shortfall below some fixed target t,

rt
X
= E{max(t−X, 0)},

is consistent with the SSD. Integrating the inequality rt
X
≤ rt

Y
with respect to some

probability measure P
T
, we conclude that the expected shortfall from a random target

T distributed according to P
T
,

r
X
=

∫
E{max(t−X, 0)} P

T
(dt) = E{max(T −X, 0)},(2.8)

is consistent with the SSD.
While the use of consistent mean-risk models is quite straightforward, there are

some reasonable risk measures which do not enjoy the consistency property of Defi-
nition 2.1. Therefore, following [23], we relax it by considering a scalarization of the
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partial order in the (µ
X
, r
X
) space. This will allow us to derive new necessary con-

ditions of dominance, which will make searching for an SSD-efficient solution a more
tractable task.

Definition 2.2. We say that the mean-risk model (µ
X
, r
X
) is α-consistent with

SSD, where α > 0, if the following relation is true:

X �
SSD

Y ⇒ µ
X
− αr

X
≥ µ

Y
− αr

Y
.

It is clear that α-consistency implies λ-consistency for all 0 ≤ λ ≤ α.
The concept of α-consistency turned out to be fruitful. In [22] we have proved

that the mean-risk model in which the risk is defined as the absolute semideviation,

δ̄
X
= rµX

X
= E{max(µ

X
−X, 0)} =

∫ µ
X

−∞
(µ

X
− ξ) P

X
(dξ),(2.9)

is 1-consistent with SSD. An identical result (under the condition of finite second
moments) has been obtained in [22] for the standard semideviation,

σ̄
X
=
(
E
{
(max(µ

X
−X, 0))2})1/2

=

(∫ µ
X

−∞
(µ

X
− ξ)2 P

X
(dξ)

)1/2

.(2.10)

These results have been further extended in [23] to central semideviations of higher
orders and stochastic dominance relations of higher degrees.

Remark 1. In [2] a class of coherent risk measures has been defined by means of
several axioms. In our terms, these measures correspond to composite objectives of the
form ρ(X) = −µ

X
+αr

X
(note the opposite scalarization via the sign change), where

α > 0. The axioms are translation invariance, positive homogeneity, subadditivity,
“monotonicity” (X ≥ Y a.s. ⇒ ρ(X) ≤ ρ(Y )), and “relevance” (X ≤ 0, X �= 0 ⇒
ρ(X) < 0).

Both δ̄
X
and σ̄

X
, as seminorms in L1 and L2, are convex and positively homoge-

neous. Therefore the composite objectives −µ
X
+αδ̄

X
and −µ

X
+ασ̄

X
do satisfy the

first three axioms (contrary to the statement in [2, Rem. 2.10]). For α ∈ (0, 1], owing
to the consistency with stochastic dominance in the sense of Definition 2.2, they also
satisfy monotonicity and relevance, because X ≥ Y a.s.⇒ X �

SSD
Y .

Our objective is to analyze risk measures using the quantiles of the distribution
of X which are consistent with stochastic dominance.

3. Quantile dominance and the Lorenz curve. Let us consider the quantile
model of stochastic dominance [15]. The first quantile function F (−1)

X
: (0, 1] → R,

corresponding to a real random variable X, is defined as the left-continuous inverse
of the cumulative distribution function F

X
(see [6]):

F (−1)
X

(p) = inf {η : F
X
(η) ≥ p} for 0 < p ≤ 1.

Given p ∈ [0, 1], the number q = q
X
(p) is called a p-quantile of the random variable

X if

P{X < q} ≤ p ≤ P{X ≤ q}.

For p ∈ (0, 1) the set of such p-quantiles is a closed interval, and F (−1)
X

(p) represents
its left end [4].
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Directly from the definition of FSD we see that

X �
FSD

Y ⇔ F (−1)
X

(p) ≥ F (−1)
Y

(p) for all 0 < p ≤ 1.(3.1)

Thus, the function F (−1) can be considered as a continuum-dimensional safety mea-
sure (negative of a risk measure) within the FSD; using any specific (left) p-quantile
as a scalar safety measure is consistent with the FSD. It is not, however, consistent
with the SSD, because it may happen that X �

SSD
Y but F (−1)

X
(p) < F (−1)

Y
(p) for

some p.
Remark 2. Value-at-risk (VaR), defined as the maximum loss at a specified con-

fidence level p, is a widely used quantile risk measure [26]. It corresponds to the
right p-quantile of the random variable X representing gains [2], whereas our dual
stochastic dominance model uses the left p-quantile. Nevertheless, the FSD consis-
tency results can be also shown for the right quantile qr

X
(p) = sup {η : F

X
(η) ≤ p}

(where p ∈ [0, 1)), thus justifying the VaR measures.
To obtain quantile measures consistent with the SSD, we introduce the second

quantile function F (−2)
X

: R→ R̄, defined as

F (−2)
X

(p) =

∫ p

0

F (−1)
X

(α)dα for 0 < p ≤ 1,(3.2)

F (−2)
X

(0) = 0. For completeness, we also set F (−2)
X

(p) = +∞ for p �∈ [0, 1].
Similarly to F (2)

X
, the function F (−2)

X
is well defined for any random variable X

satisfying the condition E |X| <∞. By construction, it is convex. The graph of F (−2)
X

is called the absolute Lorenz curve (ALC) diagram.
Remark 3. The Lorenz curves are used for inequality ordering [1, 6, 20] of positive

random variables, relative to their (positive) expectations. Such a Lorenz curve,
L
X
(p) = F (−2)

X
(p)/µ

X
, is convex and increasing. The ALCs, though, are not monotone

when negative outcomes occur.
Directly from (2.4), using the right-continuity of F (·), we obtain

∂F (2)
X

(η) = [P{X < η},P{X ≤ η}].(3.3)

This allows us to develop a Fenchel duality relation between the second quantile
function F (−2)

X
and the second performance function F (2)

X
.

Theorem 3.1. For every random variable X with E |X| <∞ we have
(i) F (−2)

X
= [F (2)

X
]∗ and

(ii) F (2)
X

= [F (−2)
X

]∗.
Proof. By the definition of the conjugate function, for every p ∈ [0, 1],

[F (2)
X

]∗(p) = sup
η
{ηp− F (2)

X
(η)}.(3.4)

From (2.4) it is evident that [F (2)
X

]∗(0) = 0 and [F (2)
X

]∗(1) = µX . For p ∈ (0, 1) the

supremum in (3.4) is attained at any η for which p ∈ ∂F (2)
X

(η). By (3.3), η is a

p-quantile of X, and we can choose η = F (−1)
X

(p). Therefore, by [27, Thm. 23.5(iv)],

F (−1)
X

(p) ∈ ∂[F (2)
X

]∗(p).

This yields the representation[
F (2)
X

]∗
(p) =

∫ p

0

F (−1)
X

(α) dα for p ∈ (0, 1].
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If p = 0, then (3.4) yields 0, and for p �∈ [0, 1] we obtain +∞, as can be seen from
Figure 2.1. This proves (i). Assertion (ii) is the consequence of the closedness of F (2)

X

and [27, Thm. 12.2].
While the above result can also be obtained from the Young inequality ([35] and

later generalizations), we hope that connections to convex analysis may prove fruitful.
It follows from Theorem 3.1 that we may fully characterize the SSD relation by

using the conjugate function F (−2)
X

, similarly to the relation (3.1) for FSD.

Theorem 3.2. X �
SSD

Y ⇔ F (−2)
X

(p) ≥ F (−2)
Y

(p) for all 0 ≤ p ≤ 1.

Therefore, the properties of F (−2) are of profound importance for stochastic dom-
inance relations.

Corollary 3.3. The following statements are equivalent:
(i) η is a p-quantile of X;
(ii) supξ(ξp− F (2)

X
(ξ)) is attained at η;

(iii) supα(ηα− F (−2)
X

(α)) is attained at p;

(iv) F (−2)
X

(p) + F (2)
X

(η) = pη.
Proof. Directly from definitions (2.4) and (3.2), assertion (i) is equivalent to

(v) p ∈ ∂F (2)
X

(η) and

(vi) η ∈ ∂F (−2)
X

(p).
The equivalence of (ii)–(vi) follows from Theorem 3.1 and [27, Thm. 23.5].

We can now provide another representation of the second quantile function. Let
p ∈ (0, 1), and suppose that η is such that P { X ≤ η} = p. Then by Corollary 3.3(iv)
and (2.4),

F (−2)
X

(p) = pη − F (2)
X

(η)
= pη + pE {X − η|X ≤ η} = pE {X|X ≤ η}.(3.5)

The last relation facilitates the understanding of the nature of the second quantile
function, but cannot serve as a definition because η such that P { X ≤ η} = p need
not exist; (3.2) and Theorem 3.1(i) are precise descriptions.

Graphical interpretation provides an additional insight into the properties of the
second quantile function. For any uncertain outcomeX, its ALC F (−2)

X
is a continuous

convex curve connecting points (0, 0) and (1, µ
X
), whereas a deterministic outcome

with the same expected value µ
X
corresponds to the chord connecting these points.

Hence, the space between the curve (p, F (−2)
X

(p)), 0 ≤ p ≤ 1, and its chord is related
to the riskiness of X in comparison to the deterministic outcome of µ

X
(Figure 3.1).

We shall call it the dual dispersion space.
Both the size and the shape of the dual dispersion space are important for com-

plete description of the riskiness of X. We shall use its size parameters as summary
characteristics of riskiness.

Let us start from the vertical diameter of the dual dispersion space, defined as

h
X
(p) = µ

X
p− F (−2)

X
(p).(3.6)

Lemma 3.4. For every p ∈ (0, 1)
h
X
(p) = min

ξ∈R

E {max(p(X − ξ), (1− p)(ξ −X))},(3.7)

and the minimum in the expression above is attained at any p-quantile.
Proof. By Theorem 3.1(i),

h
X
(p) = inf

ξ
((µ

X
− ξ)p+ F (2)

X
(ξ)).
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Fig. 3.1. The ALC and the dual dispersion space.

Subdifferentiating with respect to ξ and using (3.3), we see that the infimum is at-
tained at any p-quantile. From (2.5) we obtain

h
X
(p) = min

ξ

(
pF

(2)

X
(ξ) + (1− p)F (2)

X
(ξ)
)
.

With a view to (2.4) and (2.6),

h
X
(p) = min

ξ
(pE{max(0, X − ξ)}+ (1− p)E{max(0, ξ −X)}),

which completes the proof.
The above result reveals a close relation between the vertical dimension of the

dual dispersion space and the absolute deviation from the median,

∆
X
= E

∣∣∣∣X − F (−1)
X

(
1

2

)∣∣∣∣ .
Corollary 3.5. h

X
( 1
2 ) =

1
2∆X

.
The maximum vertical diameter of the dual dispersion space (which exists by

compactness and continuity) turns out to be the absolute semideviation of X.
Lemma 3.6. maxp∈[0,1] hX (p) = δ̄X , and the maximum is attained at any p

X
for

which P{X < µ
X
} ≤ p

X
≤ P{X ≤ µ

X
}.

Proof. By Theorem 3.1(ii),

max
p∈[0,1]

h
X
(p) = max

p∈[0,1]
(µ

X
p− F (−2)

X
(p)) = F (2)

X
(µ

X
),

and the first assertion follows from (2.4) and (2.9). Now by Corollary 3.3, µ
X
is a

p
X
-quantile.
If the distribution is symmetric, then p

X
= 1/2 is a maximizer, and we have

maxp∈[0,1] hX (p) = hX (
1
2 ) =

1
2∆X

= δ̄
X
.

It is known that the doubled area of the dual dispersion space,

Γ
X
= 2

∫ 1

0

(µ
X
p− F (−2)

X
(p)) dp,(3.8)
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Fig. 3.2. The ALC and risk measures.

is equal to the Gini mean difference (see [20]):

Γ
X
=

1

2

∫∫
|η − ξ| P

X
(dξ) P

X
(dη).(3.9)

The Gini mean difference (3.9) may be also expressed as the integral of F (2)
X

with
respect to the probability measure P

X
:

Γ
X
=

∫∫
ξ≤η

(η − ξ) P
X
(dξ) P

X
(dη) =

∫
E{max(η −X, 0)} P

X
(dη).

Thus, similar to (2.8), it represents the expected shortfall from a random target
distributed according to P

X
, but this distribution is a function of X. Therefore, the

corresponding SSD-consistency results (cf. (2.8)) cannot be applied directly to the
Gini mean difference.

Both Γ and δ̄ are well-defined size characteristics of the dual dispersion space (Fig-
ure 3.2). However, the absolute semideviation is a rather rough measure compared to
the Gini mean difference. Note that δ̄

X
/2 may be also interpreted in the ALC dia-

gram as the area of the triangle given by vertices: (0, 0), (1, µ
X
), and (p

X
, F (−2)

X
(p
X
)),

where P{X < µ
X
} ≤ p

X
≤ P{X ≤ µ

X
} (see Lemma 3.6). In fact, δ̄

X
is the Gini

mean difference of a two-point distribution approximating X in such a way that µ
X

and δ
X
remain unchanged.

Dual risk characteristics can also be presented in the (primal) O-R diagram (Fig-
ure 3.3). Recall that F (−2) is the conjugate function of F (2), and therefore F (−2)

describes the affine functions majorized by F (2) [27]. For any p ∈ (0.1), the line with
slope p supports the graph of F (2) at every p-quantile (Corollary 3.3(i),(ii)). It is
given analytically as

Sp
X
(η) = p(η − q

X
(p)) + F (2)

X
(q
X
(p)),

where q
X
(p) denotes a p-quantile of X.

From Corollary 3.3(iv) it follows that F (−2)
X

(p) = −Sp
X
(0), and thus the value of

the ALC is given by the intersection of the tangent line Sp
X
with the vertical (risk)
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Fig. 3.3. Dual quantities in the O-R diagram.

axis. For any p ∈ (0, 1), the tangent line intersects the outcome axis at the point
η = F (−2)

X
(p)/p = µ

X
− h

X
(p)/p (see (3.6)). In Figure 3.3 this point is marked as

TVaR
X
(p) due to its interpretation discussed in the next section.

Figure 3.3 also provides an interesting interpretation of Lemma 3.6. By elemen-
tary geometry, the tangent line Sp

X
intersects the vertical line at η = µ

X
at the value

Sp
X
(µ

X
) = h

X
(p), thus defining the vertical diameter of the dual dispersion space at

p. This justifies δ̄
X
= F (2)(µ

X
) as the maximum vertical diameter.

4. Dual risk measures. From the ALC diagram one can easily derive the fol-
lowing, commonly known, necessary condition for the SSD relation (cf. [14]):

X �
SSD

Y ⇒ µ
X
≥ µ

Y
.(4.1)

But we can get much more.

Consider two random variables X and Y such that X �
SSD

Y in the common
ALC diagram (Figure 4.1). Since δ̄

Y
represents the maximal vertical diameter of the
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Fig. 4.1. X �SSD Y ⇒ pXµX − δ̄X ≥ pXµY − δ̄Y , where pX = P{X < µX } < 1.
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dual dispersion space for the variable Y , its ALC F (−2)
Y

(p) is bounded from below by
the straight line µ

Y
p− δ̄

Y
. At the point p

X
= P{X < µ

X
} at which h

X
(p
X
) = δ̄

X
(cf.

Lemma 3.6), one gets

µ
X
p
X
− δ̄

X
= F (−2)

X
(p
X
) ≥ F (−2)

Y
(p
X
) ≥ µ

Y
p
X
− δ̄

Y
.

This simple analysis of the ALC diagram allows us to derive the following necessary
condition for the SSD.

Proposition 4.1. If X �
SSD

Y , then µ
X
≥ µ

Y
and µ

X
− δ̄

X
≥ µ

Y
− δ̄

Y
, where

the second inequality is strict whenever µ
X
> µ

Y
.

Proposition 4.1 was first shown in [22] with the use of an O-R diagram. Here, by
placing the considerations within the (dual) ALC diagram, we make it transparent
that the result is based on the comparison of the ALCs at only one point, p

X
. For

symmetric random variables we have p
X
≤ 1/2, and the coefficient in front of δ̄ in

Proposition 4.1 can be increased to 2.
The main application of the ALC diagram, though, is the analysis of risk and

safety measures using quantiles of the distribution of the random outcome.
Tail VaR. The relation in Theorem 3.2 can be rewritten in the form

X �
SSD

Y ⇔ F (−2)
X

(p)/p ≥ F (−2)
Y

(p)/p for all 0 < p ≤ 1,(4.2)

thus justifying the safety measure

TVaR
X
(p) = F (−2)

X
(p)/p.(4.3)

From Theorem 3.2 we immediately obtain the following observation.
Proposition 4.2. The mean-risk model (µ

X
,−TVaR

X
) is consistent with the

SSD relation.
In light of (3.5), the quantity TVaR

X
(p) may be interpreted as the expected (or

tail) VaR measure (see [2, Def. 5.1] and [28]):

TVaR
X
(F

X
(η)) = E {X|X ≤ η}.

By the convexity of F (−2), the function TVaR
X
: (0, 1] → R is nondecreasing, con-

tinuous, and TVaR
X
(1) = µ

X
. In the case of a lower bounded random variable, the

value of TVaR
X
(p) tends to the infimum of the outcomes when p → 0+. Hence, the

max-min selection rule of [34] is a limiting case of the (µ
X
,−TVaR

X
) model.

It follows from Lemma 3.4 that for every p ∈ (0, 1) the corresponding value
TVaR

X
(p) can be computed as

TVaR
X
(p) = E {X} −min

ξ∈R

E

{
max

(
X − ξ, 1− p

p
(ξ −X)

)}
.(4.4)

This formula may be transformed into

TVaR
X
(p) = max

ξ∈R

(
ξ − 1

p
E {max(0, ξ −X)}

)
,(4.5)

which corresponds to the direct representation of F (−2) as the conjugate function to
F (2) (c.f. (3.4)). By Corollary 3.3, the maximum above is attained at any p-quantile.

Interestingly, (4.5) also appears in [28] in so-called conditional VaR models; our
analysis puts them into the context of dual stochastic dominance. An alternative
proof of the consistency of conditional VaR with SSD has been given in [24].
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Mean absolute deviation from a quantile. Proposition 4.2 allows us to identify an
interesting α-consistent risk measure, following from the dual characterization of the
SSD. Recalling the vertical diameter h

X
(p) of the dual dispersion space, we have the

following result.

Proposition 4.3. For any p ∈ (0, 1), the mean-risk model (µ
X
, h

X
(p)/p) is

1-consistent with the SSD relation.

Proof. By Proposition 4.2 and (3.6) we have

X �
SSD

Y ⇒ µ
X
≥ µ

Y
and µ

X
− h

X
(p)/p ≥ µ

Y
− h

Y
(p)/p,

as required.

Because of Lemma 3.4, we may interpret the risk measure h
X
(p)/p as the weighted

mean absolute deviation from the p-quantile.

For p = 1/2, recalling Corollary 3.5, we obtain the following observation (illus-
trated graphically in Figure 4.2).
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Fig. 4.2. Median case: X �SSD Y ⇒ 1
2
(µX −∆X ) ≥ 1

2
(µY −∆Y ).

Corollary 4.4. The mean-risk model (µ
X
,∆

X
) is 1-consistent with the SSD

relation.

Comparing this to Proposition 4.1, we see that we are able to cover both the
general and the symmetric case with a higher weight put on the risk term. Indeed, in
the symmetric case we have ∆

X
= 2δ̄

X
.

Tail Gini mean difference. Let us now pass to risk measures based on area char-
acteristics of the dual dispersion space. Consider two random variables X and Y such
that X �

SSD
Y in the common ALC diagram (Figure 4.3). If X �

SSD
Y , then, due

to Theorem 3.2, F (−2)
X

is bounded from below by F (−2)
Y

, and µ
X
≥ µ

Y
from (4.1).

Thus the area of the dual dispersion space for X is (upper) bounded by the area
of the dual dispersion space for Y plus the area of the triangle between the chords
(with vertices: (0, 0), (1, µ

X
), and (1, µ

Y
)). Hence, 1

2ΓX ≤ 1
2ΓY + 1

2 (µX − µY ), and,
due to the continuity of the Lorenz curves, this inequality becomes strict whenever
X 


SSD
Y . This allows us to derive the following necessary conditions for the SSD.

Proposition 4.5. For integrable random variables X and Y the following im-
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plications hold:

X �
SSD

Y ⇒ µ
X
− Γ

X
≥ µ

Y
− Γ

Y
,(4.6)

X 

SSD

Y ⇒ µ
X
− Γ

X
> µ

Y
− Γ

Y
.(4.7)

Condition (4.6) was first shown by Yitzhaki [33] for bounded distributions.
Similarly, for p ∈ (0, 1] one may consider the tail Gini measure:

G
X
(p) =

2

p2

∫ p

0

(µ
X
α− F (−2)

X
(α))dα.(4.8)

The next result is an obvious extension of Proposition 4.5.
Proposition 4.6. For every p ∈ (0, 1],

X �
SSD

Y ⇒ µ
X
−G

X
(p) ≥ µ

Y
−G

Y
(p).(4.9)

In other words, the mean-risk model (µ
X
, G

X
(p)) is 1-consistent with the SSD.

By convexity, G
X
(p) ≥ h

X
(p)/p for all p ∈ (0, 1], so Proposition 4.6 is stronger

than Proposition 4.3.
The coefficient 1 in front of G

X
(p) (and G

Y
(p)) cannot be increased for general

distributions, but it can be doubled in the case of symmetric random variables (and
p = 1). Indeed, for a symmetric random variable X one has h

X
(p) = h

X
(1− p), and

thus G
X
( 1
2 ) = 2Γ

X
, which leads to the following result.

Proposition 4.7. For symmetric random variables X and Y the following im-
plications hold:

X �
SSD

Y ⇒ µ
X
− 2Γ

X
≥ µ

Y
− 2Γ

Y
,

X 

SSD

Y ⇒ µ
X
− 2Γ

X
> µ

Y
− 2Γ

Y
.

5. Mean-risk models with dual risk measures. Given a certain set Q of in-
tegrable random variables X, let us analyze in more detail the mean-risk optimization
problems of form

max
X∈Q

(µ
X
− λr

X
),(5.1)
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with λ > 0 and with risk functional r
X
defined as one of our dual (quantile) measures.

We assume that the set Q is convex, closed, and bounded in Lq for some q > 1.
The first issue that needs to be clarified is the convexity of problem (5.1). This

will help to establish the existence of solutions and to formulate computationally
tractable models.

Lemma 5.1. For every p ∈ [0, 1] the functional X → h
X
(p) given by (3.6) is

convex and positively homogeneous on L1.
Proof. Let β ∈ (0, 1), X,Y ∈ Q, and let m

X
and m

Y
be the p-quantiles of X and

Y . By Lemma 3.4,

h
βX+(1−β)Y

(p) = min
t

E max {p(βX + (1− β)Y − t), (1− p)(t− βX − (1− β)Y )}
≤ E max {p(β(X −m

X
)+(1− β)(Y −m

Y
)), (1− p)(β(m

X
−X)+(1− β)(m

Y
− Y ))}.

Using the inequality max(a + b, c + d) ≤ max(a, c) + max(b, d) and Lemma 3.4
again, we obtain

h
βX+(1−β)Y

(p) ≤ βE max {p(X −m
X
), (1− p)(m

X
−X)}

+ (1− β)E max {p(Y −m
Y
), (1− p)(m

Y
− Y )}

= βh
X
(p) + (1− β)h

Y
(p),

because m
X
and m

Y
are p-quantiles. This proves the convexity. The positive homo-

geneity follows directly from (3.7).
For the tail Gini mean difference used as a risk measure, we have a similar result.
Lemma 5.2. For every p ∈ (0, 1] the functional X → G

X
(p) given by (4.8) is

convex and positively homogeneous on L1.
Proof. We have

G
X
(p) =

2

p2

∫ p

0

h
X
(α) dα,

and the result follows from Lemma 5.1.
Remark 4. Again, the composite objectives of form ρ(X) = −µ

X
+ αr

X
, where

α ∈ (0, 1] and r
X
is defined as h

X
(p)/p or G

X
(p), satisfy all axioms of the so-called

coherent risk measures discussed in [2] (cf. Remark 1). The convexity and positive
homogeneity have just been proved, the translation invariance is trivial, and the mono-
tonicity follows from Propositions 4.3 and 4.6, respectively. Indeed, as in Remark 1,
X ≥ Y a.s. ⇒ X �

SSD
Y , and these propositions apply.

Having established convexity, we can pass now to the analysis of the SSD-efficiency
of the solutions to problem (5.1). We start from the case of the Gini mean difference
Γ
X
= G

X
(1).

Theorem 5.3. Assume that the set Q is convex, bounded, and closed in Lq for
some q > 1, and r

X
= Γ

X
. Then for every λ ∈ (0, 1] the set of optimal solutions of

(5.1) is nonempty, and each of its elements is SSD-efficient in Q.
Proof. Let us show that the optimal set of (5.1) is nonempty. By Lemma 5.2 the

objective functional is concave. In the reflexive Banach space Lq, the set Q is weakly
compact (as convex, bounded, and closed [11, Thm. 6, p. 179]), and the functional
µ
X
− λΓ

X
is weakly upper semicontinuous (as concave and bounded). Therefore the

set of optimal solutions of (5.1) is nonempty.
Let X ∈ Q be an optimal solution, and suppose that X is not SSD-efficient. Then

there exists Z ∈ Q such that Z 

SSD

X. From (4.1) and (4.7) we obtain

µ
Z
≥ µ

X
and µ

Z
− Γ

Z
> µ

X
− Γ

X
.
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Adding these inequalities, multiplied by (1 − λ) and λ, respectively, we obtain the
sharp (λ > 0) inequality µ

Z
− λΓ

Z
> µ

X
− λΓ

X
. This contradicts the maximality of

µ
X
− λΓ

X
.

Let us now consider the risk measure r
X
= h

X
(p)/p. Recall that, owing to (3.6)

and (4.3), the objective in (5.1) can be equivalently expressed as

µ
X
− λh

X
(p)/p = (1− λ)µ

X
+ λTVaR

X
(p).

Theorem 5.4. Assume that the set Q is convex, bounded, and closed in Lq for
some q > 1, and r

X
= h

X
(p)/p with p ∈ (0, 1). Then for every λ ∈ (0, 1] the set Q∗

of optimal solutions of (5.1) is nonempty, and for each X ∈ Q∗ there exists a point
X∗ ∈ Q∗ which is SSD-efficient in Q and with µ

X∗ = µ
X
and h

X∗ (p) = hX (p).
Proof. The proof that the optimal set Q∗ of (5.1) is nonempty is the same as that

in Theorem 5.3. By the convexity of the set Q and the concavity of the objective
functional, the set Q∗ is convex, closed, and bounded.

Suppose that X ∈ Q∗ is not SSD-efficient. Then there exists Z ∈ Q such that
Z 


SSD
X. From (4.1) and Proposition 4.3 we obtain

µ
Z
≥ µ

X
and µ

Z
− h

Z
(p)/p ≥ µ

X
− h

X
(p)/p.

Adding these inequalities, multiplied by (1− λ) and λ, respectively, we obtain
µ
Z
− λh

Z
(p)/p ≥ µ

X
− λh

X
(p)/p.

Since Z ∈ Q, we must have Z ∈ Q∗ and an equality above. Thus µ
Z
= µ

X
and

h
Z
(p) = h

X
(p).

Define the set Q∗(X) = {Z ∈ Q∗ : µ
Z
= µ

X
}, and consider the problem

min
Z∈Q∗(X)

Γ
Z
.(5.2)

The set Q∗(X) is convex, closed, and bounded, and (5.2) is equivalent to maximizing
µ
Z
−λΓ

Z
. By Theorem 5.3, a solutionX∗ of (5.2) exists and is SSD-efficient in Q∗(X).

It is also SSD-efficient in Q, because we have proved in the preceding paragraph that
it cannot be dominated by a point Z ∈ Q \Q∗(X). By construction, µ

X∗ = µ
X
and

h
X∗ (p) = hX (p), as required.

Let us now consider the risk measure in the form of the tail Gini mean difference.
Analogously to Theorem 5.4 we obtain the following result.

Theorem 5.5. Assume that the set Q is convex, bounded, and closed in Lq for
some q > 1, and let r

X
= G

X
(p) with p ∈ (0, 1). Then for every λ ∈ (0, 1] the set

Q∗ of optimal solutions of (5.1) is nonempty, and for each X ∈ Q∗ there exists an
SSD-efficient point X∗ ∈ Q∗ with µ

X∗ = µ
X
and G

X∗ (p) = GX (p).
Remark 5. For symmetric random variables and p ≥ 1/2, since h

X
(p) = h

X
(1−p),

all optimal solutions are SSD-efficient, as follows from Theorem 5.3. Also, since
G
X
( 1
2 ) = 2Γ

X
, the coefficient λ in (5.1) can be chosen from (0, 2].

6. Stochastic programming formulations. Let us formulate a more explicit
convex optimization problem which is equivalent to (5.1) with r

X
= h

X
(p)/p:

max EX − λ
p

EV(6.1a)

subject to V (ω) ≥ p(X(ω)− t), a.s.,(6.1b)

V (ω) ≥ (1− p)(t−X(ω)), a.s.,(6.1c)

X ∈ Q, V ∈ L1(Ω), t ∈ R.(6.1d)
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The next result follows from Lemma 3.4.
Proposition 6.1. Problem (6.1) is equivalent to problem (5.1) with r

X
=

h
X
(p)/p in the following sense:

(i) for every solution X̂ of (5.1), the triple

X̂, t̂ = F (−1)

X̂
(p), V̂ (ω) = max(p(X̂(ω)− t̂), (1− p)(t̂− X̂(ω)))

is an optimal solution of (6.1);
(ii) for every optimal solution (X̂, t̂, V̂ ) of (6.1), X̂ is an optimal solution of (5.1), t̂

is a p-quantile of X̂, and EV̂ (ω) = h
X̂
(p).

In particular, if

Q =

{
n∑
i=1

diXi : (d1, . . . , dn) ∈ D
}
,(6.2)

where D is a convex closed polyhedron in R
n and X1, . . . , Xn are integrable random

variables, we recognize a linear two-stage problem of stochastic programming. In this
problem d ∈ D and t ∈ R are first-stage variables, while V is the second-stage variable.
In the case of finitely many realizations (xj1, . . . , x

j
n), j = 1, . . . , N , of (X1, . . . , Xn),

attained with probabilities π1, . . . , πN , we obtain the problem

max
N∑
j=1

πj

(
n∑
i=1

dix
j
i −

λ

p
vj

)

subject to vj ≥ p
(

n∑
i=1

dix
j
i − t

)
, j = 1, . . . , N,

vj ≥ (1− p)
(
t−

n∑
i=1

dix
j
i

)
, j = 1, . . . , N,

d ∈ D, v ∈ R
N , t ∈ R.

Representing
∑n
i=1 dix

j
i − t as a difference of its positive part uj and its negative

part wj and eliminating the expectation from the objective, we can transform the last
problem to a simple recourse formulation:

max

[
t+

N∑
j=1

πj

(
(1− λ)uj −

(
1− λ+ λ

p

)
wj

)]

subject to

n∑
i=1

dix
j
i − t = uj − wj , j = 1, . . . , N,

d ∈ D, u ∈ R
N
+ , w ∈ R

N
+ , t ∈ R.

Let us now formulate a stochastic programming problem which is equivalent to
(5.1) with r

X
= G

X
(p):

max EX − 2λ

p2

∫ p

0

∫
V (α, ω) P(dω) dα(6.3a)

subject to V (α, ω) ≥ α(X(ω)− t(α)), a.s. in [0, p]× Ω,(6.3b)

V (α, ω) ≥ (1− α)(t(α)−X(ω)), a.s. in [0, p]× Ω,(6.3c)

X ∈ Q, V ∈ L1([0, p]× Ω), t ∈ L1([0, p]).(6.3d)
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The product space [0, p]×Ω is assumed to be equipped with the product measure of
the Lebesgue measure and P.

Proposition 6.2. Problem (6.3) is equivalent to problem (5.1) with r
X
= G

X
(p)

in the following sense:

(i) for every solution X̂ of (5.1), the triple

X̂, t̂(α) = F (−1)

X̂
(α), V̂ (α, ω) = max(α(X̂(ω)− t̂(α)), (1− α)(t̂(α)− X̂(ω)))

is an optimal solution of (6.3);

(ii) for every optimal solution (X̂, t̂, V̂ ) of (6.3), X̂ is an optimal solution of (5.1),
t̂(α) is an α-quantile of X̂ for almost all α ∈ (0, p], and EV̂ (α, ω) = h

X̂
(α) for

almost all α ∈ (0, p].
Proof. For X ∈ Q the quantile F (−1)

X
(·) is integrable in (0, p], so restricting t to

L1([0, p]) is allowed. The rest of the proof follows from Lemma 3.4, as in Proposi-
tion 6.1.

In particular, if Q is defined by (6.2) and (X1, . . . , Xn) is a discrete random vector
with N equally probable realizations (xj1, . . . , x

j
n), j = 1, . . . , N , we can further simplify

this problem. We notice first that h
X
(α) is a piecewise linear concave function with

break points at k/N , k = 0, . . . , N . Thus the inequalities (6.3b)–(6.3c) need to be
enforced only at the break points. Moreover, the integral in the objective of (6.3)
can be calculated exactly by using the values at the break points, by the method of
trapezoids.

To be more specific, let m be the smallest integer for which m/N ≥ p, and let
αk = k/N , k = 0, . . . ,m − 1; αm = p. We obtain the following two-stage stochastic
program:

max
N∑
j=1

πj

(
n∑
i=1

dix
j
i −

λ

p2

m∑
k=0

(αk+1 − αk)(vjk+1 + v
j
k)

)

subject to vjk ≥ αk
(

n∑
i=1

dix
j
i − tk

)
, j = 1, . . . , N, k = 0, . . . ,m,

vjk ≥ (1− αk)
(
tk −

n∑
i=1

dix
j
i

)
, j = 1, . . . , N, k = 0, . . . ,m,

d ∈ D, v ∈ R
N × R

m+1, t ∈ R
m+1.

In the above problem, vjk represents the value of V (αk) in the jth realization, and
tk = t(αk). Similarly to problem (6.1), the last problem can also be transformed to a
simple recourse formulation.

If the probabilities πj of the realizations of (X1, . . . , Xn) are not equal, however,
the break points may depend on our decisions, and the reduction to the finite dimen-
sional case is harder. One way around this difficulty is to repeat the outcomes (as
many times as needed) to ensure this property (in the case of rational probabilities).
This, however, may dramatically increase the size of the problem. Another possibility
is to introduce such a grid that contains all possible break points, but it may be un-
necessarily large. Yet another possibility is to resort to an approximation with some
reasonably chosen grid αk, k = 1, . . . ,m. This would be a relaxation because h(·) is
a concave function.
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For p = 1 all these complications disappear, because the alternative defini-
tion (3.9) of Γ

X
has an obvious LP representation:

max

[
N∑
j=1

πj

n∑
i=1

dix
j
i − λ

N∑
j=1

N∑
l=j+1

πjπlv
jl

]

subject to vjl ≥
n∑
i=1

di(x
j
i − xli), j = 1, . . . , N, l = j + 1, . . . , N,

vjl ≥
n∑
i=1

di(x
l
i − xji ), j = 1, . . . , N, l = j + 1, . . . , N,

d ∈ D, v ∈ R
N(N−1)/2.

This has a much larger number of variables and constraints, however.
All finite dimensional stochastic programming models of this section can be solved

by specialized decomposition methods [30].

7. Conclusions. We have defined dual relations of stochastic dominance for
arbitrary random variables with finite expectations. The SSD can be expressed as a
relation of conjugate functions to second order performance functions.

By using the concepts and methods of convex analysis and optimization theory, we
have identified several security and risk measures which can be employed in mean-risk
decision models: tail Value-at-Risk,

TVaR
X
(p) = q

X
(p)− 1

p
E {max(0, q

X
(p)−X)},

where q
X
(p) is a p-quantile; weighted mean deviation from a quantile,

h
X
(p) = E {max(p(X − q

X
(p)), (1− p)(q

X
(p)−X))};

and tail Gini mean difference,

G
X
(p) =

2

p2

∫ p

0

h
X
(α) dα.

We have shown that the mean-risk models using these measures—(µ
X
,−TVaR

X
(p)),

(µ
X
, h

X
(p)), and (µ

X
, G

X
(p))—are consistent with the SSD relation (in the sense

of Definition 2.1 for TVaR
X
(p), and Definition 2.2 for the other two measures). In

particular, the optimal solutions of the corresponding mean-risk models, if unique,
are efficient under the SSD relation.

Finally, we have found stochastic LP formulations of these models. This opens a
new area of applications of the theory and methods for stochastic programming.
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Abstract. This paper presents sequential and parallel derivative-free algorithms for finding a
local minimum of smooth and nonsmooth functions of practical interest. It is proved that, under
mild assumptions, a sufficient decrease condition holds for a nonsmooth function. Based on this
property, the algorithms explore a set of search directions and move to a point with a sufficiently
lower functional value. If the function is strictly differentiable at its limit points, a (sub)sequence
of points generated by the algorithm converges to a first-order stationary point (∇f(x) = 0). If the
function is convex around its limit points, convergence (of a subsequence) to a point with nonnegative
directional derivatives on a set of search directions is ensured. Preliminary numerical results on
sequential algorithms show that they compare favorably with the recently introduced pattern search
methods.

Key words. nonsmooth function, unconstrained minimization, derivative-free algorithm, par-
allel algorithms, necessary and sufficient conditions

AMS subject classifications. 49D30, 65K05

PII. S1052623400370606

1. Introduction. We are concerned with the problem of obtaining an uncon-
strained local minimizer and a local minimum of a nonsmooth functional f(·) : R

n →
R. More specifically, we look for the values of the variables x1, . . . , xn in the whole Eu-
clidean space R

n, where f(x1, . . . , xn) attains a local minimum value. We recall that
penalization and Lagrange techniques are usually applied to transform a constrained
minimization problem into an unconstrained and/or box constrained problem. Hence,
the efficient solution of unconstrained problems is of broad interest.

The algorithms proposed here use only function values, but we are aware that,
when first and/or second derivatives are available, Newton-related methods are highly
efficient. Nonetheless, real world applications in many cases preclude the use of deriva-
tives, because the functional values may arise either from a complex simulation pack-
age or from inaccurate sample values. Furthermore, a numerical approximation of the
derivatives is not always a reliable approach. Therefore, practitioners require efficient
derivative-free methods. Old algorithms, developed mainly in the late ‘60s and early
‘70s, had a strong intuitive approach and often lacked a convergence theory. (The
interested reader can examine these methods in many optimization books, such as
[4, 17, 44].) Other recent approaches are reported in [8, 11, 43]. The simplex method
(a simplex in R

n is the convex hull of n + 1 points x0, . . . , xn) [27] has become, due
perhaps to its simplicity and success in the solution of practical problems with a small
number of variables, the most widely used and cited in the literature of unconstrained
minimization. Nonetheless, it can fail on small problems, and convergence to a nonsta-
tionary point may occur [25, 39]. We are just starting to understand the properties of
the simplex method [20], which has triggered active research on derivative-free meth-
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ods in the last decade. Related simplicial methods with a formal convergence theory
have appeared in [9, 18, 36, 39, 40, 42]. Convergence of well-known derivative-free
methods and pattern search methods have been analyzed in [3, 21, 41]. Essentially,
a pattern search method examines the function values on a nondegenerate simplex .
An iteration starts with a new simplex which satisfies a form of descent condition for
the function values. Under standard assumptions, convergence (of a subsequence) to
a point satisfying the first-order necessary condition (∇f(x) = 0) of general smooth
functions is ensured. A possible drawback of these methods is that function values
must be obtained infinitely often at all vertices of a simplex before a new iteration
starts, which implies at least n function evaluations per iteration. To circumvent this
difficulty, it is desirable to establish at each iteration a decrease of the function value
sufficient to guarantee convergence. An old effort in this direction is found in [12],
and more recent attempts in [18, 24, 42]. Additional material can be found in [19,
Chapters 6,7] and references therein.

While this paper was under review, the referees brought [3] to our attention,
in which the convergence of generalized pattern search methods is ensured without
assuming global continuity. Convergence relies on the differentiability properties of
limit points. All other works on derivative-free methods cited above assume f(·) ∈
C1 and often ask for Lipschitz continuity of the gradients to ensure convergence.
Therefore, the convergence theory cannot be applied in certain cases of practical
interest:

(i) Some industrial problems often require the minimization of functions which
arise from a complex simulation process or from sample values. Smoothness of the
function cannot be guaranteed.

(ii) Common functions, like the norm function f(x) = ‖f1(x)‖ and the Max
function f(x) = Max(f1(x), . . . , fm(x)), may not be everywhere differentiable, even
in the convex case.

(iii) Most exact penalty functions are not everywhere differentiable.
This paper has a twofold objective: (a) to define a practical necessary condition

for a class of nonsmooth functions, which should be valid as well for smooth functions
and readily allow (b) the implementation of converging algorithms. The rest of the
paper is organized as follows. The next section states the assumptions C1–C3, needed
to ensure that the algorithm is well defined, and the nonsmooth necessary condition
(NSNC) (2.4). Section 3 introduces the sufficient decrease criterion (3.1)–(3.2), pro-
poses sequential and parallel algorithms, and develops the convergence theory. It is
shown that the algorithms are well defined under conditions C1–C3. Furthermore,
convergence to a point x satisfying NSNC is shown if f(·) is strictly differentiable at x
or convex in a neighborhood of x. Section 4 presents extensions to smooth functions
and the box constrained problem. It also analyzes useful features that improve the
algorithm notably. Section 5 shows preliminary numerical results with examples from
the CUTE collection and the Rosenbrock function with two, three, five, or ten vari-
ables. The number of function evaluations of our sequential algorithms are in general
lower than those needed by the pattern search methods (PSM) with the same termi-
nation criteria. Finally, we state our conclusions and final remarks in section 6. It is
pointed out that no PSM ensures convergence to a minimum of a convex nonsmooth
function.

We end this introduction with a note on notation: A sequence is denoted by
{xi}∞1 , and a subsequence by {xik}∞k=1. Sometimes we just denote a sequence by {xi}
and use y → x to denote that {yi} → x. R

n is the Euclidean n-dimensional space.
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Greek lowercase letters are scalars. Latin lowercase letters i, . . . , q denote integers; f
is reserved to denote the functional f(·) : R

n → R; and o(·) : R+ → R is a scalar

function such that limη↓0
o(η)
η = 0. All other Latin lowercase letters represent vectors

(points) in R
n. Subindices represent different entities, and superindices components;

for instance, yki is the kth component of the vector yi. The standard inner product in
R
n is denoted by xT y

.
=
∑n
k=1 x

kyk, and xyT is an n× n matrix with elements xiyj .
The rest of the notation is standard.

2. Necessary condition for nonsmooth functions. B-differentiable func-
tions, which were introduced in [34], have a directional derivative (B-derivative)
f ′(·, ·) : R

n × R
n → R that satisfies

[η > 0]⇒ [f ′(x, ηd) = ηf ′(x, d)],(2.1)

f(x+ d)− f(x)− f ′(x, d) = o(||d||).(2.2)

In general, these functions are not Fréchet differentiable but appear naturally in
many optimization problems. Some difficult smooth problems can be reformulated
as nonsmooth problems with a simpler structure, which can be efficiently solved by
suitably adapting Newton-related methods [29, 30, 33]. Moreover, necessary and
sufficient conditions for nonlinear programming have been established for this kind of
function [14, 16, 46]. Nonetheless, to the authors’ knowledge there exists no direct
search algorithm with guaranteed convergence to a local minimum of a B-differentiable
function. We partially answer this question in this paper. We propose an algorithm
that generates a subsequence {xik}∞k=1 that converges to a point x satisfying the
NSNC given below, but if f(·) happens to be differentiable, then ∇f(x) = 0.

In what follows we will assume the following conditions:
C1. f(·) is bounded below.
C2. For any x, d ∈ R

n there exists f ′(x, d) : R
n × R

n → R such that

[η > 0]⇒
[
f ′(x, ηd) = ηf ′(x, d),
f(x+ ηd)− f(x)− ηf ′(x, d) = o(η)

]
.(2.3)

Note that f ′(x, d) = limη↓0(f(x+ ηd)− f(x))/η.
C3. The sequence {xi}∞1 remains in a compact set.
Condition C3 will be needed to merely ensure the existence of accumulation points

of {xi}∞1 . Conditions that imply C3 are, for instance,
(i) f(·) is coercive, i.e., [{‖xi‖} → ∞]⇒ [{f(xi)} → ∞], or
(ii) the lower level set {x ∈ R

n : f(x) ≤ f(x1)} is compact.
The next lemma follows a standard proof. It shows that C2 implies a well-known

property of a local minimizer.
Lemma 2.1. Let C2 hold. If x is a local minimizer of f(·), then f ′(x, d) ≥ 0 for

all d ∈ R
n.

Proof. If f ′(x, d) < 0 for some d ∈ R
n, there exists η̄ > 0 such that o(η)/η ≤

−f ′(x, d)/2 for all 0 < η ≤ η̄. We now obtain from C2 that

f(x+ ηd)− f(x) = η(f ′(x, d) + o(η)/η) ≤ η (f ′(x, d)− f ′(x, d)/2) = ηf ′(x, d)/2 < 0,

and x is not a minimizer.
The conclusion of the previous lemma is in general hard to verify unless f(·) is

(sub)differentiable. We now state a practical NSNC, which will be helpful as well in
constrained minimization on subspaces.



82 U. M. GARCÍA-PALOMARES AND J. F. RODRÍGUEZ

Nonsmooth necessary condition (NSNC). Let x ∈ R
n be a local minimizer of

f(·) on a subspace S, and let D = {d1, . . . , dm} be a set of m bounded nonzero
directions in R

n that spans S. If C2 holds, then x satisfies the NSNC

[d ∈ D]⇒ [f ′(x, d) ≥ 0, f ′(x,−d) ≥ 0].(2.4)

We point out that (2.4) is adequate for differentiable functions, for if S = R
n,

if f ′(x, d) def
= ∇f(x)T d, and if x satisfies (2.4), then ∇f(x) = 0. (The proof is a

simpler version of Theorem 3.4.) To end this section we recall a definition that we
will use frequently in this paper: f(·) is strictly differentiable at x if ∇f(x) exists and
limy→x,η↓0

f(y+ηd)−f(y)
η = ∇f(x)T d for all d ∈ R

n (see [7] for further details).

3. Sequential and parallel algorithms.

3.1. Sequential algorithms. This subsection studies a prototype algorithm
amenable to both single and multiprocessor environments. It will be shown that,
under C1–C3, the algorithm generates a subsequence {xik}∞k=1 that converges to a
point satisfying the NSNC (2.4).

We now describe the algorithm identified below as Prototype Algorithm 3.1.
Given an estimate xi, a bounded stepsize hi > 0, and a finite set of search direc-
tions D = {d1, . . . , dm}, the algorithm explores the function values at the points
xi+hjidj , xi−hjidj , j = 1, . . . ,m. If the function sufficiently decreases along a search
direction, i.e., for some dj ∈ D,

either f(xi + hjidj)− f(xi) ≤ −|oj(hji )|,(3.1)

or f(xi − hjidj)− f(xi) ≤ −|oj(hji )|,(3.2)

a new estimate xi+1 is generated and the associate stepsize component hji may be

expanded as long as hji+1 ≤ λtτi, with λt > 1, and {τi} → 0. On the other hand, if
neither (3.1) nor (3.2) holds for any dj ∈ D, we declare the point xi to be blocked by
the stepsize vector hi. The algorithm reduces the upper bound τi (τi+1 < τi) as an
attempt to unblock xi. In the prototype algorithms, τi represents an upper bound of
the ∞-norm of the stepsize vector h at blocked points.

Prototype Algorithm 3.1 (f ′(x, d) exists).
Data: 0 < µ < 1, 0 < λs < 1 < λt, with µλt < 1,

D := {d1, . . . , dm}, xi, 0 < hi, ||hi||∞ ≤ τi, o
j(hji ), j = 1, . . . ,m.

1. Define the index set Ji of unblocked directions as

Ji .
= {1 ≤ j ≤ m : f(xi + βhjidj)− f(xi) ≤ −|oj(hji )|

for some β ∈ {−1, 1}}.(3.3)

2. If Ji �= ∅, let τi+1 = τi and choose j ∈ Ji, xi+1, h
j
i+1 such that

xi+1 ∈ {x ∈ R
n : f(x) ≤ f(xi + βhjidj)}, λsτi ≤ hji+1 ≤ λtτi;(3.4)

else (Ji = ∅)

let xi+1 = xi, τi+1 = µ||hi||∞, and choose hji+1 such that

λsτi+1 ≤ hji+1 ≤ τi+1, j = 1, . . . ,m.
(3.5)

end if
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Repeat 1–2 while τi is not small enough.
When gradients are available, a sufficient decrease condition has been formally

established [1, 45], and a descent direction d ∈ R
n at x is easily characterized, namely,

dT∇f(x) < 0. Convergence of the search methods is based on the fact that at least one
of the directions of search satisfies this descent condition. Our proof of convergence
departs from this idea because our algorithms are mainly addressed to nonsmooth
functions. In order to ensure convergence of the algorithm, we introduce the sufficient
decrease condition (3.1)–(3.2) for nonsmooth functions. A similar condition was first
discussed in [12] and later analyzed in [24] for continuously differentiable functions.
A related concept, denoted as the fortified descent condition, is given in [42].

The following lemma is useful because it ensures that the algorithm is well-defined,
in the sense that there always exists an hji such that (3.1) or (3.2) holds whenever
f ′(xi, dj) < 0 or f ′(xi,−dj) < 0.

Lemma 3.1. Let x, d ∈ R
n be, respectively, a given point and a bounded direction

of search. Let f ′(x, d) < 0. There exists η > 0 such that f(x+ ηd)− f(x) ≤ −|o(η)|.
Proof. Assume that no such η exists; then [η > 0] ⇒ [f(x + ηd) − f(x) >

−|o(η)|]. Hence, f(x+ηd)−f(x)
η > − |o(η)|

η , and in the limit we obtain f ′(x, d) ≥ 0,
which contradicts the assumption.

We now proceed with the theoretical justification of the algorithm. We assume
µλt < 1, C1–C3, and that given any ε > 0 there exists δ(ε) > 0 such that [{hjik}∞k=1 ≥
ε]⇒ [{oj(hjik)}∞k=1 ≥ δ(ε)]. (See the remark after Corollary 3.6.) Theorem 3.2 ensures
that {hi}∞1 → 0. Theorems 3.4, 3.5 and Corollary 3.6 state that the sequence of
blocked points converges to a point satisfying (2.4).

Theorem 3.2. {hi}∞1 → 0.
Proof. By construction, λsτi ≤ hji ≤ λtτi, j = 1, . . . ,m, and {τi} is a nonincreas-

ing sequence that reduces its values only at blocked points. Indeed, by (3.4) and (3.5)
we have τi+1 = µ||hi||∞ ≤ µλtτi < τi. Hence, if blocked points occur infinitely often,
the proof follows trivially for {τi} → 0. We now assume that (3.5) occurs a finite
number of times and will reach a contradiction.

Let τi = τk > 0 for all i ≥ k, and let ε = λsτk. We assert that hji ≥ ε for any
j ∈ Ji, i ≥ k. Therefore for i ≥ k we obtain that

f(xi+1) ≤ f(xi)− |oj(hji )| ≤ f(xi)− δ(ε),

and {f(xi)} decreases without bound, contradicting C1.
Corollary 3.3. There is an infinite number of blocked points.
Theorem 3.4. Let Span(D) = R

n. Let x be a limit point of a sequence of
blocked points, and let f(·) be strictly differentiable at x. Under these assumptions
∇f(x) = 0.

Proof. With no loss of generality, let us assume that {xi}∞1 is the subsequence of
blocked points, and {xi}∞1 → x. For any dj ∈ D we have

f(xi + hjidj)− f(xi) > −|oj(hji )|;
hence,

∇f(x)T dj = lim
{xi}→x,{hj

i
}↓0

f(xi + hjidj)− f(xi)

hji
≥ lim

{hj
i
}↓0
−|oj(hji )|

hji
= 0.

Similarly, ∇f(x)T (−dj) ≥ 0. Therefore ∇f(x)T dj = 0. Since this equation is
valid for all dj ∈ D and Span(D) = R

n, we conclude that ∇f(x) = 0.
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The last theorem is useful when strict differentiability holds at limit points. Ob-
viously, (NSNC) holds. Although f(·) ∈ C1 is not required everywhere, C2 plus
strict differentiability implies that f(·) must be smooth in a neighborhood of the limit
point. We now turn our attention to convergence conditions that ensure (NSNC)
without assuming strict differentiability. It is straightforward to show that for d ∈ D,
lim supy→x,η↓0(f(y + ηd) − f(y))/η ≥ 0 at limit points of blocked point sequences.
However, this result is in general not useful. There are examples that show that neg-
ative directional derivatives may appear at x and along some directions d ∈ D [2].
Generally, local convexity must be assumed in smooth problems to make sure x is a
local minimum. Theorem 3.5 below proves that (NSNC) holds with a local convexity
assumption. However, the Dennis–Woods function (see section 6) reveals that thus far
no known search method ensures convergence to a minimum of a nonsmooth convex
function.

Let us recall that when f(·) is convex, the function ϕ(η)
.
= (f(x + ηd)−

f(x))/η is a nondecreasing function of η > 0 for fixed x, d ∈ R
n. Indeed ϕ′(η) =

1
η2

[
f(x)− f(x+ ηd) + ηdT∇f(x+ ηd)

]
> 0. A general result for nondifferentiable

convex functions appears in [35, Theorem 23.1].
Theorem 3.5. Let C1–C3 hold. Let {xi} → x be a (sub)sequence of blocked points

generated by the Prototype Algorithm 3.1, and let f(·) be convex in a neighborhood of
x. Under these assumptions (NSNC) holds at x.

Proof. By assumption we have for any j that

{hji} → 0 and

(f(xi + hjidj)− f(xi))/h
j
i > −|oj(hji )|/hji .

(3.6)

We will prove that f ′(x, dj) ≥ 0. Assume on the contrary that f ′(x, dj) = −α < 0.
If so, there exists η̄ > 0 such that (f(x + η̄dj) − f(x))/η̄ ≤ −α/2. Hence, for any
sequence {xi} → x and large enough i, we have that (f(xi+ η̄dj)− f(xi))/η̄ ≤ −α/4.
By convexity, (f(xi + ηdj) − f(xi))/η ≤ −α/4 for all 0 < η ≤ η̄, which contradicts
(3.6). We prove similarly that f ′(x,−dj) ≥ 0. Since j was arbitrary, we conclude that
(NSNC) holds.

Corollary 3.6. If the number of points that satisfy (2.4) is finite, the sequence
of blocked points converges.

Proof. The proof is trivial. See [28, Theorem 14.1.5].
Remark. For a practical implementation, the sufficient decrease condition may be

written as f(xi ± hjidj)− f(xi) ≤ −(hji )2. Note that hji > ε > 0 ⇒ oj(hji ) = (hji )
2 >

ε2 = δ(ε) > 0.
Remark. Once you have chosen an index, j ∈ Ji, xi+1 can be obtained by any

heuristic or by any finite procedure that fulfills (3.4).

3.2. Parallel algorithms. We assume that we have p processors that share xi,
the best estimate, and can compute function values. We associate processor k with
the index set Kk, and

⋃p
k=1Kk = {1, . . . ,m}. We define Dk .

= {dj ∈ D : j ∈ Kk}.
Table 3.1 presents two direct translations of the prototype algorithm to parallel

implementations with a balanced load among processors. Version 1 assumes that a
function evaluation is costly and time consuming, whereas version 2 assumes that the
communication and synchronization load can override the computational work.

In the parallel version 1, all processors simultaneously perform one function eval-
uation, say f(x + βhjdj), for some β ∈ {−1, 1}, j ∈ Kk, k = 1, . . . , p, and a global
reduction is used to determine the minimum function value among all these values.
The minimizer, its function value, and the new stepsize vector are broadcast to all
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Table 3.1
Iteration of derivative-free algorithms.

Input: x ∈ R
n, ϕ = f(x),D = {d1, . . . , dm}, h ∈ R

m, block,K1, . . . ,Kp

Sequential Parallel (version 1) Parallel (version 2)
do in parallel
k = processor id

if block = 2, then if block = 2, then if block = 2, then
block = 0, τ = 0.2||h||∞ block = 0, τ = 0.2||h||∞ block = 0, τ = 0.2||h||∞

endif endif endif
block = block + 1 block = block + 1 yk = x, gk = ϕ, bk = true
for j = 1, . . . ,m for i = 1, . . . ,m/p for j ∈ Kk

do in parallel
k = processor id
jk = ith index of Kk

z = x + hjdj zk = x + hjkdjk z = yk + hjdj
θ = f(z) θk = f(zk) θ = f(z)
if θ − ϕ ≤ −(hj)2, then gk = θk − ϕ + (hj)2 if θ − gk ≤ −(hj)2, then
hj = min(1.4hj , 4.9τ) hj = min(1.4hj , 4.9τ)
x = z, ϕ = θ, block = 0 yk = z, gk = θ, bk = false

else if gk > 0 then else
hj = −hj hjk = −hjk hj = −hj

endif endif endif
end for end for

end do in parallel end do in parallel
if and(b1, . . . , bp), then
block = block + 1

else
k = arg min1≤q≤p(gq) j = arg min1≤k≤p(gk)
if gk ≤ 0, then
hjk = min(1.4hjk , 4.9τ)
x = zk, ϕ = θk, block = 0 x = yj , ϕ = gj , block = 0

endif endif
end for

processors. In the parallel version 2, all processors carry out several function evalua-
tions on a subset of the directions of search and broadcast the best point found and
its function value. The iteration is completed as in the previous version. Practical
implementations of both versions are given in Table 3.1. Note that if Kk = {k}, both
versions generate the same sequence {xi}∞1 .

Both implementations have a serious drawback. Function evaluations may stem
from simulations of complex systems with indefinite response time, which renders
useless any effort to balance the load among processors. Consequently, both paral-
lel versions in Table 3.1 may become highly inefficient. Fortunately, our prototype
algorithm can be naturally adapted to the asynchronous parallel implementation pro-
posed in [15] and overcome this difficulty. A processor, say processor k, works with
its associate index set Kk and broadcasts an estimate xi+1 that satisfies (3.4) with
j ∈ Kk. The asynchronous algorithm is basically as follows.

Asynchronous Algorithm (kth processor).
1. Get xi, f(xi), hi, the successful triplet broadcast by the other processor.
2. Perform the (appropriate) function evaluation required by Algorithm 3.1

(D is replaced by Dk .
= {dj : j ∈ Kk}).

3. If there is a new better broadcast point, go to step 1.
4. If a better point is found along a direction dj , then

set hji+1 = 1.4hji and
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Table 3.2
Example of a fault tolerance for a parallel algorithm.

Direction Processor

1 2 3

d1 X X
d2 X X
d3 X X

broadcast a successful triplet xi+1, f(xi+1), h
j
i+1;

else reduce hj , j ∈ Kk, by (5.1).
5. If ||hi|| > ε, go to step 2; else STOP.
end of algorithm

Convergence theory of the asynchronous algorithm along with numerical results
for all parallel implementations will be given in a forthcoming paper.

Before we end this section we would like to point out that a certain degree of
fault tolerance in any parallel version can be included from the onset. We simply
force every index to appear in at least two index subsets. This in turn forces any
direction to be searched by at least two processors. If a processor goes down, it can
pass unnoticed until it again goes up. Let us illustrate this idea with a trivial example.
Let D = {d1, d2, d3}, p = 3, and D1 = {d1, d2}, D2 = {d2, d3}, and D3 = {d1, d3}, as
shown in Table 3.2. If any one processor goes down, the others still search the whole
set D = {d1, d2, d3}.

4. Extensions and future research.

4.1. The searching set. We can use any static set of linearly independent unit
directions: the coordinate axis, random generated directions, conjugate directions [31,
32], and so on. It is commonly accepted that occasional but judicious adjustments to
the search set might improve the convergence of direct search methods. For instance,
the rank ordered pattern search method suggested in [21] includes the direction of
best decrease on the simplex vertices; the implicit filtering algorithm searches on the
simplex gradient (see subsection 4.2), and in [13] a quasi-Newton direction is included
at blocked points. There is as well a convergence proof for dynamic sets in the
algorithm proposed in [24].

For the sake of completeness we now sketch the convergence for dynamic sets. We
denote by Di = {di1, . . . , dim} a set of m unit directions at the ith iteration.

Theorem 4.1. Assume that {dij}∞i=1 → dj , j = 1, . . . ,m. If C2 holds and f(·)
is Lipschitzian near any limit point x of the sequence of blocked points {xi}∞1 , then
f ′(x, dj) ≥ 0.

Proof. Let κ be the Lipschitz constant. With no loss of generality, assume that
the sequence of blocked points {xi}∞1 converges to x. For any dij ∈ Di we have

f(xi + hjidj)− f(xi)

= f(xi + hjidij)− f(xi) + f(xi + hjidj)− f(xi + hjidij)

> −|oj(hji )|+ f(xi + hjidj)− f(xi + hjidij)

> −|oj(hji )| − |f(xi + hjidj)− f(xi + hjidij)|;
therefore,

f(xi + hjidj)− f(xi)

hji
> −|o

j(hji )|
hji

− κ||dj − dij ||.
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By taking limits, we obtain that f ′(x, dj) ≥ 0.
We note that if f(·) is convex and bounded above near the limit point x, it fulfills

the conditions of the previous theorem [7, Proposition 2.2.6]. Furthermore, strict
differentiable functions at x also satisfy the conditions of the theorem [7, Proposition
2.2.1]. In this case, we obtain that ∇f(x)T dj ≥ 0. Therefore, it is trivial to conclude
that if Span(d1, . . . , dm) = R

n, if x is a limit point of a sequence of blocked points,
and if f(·) is strictly differentiable at x, then ∇f(x) = 0.

Since the sequence of blocked points converges to a point that satisfies (2.4), it
seems worthwhile to explore the direction determined by the last two blocked points.
The set D3 given below (see also [13]) includes this direction. Furthermore, it has
desirable characteristics: (i) it is completely determined by the vector u, which signif-
icantly reduces the communication load in a multiprocessing environment, and (ii) its
associated n × n matrix D3

.
= [d1, . . . , dn] is easily invertible, which is a nice feature

to be discussed below.
This paper investigates the performance of the algorithm on the searching sets

D1,D2,D3 given next:
D1: dj = ej , j = 1, . . . , n, the coordinate axis.
D2: See [17, p. 80]; also suggested in [9].

dkj =

{
α if k �= j,
β if k = j,

where α =

√
n+ 1− 1√

2n
, β = α+

1√
2
, j = 1, . . . , n.

D3: Let xq+1, xq be two consecutive blocked points, and let

s =
xq+1 − xq
||xq+1 − xq|| , j = argmax

k
(|sk|),

uj = +

√
(1 + |sj |)

2
, uk = sign(sj) sk/2uj for k �= j.

Choose dk = (I − 2uuT )(ej + ek), k = 1, . . . , n.

The columns of D−T
3 are

D−T
3 ej =

1

2
(I − 2uuT )


ej −∑

k �=j
ek


 ,

D−T
3 ek = (I − 2uuT )ek, k �= j.

We end this subsection with a remark on dynamic sets Di = {di1, . . . , dim}. Let
{dij}∞i=1 → dj , j = 1, . . . ,m. It is important that dj , j = 1, . . . ,m, be linearly inde-
pendent. Consider, for example, the problem min(x2 + y) and Di = {(1, 0), (1, hi)}.
Starting at (x0, y0) = (0, 0), the algorithm stalls at (0, 0), which is not a stationary
point. Indeed, f(0, 0) = 0, and

f(hi(±1, 0)) = h2
i > 0, f(hi(1, hi)) = 2h2

i > 0, and f(hi(−1,−hi)) = 0.

4.2. Smooth functions. If we assume that f(·) is strictly differentiable at any
limit point, Theorem 3.4 shows that the sequence of blocked points generated by
Algorithm 3.1 (and its parallel counterparts) converges to a first-order stationary
point. We show below that, under this differentiability condition, a blocked point can
be detected with fewer function values per iteration, which seems to imply that an
algorithm with this property should be more efficient.
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It is known that a basis of n+ 1 positively independent directions that positively
span R

n suffices to prove convergence in direct search methods [3, 21, 24]. We recall
that a basis {d1, . . . , dn+1} positively spans R

n if

∀(x ∈ R
n) ∃(ν1 ≥ 0, . . . , νn+1 ≥ 0) : x =

n+1∑
k=1

νkdk.

We remark that the set D can easily be constructed. Let Span {d1, . . . , dn} = R
n,

and let dn+1 = −
∑n
k=1 αkdk, αk > 0.

Let us establish the counterpart of Lemma 3.1 for differentiable functions and a
direction set that positively spans R

n.

Lemma 4.2. Let ∇f(x) exist, and let f ′(x, d) def
= ∇f(x)T d for all d ∈ R

n. Let D
be a basis set of n + 1 search directions that positively spans R

n. If ∇f(x) �= 0, then
there exist η > 0, dj ∈ D such that f(x+ ηdj)− f(x) ≤ −|o(η)|.

Proof. If no such η, dj exist, then f(x+ ηd)− f(x) > −|o(η)| for all η > 0, d ∈ D.
In the limit we obtain that ∇f(x)T d ≥ 0 for all d ∈ D. But by assumption −∇f(x) =∑n+1
k=1 νkdk for some νk ≥ 0; therefore −∇f(x)T∇f(x) =

∑n+1
k=1 νk∇f(x)T dk ≥ 0,

which only holds for ∇f(x) = 0.
Based on Lemma 4.2, the following algorithm seems appropriate for differentiable

functions.
Prototype Algorithm 4.1 (f(·) ∈ C1).

Data: 0 < µ < 1, 0 < λs < 1 < λt, with µλt < 1,

D := {d1, . . . , dn+1}, xi, 0 < hi, ||hi||∞ ≤ τi, o
j(hji ), j = 1, . . . , n+ 1.

1. Define the index set Ji of unblocked directions as

Ji .
= {1 ≤ j ≤ n+ 1 : f(xi + hjidj)− f(xi) ≤ −|oj(hji )|}.

2. If Ji �= ∅, let τi+1 = τi and choose j ∈ Ji, xi+1, h
j
i+1 such that

xi+1 ∈ {x ∈ R
n : f(x) ≤ f(xi + hjidj)}, λsτi ≤ hji+1 ≤ λtτi;

else (Ji = ∅) let xi+1 = xi, τi+1 = µ||hi||∞, and choose hji+1 such that

λsτi+1 ≤ hji+1 ≤ τi+1, j = 1, . . . , n+ 1.

end if
Repeat 1–2 while τi is not small enough.

Theorem 3.4 and Lemma 4.2 lead to the following result: If f(·) is everywhere dif-
ferentiable and strict differentiable at limit points, Algorithm 4.1 generates a
(sub)sequence {xi} that converges to a point that satisfies the first-order necessary
condition. If local convexity is assumed in place of strict differentiability, Theorem
3.5 can be used to prove that f ′(x, d) ≥ 0 for all d ∈ D, but this does not seem to be
a useful nonsmooth necessary condition. Section 5 reports some numerical results on
differentiable functions with Algorithms 3.1 and 4.1.

Now, let us extract first-order information. It is well known that the vector
r = D−T c, where dk, k = 1, . . . , n, is the kth column of the matrix D, and ck = (f(x+
ηdk) − f(x))/η, k = 1, . . . , n, is a good approximation to ∇f(x) for η small enough.
The vector r computed for a given simplex was denoted as the simplex gradient in
[5] and used as a possible direction of descent in the implicit filtering algorithm [19,
Chapter 7]. First-order information is quite helpful for sufficiently smooth functions
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because it allows quasi-Newton directions (superlinear rate of convergence) along the
lines suggested in [6, 26, 37] and more recently in [38].

If we are certain that f(·) ∈ C2, the above approach is practical; otherwise,
a lot of effort is being wasted. In [13] the gradient approximation r, with cj

.
=

(f(xi+ hjidj)− f(xi− hjidj))/2hji , is only computed at blocked points. The direction
dm+1 = −Hr, where H is a variable metric, can be used to obtain xi+1 by (3.4).

4.3. Box constraints. There is a trivial way to adapt Algorithm 3.1 to the box
constrained minimization problem min f(x), for x ∈ B := {x ∈ R

n : s ≤ x ≤ t}, where
s, t are vectors in R

n and s ≤ t. We merely use the coordinate axes as the directions
of search, i.e., D = {e1, . . . , en}, and define a function F (·) as

F (x)
.
=

{
f(x), x ∈ B,
max {f(x), f(xB)}, otherwise,

where xkB = median (sk, xk, tk) is the kth component of the projection of x onto
the set B. (F (x) = ∞, x �∈ B, was suggested in [22, 23].) Obviously, minx∈B f(x)
and minx∈R

n F (x) are equivalent minimization problems. It is as well immediate to
observe that, starting at any x0 ∈ B, convergence is preserved when Algorithm 3.1
is used for solving the latter minimization problem. We remark that in a practical
implementation no evaluation of f(x) should be performed for x �∈ B.

More efficient algorithms can be suggested. This is the subject of a forthcoming
paper that will be coupled with the more general linearly constrained optimization
problem.

5. Numerical experiments. We implemented Algorithms 3.1 and 4.1, with
τi = ||hi||∞ at blocked points, λs = 0.01/n, and λt = 0.98/µ. Algorithm 3.1 detects
a blocked point when 2n consecutive function evaluations fail to satisfy the suffi-
ciency decrease condition (both side evaluations on n independent directions fail).
This algorithm will be denoted as the nonsmooth directional search algorithm (NS-
DSA) because it is especially suited for nonsmooth functions. Algorithm 4.1 detects
a blocked point when n + 1 consecutive function evaluations fail to satisfy the suffi-
ciency decrease condition. This implementation is called the smooth directional search
algorithm (SDSA) because it does not seem adequate for nonsmooth functions.

Implemented NSDSA Algorithm.
Input: An estimate x, its function value ϕ = f(x), stepsizes hj = 1, j = 1, . . . , n,

descent index j = 1, index search k = 1, # of failures fail = 0,
direction generator u (or the set D : Span(D) = �n),
τ = 1, convergence precision ε = 10−6.

repeat
Generate dk = (I − 2uuT )(ej + ek) (or obtain dk from the set D),
z = x+ hkdk, θ = f(z).
if (θ − ϕ ≤ −(hk)2), then
hk = min(γhk, (0.98/µ)τ), k = j,
x = z, ϕ = θ, fail = 0;

else
hk = −hk, fail = fail + 1,
k = (k mod n) + 1,
if (fail = 2n), then
reduce ||h||∞ by (5.1), τ = ||h||∞, fail = 0.
Update the direction generator u and the indicator j,
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k = j.
end if

end if
until (||h||∞ < ε) (or similar function values)

Implemented SDSA Algorithm.
Input: An estimate x, its function value ϕ = f(x), stepsizes hj = 1, j = 1, . . . , n+1,

descent index j = 1, index search k = 1, # failures fail = 0,
direction generator u (or the set D with n+ 1 positive basis),
τ = 1, convergence precision ε = 10−6.

repeat
Generate dk = (I − 2uuT )(ej + ek) (or obtain dk from the set D),
z = x+ hkdk, θ = f(z).
if (θ − ϕ ≤ −(hk)2), then
hk = min(γhk, (0.98/µ)τ), k = j,
x = z, ϕ = θ, fail = 0;

else
fail = fail + 1,
k = (k mod (n+ 1)) + 1,
if (fail = n+ 1), then
reduce ||h||∞ by (5.1), τ = ||h||∞, fail = 0.
Update the direction generator u and the indicator j,
k = j.

end if
end if

until (||h||∞ < ε) (or similar function values)
The direction indicator given by j means that dj is the descent direction deter-

mined by the last two blocked points. As described above, dj is explored after any
successful iteration, and it is also the first direction in the set D that the algorithm
explores. The numerical results reported below with the adaptive direction D3 also
include a heuristic that improved the performance of the algorithm notably: dk was
explored before dp only if hki ≥ hpi .

To get an initial insight into the performance of the sequential algorithms, we
implemented both versions in C. The results obtained were compared with those from
the rank ordered pattern search (ROPS) algorithm described in [21] (n+1 directions)
and from the multidirectional search (MDS) algorithm from [40] (2n directions). We
report the number of function evaluations needed to obtain a solution.

In most direct search methods, the choice of parameters seems to be crucial for
the quality of convergence of the algorithm. We tried different choices of γ and µ.
Intuitively, the jth stepsize component in (3.4) should not increase significantly, for
convergence is determined when ||hi|| < ε for a small positive ε. We report results
with hji+1 = (1 + 1

q )h
j
i , where q is the number of contractions. In some experiments

not reported here we observed that a uniform reduction in all components of hi could
now and then cause unnecessary small steps in later iterations. The stepsize vector
in the SDSA and NSDSA was reduced according to the following rule:

hji+1 :=

{
µhji if hji > 0.01||hi||∞/n,

0.01||hi||∞/n otherwise.
(5.1)

The initial stepsize was h = 1, and the stopping criteria were ||h||∞ ≤ 10−6 or
max(|f(x± hjdj)− f(x)|) ≤ 10−6(|f(x)|+ 1) at blocked points. The latter criterion



NEW SEQUENTIAL AND PARALLEL 91

Table 5.1
Number of function evaluations for the Rosenbrock function (γ = 1.4, µ = 0.6).

xo = 3

n MDS ROPS SDSA NSDSA

D1 D2 D3 D1 D2 D3

2 3563 14261 90071 1320 473 14105 3298 466
3 21196 19530 F 143 1011 23914 10883 1054
5 26366 26030 719820 203 1689 53347 37912 1874
10 126051 82337 F 860 5018 144749 185823 5705

xo standard(−1.2, 1, . . .)

n MDS ROPS SDSA NSDSA

D1 D2 D3 D1 D2 D3

2 6287 8810 7246 F 247 4674 4666 406
3 16666 15578 10340 F 772 13618 6416 878
5 27426 24158 39637 1211 759 22413 21390 1437
10 89051 57158 12076 120918 3821 42050 68420 3287

attempts to terminate the algorithm when it detects that no significant improvement
of the functional values will take place, or when the function value decreases too
slowly. This forced premature termination in some problems, probably due to very
shallow function level sets. We should also point out that when the function values are
imprecise, ε need not be too small. Its value can be determined from the engineering
process.

For the MDS and ROPS algorithms, the initial polytope from [17, p. 80] was
taken, as suggested in [9]. (See searching set D2 in section 3 above.) For the SDSA
algorithm, the searching sets D1, D2, and D3 were augmented with the unit direction
along −∑n

k=1 dk.
A generalized Rosenbrock function (5.2) of n variables (n = 2, 3, 5, 10) was used

to study the influence of the parameters γ and µ and searching sets D1, D2, and
D3 on the performance of the algorithm. Note that this function possesses multiple
stationary points for n > 2.

f(x) =

n−1∑
k=1

[
(xk − 1)2 + 100

(
xk+1 − (xk)2

)2]
.(5.2)

Tables 5.1–5.3 show the results for the ROPS, SDSA, MDS, and NSDSA algo-
rithms on two starting points x = 3 and x = (−1.2, 1,−1.2, 1, . . .). In these tables, F
stands for a solution which differs by more than 20% from the optimum value. This
situation always occurred when the algorithm stopped due to a small relative change
in function value (i.e, < 10−6). Had the algorithm continued, it would have taken
a significant number of function evaluations to generate the solution. Also, in Table
5.3, γ was taken as γ = 1 + 1/q, with q being the number of contractions performed
by the algorithm. In this way, the expansion parameter of the stepsize gets smaller
when the algorithm is converging to the solution.

MDS and ROPS always called for more function evaluations on fixed direction
sets and sometimes failed for γ = 1 + 1/q, µ = 0.2, while NSDSA always found the
optimal solution for the given termination criteria. For a specific combination of the
parameters γ and µ, fewer than 1000 function evaluations were needed by NSDSA to
obtain a stationary point of the Rosenbrock function of 10 variables.
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Table 5.2
Number of function evaluations for the Rosenbrock function (γ = 1.4, µ = 0.2).

xo = 3

n MDS ROPS SDSA NSDSA

D1 D2 D3 D1 D2 D3

2 4887 19427 F 1418 482 24094 4205 495
3 21988 17398 F 84 793 33953 19119 830
5 106726 40226 F 84 1523 72636 54570 1694
10 113811 88585 F 1375 4365 201939 186207 4134

xo standard(−1.2, 1, . . .)

n MDS ROPS SDSA NSDSA

D1 D2 D3 D1 D2 D3

2 6255 8246 5783 F 350 7780 6373 346
3 15376 14410 14756 F 918 14916 8311 758
5 7126 14000 71017 9536 1180 6527 23684 822
10 101911 83074 1656 72541 1452 50293 107927 909

Table 5.3
Number of function evaluations for the Rosenbrock function (γ = 1 + 1/q, µ = 0.2).

xo = 3

n MDS ROPS SDSA NSDSA

D1 D2 D3 D1 D2 D3

2 F 22838 F 65 1026 23842 4315 572
3 F 33162 F 100 1809 36731 18409 1376
5 48696 73892 552616 F 2977 62096 55127 2327
10 197251 F F 2648 7611 125061 143467 5716

xo standard(−1.2, 1, . . .)

n MDS ROPS SDSA NSDSA

D1 D2 D3 D1 D2 D3

2 F 20078 7771 F 659 6389 6699 528
3 16060 36834 24026 F 2058 14310 6814 1389
5 F 70778 83179 1261 1850 9824 15882 880
10 190811 F 33310 F 8277 38844 121122 3864

The results for the adaptive searching set D3 are certainly remarkable for both
SDSA and NSDSA, but the performance of SDSA may be quite sensitive to the
set of positive bases used. Table 5.4 shows the results for γ = 1.4, µ = 0.2, and
D = {−e1, . . . ,−en, 1√

n

∑n
j=1 ej} (the negative of D1). These results seem to indicate

that the adaptive searching set not only contributes to improving the efficiency of the
algorithm but also makes it more robust and reliable. We might also conjecture that
the extra computation of function values needed by NSDSA to detect a blocked point
provides it with additional information that improves its overall performance.

To close this section and in order to get a better picture of the performance of the
algorithms, we solved some test problems from the CUTE collection. For the SDSA
and NSDSA algorithms, the adaptive searching set D3 was used. All algorithms were
run with γ = 1.4, µ = 0.2, and the termination criteria indicated above. Table 5.5
reports the number of function evaluations needed by the algorithms. Along with
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Table 5.4
Number of function evaluations for the SDSA algorithm for the Rosenbrock function (γ =

1.4, µ = 0.2) for the negative of the searching set D1.

n xo = 3 xo standard(−1.2, 1, . . .)

2 6956 3281
3 19271 9098
5 23196 36408
10 36746 185451

Table 5.5
Number of function evaluations (function value) for different algorithms in some problems from

the CUTE collection.

Problem ROPS SDSA MDS NSDSA

HATFLDD, n=3 2606 177 3652 114
(6.6E-8) (3.8E-3) (7.9E-4) (1.0E-3) (2.9E-5)

MOREBV, n=10 1916 2546 3591 3476
(0.0) (5.1E-4) (5.3E-4) (3.2E-4) (5.7E-6)

FMINSURF, n=16 2467 11881 3697 17135
(1.0) (1.0) (1.0) (1.0) (1.0)

DIXMAANK, n=15 2882 251 2836 8601
(1.0) (1.0) (1.0) (1.0) (1.0)

EDENSCH, n=36 9844 20469 15733 5622
(219.3) (219.3) (219.3) (219.3) (219.3)

CRAGGLVY, n=50 94454 (F) 38442 86351 (F) 38993
(15.4) (22.9) (15.4) (21.5) (17.6)

ERRINROS, n=50 59570 (F) 36810 (F) 88851 (F) 223668
(39.9) (40.7) (45.3) (40.7) (39.9)

CHAINWOO, n=100 >1E6 (F) 258677 >1E6 (F) 84061
(1.0) (3.38E2) (1.0) (10.06) (1.0)

the number of function evaluations, the value of the objective function attained by
the algorithm at termination is given in parenthesis. An F indicates a solution which
differs by more than 20% from the minimum function value or a final solution which
is far away from the minimizer.

For all the test problems, SDSA and NSDSA were robust and always found opti-
mum or near-optimum solutions. On the other hand, ROPS and MSD failed on the
largest problems, although for two problems ROPS gave a solution with the lowest
number of function evaluations. These results are particularly appealing because they
show NSDSA to be competitive with derivative-free algorithms designed for smooth
functions, which do not share the convergence property to a point satisfying (2.4)
for a class of nonsmooth functions. Finally, we conjecture that an adaptive polytope
would be an asset for any pattern search algorithm.

6. Conclusion and final remarks. This paper introduces the NSNC (2.4) and
a sufficient decrease condition for nonsmooth functions. It also presents a detailed
implementation of practical algorithms which, under mild conditions, converge to a
stationary point of smooth and nonsmooth functions of practical interest. We visualize
our algorithms as new direct search algorithms with the additional feature of allowing
a sufficient decrease of function values that still ensure convergence. This is achieved
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Fig. 6.1. The Dennis–Woods function.

by assuming that condition C2 holds globally. Our implementations can be thought
of as a simplicial search, with “edges” defined by the directions of the searching set
D. This simplex is translated to the next iterate. The numerical results reported
for sequential algorithms compare favorably with modern derivative-free algorithms
recently introduced in the literature.

This paper complements recent work on generalized pattern search methods, while
imposing a weaker set of conditions on the trial steps:

• Pattern search methods require a simple decrease. If f(·) ∈ C1, function
values must be computed at all simplex vertices to ensure {∇f(xi)} → 0.
Our algorithm can go from one “vertex” to the next as soon as it fulfills a
sufficient decrease condition.
• Pattern search methods enforce a constant shrinkage/expansion factor for all
edges, while ours allows independent shrinkage/expansion factors along the
search directions.

Numerical results on the Rosenbrock function and some problems from the CUTE
collection seem to indicate that adapting the searching set D to the direction of move-
ment may have a remarkable effect on the quality of convergence. Other additional
features of practical interest in actual implementations are (i) different stepsizes on
the directions of search and (ii) the possibility of extracting first-order information
that can be used to formulate variable metric algorithms [13].

Algorithms suitable to a multiprocessing environment were also suggested, and
their computational performance will be reported in a forthcoming paper.

Either strict differentiability at limit points or convexity in a neighborhood of
limit points is required for convergence to an NSNC point. Convergence to a first-
order stationary point is ensured in [3] when the function f(·) is strictly differentiable
at limit points, or differentiable, Lipschitzian, and regular near limit points. Previous
works assumed f(·) ∈ C1 [24, 41]. Theorem 3.5 is a novel theoretical contribution; it
requires local convexity to ensure convergence to a point satisfying (2.4). Actually,
there still exists an intriguing gap in theory. No known pattern search method ensures
convergence to the minimum of a nonsmooth convex function. We illustrate this with
an analysis of the algorithms’ behavior on the nonsmooth convex 2-variable Dennis–
Woods function [10] (see Figure 6.1):

f(x) =
1

2
max

{||x− c1||2, ||x− c2||2
}
, c1 = (0, 32), c2 = (0,−32).

The origin is the minimizer of this function. If the searching set is defined as
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D .
= {(1, 1), (1,−1)}, the nonsmooth necessary condition (2.4) is satisfied as well for all

points in the set S .
= {x ∈ R

2 : x = (α, 0)} and any α value. Regardless of the initial
point, our algorithm always converges to some point in S, which is theoretically what
we can hope for. To circumvent this “convergence failure” away from the minimizer,
we can randomly generate a new set D of search directions (or a new polytope)
at unspecified blocked points, or we can work with a searching set D with more
than n directions. Extension of multidirectional search to nonsmooth functions was
considered in [40, Theorem 7.1], and we might as well expect convergence to (2.4).
Indeed, the MDS algorithm always converges to a point in S [40].
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Abstract. In this paper, starting from the study of the common elements that some globally
convergent direct search methods share, a general convergence theory is established for unconstrained
minimization methods employing only function values. The introduced convergence conditions are
useful for developing and analyzing new derivative-free algorithms with guaranteed global conver-
gence. As examples, we describe three new algorithms which combine pattern and line search ap-
proaches.
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1. Introduction. In this paper, we consider the problem of the form

min
x∈Rn

f(x),

where f : Rn → R is a continuously differentiable function and where the first order
derivatives of f can be neither calculated nor approximated explicitly.

The interest in studying minimization algorithms for solving these optimization
problems derives from the increasing demand from industrial and scientific applica-
tions for such tools. Many derivative-free methods have been proposed in the litera-
ture; descriptions of these methods can be found, for instance, in [13] and [19].

An important class of such methods is formed by the so-called direct search meth-
ods, which base the minimization procedure on the comparison of objective function
values computed on suitable trial points. Two particular subclasses of globally con-
vergent direct search methods are the following:

– pattern search methods (see, e.g., [2], [6], [16], [19]), which present the distin-
guishing feature of evaluating the objective function on specified geometric
patterns;

– line search methods (see, e.g., [1], [4], [5], [8], [10], [11], [12], [17], [20]), which
draw their inspiration from the gradient-based minimization methods and
perform one dimensional minimizations along suitable directions.

These two classes of methods present different interesting features. In fact, the pattern
search methods can accurately sample the objective function in a neighborhood of a
point and, hence, can identify a “good” direction, namely, a direction along which
the objective function decreases significantly. The line search algorithms can perform
large steps along the search directions and, hence, can exploit to a large extent the
possible goodness of the directions. Therefore it could be worthwhile to combine
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these approaches in order to define new classes of derivative-free algorithms that could
exploit as much as possible their different features, namely, algorithms which are able
to determine “good” directions and to perform “significant” steplengths along such
directions. Some examples of methods combining different direct search approaches
have already been proposed in [3], [10], [14], [15], [17], [18]. In this paper, on the
basis of the convergence analyses reported in [5], [7], and [16] for pattern and line
search methods, respectively, we give general sufficient conditions for ensuring the
global convergence of a sequence of points. These conditions, which do not require
any information on first order derivatives, can be used as the basis for developing new
globally convergent derivative-free algorithms and, in particular, algorithms which
can follow a mixed pattern-line search approach.

More specifically, in section 2, we start by identifying the common key features
of the pattern and line search methods which are behind their global convergence
properties. This analysis indicates that the global convergence of a derivative-free
algorithm can be guaranteed by satisfying some minimal and quite natural require-
ments on the search directions used and on the sampling of the objective function
along these directions. Then, in section 3, we analyze theoretical requirements re-
garding the search directions. In section 4, we define general conditions sufficient
to ensure global convergence without gradient information. Finally, in section 5, we
propose new globally convergent algorithms which combine pattern and line search
approaches. The appendix contains the proofs of two technical results.

Notation. We indicate by ‖ · ‖ the Euclidean norm (on the appropriate space). A
subsequence of {xk} corresponding to an infinite subset K will be denoted by {xk}K .

Given two sequences of scalars {uk} and {vk} such that

lim
k→∞

uk = 0 and lim
k→∞

vk = 0,

we say that uk = o(vk) if

lim
k→∞

uk
vk

= 0.

As usual we say that a set of directions {p1, p2, . . . , pr} positively span Rn if for every
x ∈ Rn there exist λi ≥ 0, for i = 1, . . . , p, such that

x =

r∑
i=1

λip
i.

Finally, we denote by ei, with i = 1, . . . , n, the orthonormal set of the coordinate
directions.

2. Preliminary remarks. It is well known that, when the gradient is available,
to define a globally convergent algorithm for unconstrained problems is not a difficult
task. In fact, at each iteration, the gradient allows us

– to compute and select a “good” descent direction, namely, a direction along
which the objective function decreases with a suitable rate;

– to determine a “sufficiently” large steplength along a descent search direction,
namely, a steplength which is able to exploit the descent property of the search
direction by enforcing a significant decrease in the value of the objective
function relative to the norm of the gradient.
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When the gradient is not available, we lose information about the local behavior
of the objective function. In fact, the ith component ∇if of the gradient is the
directional derivative of the objective function along the vector ei, and −∇if is
the directional derivative along the vector −ei. Therefore, the whole gradient vec-
tor provides the rate of change of the objective function along the 2n directions
[e1, e2, . . . , en,−e1,−e2, . . . ,−en]. This fact guarantees that the gradient informa-
tion characterizes quite accurately the local behavior of the objective function in a
neighborhood of the point at which the derivatives are computed.

Most of the algorithms belonging to the class of direct search methods follow,
more or less visibly, the same strategy to overcome the lack of first order information
contained in the gradient. Their common approach is based on the idea of investigat-
ing the behavior of the objective function in a neighborhood of the generic point by
sampling the objective function along a set of directions. Clearly each of these algo-
rithms presents properties and features which depend on the particular choice of the
sets of directions and on the particular way in which the samplings of the objective
function are performed.

The directions to be used in a derivative-free algorithm should be such that the
local behavior of the objective function along them is sufficiently indicative of the
local behavior of the function in a neighborhood of a point. Roughly speaking, these
directions should have the property that, performing finer and finer samplings of the
objective function along them, it is possible either

(i) to realize that the current point is a good approximation of a stationary point
of the objective function, or

(ii) to find a specific direction along which the objective function decreases.
The important point is to identify larger and larger classes of sets of search directions
which can be used to define globally convergent derivative-free algorithms. To this
end, in the next section, we propose a general condition which formally characterizes
classes of sets of directions complying with the properties (i) and (ii).

In addition to contributing to the previous points (i) and (ii), the method of
sampling has the task of guiding the choice of the new point so as to ensure that the
sequence of points produced by the algorithm is globally convergent towards stationary
points of the objective function. On the basis of the common features of the sampling
techniques of the direct search methods proposed in [5], [7], and [16], in section 4 we
define sufficient conditions on the samplings of the objective function along suitable
directions for the global convergence of a derivative-free method. Similar conditions
were given in [18]; however, the ones proposed in this work are more general.

3. Search directions. Before describing our analysis, we recall the following
basic assumption on the objective function.

Assumption A1. The function f : Rn → R is continuously differentiable.

As said before, the first step in defining a direct search method is to associate a
suitable set of search directions pik, i = 1, . . . , r, with each point xk produced by the
algorithm. This set of directions should have the property that the local behavior
of the objective function along them provides sufficient information to overcome the
lack of the gradient.

Here, we introduce a new condition which characterizes the sets of directions pik,
i = 1, . . . , r, that satisfy this property. This condition requires that the distance
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between the points generated by an algorithm and the set of stationary points of
the objective function tends to zero if and only if the directional derivatives of the
objective function along the directions pik, i = 1, . . . , r, tend to assume nonnegative
values. Formally we have the following condition.

Condition C1. Given a sequence of points {xk}, the sequence directions {pik},
i = 1, . . . , r, are bounded and such that

lim
k→∞

‖∇f(xk)‖ = 0 if and only if lim
k→∞

r∑
i=1

min{0,∇f(xk)T pik} = 0.

By drawing our inspiration from some results established in [7] and [16], we state the
following proposition, which points out a possible interest in the sets of directions
satisfying Condition C1.

Proposition 3.1. Let {xk} be a bounded sequence of points and let {pik}, i =
1, . . . , r, be sequences of directions which satisfy Condition C1. For every η > 0,
there exist γ > 0 and δ > 0 such that, for all but finitely many k, if xk satisfies
‖∇f(xk)‖ ≥ η, then there exists a direction pikk , with ik ∈ {1, . . . , r}, for which

f(xk + αpikk ) ≤ f(xk)− γα‖∇f(xk)‖‖pikk ‖(3.1)

for all α ∈ (0, δ].
Proof. For the proof, see the appendix.
The previous proposition guarantees that, whenever the current point is not a

stationary point, it is possible to enforce sufficient decrease of the objective function
by using sets of directions satisfying Condition C1. In other words, this ensures
that Condition C1 implies that the sets of directions are able to comply with the
requirement (ii) discussed in section 2.

From a theoretical point of view, Proposition 4.1, given in the next section, shows
that Condition C1 is a sufficient requirement for the search directions to ensure the
global convergence of the sequence of iterates (or at least one subsequence) to a
stationary point of f . Roughly speaking, the role of Condition C1 in the field of
derivative-free methods can be similar to that of the gradient-related condition used
in the field of gradient-based algorithms. In fact, Condition C1 can be considered a
mild technical condition on the sets of search directions which can be either naturally
satisfied or easily enforced in a derivative-free algorithm (see Algorithm 3 in section
5).

In order to show that Condition C1 is a viable requirement on the search direc-
tions, we report two classes of sets of directions satisfying Condition C1 and some
examples of these classes. The classes introduced here generalize the ones proposed
in [7].

Classes of sets of search directions.
(a) The sequences {pik}, with i = 1, . . . , r, are bounded, and every limit point

(p̄1, . . . , p̄r) of the sequence {p1
k, . . . , p

r
k} is such that the vectors p̄i, with

i = 1, . . . , r, positively span Rn.
(b) The sequences {pik}, with i = 1, . . . , r, are bounded; the vectors pik, i =

1, . . . , n, are uniformly linearly independent; and, for all k, there exists a
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direction pn+j
k , with j ≥ 1, given by

pn+j
k =

2n∑

=1

ρ
k
(v1
k − v
k)

ξ̃
k
,(3.2)

where
– the sequences {ρ
k}, � = 1, . . . , 2n, are bounded and such that ρ
k ≥ 0

with ρ2n
k ≥ ρ̄ > 0 for all k;

– {v1
k, v

2
k, . . . , v

2n
k } = {z1

k, z
1
k + ξ1

kp
1
k, z

2
k, z

2
k + ξ2

kp
2
k, . . . , z

n
k , z

n
k + ξnk p

n
k}, with

the points v
k, for � = 1, . . . , 2n, ordered (and possibly relabeled) so that

f(v1
k) ≤ f(v2

k) ≤ · · · ≤ f(vn−1
k ) ≤ · · · ≤ f(v2n

k ),(3.3)

and the sequences {ξik} and {zik}, for i = 1, . . . , n, are such that, for all
k,

ξik > 0,(3.4)

max
i=1,...,n

{ξik}
min

i=1,...,n
{ξik}

≤ c1,(3.5)

‖zik − xk‖ ≤ c2ξ
i
k,(3.6)

where c1,c2 > 0, and such that

lim
k→∞

ξik = 0;(3.7)

– the sequences {ξ̃
k}, � = 1, . . . , 2n, are such that mini=1,...,n{ξik} ≤ ξ̃
k ≤
maxi=1,...,n{ξik}.

For the classes of sets of search directions we can state the following proposition.
Proposition 3.2. Let {xk} be a bounded sequence of points, and let {pik}, i =

1, . . . , r, be sequences of directions belonging to class (a) or class (b). Then, Condition
C1 is satisfied.

Proof. For the proof, see the appendix.
Two examples of sets of directions belonging to the classes (a) and (b) are de-

scribed in [7]. These classes are defined starting from a set of n uniformly linearly
independent search directions, for example,

p1
k = e1, p2

k = e2, . . . , pnk = en.(3.8)

Then, to obtain a set of class (a), it is sufficient to consider also the directions

pn+1
k = −e1, pn+2

k = −e2, . . . , p2n
k = −en

or just the direction

pn+1
k = −

n∑
i=1

ei.
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A set of class (b) can be obtained by adding to (3.8) the direction

pn+1
k =

xk − xmaxk

ξk
,

where xmaxk = argmaxi=1,...,n{f(xk+ξkpik)} and ξk → 0 for k →∞. This corresponds
to setting

zik = xk, ξik = ξk for i = 1, . . . , n,

ξ2n
k = ξk,

ρ1
k = ρ2

k = · · · = ρ2n−1
k = 0, ρ2n

k = 1.

A new class of sets of search directions satisfying Condition C1 will be defined within
Algorithm 3 proposed in section 5. In particular, this class is constructed during the
minimization procedure so as to exploit as much as possible the information on the
objective function obtained in the preceding iterations.

4. Global convergence conditions. In this section we show that the global
convergence of an algorithm can be guaranteed by means of the existence of suitable
sequences of points along search directions pik, i = 1, . . . , r, satisfying Condition C1.
In particular, by using Condition C1 we can characterize a stationary point of f with
the fact that the objective function does not decrease locally along the directions pik,
i = 1, . . . , r, in points sufficiently close to the current point xk. This leads to the pos-
sibility of defining new general conditions for the global convergence of derivative-free
algorithms by means of the existence of sequences of points showing that the objec-
tive function does not decrease along the directions pik, i = 1, . . . , r. These conditions,
even if very simple and intuitive, allow us to identify some minimal requirements on
acceptable samplings of the objective function along the directions pik, i = 1, . . . , r,
that guarantee the global convergence of the method.

In the remainder of the paper we suppose that the following standard assumption
holds.

Assumption A2. The level set

L0 = {x ∈ Rn : f(x) ≤ f(x0)}

is compact.

The following proposition describes a set of global convergence conditions.
Proposition 4.1. Let {xk} be a sequence of points; let {pik}, i = 1, . . . , r, be

sequences of directions; and suppose that the following conditions hold:
(a) f(xk+1) ≤ f(xk);
(b) {pik}, i = 1, . . . , r, satisfy Condition C1;
(c) there exist sequences of points {yik} and sequences of positive scalars {ξik}, for

i = 1, . . . , r, such that

f(yik + ξikp
i
k) ≥ f(yik)− o(ξik),(4.1)
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lim
k→∞

ξik = 0,(4.2)

lim
k→∞

‖xk − yik‖ = 0.(4.3)

Then,

lim
k→∞

‖∇f(xk)‖ = 0.(4.4)

Proof. From (a) it follows that {f(xk)} is a nonincreasing sequence, so that {xk}
belongs to the compact set L0 and admits at least one limit point. Let x̄ be any limit
point of {xk}. Then, there exists a subset K1 ⊆ {0, 1, . . .} such that

lim
k→∞,k∈K1

xk = x̄,

lim
k→∞,k∈K1

pik = p̄i, i = 1, . . . , r.

Using (4.3), it follows that

lim
k→∞,k∈K1

yik = x̄, i = 1, . . . , r.

Now, recalling (4.1) for all k ≥ 0, we have

f(yik + ξikp
i
k)− f(yik) ≥ −o(ξik), i = 1, . . . , r.(4.5)

By the mean-value theorem, we can write

f(yik + ξikp
i
k)− f(yik) = ξik∇f(uik)T pik, i = 1, . . . , r,(4.6)

where uik = yik + λikξ
i
kp
i
k, with λik ∈ (0, 1). By substituting (4.6) into (4.5), we obtain

∇f(uik)T pik ≥ −o(ξik), i = 1, . . . , r.(4.7)

Now, it is easily seen from (4.2), taking into account the boundedness of pik, that
uik → x̄ as k → ∞ and k ∈ K1. Hence, by the continuity of ∇f , from (4.7) and
recalling (4.2), we get

lim
k→∞,k∈K1

∇f(uik)T pik = ∇f(x̄)T p̄i ≥ 0, i = 1, . . . , r.

Then, recalling (b) and Condition C1, we have that

∇f(x̄) = 0.

As x̄ is any limit point of {xk}, we conclude that

lim
k→∞

‖∇f(xk)‖ = 0.

Roughly speaking, according to (c), for each search direction pik, the existence of
suitable points yik and yik+ξikp

i
k related to the “current” point xk is assumed (see (4.2)

and (4.3)) whenever a “failure” of a (sufficient) strict decrease of f occurs (see (4.1)).
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Then, also considering (4.2), we have that at the point yik the directional derivative
of f along pik can be approximated by a quantity which tends to be nonnegative.
Therefore, due to the property of the search directions expressed by Condition C1,
the global convergence of the sequence {xk} can be ensured by requiring that the
failure points “cluster” more and more around xk (see (4.3)).

Similar conditions were given in [18]; however, those of Proposition 4.1 are more
general in the requirements placed on both the search directions pik and the trial steps
ξik, i = 1, . . . , r.

The use of directions satisfying Condition C1 and the result of producing se-
quences (or subsequences) of points that satisfy the hypothesis of Proposition 4.1 are
the common elements of the globally convergent derivative-free algorithms proposed
in [5] and [16], which consider the pattern and line search approaches, respectively.
This point is discussed in more detail in [9], where the known global convergence
results of different algorithms are reobtained by using Condition C1 and Proposition
4.1. With regard to (4.1) and (4.2) of Proposition 4.1(c), we note only that

– in the pattern search algorithms, the failures (4.1) (with o(ξik) = 0) occur
“naturally” by requiring only a simple decrease of f , while (4.2) follows by
imposing further restrictions on the search directions and on the steplengths;

– in the line search algorithms, (4.1) and (4.2) are satisfied by enforcing a “suffi-
cient” decrease of f depending on ξik and without imposing further restrictions
on the search directions.

5. New globally convergent algorithms. In this section we try to motivate
further the possible practical interest of the analysis performed in sections 3 and 4,
by showing that Condition C1 and Proposition 4.1 can play the role of guidelines for
defining new derivative-free algorithms and for analyzing their convergence properties.

Since the conditions given in Proposition 4.1 capture some common theoretical
features of pattern and line search approaches, they are suitable for defining algorithms
which combine these two approaches. In particular, our aim is to propose algorithms
which are able to

– get sufficient information on the local behavior of the objective function f ,
like in a pattern strategy;

– exploit the possible knowledge of a “good” direction, like in a line search
strategy.

In this section, as examples, we describe three new algorithms (Algorithm 1, Algo-
rithm 2, and Algorithm 3). The basic idea of these algorithms is to sample, at each
iteration k, the objective function f along a set {pik}ri=1 of search directions. This is
performed with the aim of detecting a “promising” direction (like in a pattern strat-
egy), that is, a direction along which the objective function decreases “sufficiently.”
Then, once such a direction has been detected, a “sufficiently” large step is performed
along it. Both the “sufficient” decrease of the objective function and the “sufficient”
steplength are evaluated by means of criteria derived from the line search approach.
These criteria, requiring sufficient decrease of the objective function, are stronger than
the ones used in the pattern search algorithms (where the simple reduction of f is
allowed). However, as we said before, they allow us more freedom in the choice of
search directions and in the steplengths used to sample the objective function.

In particular, in Algorithm 1 and Algorithm 2, we assume that the sets of search
directions satisfying Condition C1 are given. Algorithm 1 is very simple, and its
scheme is similar to that of a pattern search algorithm. For this algorithm we can
prove that at least one accumulation point of the sequence produced is a stationary
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point of f . In Algorithm 2 a line search technique is introduced to exploit as much
as possible a promising direction identified by the algorithm. For this algorithm
we prove that any convergent subsequence generated by the algorithm tends to a
stationary point of f . The approach of Algorithm 3 is the same as that of Algorithm
2; the distinguishing feature of Algorithm 3 is that of using sets of n+1 directions, in
which the first n are given and the last one is computed on the basis of the information
iteratively obtained with the aim of identifying a “good” direction. For this algorithm
we prove the same convergence result stated for Algorithm 2.

The first algorithm is the following.

Algorithm 1.
Data. x0 ∈ Rn, α̃0 > 0, γ > 0, θ ∈ (0, 1).
Step 0. Set k = 0.
Step 1. If there exists yk ∈ Rn such that

f(yk) ≤ f(xk)− γα̃k,

then go to Step 4.
Step 2. If there exists i ∈ {1, . . . r} and an αk ≥ α̃k such that

f(xk + αkp
i
k) ≤ f(xk)− γ(αk)

2
,

then set yk = xk + αkp
i
k, α̃k+1 = αk and go to Step 4.

Step 3. Set α̃k+1 = θα̃k and yk = xk.
Step 4. Find xk+1 such that f(xk+1) ≤ f(yk), set k = k + 1,

and go to Step 1.

Algorithm 1 follows an approach similar to that of a pattern search algorithm. In
particular, at each iteration it is possible to accept any single point for which sufficient
decrease of the objective function is realized (Step 1). The stepsize αk is reduced only
when it is not possible to locally enforce the sufficient reduction of f along the search
directions pik, for i = 1, . . . , r (Steps 2–3). At Step 4 the algorithm can accept any
point which produces an improvement of the objective function with respect to the
selected point yk.

We note that, at Step 2, any extrapolation technique can be attempted to deter-
mine a good stepsize αk whenever a suitable direction has been detected. However,
the use of an extrapolation technique is not necessary to guarantee global conver-
gence. (In particular, it is enough to use αk = α̃k.) Furthermore, we point out that,
even if a set of r search directions pik, i = 1, . . . , r, is associated to the current point

xk, so long as a sufficient decrease condition has been satisfied along a direction pīk,
the remaining directions can be ignored. This is a feature that Algorithm 1 has in
common with the weak form of pattern search algorithms (see [16]).

Finally, we observe also that Step 1 and Step 4 allow the possibility of using any
approximation scheme for the objective function to produce a new better point.

The convergence properties of the algorithm are reported in the following propo-
sition.

Proposition 5.1. Let {xk} be the sequence produced by Algorithm 1. Suppose
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that the sequences of directions {pik}ri=1 satisfy Condition C1. Then we have

lim inf
k→∞

‖∇f(xk)‖ = 0.(5.1)

Proof. We prove (5.1) by showing that conditions (a), (b), and (c) of Proposition
4.1 are satisfied (at least) by a subsequence of {xk}.

Condition (a) follows from the instructions of the algorithm. Condition (b) is
obviously true. Therefore we concentrate on Condition (c).

We can split the iteration sequence {k} into three parts, K1, K2, and K3, namely,
those iterations where the test at Step 1 is satisfied, those where the test at Step 2 is
satisfied, and those where Step 3 is performed. In particular, if k ∈ K1, we have

f(xk+1) ≤ f(xk)− γα̃k;(5.2)

if k ∈ K2, we have

f(xk+1) ≤ f(xk)− γ(αk)
2 ≤ f(xk)− γ(α̃k)

2
;(5.3)

and if k ∈ K3, we have

f(xk + α̃kp
i
k) > f(xk)− γ(α̃k)

2
for i = 1, . . . , r.(5.4)

If K1 is an infinite subset, then (5.2), the compactness of the level set L0, the conti-
nuity assumption on f , and Condition (a) imply

lim
k→∞,k∈K1

α̃k = 0.(5.5)

Now, let us assume that K2 is an infinite subset. From (5.3), by repeating the same
reasoning, we obtain

lim
k→∞,k∈K2

α̃k = 0.(5.6)

Now for each k ∈ K3 let mk be the biggest index such that mk < k and mk ∈ K1∪K2.
Then we have

α̃k+1 = θk−mk α̃mk .(5.7)

(We can assume that mk = 0 if the index mk does not exist; that is, K1 and K2 are
empty.)
As k → ∞ and k ∈ K3, either mk → ∞ (if K1 ∪ K2 is an infinite subset) or
(k −mk) → ∞ (if K1 ∪K2 is finite). Therefore, (5.7) together with (5.5) and (5.6)
or the fact that θ ∈ (0, 1) yields

lim
k→∞,k∈K3

α̃k = 0.(5.8)

Thus, by using (5.5), (5.6), and (5.8), we can write

lim
k→∞

α̃k = 0.(5.9)

From (5.9) it follows that there exists an infinite subset K ⊆ {0, 1, . . .} such that
α̃k+1 < α̃k for all k ∈ K; namely, Step 3 is performed for all k ∈ K. Therefore, we
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have K ⊆ K3, and hence (5.4) holds for all k ∈ K. Now, with reference to condition
(c) of Proposition 4.1, for each k ∈ K we set

ξik = α̃k, yik = xk, i = 1, . . . , r.(5.10)

Then we have

f(yik + ξikp
i
k) ≥ f(yik)− γ

(
ξik
)2

;

moreover, recalling (5.9), it follows that

lim
k→∞,k∈K

ξik = 0,

so that (4.1) and (4.2) hold. Finally, (4.3) follows directly from (5.10), and this
concludes the proof.

Now we define pattern-line search algorithms producing sequences of points with
the stronger property that every limit point is a stationary point of f . This additional
property can be obtained by investigating in more detail the behavior of the objective
function along the search directions pik, i = 1, . . . , r, and by using a derivative-free line
search technique to ensure sufficiently large movements along any “good” direction
identified by the algorithm. The first of these algorithms is the following.

Algorithm 2.
Data. x0 ∈ Rn, α̃i0 > 0, i = 1, . . . , r, γ > 0, δ, θ ∈ (0, 1).
Step 0. Set k = 0.
Step 1. Set i = 1 and y1

k = xk.

Step 2. If f(yik + α̃ikp
i
k) ≤ f(yik)− γ(α̃ik)

2
, then

compute αik by LS Procedure(α̃ik, y
i
k, p

i
k, γ, δ)

and set α̃ik+1 = αik;
else set αik = 0 and α̃ik+1 = θα̃ik.

Set yi+1
k = yik + αikp

i
k.

Step 3. If i < r, set i = i+ 1 and go to Step 2.
Step 4. Find xk+1 such that

f(xk+1) ≤ f(yr+1
k ),

set k = k + 1, and go to Step 1.

LS Procedure(α̃ik, y
i
k, p

i
k, γ, δ).

Compute αik = min{δ−jα̃k : j = 0, 1, . . .} such that

f(yik + αikp
i
k) ≤ f(xk)− γ

(
αik
)2
,(5.11)

f

(
yik +

αik
δ
pik

)
≥ max

[
f(yik + αikp

i
k), f(y

i
k)− γ

(
αik
δ

)2
]
.(5.12)
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At each iteration k the algorithm examines the behavior of the objective function
along all the search directions pik, i = 1, . . . , r (Steps 1–3). However, whenever it
detects a direction pik where the function is sufficiently decreased, the algorithm pro-
duces a new point by performing a “sufficiently” large movement along this direction.
This point is determined by means of a suitable stepsize αik computed by a line search
technique (LS Procedure). At Step 4, similarly to Algorithm 1, the new point xk+1

can be the point yr+1
k produced by Steps 1–3 or any point where the objective func-

tion is improved with respect to f(yr+1
k ). This fact, as said before, allows us to adopt

any approximation scheme for the objective function to produce a new better point
and hence to improve the efficiency of the algorithm without affecting its convergence
properties.

Comparing Algorithms 1 and 2, it is easy to observe that Algorithm 2 requires
stronger conditions to produce the new point. In fact, all the directions must be
investigated at each iteration, and the use of a line search technique is necessary.
However, in Algorithm 2 it is possible to associate to each direction pik a different
initial stepsize α̃ik, which is updated on the basis of the behavior of the objective
function along pik observed in the current iteration. This feature can be useful when
the search directions are the same for all iterations (pik = p̄i, i = 1, . . . , r, for all k). In
fact, in this case, the instructions of the algorithm should guarantee that the initial
stepsizes α̃ik, i = 1, . . . , r, take into account the different behavior of f along different
search directions.

Finally, we note that Algorithm 2, similarly to the strong form of pattern search
algorithms, is required to examine, at each iteration, the local behavior of f along
all the r directions pik, i = 1, . . . , r. However, at each iteration the current point xk
is updated by means of intermediate points yi+1

k whenever sufficient decrease of f is
obtained along any of the search directions pik, i ∈ {1, . . . , r}.

From a theoretical point of view, it is possible to state the following convergence
result, which is stronger than the one obtained for Algorithm 1.

Proposition 5.2. Let {xk} be the sequence produced by Algorithm 2. Suppose
that the sequences of directions {pik}ri=1 satisfy Condition C1. Then, Algorithm 2 is
well defined and we have

lim
k→∞

‖∇f(xk)‖ = 0.(5.13)

Proof. In order to prove that Algorithm 2 is well defined, we must show that,
given an integer i ≤ r such that the test of Step 2 is satisfied, there exists a finite
integer j for which (5.11) and (5.12) hold with αik = δ−jα̃ik. With this goal, we give
a proof by contradiction. We assume that either

f(yik + δ−jα̃ikp
i
k) < f(yik)− γ

(
δ−jα̃ik

)2
for all j

or

f(yik + δ−j−1α̃ikp
i
k) < f(yik + δ−jα̃ikp

i
k) ≤ f(yik)− γ

(
δ−jα̃ik

)2
for all j.

Then, taking the limits for j → ∞, we obtain in both cases that f is unbounded
below, which contradicts Assumption A2.

Now we prove (5.13) by showing that conditions (a), (b), and (c) of Proposition
4.1 are satisfied.

Condition (a) follows from the instructions of the algorithm. Condition (b) is
obviously true. Then we must show that condition (c) holds.
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We first prove that for i = 1, . . . , r we have

lim
k→∞

αik = 0(5.14)

and

lim
k→∞

α̃ik = 0.(5.15)

From the instructions of the algorithm we have

f(xk+1) ≤ f(yr+1
k ) ≤ f(xk)− γ

r∑
i=1

(
αik
)2
,

so that, since {xk} belongs to the compact set L0, {f(xk)} → f̄ and hence αik → 0,
for i = 1, . . . r. Given i ∈ {1, . . . r}, we split the iteration sequence {k} into two parts,
K and K̄, namely, those iterations where αik > 0 and those where αik = 0. For all
k ∈ K we have αik ≥ α̃ik, so that, if K is an infinite subset, it follows that

lim
k→∞,k∈K

α̃ik = 0.(5.16)

For each k ∈ K̄, let mk be the biggest index such that mk < k and mk ∈ K. (We can
assume mk = 0 if the index mk does not exist, that is, K is empty.) Then we have

α̃ik = (θ)k−mk α̃imk .

As k →∞ and k ∈ K̄, either mk →∞ (if K is an infinite subset) or (k−mk)→∞ (if
K is finite). Therefore, (5.16) and the fact that θ ∈ (0, 1) imply limk→∞,k∈K̄ α̃ik = 0.
Now, with reference to condition (c) of Proposition 4.1, we set

ξik =




αik
δ

if k ∈ K,
α̃ik if k ∈ K̄.

(5.17)

Then, we have f(yik + ξikp
i
k) ≥ f(yik)− (ξik)

2; moreover, recalling (5.14) and (5.15), it
follows that limk→∞ ξik = 0, so that (4.1) and (4.2) hold. Finally, since we have

‖yik − xk‖ ≤
i−1∑
j=1

αjk‖pjk‖,

by again using (5.14) it follows that

lim
k→∞

‖xk − yik‖ = 0,(5.18)

so that even (4.3) is satisfied and this concludes the proof.
Remark. By the proof of Proposition 5.2, in particular by (5.18), we note also

that

lim
k→∞

‖∇f(yik)‖ = 0 for i = 1, . . . , r + 1.

We conclude this section by describing Algorithm 3. This algorithm and Algo-
rithm 2 differ only in their search directions. In particular, we recall that in Algorithm
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2 the sets of directions {pik}ri=1 satisfying Condition C1 are given. In Algorithm 3
we instead assume that, at each iteration, only n linearly independent directions are
given. Then the algorithm, on the basis of the behavior of the objective function
along these directions, determines a further direction that should have a good descent
property and that is able (with the other directions) to ensure the global convergence
of the sequence produced.

Algorithm 3.
Data. x0 ∈ Rn, c > 0, α̃i0 > 0, i = 1, . . . , n+ 1, γ > 0, δ, θ ∈ (0, 1).
Step 0. Set k = 0.
Step 1. Set i = 1, y1

k = xk, Vk = {y1
k}, Sk = {∅}.

Step 2. If f(yik + α̃ikp
i
k) ≤ f(yik)− γ(α̃ik)

2
, then

compute αik by LS Procedure(α̃ik, y
i
k, p

i
k, γ, δ) and

set α̃ik+1 = αik, Vk = Vk ∪ {yik + αikp
i
k},

Sk = Sk ∪ {αik};
else set αik = 0, α̃ik+1 = θα̃ik, Vk = Vk ∪ {yik + α̃ikp

i
k},

Sk = Sk ∪ {α̃ik}.
Set yi+1

k = yik + αikp
i
k.

Step 3. If i < n, set i = i+ 1 and go to Step 2.
Step 4. Compute αmink = minα∈Sk{α} and αmaxk = maxα∈Sk{α}.

If
αmaxk

αmin
k

≤ c, then compute pn+1
k such that

pn+1
k =

vmaxk − vmink

ξk
,

where vmaxk = argmaxv∈Vk{f(v)},
vmink = argminv∈Vk{f(v)}, and
ξk ∈ [αmink , αmaxk ];

else set pn+1
k = −∑n

i=1 p
i
k.

Step 5. If f(ynk + α̃n+1
k pn+1

k ) ≤ f(ynk )− γ(α̃n+1
k )

2
, then

compute αn+1
k by LS Procedure(α̃ik, y

i
k, p

n+1
k , γ, δ)

and set α̃n+1
k+1 = αn+1

k ;

else set αn+1
k = 0 and α̃n+1

k+1 = θα̃n+1
k .

Set yn+1
k = ynk + αn+1

k pn+1
k .

Step 6. Find xk+1 such that

f(xk+1) ≤ f(yn+1
k ),

set k = k + 1, and go to Step 1.

Steps 1–3 are essentially the same as those of Algorithm 2. In these steps the
algorithm produces the points yik, with i = 1, . . . , n, by examining the behavior of
the objective function along the linearly independent directions pik, with i = 1, . . . , n.
At Step 4 we check whether the steplengths used to sample the objective function
along the n directions have been “sufficiently regular,” namely, whether the ratio
between the biggest steplength and the smallest one is not too high. In this case,
the objective function values corresponding to points generated along the n linearly
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independent directions are sufficiently representative of the local behavior of f . Hence,
the direction pn+1

k is computed taking these values into account, and it is given by
the direction (suitably scaled) from the point with the highest objective value to the
point with the lowest objective value. The aim is to approximate the direction of
steepest descent. Whenever the test on the ratio between the biggest steplength and
the smallest one is not satisfied, the direction pn+1

k is chosen in such a way that the
set {p1

k, . . . , p
n+1
k } is a positive basis for Rn. Roughly speaking, the test at Step 4 can

be viewed as a derivative-free angle condition which, as for the usual angle condition
adopted in gradient-based algorithms, allows us to define sets of search directions
satisfying Condition C1 and hence to ensure the global convergence of the algorithm.

At Step 5, the point yn+1
k is produced by essentially repeating the instructions of

Step 2 for the computed direction pn+1
k . Finally, according to Step 6, the algorithm can

update the current point by any point which produces an improvement of the objective
function value with respect to f(yn+1

k ). Now we prove the following convergence result.
Proposition 5.3. Let {xk} be the sequence produced by Algorithm 3. Suppose

that the vectors {pik}, with i = 1, . . . , n, are bounded and uniformly linearly indepen-
dent. Then Algorithm 3 is well defined and we have

lim
k→∞

‖∇f(xk)‖ = 0.(5.19)

Proof. In order to prove the thesis, since Algorithm 3 is an instance of Algorithm
2, we need only show that the sets of directions {pik}n+1

i=1 satisfy Condition C1. First
let us suppose that there exists an index k̄ such that for all k ≥ k̄ we have

pn+1
k = −

n∑
i=1

pik.

Then, the sets pik, with i = 1, . . . , n + 1, belong to the class (a) of sets of search
directions defined in section 3, and hence Condition C1 is satisfied.

Now, let us consider any subset K ⊆ {0, 1, . . .} such that, for all k ∈ K, pn+1
k is

given by

pn+1
k =

vmaxk − vmink

ξk
,

according to Step 4. The instructions of this step imply

αmaxk

αmink

≤ c for all k ∈ K.(5.20)

In this case, we can prove that the sets pik, with k ∈ K and i = 1, . . . , n + 1, belong
to the class (b) of sets of search directions defined in section 3. In fact, we can define

zik = yik, ξik =

{
αik if αi

k > 0,
α̃ik otherwise,

for i = 1, . . . , n,

and we can set

ρ1
k = ρ2

k = · · · = ρ2n−1
k = 0, ρ2n

k = 1,

ξ̃2n
k = ξk,
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so that (3.2) becomes

pn+1
k =

(v1
k − v2n

k )

ξ̃2n
k

=
vmaxk − vmink

ξk
.

The conditions on ρlk, with l = 1, . . . , 2n, are obviously satisfied. Recalling the defi-
nitions of ξik for i = 1, . . . , n, we have that (3.4) holds; moreover, the test at Step 4
implies that (3.5) is satisfied with c1 = c (see (5.20)). Regarding (3.6), recalling the
boundedness of {pjk} with j = 1, . . . , n, we can write for all i ∈ {1, . . . , n}

‖zik − xk‖ ≤
i−1∑
j=0

ξjk‖pjk‖ ≤ max
l=1,...,n

ξlk

i−1∑
j=0

‖pjk‖ ≤ cξik

i−1∑
j=0

‖pjk‖ ≤ c̃ξik,

so that (3.6) holds with c2 = c̃. Finally, by repeating the same reasoning used in
the proof of Proposition 5.2, we can prove (5.14), (5.15), and (5.18), so that (3.7) is
satisfied.

6. Conclusions. In this work we have tried to establish a general convergence
theory for unconstrained optimization without derivatives. Toward that aim, we
have stated a set of conditions by satisfying which a pattern search or a line search
algorithm is guaranteed to enjoy global convergence. On the basis of the theoretical
analysis, we have defined new derivative-free algorithms which combine pattern and
line search approaches. Future work will be devoted to designing an efficient code
and to performing computational experiments in order to thoroughly investigate the
practical interest of the proposed approach.

7. Appendix.
Proof of Proposition 3.1. Assume, by contradiction, that the assertion of the

proposition is false. Therefore, there exists a value η > 0 such that, for every pair γt,
δt, we can find an index k(t) and scalars αik(t), with i = 1, . . . , r, for which we have

‖∇f(xk(t))‖ ≥ η,

f(xk(t) + αik(t)p
i
k(t)) > f(xk(t))− γtα

i
k(t)‖∇f(xk(t))‖‖pik(t)‖,

and

0 < αik(t) ≤ δt

for all i ∈ {1, . . . , r}. Now, taking into account the boundedness of {xk}, we have
that there exist (by relabeling if necessary) sequences {xk}, {γk}, {δk}, {αik}, {pik},
with i = 1, . . . , r, such that

xk → x̄,(7.1)

γk → 0,(7.2)

δk → 0,(7.3)

αik ≤ δk,(7.4)

f(xk + αikp
i
k) > f(xk)− γkα

i
k‖∇f(xk)‖‖pik‖.(7.5)

By the continuity assumption, we have that ‖∇f(x̄)‖ ≥ η; then, by using Condition
C1, for k sufficiently large there exists an index i ∈ {1, . . . , r} such that

∇f(xk)T pik ≤ ρ < 0.(7.6)
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Now, by (7.3), (7.4), and the boundedness of {pik} for i = 1, . . . , r, we have that

lim
k→∞

αik‖pik‖ = 0(7.7)

for all i ∈ {1, . . . , r}. By (7.5) and the mean-value theorem, we can write

∇f(xk)T pik + (∇f(xk + θikα
i
kp
i
k)−∇f(xk))T pik ≥ −γk‖∇f(xk)‖‖pik‖,(7.8)

where θik ∈ (0, 1). From (7.7), (7.8), (7.2) and recalling again the boundedness of
{pik}, we get a contradiction with (7.6) for k sufficiently large.

Proof of Proposition 3.2. If limk→∞ ‖∇f(xk)‖ = 0, then the boundedness of {pik}
for i = 1, . . . , r implies that limk→∞ min{0,∇f(xk)T pik} = 0, i = 1, . . . , r.

In order to prove that

lim
k→∞

r∑
i=1

min{0,∇f(xk)T pik} = 0(7.9)

implies

lim
k→∞

‖∇f(xk)‖ = 0,(7.10)

we assume, by contradiction, that the assertion is false. Therefore, taking into account
the boundedness of {xk}, there exist a subset K1 ⊆ {0, 1, . . .} and a positive number
η such that

lim
k→∞,k∈K1

xk = x̄,(7.11)

‖∇f(x̄)‖ ≥ η > 0.(7.12)

Now we distinguish the two classes of sets of search directions.
Class (a). By recalling the assumptions on the sets of search directions of this

class, we have that we can find a subset K2 ⊆ K1 such that we have

lim
k→∞,k∈K2

pik = p̄i, i = 1, . . . , r,

where p̄1, . . . , p̄r positively span Rn. Therefore, we can write

−∇f(x̄) =
r∑
i=1

βip̄i,(7.13)

with βi ≥ 0 for i = 1, . . . , r. Then, recalling (7.12), we obtain

−η2 ≥
r∑
i=1

βi∇f(x̄)T p̄i.(7.14)

From (7.14), recalling the continuity assumption on ∇f , it follows that

lim
k→∞,k∈K2

r∑
i=1

min{0,∇f(xk)T pik} =
r∑
i=1

min{0,∇f(x̄)T p̄i} < 0,
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which contradicts (7.9).
Class (b). By the boundedness assumptions on the sequences {pik}, with i =

1, . . . , r, and {ρlk}, with l = 1, . . . , 2n, we have that there exists a subset K2 ⊆ K1

such that we have

lim
k→∞,k∈K2

pik = p̄i, i = 1, . . . , r,(7.15)

lim
k→∞,k∈K2

ρlk = ρ̄i, l = 1, . . . , 2n,(7.16)

where ρ̄2n ≥ ρ̄ > 0.
From the definitions of ξ̃lk and vlk with l = 1, . . . , 2n, the boundedness of {pik}

with i = 1, . . . , r (for the sake of simplicity, we assume ‖pik‖ = 1), and (3.5), (3.7),

(3.6), it follows that the vectors (vlk − v1
k)/ξ̃

l
k are bounded. In fact, from (3.6), for k

sufficiently large and for each l ∈ {1, . . . , 2n} we can write

‖vlk − v1
k‖ ≤ ‖vlk − xk‖+ ‖xk − v1

k‖ ≤ σl1ξ
l
k + σl2ξ

1
k

with σl1, σ
l
2 > 0. From the assumptions on ξ̃lk, by (3.5) we have

1

c1
≤ ξik

ξ̃lk
≤ c1(7.17)

for each i ∈ {1, . . . , n} and for each l ∈ {1, . . . , 2n}. Then, the boundedness of {pik},
with i = 1, . . . , r, implies the boundedness of (vlk− v1

k)/ξ̃
l
k for l = 1, . . . , 2n. Hence we

have

lim
k→∞,k∈K2

vlk − v1
k

ξ̃lk
= ȳl, l = 1, . . . , 2n.(7.18)

Furthermore, (3.7) and (7.15) imply

lim
k→∞,k∈K2

vlk = x̄, l = 1, . . . , 2n.(7.19)

From (3.3), for all k ≥ 0 and for l = 1, . . . , 2n, we can write

f(vlk)− f(v1
k) ≥ 0,

from which, by using the mean-value theorem, it follows that

ξ̃lk∇f
(
vlk + θlk ξ̃

l
k

vlk − v1
k

ξ̃lk

)T (
vlk − v1

k

ξ̃lk

)
≥ 0,(7.20)

with θlk ∈ (0, 1). Then, recalling (7.11) and (7.18), taking into account (3.7), and by
using the continuity assumption on ∇f for l = 1, . . . , 2n, we have

lim
k→∞,k∈K2

∇f
(
vlk + θlk ξ̃

l
k

vlk − v1
k

ξ̃lk

)T (
vlk − v1

k

ξ̃lk

)
= ∇f(x̄)T ȳl ≥ 0.(7.21)

Now, from (3.2), we get

∇f(xk)T pn+j
k =

2n∑
l=1

ρlk∇f(xk)T
(v1
k − vlk)

ξ̃lk
.(7.22)
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On the other hand, from (7.9) and recalling the continuity assumption on ∇f , it
follows that

lim
k→∞,k∈K2

∇f(xk)T pik = ∇f(x̄)T p̄i = li ≥ 0, i = 1, . . . , r.(7.23)

Therefore, from (7.22), taking the limits for k →∞ and k ∈ K2, we obtain

∇f(x̄)T p̄n+j = −
2n∑
l=1

ρ̄l∇f(x̄)T ȳl ≥ 0,

where ρ̄l ≥ 0 and ρ̄2n > 0. Hence, recalling (7.21), it follows that

∇f(x̄)T ȳ2n = 0.(7.24)

Now, from (3.3), we get

f(v2n
k )− f(v1

k)

ξ̃2n
k

≥ f(zik + ξikp
i
k)− f(zik)

ξ̃2n
k

, i = 1, . . . , n.(7.25)

By using the mean-value theorem, we have

f(v2n
k )− f(v1

k)

ξ̃2n
k

=
∇f

(
v1
k + θkαk

v2nk −v1k
ξ̃2n
k

)T
(v2n
k − v1

k)

ξ̃2n
k

,(7.26)

f(zik + ξikp
i
k)− f(zik)

ξ̃2n
k

= ∇f(zik + uikξ
i
kp
i
k)
T pik

ξik
ξ̃2n
k

,(7.27)

with θk ∈ (0, 1), uik ∈ (0, 1), i = 1, . . . , n.
By substituting (7.26) and (7.27) into (7.25), taking the limits for k → ∞ and

k ∈ K2, and recalling (7.17) and the continuity assumption on ∇f , we obtain

∇f(x̄)T ȳ2n ≥ ∇f(x̄)T p̄i 1
c1
, i = 1, . . . , n.

Then, from (7.23) and (7.24), it follows that

∇f(x̄)T p̄i = 0, i = 1, . . . , n.

The linear independence of p̄i, with i = 1, . . . , n, implies

∇f(x̄) = 0,

which contradicts (7.12).
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Abstract. We study a class of generalized bundle methods for which the stabilizing term can
be any closed convex function satisfying certain properties. This setting covers several algorithms
from the literature that have been so far regarded as distinct. Under a different hypothesis on
the stabilizing term and/or the function to be minimized, we prove finite termination, asymptotic
convergence, and finite convergence to an optimal point, with or without limits on the number of
serious steps and/or requiring the proximal parameter to go to infinity. The convergence proofs leave
a high degree of freedom in the crucial implementative features of the algorithm, i.e., the management
of the bundle of subgradients (β-strategy) and of the proximal parameter (t-strategy). We extensively
exploit a dual view of bundle methods, which are shown to be a dual ascent approach to one nonlinear
problem in an appropriate dual space, where nonlinear subproblems are approximately solved at each
step with an inner linearization approach. This allows us to precisely characterize the changes in
the subproblems during the serious steps, since the dual problem is not tied to the local concept of
ε-subdifferential. For some of the proofs, a generalization of inf-compactness, called ∗-compactness,
is required; this concept is related to that of asymptotically well-behaved functions.
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Introduction. We are concerned with the numerical solution of the primal prob-
lem

(Π) inf
x
{f(x) : x ∈ X},(0.1)

where f : �n → � is finite-valued and convex (hence continuous) and X ⊆ �n is
closed convex. Here f is only known through an oracle (“black box”) that, given
any x ∈ X, returns the values f(x) and z ∈ ∂f(x). To simplify the treatment, we
will assume X = �n until section 8, where the extension to the constrained case is
studied.

We study a class of generalized bundle methods for the solution of (0.1), where
a stabilizing term, which can be any closed convex function satisfying certain weak
conditions, is added to (a model of) f . These methods sample f in a sequence of
tentative points {xi} to gather the f -values {f(xi)} and the bundle of first-order
information β = {zi ∈ ∂f(xi)}. A distinguished vector x̄ is taken as the current
point, and β is used to compute a tentative descent direction d∗ along which the
next tentative point is generated. After a “successful” step, the current point can be
updated; otherwise, the new information is used to enhance β, hopefully obtaining a
better direction at the next iteration.

Several bundle methods proposed in the literature follow this pattern; some of
them can be shown to actually belong to our class. Also, our generalized bundle
methods provide implementable forms for some penalty-based algorithms for struc-
tured convex optimization. All of these algorithms have been analyzed either from
the above primal viewpoint—the minimization of f—or from an application-specific
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dual viewpoint, when f itself is a dual function. A dual analysis of some general
bundle methods exists—indeed, it motivated the development of the very first bun-
dle methods—but it is related to the “local” concept of ε-subdifferential, and it does
not easily extend to a wider class of methods. Instead, we extensively exploit a dual
view of (0.1), where bundle methods are shown to be a penalty function approach to a
“global” dual problem with approximate solution, via an inner linearization approach,
of the penalized problem. The algorithms can be entirely described in terms of this
dual problem; this is interesting for applications and helps in the convergence proofs.

We analyze in detail the features that are relevant for practical implementations,
such as the management of the bundle (β-strategy) and of the proximal parameter
(t-strategy). General rules are given which ensure convergence while leaving a large
degree of freedom in practical implementations. For some variants of the algorithm,
we require f to be ∗-compact, an assumption properly generalizing inf-compactness.
∗-compact functions are asymptotically well behaved [Au97], but our definition seems
to be better suited for the case of bundle methods.

The structure of this paper is the following: section 1 is devoted to the derivation
of the dual viewpoint of generalized bundle methods. Some useful properties of pairs of
primal and dual solutions of the stabilized master problems are proved in section 2. In
section 3, the conditions on the stabilizing term are presented and discussed. Section 4
is devoted to the description of the algorithms and to the discussion of the rules for the
β-strategy and the t-strategy. Convergence proofs of several variants of the algorithm
are given next: section 5 is dedicated to convergence of the null step sequences,
section 6 is dedicated to convergence of the serious step sequences, and section 7 is
dedicated to the “third level” that is necessary for some classes of stabilizing terms.
Some extensions of generalized bundle methods, e.g., to constrained optimization, are
discussed in section 8, the relationships with other algorithms from the literature are
analyzed in section 9, and conclusions are drawn in section 10.

Throughout the paper the following notation is used. The scalar product between
two vectors v and w is denoted by vw. ‖v‖p stands for the Lp norm of the vector v,
and the ball around 0 of radius δ in the Lp norm will be denoted by Bp(δ). Given
a set X, IX(x) = 0 if x ∈ X (and +∞ otherwise) is its indicator function, σX(z) =
supx{zx : x ∈ X} is its support function, and dX(y) = infx{‖x − y‖ : x ∈ X} is
the distance from y to X. Given a function f , ∂εf(x) is its ε-subdifferential at x,
epi f = {(v, x) : v ≥ f(x)} is its epigraph, dom f = {x : f(x) < ∞} is its domain,
and Sδ(f) = {x : f(x) ≤ δ} is its level set corresponding to the f -value δ. Given a
problem

(P) inf[sup
x
]{f(x) : x ∈ X},

v(P) denotes the optimal value of f over X; as usual, X = ∅ ⇒ v(P) = +∞[−∞].

1. Duality for generalized bundle methods. The dual description of gen-
eralized bundle methods relies on a well-established tool from convex analysis, the
conjugate of f (see [HL93b, Chapter X]):

f∗(z) = sup
x
{zx− f(x)}.(1.1)

f∗ is a closed convex function and enjoys several properties; those useful in the paper
are briefly recalled below.

(1.i) (f∗)∗ = f (duality of the conjugate operator),
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(1.ii) f1 ≤ f2 ⇒ f∗1 ≥ f∗2 (“monotonicity” of the conjugate operator),
(1.iii) (f(·+ x))∗(z) = f∗(z)− zx ∀z, x (effect of a simple variable change),
(1.iv) z ∈ ∂εf(x)⇔ x ∈ ∂εf∗(z) (duality of the subdifferential

mappings),
(1.v) z ∈ ∂εf(x)⇔ f(x) + f∗(z) ≤ zx+ ε (characterization of the ε-sub-

differentials),
(1.vi) zx = f(x) + f∗(z)⇔ z ∈ ∂f(x) (basic relation between the

function values),
(1.vii) zx ≤ f(x) + f∗(z) ∀z, x (Fenchel’s inequality).

A fundamental property of f∗ is that it characterizes all the affine functions
supporting epi f as

zx− ε ≤ f(x) ∀x⇔ sup
x
{zx− f(x)} = f∗(z) ≤ ε.

Note that, when the oracle is called at some point x returning f(x) and z ∈ ∂f(x),
f∗(z) can be calculated via (1.vi); that is, the f∗-values are available if the f -values
are, and vice-versa.

We remark that the above properties hold for any closed convex function; in the
following, we will often take the conjugate of other functions apart from f , most
notably of the “stabilizing term” to be introduced shortly.

1.1. The dual problem. Since f∗ is related with the minimization of f by

v(Π) = inf
x
{f(x)} = − sup

x
{0x− f(x)} = −f∗(0),

we propose the following (apparently weird) dual problem as the dual of (0.1):

(∆) inf
z
{f∗(z) : z = 0}.(1.2)

Problem (1.2) is a reasonable dual, since v(Π) = −v(∆) and it deals with dual objects:
every vector z that is a subgradient of f at some point belongs to dom f∗ (cf. (1.v)).
Furthermore, consider the Lagrangian relaxation of (1.2) w.r.t. the constraints z = 0,
using x̄ as Lagrangian multipliers:

(∆x̄) inf
z
{f∗(z)− zx̄}.(1.3)

From (1.1) and (1.i), one has

−v(∆x̄) = sup
z
{zx̄− f∗(z)} = (f∗)∗(x̄) = f(x̄);

therefore, the dual pricing problem (1.3) can be seen as the problem that the oracle
has to solve for computing f(x̄). From the dual viewpoint, the oracle inputs x̄ and
returns a contact point (f∗(z), z) between epi f∗ and the affine function with slope
(1,−x̄) that supports the set. This notation reveals that (0.1) itself is the Lagrangian
dual of (1.2) w.r.t. the constraints z = 0.

1.2. Approximations of f and bundle algorithms. Our aim is the construc-
tion of an algorithm that solves (0.1)—or, equivalently, (1.2)—given the oracle for f .
A number of bundle algorithms have been proposed for this task, all based on the
idea of using the bundle β for constructing a model fβ of the original function f . The
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model is usually required to be a lower approximation of the function, i.e., fβ ≤ f , so
that the primal master problem

(Πβ,x̄) inf
d
{fβ(x̄+ d)}(1.4)

gives a lower bound on the primal problem (0.1). The optimal solution d∗ of (1.4) is
then used as a (tentative) descent direction, analogously to what is done in Newton
methods. From the dual viewpoint, f∗β ≥ f∗ (cf. (1.ii)) implies that the dual master
problem

(∆β,x̄) inf
z
{f∗β(z)− zx̄ : z = 0}(1.5)

is an upper approximation of the dual problem (1.2).
The most popular model of f is the cutting plane model

f̂β(x) = max
z
{zx− f∗(z) : z ∈ β}, for which(1.6)

f̂∗β(z) = inf
θ


∑
w∈β

f∗(w)θw :
∑
w∈β

wθw = z, θ ∈ Θ


 ,(1.7)

where Θ = {∑w∈β θw = 1, θ ≥ 0} is the unitary simplex [HL93b, Proposition X.3.4.1];

note that dom f̂∗β = conv(β). Using f̂β in (1.4) gives the well-known cutting plane
algorithm [HL93b, Algorithm XII.4.2.1], where the unknown f is replaced with its

known polyhedral outer approximation f̂β . In the corresponding (1.5), the unknown

f∗ is replaced with its known polyhedral inner approximation f̂∗β (a “pin-function”).

1.3. Stabilized master problems. The cutting plane algorithm has some seri-
ous drawbacks, both in theory and in practice. First of all, the primal master problem
(1.4) may be unbounded, that is, the dual master problem (1.5) may be infeasible;
this is usually the case in the first iterations. Furthermore, two subsequent tentative
points can be arbitrarily far apart; this is known as the “instability” of the cutting
plane method. Most bundle methods try to alleviate this problem by introducing
some “stabilizing device” into (1.4). Here, the stabilizing term Dt—a closed convex
function—is added to fβ to discourage points “far away” from x̄, where t > 0 is the
proximal parameter dictating the “strength” of Dt. That is, at each step the stabilized
primal master problem

(Πβ,x̄,t) inf
d
{fβ(x̄+ d) +Dt(d)}(1.8)

is solved, and its optimal solution d∗ is used as a (tentative) descent direction. By
Fenchel’s duality [HL93b, section XII.5.4], the dual of (1.8) is (using (1.iii)) the sta-
bilized dual master problem

(∆β,x̄,t) inf
z
{f∗β(z)− zx̄+D∗

t (−z)}.(1.9)

Under proper assumptions (cf. Lemma 2.1 below), v(∆β,x̄,t) = −v(Πβ,x̄,t). We see
that the primal stabilizing term Dt corresponds to a dual penalty function D∗

t asso-
ciated with the constraints z = 0; (1.9) is a (generalized) augmented Lagrangian of
(1.5). The stabilizing term is a member of a family of functions parameterized in t;



GENERALIZED BUNDLE METHODS 121

in the bundle methods proposed so far, t is either a factor, like in Dt =
1
2t‖ · ‖22, or

the radius of a ball, like in Dt = IB∞(t). In general, we will not require the function
t→ Dt(d) to have any specific form.

Note that f -values or f∗-values must be stored in memory together with the
subgradients; due to (1.vi) the two choices are equivalent. In the standard notation
of bundle methods, for z ∈ ∂f(x) the linearization error (cf. [HL93b, Definition
XI.4.2.3])

α = f∗(z)− zx̄+ f(x̄) = f(x̄)− f(x)− z(x̄− x) ≥ 0(1.10)

of z w.r.t. x̄ is typically used in place of f∗(z). This notation corresponds to defining
the translated function fx̄(d) = f(x̄+ d)− f(x̄) and its translated model fx̄,β , and to
considering a “local” form of (1.8) that uses fx̄,β [Fr98]. However, the corresponding
dual problem is written in terms of f∗x̄ , i.e., of a family of functions changing with x̄,
rather than in terms of the unique f∗. Furthermore, the notation based on lineariza-
tion errors hides the dependency of some of the subproblem’s data on the current
point x̄; that is why we use f∗-values.

1.4. Stabilization in the original problems. The above duality argument
can also be applied to the original function f ; the stabilized dual problem

(∆x̄,t) inf
z
{f∗(z)− zx̄+D∗

t (−z)}(1.11)

is the (Fenchel) dual of the stabilized primal problem

(Πx̄,t) φt(x̄) = inf
d
{f(x̄+ d) +Dt(d)}.(1.12)

A primal analysis of generalized bundle methods would focus on (1.12), that is, the
calculation of the generalized Moreau–Yosida regularization φt of f in x̄. With a
proper Dt [BPP91], φt has the same set of minima as f but enjoys additional proper-
ties, e.g., smoothness; hence, minimizing φt could be an advantageous alternative to
the minimization of f . Unfortunately, solving (1.12) with the sole help of the black
box for f is as difficult as solving (0.1); therefore, bundle methods resort to a two-level
approach, repeatedly solving the approximation (1.8) until the accumulation of infor-
mation in β makes fβ a “good enough” approximation of f , and only then changing
x̄. If t is properly managed, the whole process eventually solves (0.1).

But a dual analysis of generalized bundle methods is also possible, which focuses
instead on (1.2) and its generalized augmented Lagrangian (1.11), where the con-
straints z = 0 are replaced with the linear term −x̄z (with Lagrangian multipliers x̄)
and the nonlinear term D∗

t (−z) in the objective function. A classical ascent method
would require repeatedly solving (1.11) and updating x̄ using the corresponding first-
order information; unfortunately, solving (1.11)—which is equivalent to (1.12)—is
difficult. On the contrary, (1.9) may be efficiently solvable; furthermore, the oracle
for f solves (1.3), and hence v(∆x̄+d) gives a lower bound on (1.11) if −zd is a linear
lower approximation of D∗

t (−z). Hence, a viable approach is again a two-level one,
where in the inner level a sequence of (1.9) and (1.3) is solved for fixed x̄ in order
to approximate (1.11), while in the outer level the Lagrangian multipliers x̄ and the
parameter t, dictating the “strength” of the penalty function, are updated.

This dual interpretation of bundle methods is related to—although independently
obtained from—the general dual algorithmic scheme of [ACC93]; by taking their “per-
turbation function” ϕ(x, x̄) as f(x − x̄), the Lagrangian dual of (1.3), i.e., (1.2), is
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obtained. However, in our case the relevant dual object is simply the conjugate f∗,
and the whole process takes place in the graph space of f∗. This is confirmed by
[Nu97], where a step in the same direction has been made using the graph of the
ε→ ∂εf(0) multifunction that is equivalent to epi f∗ (cf. section 9.1).

2. Properties of subproblem solutions. The following two lemmas will be
useful in the analysis of the algorithm.

Lemma 2.1. Let fβ and Dt be two closed convex functions such that dom fβ(x̄+
·)∩ int dom Dt �= ∅, and assume that (1.8) and of (1.9) have optimal solutions d∗ and
z∗, respectively; then

v(∆β,x̄,t) = −v(Πβ,x̄,t),(2.1)

−z∗ ∈ ∂Dt(d
∗) and d∗ ∈ ∂D∗

t (−z∗),(2.2)

z∗ ∈ ∂fβ(x̄+ d∗) and x̄+ d∗ ∈ ∂f∗β(z∗),(2.3)

fβ(x̄+ d∗) + f∗β(z
∗) = z∗(x̄+ d∗),(2.4)

Dt(d
∗) +D∗

t (−z∗) = −z∗d∗.(2.5)

Proof. Equation (2.1) is [HL93b, (X.2.3.2)]. Apply [HL93b, Proposition XII.5.4.1]
with the nonsymmetric assumption [HL93b, (X.2.3.Q.jj′)] to the pair (1.8)–(1.9) to
show that any optimal solution d∗ of (1.8) belongs to ∂[fβ(x̄ + ·)]∗(z∗) ∩ ∂D∗

t (−z∗);
this gives d∗ ∈ ∂D∗

t (−z∗) and, via (1.iii), x̄+ d∗ ∈ ∂f∗β(z∗). For the rest, apply (1.iv)
and (1.vi).

We remark that Lemma 2.1 works for any closed convex function fβ , even if it is
not a model of f . We will always keep the requirement on fβ to the bare minimum,
in the spirit of [CL93]; this will provide more general results, and it will be useful in
section 8 where extensions of the method are discussed. Also, note that Lemma 2.1
with fβ = f characterizes the properties of the solutions d∗ and z∗ of the primal and
dual stabilized problems (1.12) and (1.11). When fβ ≤ f(⇒ f∗β ≥ f∗ by (1.ii)), the
optimal solutions of the master problems allow us to derive information on those of
the original problems.

Lemma 2.2. If fβ ≤ f and the hypothesis of Lemma 2.1 hold, then the optimal
value of (1.11) can be bracketed using (1.9) and

∆f = f(x̄+ d∗)− fβ(x̄+ d∗) ≥ 0,(2.6)

i.e., v(∆x̄,β,t)−∆f ≤ v(∆x̄,t) ≤ v(∆x̄,β,t).(2.7)

Proof. v(∆x̄,t) ≤ v(∆β,x̄,t) comes from f∗β ≥ f∗. From (2.2),

D∗
t (−z) ≥ D∗

t (−z∗)− d∗(z − z∗) ∀z.

Add f∗(z) − zx̄ to both sides, then add and remove f∗β(z
∗) − z∗x̄ to the right-hand

side to obtain

f∗(z)− zx̄+D∗
t (−z) ≥ v(∆β,x̄,t)− [f∗β(z

∗)− f∗(z) + (x̄+ d∗)(z − z∗)] ∀z.

Take the inf on z on both sides and recognize the stabilized dual problem (1.11) on
the left and the dual pricing problem (1.3) at x̄ + d∗ plus fβ(x̄ + d∗) (via (2.4)) on
the right.
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For future reference, let us record here the alternative formula

∆f = f∗β(z
∗)− f∗(z) + (x̄+ d∗)(z − z∗),(2.8)

where z ∈ ∂f(x̄+ d∗). (z is an optimal solution of (1.3) at x̄+ d∗.)
Let us briefly comment on the above lemmas. Equation (2.3) shows that the dual

optimal solution z∗ gives, in primal terms, a linear lower approximation of the model
fβ which, by (2.4), is tight in x̄ + d∗. Conversely, by (2.2) the primal direction d∗

gives, in dual terms, a subgradient of D∗
t at −z∗. Lemma 2.2 shows that the gap

between the model and the original function in x̄+d∗ is a measure of the gap between
(1.9) and (1.11); thus, if ∆f = 0, then z∗ is optimal for (1.11) (f∗β(z

∗) = f∗(z∗)), and
d∗ is optimal for (1.12).

If f∗β ≥ f∗, a useful object in the analysis of the algorithms is

α∗ = f∗β(z
∗)− z∗x̄+ f(x̄) ≥ 0(2.9)

(use (1.vii)); using (1.v) in (2.9), one obtains

z∗ ∈ ∂(α∗)f(x̄).(2.10)

Note that all of the above relations are independent of the choice of fβ and Dt; in
the literature, analogous results have usually been obtained algebraically for specific
choices, such as Dt =

1
2t‖ · ‖22 and fβ = f̂β . However, not all the results for particular

cases generalize; a relevant example is d∗ = −tz∗, which is central in the analysis of
proximal bundle methods but it is not true in general.

3. Conditions on Dt. Of course, the primal stabilizing term Dt has to satisfy
some conditions. First of all, in order to be able to apply the results of the previous
paragraph, Dt has to be a closed convex function ∀t > 0. Then, a set of weak
properties that suffice for constructing a convergent algorithm is the following:

(P1) ∀t > 0, Dt(0) = 0 and 0 ∈ ∂Dt(0) (Dt is nonnegative).
(P2) ∀t > 0 and ε > 0, Sε(Dt) is compact and 0 ∈ int Sε(Dt) (Sε(Dt) is full-

dimensional).
(P3) ∀t > 0, lim‖d‖→∞Dt(d)/‖d‖ = +∞ (Dt is strongly coercive).
(P4) ∀t > 0, Dt ≥ Dτ for each τ ≥ t (Dt is nonincreasing in t).
(P5) limt→∞Dt(d) = 0 ∀d ({Dt} converges pointwise to the constant zero func-

tion).
We will show that the above conditions on Dt are equivalent to the following

conditions on D∗
t :

(P∗1) ∀t > 0, D∗
t (0) = 0 and 0 ∈ ∂D∗

t (0) (D
∗
t is nonnegative).

(P∗2) ∀t > 0 and ε > 0, Sε(D
∗
t ) is compact and 0 ∈ int Sε(D

∗
t ) (Sε(D

∗
t ) is full-

dimensional).
(P∗3) ∀t > 0, D∗

t is finite everywhere.
(P∗4) ∀t > 0, D∗

t ≤ D∗
τ for each τ ≥ t (D∗

t is nondecreasing in t).
(P∗5) ∀ε > 0, limt→∞ infz{D∗

t (z) : ‖z‖ ≥ ε} = +∞ ({D∗
t } converges “uniformly”

to I{0}).
The following remarks about (P1)–(P5) are useful:
– Having a minimum in 0 where they evaluate to 0, both Dt and D

∗
t are non-

negative functions ∀t > 0.
– As a consequence of (P1) and (P∗1), Dt and D

∗
t are radially nondecreasing,

i.e.,

∀α ≥ 1 Dt(αd) ≥ Dt(d) ∀d and D∗
t (αz) ≥ D∗

t (z) ∀z,(3.1)
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since, e.g., d = (1/α)αd+(1−1/α)0 and, by convexity,Dt(d) ≤ (1/α)Dt(αd)+
(1− 1/α)Dt(0) ≤ Dt(αd) as α ≥ 1 and Dt(αd) ≥ 0.

– Another consequence of (P1) and (1.v) is

Sε(Dt) = ∂εD
∗
t (0) and Sε(D

∗
t ) = ∂εDt(0);(3.2)

a rephrasing of (P2) is therefore that both the level sets of Dt and its ε-
subdifferentials at 0 must be compact, and the same holds for D∗

t .
– (P2) guarantees that the hypothesis of Lemma 2.1 is true, as 0 ∈ int dom Dt

and 0 ∈ dom fβ(x̄ + ·). (This is true even in the constrained case, cf. sec-
tion 8.1, assuming of course that x̄ ∈ X.)

– (P2) and (P∗2) are stated for ε > 0: S0(Dt) and S0(D
∗
t ) may or may not be

full-dimensional, as in the following examples.

z

D*t

d

DtExample
3.1

d

Dt

1/t

z

D*t

1/t

Example
3.2

Dt =
1
2t‖ · ‖22, D∗

t = 1
2 t‖ · ‖22 Dt =

1
t ‖ · ‖1, D∗

t = IB∞(1/t)

z

D*t

t

d

Dt

t

Example
3.3

Dt = IB∞(t), D∗
t = t‖ · ‖1

– It is intuitive why (P2) and (P∗2) are necessary. The noncompactness of
Sε(Dt) for some ε > 0 means that Dt is constantly 0 along some direction d
and therefore cannot “stabilize” f along d. In fact, all the nonempty level sets
of a closed convex function have the same asymptotic cone [HL93a, Propo-
sition IV.3.2.5], so that S0(Dt) is also noncompact. On the other hand, if 0
belongs to the frontier of dom Dt, then some d is a “forbidden” direction, i.e.,
Dt(αd) = +∞ ∀α > 0.

– Strongly coercive (or 1-coercive) functions increase faster than any linear
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function at infinity; (P3) guarantees that (1.8) has a bounded nonempty set
of optimal solutions.

– Concerning (P4) and (P∗4), note the role of t in Examples 3.1–3.3 above.
– The need for (P4) and (P5) is also intuitively clear: t must make Dt “weaker”

as it grows, and it must be possible to make Dt as weak as desired in order to
avoid “blocking” promising directions. Dually, a penalty term must increase
as the penalty parameter does (see (P∗4)), and it must be equivalent to the
constraints it replaced, at least in the limit (see (P∗5)).

Dt need not be “norm-like” [KCL95, Be96] or a Bregman distance [CT93]; in partic-
ular, it is not necessary that Dt(0) = 0⇔ d = 0 [IST94, Ki99]. Also, t→ Dt(d) need
not have the 1/t form.

Theorem 3.1. (P1)–(P5) are equivalent to (P∗1)–(P∗5).
Proof. For the first four properties, the equivalence is pairwise.
1. The equivalence between (P1) and (P∗1) is an easy consequence of (1.iv) and

(1.vi).
2. The equivalence between (P2) and (P∗2) can be obtained as a consequence

of the following little-known result: for any proper convex function D, d̄ ∈
int dom D ⇔ d̄ ∈ int Sδ(D) ∀δ > D(d̄). One of the implications is obvious;
for the other, d̄ ∈ int dom D means that there exists a ball B(d̄, ε) with ε > 0
such that B(d̄, ε) ⊆ int dom D. By [HL93a, Theorem IV.3.1.2], D is Lipschitz
over the ball, i.e., |D(d) −D(d̄)| ≤ L‖d − d̄‖ ∀d ∈ B(d̄, ε) for some constant
L > 0; hence, Sδ(D) ⊇ B(d̄,min{ε, (δ −D(d̄))/L}) as desired.
Using this result, [HL93b, Theorem XI.1.1.4], and (3.2), one has

0 ∈ intSε(Dt)⇔ 0 ∈ int dom Dt ⇔ ∂εDt(0) compact⇔ Sε(D
∗
t ) compact.

To complete the proof of the equivalence, simply exchange Dt with D
∗
t .

3. The equivalence between (P3) and (P∗3) is [HL93b, Remark X.1.3.10].
4. The equivalence between (P4) and (P∗4) is (1.ii).
5. For the last step, we will show that [(P1) + (P4) + (P5)]⇒ (P∗5) and [(P∗1)

+ (P∗4) + (P∗5)] ⇒ (P5).
[(P1) + (P4) + (P5)] ⇒ (P∗5). Due to (3.2) (which requires (P1) ≡ (P∗1)),

(P∗5) can be rewritten as

∀ε > 0 lim
t→∞ inf

z
{D∗

t (z) : ‖z‖ = ε} = +∞.

Now, assume by contradiction that ε > 0 exists such that the limit is not +∞; since
the feasible set is compact and D∗

t is closed, for each t there exists a zt achieving the
inf, and we can write

lim
t→∞D∗

t (zt) ≤M < +∞.

From (1.vii) ∀t ∀d ∀z, Dt(d) +D∗
t (z) ≥ zd; choosing z = zt and using D∗

t (zt) ≤ M ,
one obtains

∀t ∀d Dt(d) ≥ ztd−M.

But all the zt belong to a compact set, and therefore some cluster point z∗ exists with
‖z∗‖ = ε; plugging d∗ = (2M/ε2)z∗ into the above inequality and taking the limit for
t→∞, one gets

lim
t→∞Dt(d

∗) ≥ lim
t→∞

(
2M

ε2

)
ztz

∗ −M = 2M −M > 0,
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which contradicts (P5).
[(P∗1) + (P∗4) + (P∗5)] ⇒ (P5). As a preliminary, we must show that for

every d there exists a sufficiently large t̄ such that Dt(d) < +∞ for each t ≥ t̄; due
to (P4) ≡ (P∗4), it is only necessary to show that this happens for at least one t.
Assume by contradiction that one d̄ exists such that d̄ �∈ dom Dt ∀t. Using [HL93a,
Theorem V.2.2.2], one has

∀t ∃zt : ‖zt‖ = 1 sup
d
{ztd : d ∈ dom Dt} ≤ ztd̄.

Now

D∗
t (zt) = supd{ztd−Dt(d)} = supd{ztd−Dt(d) : d ∈ dom Dt}

≤ supd{ztd : d ∈ dom Dt} ≤ ztd̄ (Dt ≥ 0).

Using ‖zt‖ = 1, this finally gives ∀t, D∗
t (zt) ≤ ‖d̄‖2, which contradicts (P∗5). Hence,

each d is in dom Dt for a sufficiently large t.
We now want to prove that (P5) holds, so assume by contradiction that one d̄

exists such that Dt(d̄) ≥ ε > 0 ∀t > 0. (It must be d̄ �= 0 due to (P1) ≡ (P∗1), and
note that we are using (P4) ≡ (P∗4).) Since Dt(d̄) > Dt(0) = 0, 0 �∈ ∂Dt(d̄). In fact,
from the subgradient inequality

Dt(d) ≥ Dt(d̄) + z(d− d̄) ∀d ∀z ∈ ∂Dt(d̄)

one gets for d = 0, using (P1),

zd̄ ≥ Dt(d̄) ≥ ε ∀z ∈ ∂Dt(d̄)⇒ ‖z‖ ≥ ε′ = ε/‖d̄‖ ∀z ∈ ∂Dt(d̄).

Now, for each t choose any zt ∈ ∂Dt(d̄). Using (1.vi), ‖zt‖ ≥ ε′, and (P1), we obtain

lim
t→∞ inf

z
{D∗

t (z) : ‖z‖ = ε′} ≤ lim inf
t→∞ D∗

t (zt) ≤ lim inf
t→∞ ztd̄−Dt(d̄) ≤ lim inf

t→∞ ztd̄.

There exists a large enough t̄ such that 2d ∈ dom Dt̄; hence, by (3.1), d ∈ dom Dt̄

also. Again using the subgradient inequality, (P4) (which is implied by (P∗4)), and
(P1), we have

∀t ≥ t̄ Dt̄(2d̄) ≥ Dt(2d̄) ≥ Dt(d̄) + zt(2d̄− d̄) ≥ ztd̄,

which finally gives

lim
t→∞ inf

z
{D∗

t (z) : ‖z‖ = ε′} ≤ lim inf
t→∞ ztd̄ ≤ Dt̄(2d̄) <∞,

contradicting (P∗5) and therefore finishing the proof of the theorem.
Condition (P∗5) may be a bit clumsy to check. The following result gives a handy

sufficient condition that should work in most cases.
Theorem 3.2. If (P∗4) holds, {D∗

t } converges pointwise to I{0}, i.e.,

lim
t→∞D∗

t (z) = +∞ ∀z �= 0,

and for any two sequences {ti} → +∞ and {zi} → z̄, where zi ∈ dom D∗
ti , one has

lim inf
t→∞ D∗

ti(zi) ≥ lim
i→∞

D∗
ti(z̄),
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then (P∗5) holds.
Proof. The thesis is obvious if for any fixed ε there exists a t such that dom D∗

t ⊆
B2(ε), since by (P∗4) the domain of D∗

t can only shrink as t increases. Hence, we
can assume that dom D∗

t \B2(ε) is nonempty ∀t. Assume by contradiction that for
some ε > 0 and {ti} → +∞ there exist one δ < ∞ and a sequence {zi} of points
outside B2(ε) such that D∗

ti(zi) ≤ δ ∀i. Let z̄i = (ε/‖zi‖2)zi (the projection of zi
on B2(ε)). By (3.1), D∗

ti(z̄i) ≤ D∗
ti(zi). Now, B2(ε) is a compact set; hence we can

assume {z̄i} → z̄ with ‖z̄‖2 = ε > 0. Using the hypothesis,

∞ = lim
i→∞

D∗
ti(z̄) ≤ lim inf

i→∞
D∗
ti(z̄i) ≤ δ <∞.

All the D∗
t proposed so far satisfy (P∗5); they are either continuous in both z and

t (cf. Examples 3.1, 3.3) or indicator functions of balls shrinking as t increases (cf.
Example 3.2). It is clear from the proof of Theorem 3.2 that these two possibilities—
which in our setting can be mixed—have two distinct ways of ensuring that (P∗5)
holds. Bundle methods using these two different types of stabilizing term, i.e., penalty
and trust-region, have so far been viewed as distinct [HL93b, sections XV.2.1 and
XV.2.2].

It is possible to avoid the strong coercivity assumption (P3) (cf. Example 3.2),
provided that other assumptions guarantee that (1.8) is bounded below.
(P3′) f is bounded below, a finite f∗ such that f∗ ≤ v(Π) is known and fβ ≥ f∗ ∀β.
(P∗3′) (1.2) is nonempty, a finite f∗ such that f∗(0) ≤ −f∗ is known and f∗β(0) ≤

−f∗ ∀β.
Note that there are three separate conditions in (P3′): a suitable f∗ must exist, must
be known, and the corresponding “flat” subgradient must be explicitly kept in the
bundle. From the dual viewpoint, (P∗3′) guarantees that 0 is a feasible solution for
(1.9). A more general condition would be requiring fβ to be always bounded below;
with such a model, the cutting plane algorithm could be directly applied without
stabilization. However, the constant zero function is not a valid stabilizing term, even
if (P3) is not enforced, due to the first part of (P2) (compactness).

Two other variants of the above properties allow us to obtain stronger convergence
results:
(P3′′) ∀t Dt is strongly coercive and strictly convex.
(P∗3′′) ∀t D∗

t is finite everywhere and differentiable.
(P5′) ∀t ∂Dt(0) = {0} (Dt is differentiable in 0, i.e., ∇Dt(0) = 0).
(P∗5′) ∀t S0(D

∗
t ) = {0} (D∗

t is strictly convex in 0, i.e., 0 is the unique minimum
of D∗

t ).
(P3′′) is a strengthening of (P3) that allows us to keep the size of β bounded. The
equivalence between (P3′′) and (P∗3′′) is [HL93b, Theorem X.4.1.1]. Under (P5′), 0
is a stationary point of f(x̄+ ·) +Dt if and only if x̄ is a stationary point of f ; with
(P5′) replacing (P5), it is possible to prove convergence without requiring t → ∞.
The equivalence between (P5′) and (P∗5′) is a consequence of (3.2). (P5′) implies
the second part of (P2) (full dimensionality); this is easily seen in the dual, as (P∗5′)
implies the first part of (P∗2) (compactness), since all the level sets of D∗

t share the
same asymptotic cone of S0(D

∗
t ) = {0}.

So far, nothing has been required about the form of the t → Dt(d) functions; in
this very general setting, Dt andDt′ for t �= t′ may be two almost completely unrelated
functions. In some cases, stronger results can be obtained under the following (pretty
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〈 let µ ≥ 1 and ε ≥ 0 be fixed; choose the initial x̄, t, and β 〉 // initialization

do

〈 solve (Πβ,x̄,t) and (∆β,x̄,t) for d
∗ and z∗, respectively 〉; // find a direction

〈 move along d∗, generating some new z and a trial point x 〉; // probe f along d∗

if (a large enough improvement has been obtained) // NS/SS decision

then x̄ = x; // a serious step

〈 add some new z to β, delete some old z from β 〉; // the β-strategy

〈 update t, depending on the previous history 〉; // the t-strategy

while (α∗ + µD∗
t (−z∗) > ε); // stopping condition

Fig. 1. The “two-level” bundle algorithm.

〈 choose the initial x̄, t > 0, ε > 0, and β 〉;
do forever

〈 run the algorithm of Figure 1, ensuring that t ≥ t

and using ε in the stopping criteria 〉
〈 increase t and decrease ε 〉;

enddo

Fig. 2. The “three-level” bundle algorithm.

reasonable) assumptions:

Dt =
1

t
D ⇒ D∗

t =
1

t
D∗(t·),(3.3)

where D satisfies (P2) and (P2) and is finite everywhere (⇒ (P5));

D∗
t = tD∗ ⇒ Dt = tD

(
1

t
·
)
,(3.4)

where D∗ satisfies (P∗1) and (P∗2) and is strictly convex in 0 (⇒ (P∗5) + (P∗5′)).
Of course, conditions equivalent to (P3)/(P∗3) (D strongly coercive/D∗ finite

everywhere) or (P3′)/(P∗3′) will also be required, whereas (P4)/(P∗4) come directly
from the nonnegativity of D/D∗.

Finally, let us record for future use two useful consequences of (P1)–(P5), the
second being just that a penalty method using Dt works.

Lemma 3.3. ∀ε > 0 ∀δ > 0 there exists a t such that Sε(Dt) ⊇ B2(δ)∀t ≥ t.
Proof. {Dt} converges uniformly to 0(·) on every compact set C, i.e., ∀ε > 0 there

exists a t such that Dt(d) ≤ ε ∀d ∈ C,∀t ≥ t: use (P5), [HL93a, Theorem IV.3.1.5],
and the fact that ri dom 0(·) = �n. The result follows, using C = B2(δ), since, due
to (P4), sε(Dt) are nondecreasing in t.

Lemma 3.4. For any fixed x̄, limt→∞ v(Πx̄,t) = v(Π).
Proof. Note that v(Πx̄,t) is nonincreasing in t by (P4). Assume by contradiction

limt→∞ v(Πx̄,t) = v > v(Π), i.e., one d̄ exists such that f(x̄+ d̄) < v: using (P5), we
get

v = lim
t→∞ v(Πx̄,t) ≤ lim

t→∞[f(x̄+ d) +Dt(d̄)] = f(x̄+ d̄) < v.

4. The bundle algorithm. We will analyze two main variants of the generalized
bundle algorithm, described, respectively, in Figures 1 and 2.

The “two-level” bundle algorithm of Figure 1 implements the standard ideas of
a bundle approach: the generalized Moreau–Yosida regularization φt of f (cf. sec-
tion 1.4) is minimized (2nd level), with sequences of consecutive null steps performing
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the approximate computation of φt(x̄) (1st level). The algorithm of Figure 2 adds
another level, where t is forced to increase, possibly to +∞; this is useful for those
cases in which, due to properties of Dt, the standard two-level approach is not able
to guarantee convergence unless t is “large enough.”

In order to obtain a convergent algorithm, assumptions are needed about the
following:

– properties of the stabilizing term Dt,
– choice of the model fβ ,
– properties of the function f ,
– handling of the t parameter (the t-strategy) and the NS/SS decision,
– handling of the bundle (the β-strategy).

The required properties for Dt have been described in the previous section. We will
always assume fβ to be a closed convex function such that fβ ≤ f ; for some results,

fβ will be required to be the cutting plane model f̂β (1.6). The assumptions on the
last three points will be discussed in the following.

4.1. Assumptions on f . For some variants of the algorithm, we will require f
to be a ∗-compact function, i.e., such that

e(l, L) := sup
x
{dSl(f)(x) : x ∈ SL(f)} <∞ ∀L ≥ l > v(Π) ≥ −∞.

Here f is ∗-compact if the excess of any level set SL(f) over Sl(f) is finite; that is, f
never becomes “infinitely flat.”

Let us now briefly present some properties of ∗-compact functions that are useful
in our treatment. (The interested reader is referred to [Fr98] for a more detailed
study.) Recall that a nonempty closed convex set C is compact if and only if its
asymptotic cone

C∞ = {d : x+ αd ∈ C ∀x ∈ C,∀α ≥ 0}
is the set {0} (see [HL93a, Proposition III.2.2.3]); all the nonempty level sets of a
closed convex function f have the same asymptotic cone (see [HL93a, Proposition
IV.3.2.5]), denoted by f∞.

Theorem 4.1. If ∀L > v(Π) there exists a compact set CL such that SL(f) ⊆
CL + f∞, then f is ∗-compact.

Proof. Select L ≥ l > v(Π) and choose any xl ∈ Sl(f) (there must be at least one)
to be kept fixed. From the hypothesis, for any x̄ ∈ SL(f) there exists an xL ∈ CL
and a d ∈ f∞ such that x̄ = xL + d. Since xl + d ∈ Sl(f), we obtain

inf
x
{‖x− x̄‖ : x ∈ Sl(f)} ≤ ‖(xl + d)− (xL + d)‖ = ‖xl − xL‖.

Therefore,

sup
x

{
inf
x
{‖x− x̄‖ : x ∈ Sl(f)} : x̄ ∈ SL(f)

}
≤ sup

x
{‖xl − x‖ : x ∈ CL} <∞, since CL is compact.

Note that CL is not required to be convex, just compact.
Corollary 4.2. All polyhedral functions are ∗-compact.
Proof. The level sets of polyhedral functions are obviously polyhedra. Any poly-

hedron has a minimal representation as the sum of a (compact) polytope and a poly-
hedral cone [Ro70, Theorem 19.1]. The cone appearing in the minimal representation
of each level set can only be f∞.
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Note that the hypothesis of Theorem 4.1 is obviously true if f∞ = {0}, i.e., all
inf-compact functions are ∗-compact. The converse is not true, however, since by
Corollary 4.2 there are ∗-compact functions that are not inf-compact; ∗-compactness
properly generalizes inf-compactness. It is easy to prove that many other functions
are ∗-compact, such as the quadratic ones. ∗-compactness is a powerful assumption,
since it allows us to prove the following result.

Lemma 4.3. If f is ∗-compact, then for any ∞ > L ≥ l > v(Π) and ε > 0 there
exists a t > 0 such that v(Πx̄,t) ≤ l + ε ∀x̄ ∈ SL(f) and t ≥ t.

Proof. Given any x̄ ∈ SL(f), call x̂ the projection of x̄ over Sl(f); since f(x̄) ≤ L,
using ∗-compactness, one has ‖x̂ − x̄‖ ≤ e(l, L) = δ < ∞. By Lemma 3.3, there
exists t such that Sε(Dt) ⊇ B2(δ) ∀t ≥ t, and therefore v(Πx̄,t) ≤ f(x̂) +Dt(x̂− x̄) ≤
l + ε ∀t ≥ t.

Using the above property, we can supplement Lemma 3.4, proving “convergence”
for the optimal value of (1.12) for every “reasonable” choice of the sequences {x̄i} and
{ti}.

Lemma 4.4. If f is ∗-compact, then for any sequence {x̄t} such that f(x̄t) ≤ L <
∞,

v := lim inf
t→∞ v(Πx̄t,t) = v(Π).

Proof. Assume by contradiction that v(Π) < l = v− 3ε for some ε > 0. Applying
Lemma 4.3, we obtain that, for large enough t, v(Πx̄t,t) ≤ v − 3ε + ε. Furthermore,
from the definition of v, there exists a large enough t such that v ≤ v(Πx̄t,t) + ε.
Hence, for this (large enough) t,

v ≤ v(Πx̄t,t) + ε ≤ v − 2ε+ ε+ ε < v.

A final observation has to be made about polyhedral functions. In order to prove
finite convergence results, a natural (but in principle nontrivial) assumption about
the black box is required: as f is characterized by a finite set of vectors and their f∗-
values, (cf. (1.6)), the black box has to return as subgradients only those “extreme”
vectors characterizing f . More generally, one could require

only finitely many different pairs (f∗(z), z) can be returned by the black box.
(4.1)

4.2. Assumptions on the t-strategy and the NS/SS decision. In order
to leave a large degree of freedom in the implementation of the algorithm, we prove
convergence under four general rules; several different t-strategies, with different per-
formances in practice, can be designed following these guidelines [Fr97, Chapter I.5].
Since these rules measure improvements w.r.t. the current value f(x̄), let us introduce
the following notation:

δx̄(d) = f(x̄+ d)− f(x̄) is the actual improvement and(4.2)

δβ,x̄(d) = fβ(x̄+ d)− f(x̄) is the predicted improvement(4.3)

for a step at x̄+d. Note that δx̄(d)−δβ,x̄(d) = ∆f , and that δβ,x̄(d
∗) ≤ 0. (Otherwise,

d = 0 would be a better solution of (1.8) than d∗.) In the following, we will use “SS”
as a shorthand for “serious step,” i.e., an iteration of the algorithm where the current
point x̄ is changed. Analogously, “NS” will stand for “null step,” i.e., an iteration of
the algorithm where x̄ is not changed.
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(4.i) If an SS is performed, then

δx̄(d
∗) ≤ mδβ,x̄(d

∗)(4.4)

for a fixedm ∈ (0, 1); the converse is not required, i.e., an SS may not be done
even if a “considerable” improvement has been obtained, except for what is
required by (4.iii) below.

(4.ii) During a sequence of consecutive NS, t can increase only finitely many times.
(4.iii) During a sequence of consecutive NS, (4.4) can happen only finitely many

times; that is, after finitely many NS, any step such that

δx̄(d
∗) > mδβ,x̄(d

∗)(4.5)

must be accepted.
(4.iv) During a sequence of consecutive NS, at all iterations (but possibly a finite

number) f must be evaluated in x̄ + d∗, and the model f+ of the following
iteration must take into account the corresponding z ∈ ∂f(x̄ + d∗), in the
sense that f∗+(z) ≤ f∗(z).

Let us briefly discuss the above rules. By (4.i), an SS is performed only if a
consistent improvement is obtained. Changing the current point is not mandatory
if some alternative strategy—typically increasing t—appears to be preferable, but,
by (4.iii), this must not happen forever. A reasonable answer to a “bad” step is to
decrease t; increasing t is also possible, but it must be properly limited, e.g., by (4.ii).
Finally, inserting the newly obtained subgradient into β is not mandatory if some
alternative strategy—typically decreasing t—appears to be preferable, but, by (4.iv),
this must not happen forever. Using f∗+ ≥ f∗, (4.iv) is equivalent to f∗+(z) = f∗(z);
from the primal viewpoint, it says that

f(x̄+ d∗) = f+(x̄+ d∗) and z ∈ ∂f+(x̄+ d∗).(4.6)

In some cases, a strengthened form of rule (4.ii) is useful, as follows.
(4.ii′) During a sequence of consecutive NS, t can change only finitely many times.

A consequence of rules (4.ii) (or (4.ii′)), (4.iii), and (4.iv) is that, for any sequence
of consecutive NS, there exists an iteration index h such that for all the subsequent
iterations in the sequence, t is nonincreasing (fixed), δx̄(d

∗) > mδβ,x̄(d
∗), and z is

added to β. In the following, we will often refer to this h.
Inhibiting serious steps allows us to drop the ∗-compactness assumption in some

variants of the algorithm; thus, we will sometimes use the following rule.
(4.iii′) Only finitely many SS are done; after the last one, the stopping condition

becomes ∆f ≤ ε.
This rule is rather abstract, but several practical implementations can be imag-

ined. For instance, the current point can just be kept fixed. Alternatively, if v(Π) is
finite, one could choose some ε > 0 and inhibit SS if δβ,x̄(d

∗) ≥ −ε (a “negligible”
step), as long as the t-strategy is properly managed.

With the three-level algorithm of Figure 2, sometimes the following weakened
form of (4.iii′), which allows any total number of SS to be performed, suffices.
(4.iii′′) For each run of the two-level bundle algorithm, only finitely many SS are

done; after the last one, the stopping condition becomes ∆f ≤ ε.
At the end of this section, let us remark that the very concept of SS, although

apparently primal in nature, has a noteworthy “dual interpretation.” From the dual
viewpoint, a bundle method is an approximated ascent approach to supx{v(∆x,t)},
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where an ascent in the value of the stabilized dual problem (1.11), i.e., v(∆x̄+d∗,t) ≥
v(∆x̄,t), is desired. Unfortunately, the values of v(∆x̄+d∗,t) and v(∆x̄,t) are unknown,
and therefore the condition cannot be checked; however, they can be estimated, us-
ing the dual pricing problem (1.3) (v(∆x) = −f(x)) and the stabilized dual master
problem (1.9), as

v(∆x̄+d∗,t) ≥ v(∆x̄+d∗) and v(∆β,x̄,t) ≥ v(∆x̄,t) ≥ v(∆x̄).

(Remember Lemma 2.1: (∆x̄+d∗) is a linearization of (∆x̄+d∗,t) in −z∗ using the
subgradient d∗.) Now, (4.4) is equivalent, via (2.6), to

v(∆x̄+d∗) ≥ mv(∆β,x̄,t) + (1−m)v(∆x̄).

Therefore, v(∆x̄+d∗) andmv(∆β,x̄,t)+(1−m)v(∆x̄) are taken as estimates of v(∆x̄+d∗,t)
and v(∆x̄,t), respectively, and used to decide whether x̄+d∗ are better multipliers than
x̄. Note that there is a safeguard against “wild” decisions: at least, v(∆x̄+d∗) ≥ v(∆x̄).
Hence, even if v(∆x̄,t) does not actually improve moving to x̄+ d∗, at least its lower
approximation v(∆x̄) does.

4.3. Assumptions on the β-strategy. An important detail of any imple-
mentable bundle method is the β-strategy, i.e., how the information in β is managed
to keep the computational cost of the solution of (1.8)/(1.9) reasonably low. Remov-
ing subgradients from β is important in practice, but heedless removals can impair
convergence of the algorithm. A “minimal” requirement for any β-strategy is the
following.

Definition 4.5. A β-strategy is weakly monotone if, during a sequence of con-
secutive NS, for each i ≥ h the optimal value of (1.9) is monotonically nonincreasing
or, equivalently, the optimal value of (1.8) is monotonically nondecreasing.

The equivalence between the two conditions in Definition 4.5 is (2.1). A weakly
monotone β-strategy ensures at least convergence (to some value) of the optimal value
of (1.8)/(1.9) during a sequence of consecutive NS. The definition does not specify how
that monotonicity is obtained; a pretty minimal assumption on fβ is the following.

Definition 4.6. A β-strategy is monotone if, during a sequence of consecutive
NS, for each i ≥ h

f∗βi+1
(z∗i ) ≤ f∗βi(z

∗
i ),(4.7)

or, equivalently,

fβi+1(x̄+ d) ≥ fβi(x̄+ d∗i ) + z∗i (d− d∗i ) ∀d.(4.8)

The equivalence between (4.7) and (4.8) can be easily proved using (2.4) and
(1.1). A monotone β-strategy is weakly monotone; since ti+1 ≤ ti ⇒ D∗

ti+1
≤ D∗

ti for
i ≥ h, v(∆x̄,βi+1,ti+1) ≤ f∗βi+1

(z∗i ) − z∗i x̄ +D∗
ti+1

(−z∗i ) ≤ f∗βi(z
∗
i ) − z∗i x̄ +D∗

ti(−z∗i ) =
v(∆x̄,βi,ti).

The practical implementation of a monotone β-strategy depends on the model.
For the cutting plane model f̂β , at each iteration the following two moves can be
considered:

– remove some z from β (removal),

– add z∗ to β (aggregation), with f∗-value f̂∗β(z
∗).

Rewriting (1.9) with fβ = f̂β in the following equivalent form (cf. (1.7))

inf
θ
{Σz∈β(f∗(z)− zx̄)θz +D∗

t (−Σz∈βzθz) : Σz∈βθz = 1, θ ≥ 0},(4.9)
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it is clear that aggregation offers one way for implementing a monotone β-strategy.
If—as often happens—(1.9) is actually solved via (4.9), an alternative is to just avoid
discarding all the z ∈ β whose corresponding optimal multiplier θ∗z is strictly positive,
as

f̂∗β(z
∗) =

∑
z∈β

f∗(z)θ∗z and z∗ =
∑
z∈β

zθ∗z .

In principle, no more than n+1 of the optimal multipliers need to be strictly positive,
although in practice whether or not such a minimal solution is obtained depends on
the actual solver; even for D∗

t = 1
2 t‖ · ‖22, active-set algorithms [Ki89, Fr96] would

guarantee it, while interior-point algorithms may not. The above discussion justifies
the following result.

Lemma 4.7. If fβ = f̂β and, during a sequence of consecutive NS, for each
iteration after h either all the z such that θ∗z > 0 are kept in β or z∗ is added to β
with f̂∗β(z

∗) as the corresponding f∗-value, then the β-strategy is monotone.
A monotone β-strategy allows us to keep the size of β bounded (down to 2); if

(P3′′) does not hold, however, it is not sufficient to guarantee convergence [Fr97, sec-
tion I.4.2]. A stronger property has to be used, which essentially inhibits all removals
at length.

Definition 4.8. A β-strategy is strictly monotone if it is monotone and, if some
z has been removed from β, no other removal is permitted until v(Πβ,x̄,t) increases by
a fixed µ > 0.

A strictly monotone β-strategy guarantees convergence for every choice of Dt;
although it does not give any finite bound on the size of β, it can still be practical.
Furthermore, there is a trade-off between the size of β—hence the computational cost
of (1.9)—and the speed of convergence of the overall process [HL93b, section XIV.4.5];
a small β is a good choice only in some cases [CFG01].

Finally, if f is a polyhedral function, finite termination to an optimal solution
can be proved, provided that aggregation is properly limited.

Definition 4.9. A β-strategy is safe if only finitely many aggregations are done.

5. Convergence of NS sequences (1st level). The convergence proof is di-
vided into three parts. In this section we assume that no SS occurs, i.e., we examine
infinite sequences of consecutive NS; we shall show that these sequences allow us
to compute the generalized Moreau–Yosida regularization with any finite precision.
Therefore, in the next section we will be allowed to disregard what happens between
two consecutive SS, i.e., focus on the convergence of the minimization process of the
generalized Moreau–Yosida regularization (2nd level). Finally, in section 7 we will
discuss the convergence of the 3rd level.

In this section, the iteration index i denotes the ith NS of the (only) infinite
sequence of consecutive NS that the algorithm is supposed to perform, and therefore
the current point x̄ is fixed. The iteration index h is the one implied by the rules
(4.ii) (or (4.ii′)), (4.iii), and (4.iv). To simplify the notation, let (∆i) and (Πi) denote,
respectively, the dual and primal stabilized master problems (1.9) and (1.8) solved

in that iteration; z∗i and d∗i their solutions; fi(f̂i) the corresponding (cutting plane)
model; zi the subgradient reported by the evaluation of f(x̄ + d∗i ); δi the predicted
improvement; and so on. Also, we will use the shorthand index “+” for “i+ 1.”

In the following, we will always assume that (P1), (P2), (P4), and (P5) hold;
additional assumptions will be explicitly listed. The first step in the convergence
proof is to show that the algorithm is well defined, i.e., that the primal and dual



134 ANTONIO FRANGIONI

stabilized master problems have optimal solutions. This requires (P3) or (P3′), as
well as minimal assumptions on fβ .

Lemma 5.1. Under the hypothesis of Lemma 2.1, if either (P3′) or (P3) hold,
then (∆i) and (Πi) attain finite optimal solutions z

∗
i and d

∗
i , respectively.

Proof. If (P3′) holds, then from fi ≥ f∗ we have that fi(x̄+d)+Dti(d) > f(x̄) ∀d �∈
Sδ(Dti), where δ = f(x̄) − f∗. Since Sδ(Dti) is compact by (P2), the infimum must
be finitely attained. Otherwise (P3) holds, i.e., Dt is strongly coercive; hence fβ(x̄+
·) + Dt(·) is strongly coercive too. (Strongly coercive functions increase faster than
any linear function at infinity, and any convex function is minorized by an affine
function [HL93a, Proposition IV.1.2.1].) Therefore, (Πi) has a bounded nonempty
set of optimal solutions [HL93a, Remark IV.3.2.8]. Finally, [HL93a, Theorem X.2.3.2]
shows that an optimal z∗i exists for (∆i) whenever an optimal d∗i exists for (Πi).

We will now focus on proving the boundedness of the sequences {d∗i } and/or {z∗i },
under a set of different assumptions.

Lemma 5.2. Under the hypothesis of Lemma 2.2, if (P3′) holds, then {d∗i } and
{z∗i } are bounded.

Proof. Boundedness of {d∗i } was in fact established in Lemma 5.1, as Dti(d
∗
i ) ≤

δ = f(x̄)−f∗ and, by (P4), Sδ(Dti) ⊆ Sδ(Dth); the latter is compact by (P2). By (2.3)
and fi ≤ f , z∗i is an εi-subgradient of f at x̄+d∗i for εi = ∆fi = f(x̄+d∗i )−fi(x̄+d∗i ) ≥
0; since f is finite everywhere, and therefore bounded over any compact set, and
fi ≥ f∗, εi ≤ ε̄ < ∞. Hence, z∗i ∈ ∂ε̄f(x̄ + d∗i ) ∀i ≥ h. The image of a compact
set in int dom f = �n under the ε̄-subdifferential mapping (see [HL93b, Proposition
XI.4.1.2]) is compact.

Thus, (P3′)/(P∗3′) guarantee the boundedness of both solution sequences. In all
the development, the first part of (P2) (compactness) is only used in Lemma 5.2, and
therefore it could be dropped if (P3) holds; however, strong coercivity implies the
boundedness of the level sets [HL93a, Proposition IV.3.2.5.(ii)], and hence there is no
loss of generality—and a gain in symmetry—in requiring it to hold in general.

In Lemma 5.2, the boundedness of {z∗i } is obtained as a consequence of the
boundedness of {d∗i }, finiteness of f , and fi ≥ f∗; with basically the same argument,
it is possible to prove the boundedness of {d∗i }, given the boundedness of {z∗i } and
(P3)/(P∗3).

Lemma 5.3. Under the hypothesis of Lemma 2.2, if (P∗3) holds and {z∗i } is
bounded, then {d∗i } is bounded.

Proof. By (2.2), d∗i ∈ ∂D∗
ti(−z∗i ). From ti ≤ th(⇒ D∗

th
≥ D∗

ti by (P∗4)), it is clear
that d∗i must also be an ε-subgradient of D∗

th
for a proper ε; indeed, it is easy to check

that d∗i is a εi-subgradient of D
∗
ti at −z∗i for εi = D∗

th
(−z∗i ) ≥ D∗

th
(−z∗i )−D∗

ti(−z∗i ) ≥
0. Since, by (P∗3), D∗

th
is finite convex (hence continuous) and {z∗i } is bounded,

εi ≤ ε̄ < ∞. Hence, d∗i ∈ ∂ε̄D∗
th
(−z∗i ) ∀i ≥ h; reasoning as in Lemma 5.2, we obtain

that {d∗i } is bounded.
Boundedness of {z∗i } under (P3)/(P∗3) is not easy to establish in general; however,

when obtained, it allows us to prove the boundedness of all the relevant sequences, as
the same argument proves boundedness of {zi}, given the boundedness of {d∗i }.

Lemma 5.4. Under the hypothesis of Lemma 2.1, if {d∗i } is bounded, then the
sequences {f∗(zi)} and {zi} obtained by evaluating f(x̄+ d∗i ) are bounded.

Proof. Since f is finite everywhere and zi ∈ ∂f(x̄ + d∗i ), we can invoke [HL93a,
Remark VI.6.2.3] to conclude that all the zi belong to a compact set. Also, −f(0) ≤
f∗(zi) = zi(x̄+ d∗i )− f(x̄+ d∗i ), which is bounded above since both {d∗i } and {zi} are
bounded and f is bounded below over any compact set.
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Note that the above results do not depend on the β-strategy. Indeed, there are
several situations in which the boundedness of {d∗i } is “free”; among them, let us
mention the following:

– dom(Dth) is compact (Dt is a “trust region,” cf. Example 3.3), as dom(Dti) ⊆
dom(Dth) by (P4);

– (P3) holds and dom(f∗) is compact (f is globally Lipschitz, e.g., polyhedral),
as dom(f∗i ) ⊆ dom(f∗) and Lemma 5.3 gives boundedness of {d∗i }.

Conversely, let us mention that the boundedness of {d∗i } implies the boundedness of

{z∗i } whenever the cutting plane model f̂β is used, as from (1.7) every z∗i belongs to
the convex hull of {zi} and, from Lemma 5.4, the latter set is bounded whenever {d∗i }
is.

5.1. Results with a weakly monotone β-strategy. We will now prove some
results which only require a weakly monotone β-strategy and fβ ≤ f . The basic
observation is that, with a weakly monotone β-strategy, by Definition 4.5 we have,
∀i ≥ h,

D∗
ti(−z∗i ) ≤ f∗i (z

∗
i )− z∗i x̄+ f(x̄) +D∗

ti(−z∗i ) = v(∆i) + f(x̄) ≤ v(∆h) + f(x̄) <∞
(5.1)

(use (1.vii) and f∗i ≥ f∗). In the proximal bundle case (D∗
t = 1

2 t‖ · ‖22), where
d∗i = −tiz∗i , (5.1) proves the boundedness of {d∗i }; this is also true in the more general
case, provided that Dt has the form (3.3). The proof relies on the following “primal
view” of (5.1),

Dti(0)−Dti(d
∗
i )− (−z∗i )(0− d∗i ) ≤ v(∆h) + f(x̄) <∞(5.2)

(use (2.5) and (P1)); (5.2) can be expressed by saying that the linearization error (cf.
(1.10)) in 0, made by approximating Dti with its linearization in d∗i using slope −z∗i ,
is bounded.

Lemma 5.5. Under the hypothesis of Lemma 2.2, if (P3) holds, a weakly mono-
tone β-strategy is used, and Dt has the form (3.3), then {d∗i } is bounded.

Proof. From (2.2), −z∗i ∈ ∂Dti(d
∗
i ); since Dt has the form (3.3), defining z̄∗i :=

tiz
∗
i , we have that −z̄∗i ∈ ∂D(d∗i ). Hence, (5.2) can be written as

1

ti
D(0)− 1

ti
D(d∗i )−

1

ti
(−z̄∗i )(0− d∗i ) ≤ ε <∞,

whence D(0)−D(d∗i )− (−z̄∗i )(0− d∗i ) ≤ εti ≤ εth <∞.
Now, call V̄ε(d̄) the set of all d such that the linearization error in d̄, made by

approximating D with its linearization in d using any z ∈ ∂D(d), is smaller than
ε. Since D is strongly coercive, V̄ε(d̄) is compact for any d̄ and any fixed ε [HL93b,
Proposition XI.4.2.6.(i)].

An alternative result does not require (3.3) but rather that ti remain bounded
away from zero; actually, in this case the boundedness of {z∗i } is obtained, which, in
view of Lemma 5.3, is a stronger result.

Lemma 5.6. Under the hypothesis of Lemma 2.2, if (P3) holds, a weakly mono-
tone β-strategy is used, and ti ≥ t > 0 (t is bounded away from 0), then the sequences
{f∗i (z∗i )} and {z∗i } are bounded.

Proof. From (5.1), (P∗4), and t ≤ ti we have D∗
t (−z∗i ) ≤ v(∆h) + f(x̄) <∞; the

level sets of D∗
t are compact from (P∗2), and hence {z∗i } is bounded. Looking again
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at (5.1), we notice that f∗i (z
∗
i ) is bracketed between bounded quantities; hence it is

also bounded.
In practice, t should not become too small anyway, so the condition in the above

lemma is not really binding; yet, in many cases it can simply be dropped.

5.2. Convergence with a monotone β-strategy. The above boundedness
results are instrumental for proving the actual convergence of a sequence of NS, that is,
the fact that the stabilized master problems (1.8) and (1.9) can be used to approximate
the stabilized problems (1.12) and (1.11) within any required degree of accuracy. Due
to (2.7), it is only necessary to prove that {∆fi} → 0. With a monotone β-strategy,
this requires (P∗3′′).

Consider the (convex) function

ri(z) := f∗i (z)− zx̄+ f(x̄),

so that ri(z) + D∗
ti(z) is, but for the constant f(x̄), the objective function of (∆i);

from f∗i ≥ f∗ and (1.vii), ri ≥ 0. Now define

ζi := zi − z∗i and zi(γ) := z∗i + γζi.

From Definition 4.6 (f∗+(z
∗
i ) ≤ f∗i (z

∗
i )) and (4.iv) (f∗+(zi) ≤ f∗(zi)) we have that,

∀γ ∈ [0, 1],

hi(γ) := [f∗i (z
∗
i )(1− γ) + f∗(zi)γ − zi(γ)x̄+ f(x̄)] +D∗

ti(−zi(γ))
≥ [f∗+(z

∗
i )− z∗i x̄+ f(x̄)](1− γ) + [f∗+(zi)− zix̄+ f(x̄)]γ +D∗

ti(−zi(γ))
≥ r+(z

∗
i )(1− γ) + r+(zi)γ +D∗

t+(−zi(γ)) ≥ r+(zi(γ)) +D∗
t+(−zi(γ)).

(We have also used t+ ≤ ti ⇒ D∗
t+ ≤ D∗

ti and the convexity of r+.) Therefore,
defining

(ϑi) min
γ
{hi(γ) : γ ∈ [0, 1]},

vi(z) :=

{
ri(z) +D∗

ti(−z) if z = zi(γ) for some γ ∈ [0, 1],

+∞ otherwise,

one clearly has

v(ϑi) ≥ min
z
{v+(z)} ≥ v(∆+) + f(x̄).

We will study the behavior of v(ϑi) during sequences of consecutive NS to estimate the
convergence speed of v(∆i). In practice, this corresponds to the “aggressive” mono-
tone β-strategy, where aggregation is performed at every step and all subgradients
but z∗i and zi are discarded.

Due to (P∗3′′), D∗
ti is differentiable, and hence so is hi; from (2.2), we have d∗i =

∇D∗
ti(−zi(0)); hence by (2.6)

h′i(0) = f∗(zi)− f∗i (z∗i )− (zi − z∗i )(x̄+ d∗i ) = −∆fi.(5.3)

Using (1.vi) and (2.4), the NS condition (4.5) can be written as

zi(x̄+ d∗i )− f∗(zi)− f(x̄) > m[z∗i (x̄+ d∗i )− f∗i (z∗i )− f(x̄)];
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hence

h′i(0) < (1−m)[z∗i (x̄+ d∗i )− f∗i (z∗i )− f(x̄)].
From (1.vi), −z∗i d∗i = Dti(d

∗
i ) +D∗

ti(−z∗i ) ≥ D∗
ti(−z∗i ); hence

h′i(0) < (1−m)[−f∗i (z∗i ) + z∗i x̄−D∗
ti(−z∗i )− f(x̄)] = −(1−m)hi(0).(5.4)

Using (5.4) it is possible to show, adapting standard results from smooth optimization
[OR70], that {−h′i(0) = ∆fi} → 0 if {z∗i } is bounded and (P∗3′′) holds. In the general
case, this requires some assumptions on the behavior of ti, the simplest one being rule
(4.ii′).

Theorem 5.7. Under the hypothesis of Lemma 2.2, if (P∗3′′) holds, rule (4.ii′)
is in force, a monotone β-strategy is used, and {z∗i } is bounded, then {∆fi} → 0.

Proof. Wait until the iteration h implied by rules (4.ii′), (4.iii), and (4.iv): ti =
t ∀i ≥ h. The boundedness of {z∗i }, together with Lemma 5.3 ((P∗3′′) ⇒ (P∗3)) and
Lemma 5.4, implies that {zi} is also bounded; therefore, the set

Z := conv({z∗i } ∪ {zi})
is compact and contains all the segments [z∗i , zi]. From (P∗3′′), D∗

t is differentiable
and therefore continuously differentiable [HL93a, Remark VI.6.2.6] on Z; that is, ∇D∗

t

is continuous, and therefore uniformly continuous, on the compact set Z. Note that
if ∇D∗

t (z
∗
i ) = d∗i = d∗+ = ∇D∗

t (z
∗
+), then ∆f+ = 0 as, from (4.6), f(x̄ + d∗i ) =

f+(x̄+ d∗i ) = f+(x̄+ d∗+). Hence

sup{‖∇D∗
t (z

′)−∇D∗
t (z

′′)‖ : z′, z′′ ∈ Z} > 0.

The reverse modulus of continuity of ∇D∗
t over Z

κ(v) := inf{‖z′ − z′′‖ : ‖∇D∗
t (−z′)−∇D∗

t (−z′)‖ ≥ v, z′, z′′ ∈ Z}
is an F -function, i.e., nondecreasing and such that κ(0) = 0 and κ(v) > 0 for v > 0
[OR70, Definition 14.2.6]. (Our definition of κ is nonstandard, in that dom κ may
not be the whole �+, but we will always evaluate κ at points of its domain.)

We claim the existence of an F -function ρ such that

v(∆i)− v(∆+) ≥ hi(0)− v(ϑi) ≥ ρ(−h′i(0)) > ρ((1−m)hi(0)),

which clearly implies that {−h′i(0) = ∆fi} → 0 and {hi(0)} → 0 and therefore proves
the theorem. (Note that {v(∆i)} is bounded below, as v(∆i) ≥ −f(x̄).) The function
ρ estimates how much of the decrease “promised” by h′i(0) is actually attained in the
optimal solution of (ϑi).

A special case for which the estimate is easy is zi = z∗i , i.e., ζi = 0: the correspond-
ing hi(γ) is linear, the optimal solution of (ϑi) is γ = 1, and hi(1) = hi(0) + h′i(0);
hence ρ ≡ 1.

Otherwise, for the reverse modulus of continuity of h′i over [0, 1] one has

σi(v) := inf{|γ′ − γ′′| : |h′i(γ′)− hi(γ′′)| ≥ v, γ′, γ′′ ∈ [0, 1]}

≥ 1

‖ζi‖ inf{‖(γ
′ − γ′′)ζi‖ : ‖(∇D∗

t (−zi(γ′))−∇D∗
t (−zi(γ′′)))ζi‖

≥ v, γ′, γ′′ ∈ [0, 1]}

≥ 1

‖ζi‖ inf
{
‖z′ − z′′‖ : ‖∇D∗

t (z
′)−∇D∗

t (z
′′)‖ ≥ v

‖ζi‖ , z
′, z′′ ∈ Z

}
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(note that ζi �= 0), and therefore

σi(v) ≥ 1

‖ζi‖κ
(

v

‖ζi‖
)
.(5.5)

Now, define

γ∗ := inf
γ

{
γ ≥ 0 : h′i(γ) ≥

1

2
h′i(0)

}
≥ σi

(
−1

2
h′i(0)

)
.(5.6)

(1/2 is arbitrary; any strictly positive number would do.) By (5.3), if γ∗ = 0, then
∆fi = 0 and the theorem is proved. Otherwise, the following two cases may arise.

If γ∗ ≥ 1, then γ = 1 is the optimal solution of (ϑi) and h
′
i(γ) ≤ 1

2h
′
i(0) ∀γ ∈ [0, 1].

(h′i is nondecreasing since hi is convex.) In particular, h′i(1) ≤ 1
2h

′
i(0) < 0, and

therefore

hi(1) + h′i(1)(0− 1) ≤ hi(0)⇒ hi(1) ≤ hi(0) +
1

2
h′i(0).

If γ∗ < 1, then by the mean-value theorem there exists some γ̄ ∈ (0, γ∗) such that

hi(γ
∗) = hi(0) + h′i(γ̄)γ

∗ ⇒ hi(γ
∗) ≤ hi(0) +

1

2
h′i(0)γ

∗.

Hence, using (5.5) and (5.6),

v(∆i)− v(∆+) ≥ hi(0)− hi(γ∗) ≥ − 1

2‖ζi‖h
′
i(0)κ

(
− 1

2‖ζi‖h
′
i(0)

)
.

Thus, the claim is proved with ρ(v) = v
2 min

{
1, 1

diam(Z)κ
(

v
2diam(Z)

)}
, where diam(Z) <

∞ is the maximum distance of any two points in Z.
In the above proof, rule (4.ii′) is needed because t → D∗

t (z) may be almost any
function; rule (4.ii) suffices, thereby allowing {ti} → 0, if this function is “simple.”

Theorem 5.8. Under the hypothesis of Lemma 2.2, if (P∗3′′) holds, a monotone
β-strategy is used, {z∗i } is bounded, and D∗

t has either the form (3.3) or the form
(3.4), then {∆fi} → 0.

Proof. With the notations of Theorem 5.7, let D∗
t = tD∗ and call κi and κ the

reverse modulus of continuity of ∇D∗
ti and of ∇D∗, respectively, on Z. It is easy to

check that

σi(v) ≥ 1

‖ζi‖κi
(

v

‖ζi‖
)
≥ 1

‖ζi‖κ
(

v

ti‖ζi‖
)
≥ 1

‖ζi‖κ
(

v

th‖ζi‖
)
,

as ti ≤ th and κ is nondecreasing. If Dt =
1
tD instead, one has D∗

t (z) =
1
tD

∗(tz) and
therefore ∇D∗

t (z) = ∇D∗(tz); simple calculations yield

σi(v) ≥ 1

‖ζi‖κi
(

v

‖ζi‖
)
≥ 1

ti‖ζi‖κ
(

v

‖ζi‖
)
≥ 1

th‖ζi‖κ
(

v

‖ζi‖
)
,

where κ is the reverse modulus of continuity of ∇D∗ on the (compact) set {tz : z ∈
Z, t ∈ [0, th]}. In both cases, the proof of Theorem 5.7 can be easily adapted by using
the above functions in place of the reverse modulus of continuity of D∗

t for the fixed
t provided by rule (4.ii′).
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The similar theorem [Au87, Theorem 2.3] (with a different proof) is proved for
a fixed t and Dt of the form (3.3), differentiable and satisfying (P3′′). Note that
differentiability—which would at first appear to be a natural assumption—is necessary
in the dual rather than in the primal, the critical property ofDt being strict convexity.
It is also interesting to note that in [Au87] a primal notation is used, but (1.9) is
developed—only for the simple case β+ = {z∗i , zi}—as a tool for proving [Au87,
Theorem 2.3].

The above theorems rely on the compactness of Z, which is a consequence of
the boundedness of {z∗i }. The latter is, in several cases, either free or a consequence
of the boundedness of {d∗i }, which may not require ti bounded away from 0 (cf.
Lemma 5.5). Thus, these results generalize those available for the proximal bundle
method. Indeed, applying Theorem 5.7 to D∗

t = 1
2 t‖ · ‖22, whose reverse modulus of

continuity is κ(v) = v/t (that does not depend on Z), one obtains an estimate that
is only a 1/2 factor—due to the arbitrary 1/2 in the proof—away from the tightest
possible one, if aggregation is allowed:

v(∆i)− v(∆+) ≥ (1−m)(v(∆i) + f(x̄))

2
min

{
1,

(1−m)(v(∆i) + f(x̄))

ti‖zi − z∗i ‖22

}
.

The above estimate was obtained in [Fr97, Theorem I.2.2.2] (apart from a minor error)
with basically the same arguments of Theorem 5.7, only using ad hoc relations.

Finally, note that all the results until now do not require fβ to be the cutting
plane model, and therefore they can be used in the analysis of “nonstandard” bundle
methods [GM91].

5.3. Convergence with a strictly monotone β-strategy. When (P3′) does
not hold, a monotone β-strategy does not guarantee convergence [Fr97, section I.4.2],
and strict monotonicity is required. Furthermore, the following strengthened form of
the rule in (4.iv)

∃ an index h such that,∀i > j ≥ h, f∗(zj) = f∗i (zj)(5.7)

is required; that is, at length the “accuracy” of f∗β as a model of f∗ cannot “deterio-
rate” once it has become “exact” in the dual points zi.

Theorem 5.9. Under the hypothesis of Lemma 2.2, if (5.7) holds, a strictly
monotone β-strategy is used, and {d∗i } is bounded, then {∆fi} → 0.

Proof. By (2.3), x̄+ d∗i ∈ ∂f∗i (z∗i ); hence, using (5.7),

f∗(zj)− (x̄+ d∗i )zj ≥ f∗i (zj)− (x̄+ d∗i )zj ≥ f∗i (z
∗
i )− (x̄+ d∗i )z

∗
i ∀i > j.(5.8)

From zi ∈ ∂f(x̄+ d∗i ) and z
∗
i ∈ ∂fi(x̄+ d∗i ) (cf. (2.3)), using (1.vi), one has

∆fi = f(x̄+ d∗i )− fi(x̄+ d∗i ) = f∗i (z
∗
i )− f∗(zi) + (x̄+ d∗i )(zi − z∗i ).(5.9)

Using (5.8) in (5.9) to eliminate z∗i , one obtains

∆fi ≤ min
i>j
{f∗(zj)− f∗(zi) + (x̄+ d∗i )(zi − zj)}.(5.10)

Sending j → ∞, the min in (5.10) goes to 0 since {d∗i } is bounded, and hence, by
Lemma 5.4, {zi} and {f∗(zi)} are also bounded. (Extract a subsubsequence such that
both the z-values and the f∗-values converge to a cluster point.)

The proof of Theorem 5.9 is essentially that of [HL93b, Theorem XII.4.2.3] for
the cutting plane method, working in the dual space rather than in the primal space.
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This shows the usefulness of our dual treatment, as the primal proofs of convergence
of proximal and trust-region bundle methods are not easy to unify. Also, note that t
is not even mentioned in the proof, and hence nothing prevents ti → 0.

It is easy to verify that the cutting plane model f̂β with a strictly monotone β-
strategy guarantees (5.7). A strictly monotone β-strategy is weakly monotone, i.e.,
v(Πi) is nondecreasing; since it is also upper bounded by f(x̄), it is clear that it
can increase by any fixed quantity µ > 0 only finitely many times. Hence, after
some iteration h, no information is removed from β. Now, from (1.7) one has that

f̂∗i (zj) ≤ f∗(zj) ∀i > j(zj ∈ βi), but f̂∗i ≥ f∗.
Finally, note that this theorem requires the boundedness of {d∗i } (which implies

that of {zi}) but not of {z∗i }. With fβ = f̂β , however, this is actually not an advan-
tage, since, as we noted previously, in this case the boundedness of {d∗i } implies that
of {z∗i }.

5.4. Overall NS convergence result. We have shown that, under a number of
different assumptions on the function, the model, and the stabilizing term, {∆fi} → 0
during infinite sequences of NS. In view of (2.7), this means that NS can be used
to approximate (1.12) and (1.11) as closely as desired. This is more easily seen if
t is fixed at length (e.g., rule (4.ii′) is in effect); then, an infinite sequence of NS
solves (1.12) and (1.11) for the current point x̄ and the fixed t. Compactness of
{d∗i } is typically required, and that of {z∗i } is usually available as well; hence, by the
lower semicontinuity of the objective functions, subsequences of {d∗i } and {z∗i } can
be extracted which converge to finite optimal solutions, respectively, for (1.12) and
(1.11).

From the algorithmic viewpoint, {∆fi} → 0 implies the finite termination of the
sequences of NS for ε > 0; this uses the following basic relation about the predicted
improvement:

−δi ≥ −δi −Dti(d
∗
i ) = −fi(x̄+ d∗i ) + f(x̄)−Dti(d

∗
i ) = α∗

i +D∗
ti(−z∗i ) = 0(5.11)

(use Dti ≥ 0, (2.4), (2.5), and (2.9)).
Theorem 5.10. Assume that {∆fi} → 0; if ε > 0, then after finitely many

consecutive NS either the stopping condition of the algorithm in Figure 1 holds or an
SS is done; otherwise (ε = 0), {D∗

ti(−z∗i )} → 0, and {α∗
i } → 0.

Proof. Assume that infinitely many NS are done; (4.5) can be rewritten, using
(4.2) and (4.3) first and then (5.11), as

∆fi > −(1−m)δi ≥ (1−m)[α∗
i +D∗

ti(−z∗i )].(5.12)

Since {∆fi} → 0, both {α∗
i } and {D∗

ti(−z∗i )} must go to zero; if ε > 0, then the
stopping condition of the algorithm in Figure 1 eventually holds.

Note that, in general, {D∗
ti(−z∗i )} → 0 does not imply {z∗i } → 0; consider the

case where D∗
t is a “trust region” (cf. Example 3.2) and/or {ti} → 0.

The above development can be extended to the case where δi in (4.4)/(4.5) is
replaced with δi = δi+Dti(d

∗
i ); this corresponds to checking f(x̄+d∗i ) against v(Πi) =

fi(x̄ + d∗i ) +Dti(d
∗
i ) rather than against fi(x̄ + d∗i ). In fact, it is easy to check that

(5.12) can be obtained as well from (5.11) and the modified from of (4.5) using δi. As
observed in [HL93b, section XV.3], [Ki99, section 5], this descent test is weaker than
(4.4) (δi ≥ δi), and therefore it may reduce the number of NS.

5.5. The polyhedral case. Finite termination of NS sequences requires ε > 0
and m < 1; in general, there is no chance of solving (∆x̄,t) to optimality, i.e., of
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obtaining fi(x̄+d
∗
i ) = f(x̄+d∗i ), unless f is polyhedral. A finite convergence theorem

for NS sequences can be proved for two different sets of assumptions, basically corre-
sponding to those of Theorem 5.7 (with a safe β-strategy) and those of Theorem 5.9

(with fβ = f̂β).
Theorem 5.11. Assume that {∆fi} → 0, f is polyhedral, and (4.1) is satisfied.

If either (P∗3′′) holds, rule (4.ii′) is in effect, and a safe β-strategy is used, or fβ = f̂β
and a strictly monotone β-strategy is used, then after finitely many consecutive NS
either the stopping condition of the algorithm in Figure 1 holds or an SS is done, even
if ε = 0 and m = 1.

Proof. Assume by contradiction that the stopping condition does not hold and
that ∆fi = δx̄(d

∗
i )− δi ≥ δx̄(d

∗
i )−mδi > 0 for infinitely many i.

If (P∗3′′) holds, (5.3) gives h′i(0) = −∆fi < 0, and therefore v(∆+) > v(∆i); we
can conclude that the set {v(∆i)} must be infinite. But the assumptions on f and
the safe β-strategy ensure that there are only finitely many different possible sets β;
after the iteration h implied by rule (4.ii′), v(∆i) can have only finitely many different
values (x̄ and t are fixed).

For the other case (fβ = f̂β and a strictly monotone β-strategy), note that if the

pair (f∗(zi), zi) already belongs to βi, then ∆fi = 0. (Use (1.6) and f̂i ≤ f .) Now,
Definition 4.8 and {∆fi} → 0 ensure that, at length, removals are inhibited; by (4.1),
only finitely many “new” pairs (f∗(zi), zi) can ever be generated, which yields the
contradiction.

6. Convergence of SS sequences (2nd level). Having proved convergence of
the NS sequences, in the following we disregard what happens between two consecutive
SS. However, we are not allowed to entirely disregard NS; in fact, it may happen
that only finitely many SS are done, so that a “tail” of (possibly infinitely many)
consecutive NS is done after the last SS. In order to deal with the two different cases—
finitely many and infinitely many serious steps—in a unified way, in this section we
will use the following notation: the index i denotes the ith serious step if at least i SS
are performed; otherwise it denotes the (i − k)th NS of the only infinite sequence of
NS that starts right after that the last SS (the kth) is performed. With this notation,
x̄i, d

∗
i , z

∗
i , δi, . . . refer to the status of the algorithm just before the change of the

current point occurring at step i, if any.
The standing assumption for all the results in this section is

conditions sufficient to guarantee {∆fi} → 0 during an infinite sequence of NS hold.

Several different such conditions exist, as we have shown in the previous sections.
About the model, without further notice, we will require only fi ≤ f .

The first step for proving the convergence of the SS sequences consists in bounding
the decrease that each step obtains. From (4.4), f(x̄+)−f(x̄i) ≤ mδi; hence this boils
down to bounding the predicted improvement δi, for which one can use (5.11) and
the stopping condition:

−δi ≥ 1

µ
α∗
i +D∗

ti(−z∗i ) =
1

µ
[α∗
i + µD∗

ti(−z∗i )] >
ε

µ

(use µ ≥ 1 and α∗
i ≥ 0). Hence

f(x̄i) ≤ f(x̄0) +m


∑
j<i

δj


 ≤ f(x̄0)− m

µ


∑
j<i

α∗
j + µD∗

tj (−z∗j )

 .(6.1)
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Note that (6.1) holds even if δi in (4.4) is replaced by δi = δi +Dti(d
∗
i ), as discussed

in section 5.4. Finite termination, at least, is at hand whenever f := limi→∞ f(x̄i) >
−∞.

Lemma 6.1. If f > −∞ and ε > 0, then only finitely many iterations can be
done.

Proof. By Theorem 5.10, only finitely many NS can be done between two consec-
utive SS; from (6.1), −∞ < f ≤ f(x̄0)−mεi/µ, and therefore only finitely many SS
can be done.

Lemma 6.1 gives no information about how “good” the obtained solution is when
the algorithm stops. Without qualification, nothing can be said; if Dt is nonsmooth
in 0—(P5′) does not hold—the fact that 0 is optimal for (1.12) does not imply that x̄
is optimal for (0.1); i.e., a minimum of the generalized Moreau–Yosida regularization
φt may not be a minimum of f .

6.1. Convergence under (P5′)/(P∗5′). The immediate effect of assumption
(P5′)/(P∗5′) is to guarantee convergence of the dual iterates to 0, provided that
f > −∞ and t remains bounded away from zero.

Theorem 6.2. If f > −∞, (P∗5′) holds, ti ≥ t > 0, and ε = 0, then {α∗
i } → 0

and {z∗i } → 0.
Proof. Since ε = 0, {D∗

ti(−z∗i )} → 0 and {α∗
i } → 0. This is guaranteed by the

stopping condition if the algorithm terminates finitely, by Theorem 5.10 if finitely
many SS are done, and by (6.1) and f > −∞ if infinitely many SS are done.

Under (P5′), {D∗
ti(−z∗i )} → 0 and ti ≥ t imply that {z∗i } → 0; in fact, from (P∗4)

{D∗
t (−z∗i )} → 0, so that from (P∗2) all the z∗i belong to a compact set (a proper

level set of D∗
t ) and, extracting a subsequence if necessary, {z∗i } → z∗. D∗

t is lower
semicontinuous; hence

0 = lim inf
i→∞

D∗
t (−z∗i ) ≥ D∗

t (z
∗) ≥ 0.

Due to (P∗5′), D∗
t (z

∗) = 0⇔ z∗ = 0.
The requirement on t can be weakened if D∗

t has the special form (3.4) (which
implies (P∗5′)). In fact, by (6.1) and f > −∞,

∞ >
m

µ

(∑
i→∞

α∗
i + µD∗

ti(−z∗i )
)
≥ m

(∑
i→∞

tiD
∗(−z∗i )

)
.

Hence, we can replace ti ≥ t with the milder condition

if infinitely many SS are done, then
∑
i→∞

ti =∞

and still be guaranteed that {D∗(−z∗i )} → 0. In turn, this implies {z∗i } → 0, since
all the z∗i belong to a proper level set of D∗, which is compact by (P∗2), and D∗ is
strictly convex in 0. Note that, by Theorem 5.8, under proper conditions (3.4) allows
us to drop ti ≥ t > 0 for sequences of NS also.

Therefore, in the following we will assume that

either t is bounded away from zero
(6.2)

or D∗
t has the form (3.4) and

∑
i→∞

ti =∞.
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Yet, without qualification, convergence of the dual iterates does not imply convergence
of the function values; a possibility is the usual “asymptotic complementary slackness”
condition.

Theorem 6.3. If (P∗5′) and (6.2) hold, ε = 0, and lim infi→∞ z∗i x̄i = 0, then
{f(x̄i)} → v(Π).

Proof. If f = −∞, then {x̄i} is a minimizing sequence, so assume f > −∞; the
hypotheses of Theorem 6.2 are satisfied. From (2.9) and f∗β ≥ f∗,

z∗i x̄i = f∗i (z
∗
i ) + f(x̄i)− α∗

i ≥ f∗(z∗i ) + f(x̄i)− α∗
i .

Taking the lim inf on both sides and using the hypothesis, we obtain

0 = lim inf
i→∞

z∗i x̄i ≥ lim inf
i→∞

[f∗(z∗i ) + f(x̄i)− α∗
i ]

≥ lim inf
i→∞

f∗(z∗i ) + lim inf
i→∞

f(x̄i) + lim inf
i→∞

−α∗
i .

Now, use {z∗i } → 0 and {α∗
i } → 0 (by Theorem 6.2), {f(x̄i)} → f , and the lower

semicontinuity of f∗ to obtain 0 ≥ f∗(0)+f , i.e., v(Π) = −f∗(0) ≥ f ; since f ≥ v(Π),
the thesis is proved.

Under (P∗5′), if {x̄i} has a cluster point x∗—which happens, for instance, if only
finitely many serious steps are done—then x∗ is optimal for (0.1); in fact, Theorem 6.2
applies, and therefore {z∗i x̄i} → 0 as {z∗i } → 0. This could have been directly proved
in primal notation using (2.10), the fact that {α∗

i } → 0, and [HL93b, Proposition
XI.4.1.1]. Hence, the bundle algorithm converges at least if f is inf-compact; however,
something better can be done.

Theorem 6.4. If (P∗5′) and (6.2) hold, ε = 0, and f is ∗-compact, then
{f(x̄i)} → v(Π).

Proof. Assume by contradiction that v(Π) < l = f − λ for λ > 0, and let x̂i be
the projection of x̄i over Sl(f). Since f(x̄i) is nonincreasing, f(x̄i) ≤ f(x̄0) = L ∀i;
therefore, by ∗-compactness, ‖x̂i − x̄i‖ ≤ e(l, L) <∞ ∀i. From (2.10), f(x̄i) ≥ f and
the ε-subgradient inequality

f − λ = f(x̂i) ≥ f(x̄i) + z∗i (x̂i − x̄i)− α∗
i ≥ f − ‖z∗i ‖ · ‖x̂i − x̄i‖ − α∗

i

that yield the desired contradiction since, from Theorem 6.2, {z∗i } → 0 and {α∗
i } →

0.
Theorem 6.4 in fact proves that a ∗-compact f is asymptotically well-behaved

(a.w.b.) [Au97]. A sequence {xi} is a stationary sequence for the function f if two
sequences {zi} → 0 and {εi} → 0 exist such that zi is an εi-subgradient of f at xi; f
is a.w.b. if every stationary sequence is a minimizing sequence. In [Au97] it is proved
that f is a.w.b. if and only if all the following three functions

r(l) = inf
x

{
inf
z
{‖z‖ : z ∈ ∂f(x)} : f(x) = l

}
,

k(l) = inf
x

{
inf
z

{
f ′
(
x,

z

‖z‖
)

: z ∈ ∂f(x)
}

: f(x) = l

}
,

l(l) = inf
x

{
(f(x)− l)
dSl(f)(x)

: f(x) > l

}

are strictly positive for each l > v(Π); by Theorem 6.4, ∗-compactness is another
sufficient condition for “well-behavedness.” A result quite similar to Lemma 4.4, in
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a more general setting, can be found in [Au97], but it requires weak coercivity of
f(0 ∈ ri dom f∗). Clearly, ∗-compact functions need not be weakly coercive (take an
affine function). On the other hand, weak coercivity ensures convergence of the primal
iterates as well as of the function values [Au97, Theorem 6], and therefore it can be
a convenient alternative to ∗-compactness when stronger convergence properties are
required.

Note that, even when {x̄i} is guaranteed to be a minimizing sequence, stopping as
soon as x̄i is ε-optimal for some fixed ε > 0 is not straightforward. Indeed, an estimate
of the quality of x̄i is available only if z∗i = 0, since then x̄i is α

∗
i -optimal (use (2.10)).

In practice, the stopping condition has to require that z∗i is “small enough”; this is
the meaning of the extra stopping parameter µ ≥ 1. For D∗

t in the special form (3.4),
for instance, µ makes the stopping condition be that of t∗ = tµ ≥ t; in our experience,
guessing a value of µ that produces a true ε-optimal solution is usually fairly easy.

6.2. The polyhedral case. If f is polyhedral (⇒∗-compact), one can prove
finite convergence for ε = 0; of course, this first requires finite convergence of the 1st
level. The basic result is that, at length, the primal stabilized master problem (1.8)
is equivalent to its nonstabilized version; this follows from the next technical lemma.

Lemma 6.5. Assume that f is polyhedral, (4.1) is satisfied, fβ = f̂β, and a safe β-
strategy is used; for any function h∗ satisfying (P∗1) and (P∗5′) there exists a constant
Ψf > 0 such that, however fixed β, if a z ∈ ∂f̂β(x) exists such that h∗(z) < ψf , then

0 ∈ ∂f̂β(x).
Proof. From (4.1) and the safe β-strategy, there is only a finite number of differ-

ent possible β. Since each f̂β has only a finite set of possible different subdifferentials
[HL93a, Corollary VI.4.3.2], there is a finite set Γf containing all possible subdiffer-

entials of some f̂β at some point x. Let ψ(Z) = infz∈Z{h∗(z)} (≥ 0 due to (P∗1)) and
ψf = min{ψ(Z) : Z ∈ Γf , ψ(Z) > 0} > 0; ψ(Z) = 0 for any Z such that h∗(z) < ψf
for some z ∈ Z. Closedness of the subdifferentials and h∗(z) = 0⇔ z = 0 (via (P∗5′))
do the rest.

Note that, when f itself is polyhedral, there exists one finite β such that f = f̂β ;
hence, a fortiori for each h∗ there exists a ψf > 0 such that z ∈ ∂f(x) and h∗(z) <
ψf ⇒ x is optimal for (Π).

Theorem 6.6. Under the hypotheses of Theorem 5.11 and Lemma 6.5, if f is
bounded below, ti = t > 0, (P∗5′) holds, ε = 0, and m = 1, then the two-level bundle
algorithm finitely solves (Π).

Proof. Setting m = 1 and ε = 0 is allowed by Theorem 5.11; after finitely many
consecutive NS, either the algorithm stops or f̂i(x̄i + d∗i ) = f(x̄i + d∗i ) and an SS
is done. If the algorithm stops, by ε = 0 one has α∗

i = 0 and, from (P5′), z∗i = 0;
therefore, x̄i is optimal (cf. (2.10)). Hence, assume by contradiction that infinitely
many SS are done; by (6.1) and the boundedness of f , as in the proof of Theorem 6.2,

we get {D∗
t (−z∗i )} → 0. Since z∗i ∈ ∂f̂i(x̄i + d∗i ), applying Lemma 6.5 with h∗ = D∗

t

shows that, for large enough i, 0 ∈ ∂f̂i(x̄i + d∗i ); i.e., x̄i + d∗i is a minimum of f̂i.

Hence, at length every f(x̄i) is a minimum of some f̂β ; but from the hypotheses there
are only finitely many different sets β, which contradicts f(x̄+) > f(x̄i).

Note that, as for Theorem 6.2, the requirement over t can be weakened if D∗
t has

the form (3.4).
Let us mention that setting m = 1 all along is only the simplest possibility; what

is really required is that only finitely many “inexact” SS (with ∆f > 0) be performed
between two “exact” SS (with ∆f = 0). Hence, m can be reset to any value < 1 after
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each exact SS, provided that it is set to 1 after finitely many consecutive (inexact)
SS.

7. Convergence of the 3rd level. If (P∗5′) does not hold, convergence requires
t → ∞ and therefore the “three-level” bundle algorithm of Figure 2. Hence, let us
once again change our notation: from now on, the index i refers to the end of the ith
call to the algorithm of Figure 1, with t = ti and ε = εi > 0, from within the cycle of
the “three-level” bundle algorithm. Therefore, the standing assumption is now

conditions sufficient to guarantee finite termination

of the two-level bundle algorithm hold.

We also assume that {ti} → ∞ and {εi} → 0.

7.1. Primal convergence. It is instructive to compare Lemma 5.4 with The-
orem 6.4. In the former—where x̄ is fixed—the optimal values of (1.12) converge to
that of (0.1) without the ∗-compactness assumption, while in the latter—where SS
are allowed—it is required. The same happens with the bundle algorithm.

Theorem 7.1. If f is ∗-compact, then limi→∞ f(x̄i) = v(Π).
Proof. Since ti ≥ ti, {ti} → ∞. The stopping condition implies v(∆i) ≤ εi−f(x̄i),

i.e., v(Πi) + εi ≥ f(x̄i), and since v(Πx̄i,ti) ≥ v(Πi), we obtain v(Π) ≤ f(x̄i) ≤
v(Πx̄i,ti) + εi; now apply Lemma 4.4.

Note that ∗-compactness is used in Lemma 4.4 ⇒ Theorem 7.1 without any
reference to a stationary sequence; hence, unlike Theorem 6.4, a.w.b.-ness could not
be used here. Furthermore, {ti} → ∞ is required in order to solve (Π) with “infinite
accuracy”; a suitably large t suffices for obtaining any finite accuracy (of course, f
must be bounded below). In fact, using Lemma 4.3, it is easy to show that, if f is
bounded below, then for any starting point x̄0 and any fixed ε > 0 there exists a t̄
such that v(Πx̄i,t̄) ≤ v(Π)+ ε (use f(x̄i) ≤ f(x̄0)). Given a suitable estimate of t̄, the
two-level bundle algorithm can directly solve (Π) with any finite accuracy.

Eliminating the ∗-compactness assumption is possible, at the cost of inhibiting—
at length—the serious steps, i.e., using rule (4.iii′). In this case, t needs to go all the
way up to ∞.

Theorem 7.2. With rule (4.iii′) in force, lim infi→∞ f(x̄i + d∗i ) = v(Π).
Proof. Wait for the last SS to be performed, and call x̄(= x̄i) the fixed current

point. Assume by contradiction that lim infi→∞ f(x̄ + d∗i ) − 2δ > v(Π) for some
δ > 0; hence, there exists a d̄ such that f(x̄ + d̄) ≤ f(x̄ + d∗i ) − 2δ ∀i. Due to (P5)
and {ti} → ∞, Dti(d̄) ≤ δ for a large enough i; therefore

v(Πx̄,ti) ≤ f(x̄+ d̄) +Dti(d̄) ≤ f(x̄+ d∗i )− δ ≤ f(x̄+ d∗i ) +Dti(d
∗
i )− δ.

When the inner loop terminates, ∆fi ≤ εi; hence, using (2.6) and v(Πx̄,ti) ≥ v(Πi),

εi + v(Πx̄,ti) ≥ εi + v(Πi) ≥ ∆fi + v(Πi) = f(x̄+ d∗i ) +Dti(d
∗
i ),

which leads to εi ≥ f(x̄+ d∗i )+Dti(d
∗
i )− v(Πx̄,ti) ≥ δ, contradicting {εi} → 0.

7.2. Dual convergence. From the dual viewpoint, {x̄i + d∗i } is a maximizing
sequence for the Lagrangian dual of (1.2) w.r.t. the constraints z = 0 (cf. section 1),
and {zi} are the optimal solutions of the corresponding dual pricing problems (1.3),
with x̄ = x̄i+d∗i . Further, from f∗ ≤ f∗i and (2.8), the alternative stopping condition
of (4.iii′) (∆fi ≤ εi) gives

f∗(z∗i )− z∗i (x̄i + d∗i ) ≤ f∗i (z
∗
i )− z∗i (x̄i + d∗i ) ≤ f∗(zi)− zi(x̄i + d∗i ) + εi,
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i.e., z∗i is an εi-optimal solution for (1.3) with x̄ = x̄i + d∗i . Using (1.v) in the above
relation gives

z∗i ∈ ∂εif(x̄+ d∗i ),

i.e., εi-optimal solutions for (1.3) are εi-subgradients of f ; this is of particular interest
when f itself is a dual function (cf. section 9). Thus, if {x̄i+d∗i } → x∗ and {z∗i } → z∗,
then z∗ ∈ ∂f(x∗) [HL93b, Proposition XI.4.1.1]; one would like to show that {z∗i } → 0
whenever f is bounded. This is possible, and it does not require ∗-compactness.

Theorem 7.3. If f is bounded below and rule (4.iii′) is in force, then {z∗i } → 0.
Proof. Using (2.1) and Dti ≥ 0, we obtain

−v(∆i) = v(Πi) = fi(x̄i + d∗i ) +Dti(−z∗i ) ≥ fi(x̄i + d∗i ).

Using the previous relation with the stopping condition of (4.iii′), ∆fi = f(x̄i+ d∗i )−
fi(x̄i + d∗i ) ≤ εi, gives, together with boundedness of f and monotonicity of {εi},

v(∆i) ≤ −fi(x̄i + d∗i ) ≤ εi − f(x̄i + d∗i ) ≤ ε0 − v(Π) <∞.
Now, using (2.9) and f∗i ≥ f∗, one obtains

∞ > v(∆i) = f∗i (z
∗
i )− z∗i x̄i +D∗

ti(−z∗i ) ≥ D∗
ti(−z∗i )− f(x̄i).

By rule (4.iii′), only finitely many serious steps are done, hence at length, f(x̄i) = f(x̄)
for a fixed x̄; by (P∗5), ‖z∗i ‖2 ≥ ε > 0 for infinitely many i and {ti} → ∞ imply
{D∗

ti(−z∗i )} → ∞.
Note that, if f is bounded below, a dual proof of Theorem 7.1 exists, using

Theorem 7.3 ({z∗i } → 0) and the fact that {x̄i} is a stationary sequence; however, the
case of f unbounded below would need a separate treatment (a.w.b.-ness is tailored
over bounded functions with unbounded level sets).

7.3. The polyhedral case. The three-level bundle method allows us to drop
assumption (P5′) from the finite termination proofs in the polyhedral (⇒∗-compact)
case. Indeed, for bounded polyhedral functions one can prove the following strength-
ened form of Lemma 4.4, where zt and dt denote the optimal solutions of (∆x̄,t) and
(Πx̄,t), respectively.

Lemma 7.4. If f is polyhedral and bounded below, then for each L < ∞ there
exists a t > 0 such that x̄ + dt is an optimal solution of (Π) ∀t > t and x̄ such that
f(x̄) ≤ L.

Proof. Fix any x̄ such that f(x̄) ≤ L; it is easy to show, mirroring Theorem 7.3,
that {zt} → 0 for t → ∞ (use D∗

t (−zt) − L ≤ D∗
t (−zt) − f(x̄) ≤ f∗(zt) − ztx̄ +

D∗
t (−zt) = v(∆x̄,t) ≤ −v(Π) <∞ and (P∗5)). Then, using zt ∈ ∂f(x̄+ dt) (cf. (2.3))

and Lemma 6.5 with h∗ = ‖ · ‖, we obtain that, for large enough t, 0 ∈ ∂f(x̄ + dt);
i.e., x̄+ dt is a minimum of f .

This result allows us to derive a finite convergence proof; since f is polyhedral,
we can directly fix εi = 0 and use rule (4.iii′′).

Theorem 7.5. Under the hypotheses of Theorem 5.11 and Lemma 6.5, if εi = 0 ∀i
and rule (4.iii′′) is in force, then the three-level bundle algorithm finitely solves (Π).

Proof. From Theorem 5.11, we know that only finitely many consecutive NS can
be done: either the normal stopping rule fires or an SS is performed. However, from
rule (4.iii′′), only finitely many SS can be done; hence, either the stopping rule fires, or
a sequence of consecutive NS is started. Theorem 5.11 tells us that such a sequence
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finitely produces ∆f = 0; hence the two-level bundle algorithm finitely terminates
with either α∗ +D∗

t (−z∗) = 0 or ∆f = 0.
If α∗

i + D∗
ti(−z∗i ) = 0 happens infinitely many times, α∗

i = 0 and (2.10) tell us
that z∗i ∈ ∂f(x̄i). Theorem 7.3 shows that ‖z∗i ‖ → 0 as {ti} → ∞; hence, applying
Lemma 6.5 with h∗ = ‖·‖ shows that, for large enough i, 0 ∈ ∂f(x̄i), i.e., x̄i is optimal
for (Π). If ∆fi = 0 happens infinitely many times, recall from (2.7) that this means
that d∗i is optimal for (Πx̄i,ti) and use Lemma 7.4.

Let us remark that the three-level bundle algorithm applied to a polyhedral f
lacks a convenient stopping criterion; either x̄i or x̄i + d∗i at some point becomes
optimal, but there is no easy way to tell when this happens. In order to be able to
stop, either the solver of (∆β,x̄,t) should always return z∗ = 0 whenever it can, or an
estimate of t of Lemma 7.4 should be available.

8. Extensions. The generalized bundle algorithm presented in the previous
paragraphs can incorporate a number of important algorithmic variants. For in-
stance, (4.iv) allows us to seamlessly add a line search on d∗, provided only that, at
length, the unit step is always probed. (4.i)–(4.iii) allow us to adapt the curved search
approach of [SZ92] to our more general setting; other t-strategies, originally devised
for Dt =

1
2t‖ · ‖22, can be adapted as well [Fr97, section I.5]. Multiple [ε-]subgradients

can be added to β at each call of the oracle if the latter is—as happens in some
applications—capable of providing them. Finally, it should not be hard to extend
the proofs of convergence to the case in which f is not computed exactly, following
what is done in [GV97, Ki99]. More complex extensions are discussed in the following
section.

8.1. The constrained case. Generalized bundle methods can cope with con-
straints x ∈ X if X is a closed convex set. Basically, all that is needed is to insert full
knowledge about X into (1.8), i.e., to solve at each iteration

(Πβ,x̄,t) inf
d
{fβ(x̄+ d) +Dt(d) : (x̄+ d) ∈ X}.(8.1)

Problem (8.1) can be viewed as (1.8) using the restricted model fX,β = fβ+IX , which
is a model of the actual function to be minimized, the restricted function fX = f+IX .
Under the natural assumption that x̄ ∈ dom fβ ∩ X, the dual of (8.1) is just (1.9)
with f∗β replaced by

f∗X,β(z) = (fβ + IX)∗(z) = inf
w
{f∗β(z − w) + σX(w)}(8.2)

(see [HL93b, Theorem X.2.3.1]) as (IX)∗ = σX . The problem can be written in a
“direct” form, avoiding the complicated-looking infimal convolution (8.2), by means
of the simple variable change z = z̄ + w:

(∆β,x̄,t) inf
z̄,w
{f∗β(z̄) + σX(w)− x̄(z̄ + w) +D∗

t (−z̄ − w)}.(8.3)

The extension of the theory is not completely straightforward: fX is not finite ev-
erywhere, and fX,β is a model of fX rather than of f . Hence, (2.3)/(2.4) are
valid with fX,β replacing fβ ; in particular, we have that z∗ ∈ ∂fX,β(x̄ + d∗). On
the other hand, the black box produces subgradients of f rather than of fX , i.e.,
z ∈ ∂f(x̄ + d∗)(x̄ + d∗ ∈ X); there is an “asymmetry” that has to be taken into
account.
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The main observation is that some of the properties of z∗ have now to be referred
to z̄∗. In fact, from f∗X,β(z

∗) = f∗β(z̄
∗)+σX(w∗) and z∗ ∈ ∂fX,β(x̄+ d∗), using (1.vi),

we obtain

[f∗β(z̄
∗)− z̄∗(x̄+ d∗) + fβ(x̄+ d∗)] + [σX(w∗)− w∗(x̄+ d∗) + IX(x̄+ d∗)] = 0.

By (1.vii) both quantities in square brackets are nonnegative, and therefore both must
be zero; hence, by (1.vi) we get z̄∗ ∈ ∂fβ(x̄ + d∗) (and w∗ ∈ ∂IX(x̄ + d∗)). Thus, in
the constrained case one has to carefully distinguish z̄∗ from z∗. For instance, when
aggregation is done, it is z̄∗, together with its f∗-value f∗i (z̄

∗
i ), that is added to β

instead of z∗; the inequality in Definition 5.6 becomes

f∗i (z̄
∗
i ) ≥ f∗+(z̄

∗
i ).(8.4)

In this setting, Lemma 5.2 proves that {z̄∗i }, rather than {z∗i }, is bounded; however,
Lemma 5.1 and Lemmas 5.3–5.6 do not change. The boundedness of {z̄∗i } also implies
that of {z∗i } under certain assumptions, as the following lemma shows.

Lemma 8.1. If (P∗3) holds, D∗
t has the form (3.4), and {z̄∗i } is bounded, then

{z∗i } is bounded.
Proof. Since (z̄∗i , w

∗
i ) is the optimal solution of (8.3) and σX(w∗

i ) − x̄w∗
i ≥ 0 as

x̄ ∈ X, we have

f∗i (z̄
∗
i )− x̄z̄∗i +D∗

i (−z̄∗i − w∗
i )

≤ f∗i (z̄
∗
i ) + σX(w∗

i )− x̄(z̄∗i + w∗
i ) +D∗

i (−z̄∗i − w∗
i ) ≤ f∗i (z̄

∗
i )− x̄z̄∗i +D∗

i (−z̄∗i ),
and therefore

D∗
i (−z̄∗i − w∗

i ) ≤ D∗
i (−z̄∗i ).(8.5)

Since D∗
t has the form (3.4), we can divide both sides of (8.5) by ti to obtain

D∗(−z̄∗i − w∗
i ) ≤ D∗(−z̄∗i ).

Since, by (P∗3), D∗ is finite everywhere and {z̄∗i } is bounded, the left-hand side is
finite; therefore, all z∗i = −z̄∗i − w∗

i belong to a level set of D∗, which is compact by
(P∗2).

In order to extend the proof of Theorem 5.7, “asymmetric” definitions of hi and
ri,

hi(γ) := [f∗X,i(z
∗
i )(1− γ) + f∗(zi)γ − zi(γ)x̄+ f(x̄)] +D∗

ti(−zi(γ)),
ri(z) := f∗X,i(z)− zx̄+ f(x̄) = f∗X,i(z)− zx̄+ fX(x̄) ≥ 0,

are required. Using (8.4), one obtains

f∗X,i(z
∗
i ) = f∗i (z̄

∗
i )+σX(w∗

i ) ≥ f∗+(z̄
∗
i )+σX(w∗

i ) ≥ inf
w
{f∗+(z∗i−w)+σX(w)} = f∗X,+(z

∗
i ),

while from (4.iv) and σX(0) = 0,

f∗(zi) ≥ f∗+(zi) = f∗+(zi) + σX(0) ≥ inf
w
{f∗+(zi − w) + σX(w)} = f∗X,+(zi);

now, proceeding as in section 5.2 v(ϑi) = v(∆+) + f(x̄) is readily obtained. Further-
more, (2.6)/(2.8) can be written (in an asymmetric fashion) as

∆f = f(x̄+ d∗)− fX,β(x̄+ d∗) = f∗X,β(z
∗)− f∗(z) + (x̄+ d∗)(z − z∗),(8.6)
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which easily gives the equivalent to (5.4),

h′i(0) = −∆fi < −(1−m)[f∗X,i(z
∗
i )− z∗i x̄+D∗

ti(−z∗i ) + f(x̄)] = −(1−m)hi(0),

which allows us immediately to extend the proofs of Theorems 5.7 and 5.8 to the
constrained case. Note that D∗

t = 1
2 t‖·‖22 has both the forms (3.3) and (3.4); therefore,

exploiting Lemma 8.1, our convergence results for fβ = f̂β generalize the best ones
known for the proximal bundle case.

The only difficulty in extending the proof of Theorem 5.9 comes from the fact
that (5.7) does not guarantee f∗X,i(zh) = f∗X(zh) ∀i ≥ h. However, fX,i ≥ fi and (5.7)
give f∗X,i(zh) ≤ f∗i (zh) = f∗(zh); thus, operating as in Theorem 5.9, one obtains the
equivalent to (5.8):

f∗(zh)− (x̄+ d∗i )zh ≥ f∗X,i(z
∗
i )− (x̄+ d∗i )z

∗
i ∀i > h.

Combined with the “asymmetric” definition (8.6) of ∆fi (with z = zi), this gives
(5.10). All the other results in section 5 plainly extend to the constrained case.

It is then easy to check that almost all other results in section 6 and section 7
remain valid, with the only provision being that we look at fX , rather than at f ,
as the actual function to be minimized. In particular, note that, by (8.1), x̄ + d∗ is
always feasible and rule (4.iv) can be satisfied. The only exceptions are the results
about polyhedral functions, which also require X to be a polyhedral set. In fact,
it is easy to prove that Lemma 6.5 fails if X is not polyhedral, as fX may have
infinitely many different subdifferentials (take f affine and X = B2(δ)). However, if
f satisfies condition (4.1) and X is polyhedral, then fX has finitely many different
subdifferentials; this allows us to extend Lemma 6.5 and all the subsequent results.

Finally, let us mention that, when X is a polyhedron Hx ≤ h, (8.3) boils down
to

(∆β,x̄,t) inf
z,ω
{f∗β(z) + ωh− x̄(z + ωH) +D∗

t (−z − ωH) : ω ≥ 0}

(ω being the “dual” variables). In this case, it is not even required that all the defining
inequalities of X be known in advance; when an unfeasible x is probed, the black box
should just return +∞ and some “extremal” violated inequality. (Assumption (4.1)
on the black box must be satisfied.) Clearly, only finitely many steps are required to
eventually acquire a complete description of X.

8.2. Decomposable functions. Another important extension is a different
treatment of decomposable functions,

f(x) =
∑
h∈K

fh(x),

where 1 < |K| = k < ∞; examples are cost-decomposition approaches to block-
structured convex problems [PZ92, GK95, CFG01]. Here, the computation of each
fh(x̄) gives a zh ∈ ∂fh(x̄); rather than aggregating this information into the unique
z =

∑
h∈K zh, one may keep it in a disaggregated form [Ki95, GV97], where β is

partitioned into k disjoint subsets βh and there is one model fhβ for each fh. The
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disaggregated subproblems

(Πβ,x̄,t) infd

{∑
h∈K

fhβ (x̄+ d) +Dt(d)

}
,

(∆β,x̄,t) infz

{∑
h∈K

(fhβ )
∗(zh)−

(∑
h∈K

zh

)
x̄+D∗

t

(
−
∑
h∈K

zh

)}

are then solved instead of the aggregated versions. Using the disaggregated model
fKβ =

∑
h∈K fhβ is well known to be potentially beneficial: in the polyhedral case, for

instance, f̂Kβ is a (much) better description of f than the ordinary aggregate model

f̂β .
It is easy to show that the “critical” properties are inherited by the disaggregated

model fKβ if they hold for all the fhβ individually. For (4.iv), for instance, one has

that (fh+)
∗(zh) ≤ (fh)∗(zh) ∀h implies

f∗(z) =
∑
h∈K

(fh)∗(zh) ≥
∑
h∈K

(fh+)
∗(zh) ≥ inf

z̄

{∑
h∈K

(fh+)
∗(z̄h) :

∑
h∈K

z̄h = z

}
= (fK+ )∗(z).

Analogously, it is possible to show that if (4.7)/(5.7) hold for all the fhβ , then they

hold for fKβ . Thus, the analysis of the previous paragraphs immediately extends
to the “disaggregated” variant of generalized bundle methods, independently on the
stabilizing term Dt. Of course, these results can be used together with those of
section 8.1 to construct a disaggregated constrained generalized bundle method.

9. Comparisons. A number of algorithms that have been proposed in the liter-
ature can be shown to be special cases of, or closely related to, the generalized bundle
algorithm.

9.1. Other bundle approaches. The algorithm in Figure 1 covers the proximal
bundle method [HL93b, Algorithm XV.3.3.4], where Dt =

1
2t‖ · ‖22 and D∗

t = 1
2 t‖ · ‖22.

A dual interpretation of this method is well known [HL93b, section XV.2.4]: (1.9) is
a Lagrangian relaxation of the problem of finding the steepest ε-descent direction for
f̂β in x̄. Historically, this dual interpretation motivated the development of the first
bundle methods; however, it has drawbacks in that (1.9) (resp., (1.11)) is described
in terms of a “local” object, the ε-subdifferential of fβ (resp., f) in x̄, so that it is
difficult to relate two problems corresponding to different current points. Conceptual
descent methods have been proposed, based on this dual interpretation, where the L2-
norm in the dual is replaced with any norm ||| · ||| (see [HL93a, Algorithm VIII.2.1.5]);
however, this does not readily extend to other forms of bundle methods, where Dt is

– 1
t ‖ · ‖p for p ≥ 1 (in practice, the L1- and L∞-norms) [KCL95];

– 1
th(|||d|||), where ||| · ||| is any norm and h is a convex continuous and dif-
ferentiable function with invertible derivative such that h(0) = h′(0) = 0
[Be96];

– 1
tD(d) for D strictly convex, strongly coercive, differentiable, and finite ev-
erywhere [Au87];

– the indicator function of the ball of radius t under some norm ||| · |||; this
amounts to restricting the next trial point inside a trust region [HL93b, Al-
gorithm XV.2.1.1].
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It is easy to see that conditions (P1)–(P5) are less restrictive than all those above.
Remarkably, the convergence proofs for the first three cases, whereDt(0) = 0⇔ d = 0,
are quite different from those used in the fourth case, where Dt(d) = 0 in some ball
around the origin. Our analysis is the first that covers both situations in a uniform
way. Furthermore, our analysis is the first that fully exploits duality. In [Be96] it was
noted that using a norm ||| · ||| in the primal leads to some dual problem involving the
conjugate norm ||| · |||∗, much in the spirit of [HL93a, Algorithm VIII.2.1.5], but this
was not extended to a dual interpretation of the algorithm. In [Au87], (1.9) is only
used to prove [Au87, Theorem 2.3]. In other cases duality was completely overlooked,
even when linear duality could have been used [KCL95]. A first step towards this
development was done in [Fr97], where D∗

t = 1
t ‖ · ‖p with p ∈ {1, 2,∞} was studied;

due to the interpretation of (1.9) in terms of ε-subgradients, those bundle variants
had an interest on their own, as a bundle algorithm with a dual trust region was one
of the open questions in [HL93b, Remark XV.2.5.1].

Other approaches directly related to generalized bundle methods are proximal-
type algorithms; there, the stabilized problem (1.12) is solved with a “nonuniform”
stabilizing term, which depends on x̄ as well as on t. This is used to incorporate
constraints in the stabilizing term, which also serves as a barrier function to keep
the iterates feasible. Stabilizing terms studied in the literature are either D-functions
[Ec93, CT93],

Dx̄,t(d) =
1

t
(ψ(x̄+ d)− ψ(x̄)−∇ψ(x̄)d),

where ψ is a fixed strictly convex and differentiable function such that the level sets
of Dx̄,t are compact, or ϕ-divergences [IST94, IT95, Te97],

Dx̄,t(d) =
1

t

∑
i=1,...,n

x̄iϕ

(
x̄i + di
x̄i

)
,

where ϕ is a fixed univariate function that is (among other things) continuously dif-
ferentiable, strictly convex, and such that ϕ(1) = ϕ′(1) = 0. These stabilizing terms
satisfy (P1), (P4), and (P5), and they have bounded level sets [IST94] which contain
0 in the interior if x̄ lies in the zone of Dx̄,t (int dom ψ in the first case and �n++ in
the second), where proximal-type algorithms work. Conditions parallel to (P3) and
(P3′) are also required: boundedness of f , that corresponds to (P3′), is widely used,
but in [CT93] the requirement is rather im ∇ψ = �n, i.e., dom ψ∗ = �n, i.e., (P∗3)
as

D∗
x̄,t(z) =

1

t
ψ∗(tz +∇ψ(x̄))− x̄(tz +∇ψ(x̄)) + ψ(x̄).

In both cases, Dx̄,t is differentiable and Dx̄,t(d) = 0 ⇔ d = 0; this is not required in
our approach, even though both differentiability (in 0) and strict convexity help to
enhance (different parts of) the convergence proofs. Also, all of the above methods
require the exact solution of (1.12), which is a rather strong condition. Finally, our
dual viewpoint extends the one that has been developed for proximal-type algorithms,
which is limited to the case in which (0.1) is itself a Lagrangian dual (cf. section 9.2).

The differentiability of Dx̄,t, but not strict convexity, is dropped in [Ki98], where
B-functions are introduced; there, the compactness requirement is also different.
(There is no need for “local” compactness, as the solution of (1.12) is assumed to
be given.) An implementable version of the proximal method using B-functions, the
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bundle Bregman proximal method, is then proposed in [Ki99]. The analysis provides
strong convergence results, for instance allowing inexact solution of the stabilized
master problem and avoiding the ∗-compactness assumption. However, it does not
subsume the results of the present article, which do not require the stabilizing term
to be a B-function. Furthermore, our “more technical” (cf. [CL93, Remark 4.6]) dual
proof of Theorem 5.7 provides estimates on the rate of convergence during NS se-
quences, and we don’t require fβ to be the cutting plane model, thereby allowing
easy extensions, e.g., to the disaggregated case (cf. section 8.2).

Finally, a related but different approach can be found in [Nu97]. There, the dual
object is the graph of the ε→ ∂εf(0) mapping, which is equivalent (modulo a rotation)
to epi f∗. The approach in [Nu97] can be summarized, in our notation, as follows: at

each step i, find a separating hyperplane between epi f̂∗i and the point (−f
i
, 0), where

f
i
is the best f -value found so far. The hyperplane must be nonvertical, i.e., in the

form (1,−xi); it is easy to check that (1,−xi) is a separating hyperplane if and only if

f̂i(xi) ≤ f
i
. Condition (P∗3′) is required in order to ensure that f̂∗i (0) <∞. Not all

choices of separating hyperplanes give a convergent algorithm; in [Nu97], an abstract
rule is given, and an implementation is proposed under the form of the min-problem

inf
σ,z
{|||(−f

i
, 0)− (σ, z)||| : (σ, z) ∈ epi f̂∗i },(9.1)

where ||| · ||| is any norm whose dual optimal solution provides xi. Problem (9.1) is
clearly related to (1.9) (cf. [Fr98]), but with a decidedly different flavor. On one hand,

in (9.1) the cost function of the f̂∗-values need not be linear, but, on the other hand,
D∗
t in (1.9) need not be norm-like. Furthermore, the treatment in [Nu97] ignores the

concept of current point and the updating of the proximal parameter t.
To conclude this section, let us mention that there are important classes of bun-

dle methods that are not covered by our analysis: such are proximal level meth-
ods [LNN95], [HL93b, Algorithm XV.2.3.1], analytic center cutting plane methods
[Ne95, GV97], dual ε-descent algorithms [HL93b, Algorithm XIV.3.4.2], algorithms
based on a biobjective view of the direction finding problem [Fu98], and Newton-type
bundle methods [LS98, LV98, MSQ98]. The extension of our theory to some of the
above algorithms might be possible and is currently under research.

9.2. Algorithms for structured convex problems. It is well known that,
under proper assumptions [HL93b, Chap. XII], the convex problem

(P) sup
u
{c(u) : h(u) = 0, u ∈ U}(9.2)

is equivalent to its Lagrangian dual (0.1), where

(Dx̄) f(x̄) = sup
u
{c(u) + x̄h(u) : u ∈ U}.(9.3)

Here,

f∗(z) = sup
x

{
− sup

u
{c(u) + x(h(u)− z) : u ∈ U}

}
(9.4)

= − sup
u
{c(u) : h(u) = z, u ∈ U}.(9.5)

((9.4) is the Lagrangian dual of (9.5), whence the identity.) Thus, −f∗ is the value
function of (9.2) w.r.t. the constraints h(u); plugging (9.5) into (1.11), one obtains

(Dx̄,t) sup
u
{c(u) + x̄h(u)−D∗

t (−h(u)) : u ∈ U}.(9.6)



GENERALIZED BUNDLE METHODS 153

Hence, generalized bundle methods applied to a Lagrangian dual are approximated
generalized augmented Lagrangian approaches to the solution of (9.2). If c and h are

affine, and the cutting plane model f̂β is used, in view of (1.7) the stabilized dual
master problem (1.9) becomes

(Dβ,x̄,t) inf
z


inf

θ


∑
u∈β
−c(u)θu :

∑
u∈β

h(u)θu = z, θ ∈ Θ


− zx̄+D∗

t (−z)



= sup
u
{c(u) + x̄h(u)−D∗

t (−h(u)) : u ∈ Conv(β) = Uβ},

(9.7)

where β is now considered a set of optimal solutions ui ∈ U of the dual pricing
problem (1.3) such that zi = h(ui). Thus, the generalized bundle method uses an
inner linearization approach, where U is substituted with its inner linearization Uβ , to
approximately solve (Dx̄,t). In fact, let u∗ be the optimal solution of (9.7); from (4.7),
the sequence {z∗i = h(u∗i )} of optimal solutions of (1.9) corresponds to a sequence
{u∗i } of α∗

i -optimal solutions for (9.3) (cf. section 6.1). If {z∗i } → 0 and {α∗
i } → 0,

any cluster point of {u∗i } is optimal for (9.2). Similar results hold for inequality
constraints h(u) ≤ 0.

Hence, generalized bundle methods are related to nonquadratic penalty meth-
ods. For instance, in [PZ92, PZ94], (9.6) is considered with x̄ = 0 and D∗

t (z) =
t
∑

i Φ
∗
ε(zi)⇒ Dt(z) = t

∑
i Φε(

1
t di) for some ε > 0 and

Φ∗
ε(zi) =




z2
i

2ε
if − ε ≤ zi ≤ ε,

|zi| − ε

2
otherwise,

Φε(di) =




ε

2
d2
i if − 1 ≤ di ≤ 1,

+∞ otherwise.

Here Φε is a smooth approximation of the nonsmooth exact penalty function t‖z‖1.
The algorithm of [PZ94] requires us to compute an exact optimal solution u∗ of
(9.6) for given t and ε, and then either increases t if ‖h(u∗)‖∞ > ε (u∗ is not ε-
feasible), or decreases ε otherwise. The suggested procedure for solving (9.6), used
in [PZ92], is simplicial decomposition, i.e., inner linearization. Hence, in the affine
case the algorithm in [PZ94] is very similar to a three-level bundle algorithm that
never performs SS. The only difference is that ε is not decreased to improve the
approximation of (9.6) (which is assumed to be exactly solved, although this may not
be practical) but rather to forceDt to behave more and more like t‖·‖1; however, this is
permitted by our theory. Thus, a generalized bundle method with the above D∗

t offers
an alternative to the algorithm of [PZ94], which may be more efficient because (9.6)
is only approximately solved and changes of x̄ are allowed. Furthermore, we remark
that, although Φε is mentioned in [PZ94], the corresponding stabilized primal master
problem is not described there; however, the corresponding (1.9) is a box-constrained
quadratic problem that could be solved with specialized codes (see [Ki89, Fr96]) more
efficiently than the nonlinear problem (9.7).

A similar idea has been used to develop ε-approximation algorithms for
(block-)structured convex problems [GK95]. In order to solve (9.2) (with h(u) ≤ 0),
(9.6) (with x̄ = 0) is considered, where

D∗
t (z) = ln

∑
i

etzi .(9.8)
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This D∗
t is a smooth approximation of t‖z‖∞, i.e., (lnn) + t‖z‖∞ ≥ D∗

t (z) ≥ t‖z‖∞.
Problem (9.6) is then approximately solved with an inner linearization approach, i.e.,
solving (9.7) and using the gradient of D∗

t in z∗ (resp., u∗) to generate a new point
z (resp., u). At each step, only the “minimal” bundle {u∗, u} is kept. (D∗

t satisfies
(P∗3′′)). This approach is not exactly a generalized bundle method, as D∗

t is not
zero in the feasible region. However, generalized bundle methods could use slightly
modified forms of the above exponential penalty function while allowing changes in
x̄.

10. Conclusions. We have proved convergence of several variants of generalized
bundle methods; different convergence properties can be obtained according to the
characteristics of the function to be minimized and of the stabilizing term employed.
The statements of the properties needed for convergence allow great flexibility in the
implementation of the algorithm; several different t-strategies and β-strategies, which
are well known to be crucial in practice, can be fitted within this framework.

Our conditions on Dt are less restrictive than those in [Au87, KCL95, Be96],
are different from those in [Ki99], and allow a unified treatment of “penalty-like”
and “trust-region-like” stabilizing terms [HL93b, sections XV.2.1 and XV.2.2], which
have so far been considered as distinct. Very little regularity is required for Dt(d) as a
function of t. Weak requirements on f , such as ∗-compactness, avoid stronger require-
ments on Dt. A distinguishing feature of our analysis is the extensive exploitation of
a new dual viewpoint of bundle methods. Some algorithms that have been proposed
outside the bundle framework [PZ94, GK95] can be shown to be closely related to our
class.

Our results suggest that practical implementations of generalized bundle algo-
rithms are possible with several different nonquadratic stabilizing terms; examples
are primal and/or dual trust regions based on “linear” (L1- or L∞-)norms, which
require the solution of just a linear program at each step. Preliminary computational
experiences [Be96] seem to confirm the effectiveness of these approaches. Other sta-
bilizing terms, e.g., exponential or linear-quadratic, may exhibit better convergence
in practice than the L2-norm, and thus compensate for the more difficult subproblem
to be solved.

Finally, it may be possible to extend these results to an even larger class of bundle
algorithms.
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for his numerous and detailed comments and for pointing out several glitches, among
which was an error in the proof of Theorem 7.3.

REFERENCES

[Au87] A. Auslender, Numerical methods for nondifferentiable convex optimization, Math. Pro-
gram. Study, 30 (1987), pp. 102–126.

[Au97] A. Auslender, How to deal with the unbounded in optimization: Theory and algorithms,
Math. Programming, 79 (1997), pp. 3–18.

[ACC93] A. Auslender, R. Cominetti, and J.-P. Crouzeix, Convex functions with unbounded
level sets and applications to duality theory, SIAM J. Optim., 3 (1993), pp. 669–687.

[Be96] C. Berger, Contribution à l’Optimisation Non-Différentiable et à la Décomposition en
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ziabili, Ph.D. Thesis, DEIS, Università della Calabria, Calabria, Italy, 1998.

[GK95] M. D. Grigoriadis and L. G. Kahchiyan, An exponential-function reduction method
for block-angular convex programs, Networks, 26 (1995), pp. 59–68.

[GM91] M. Gaudioso and M. F. Monaco, Quadratic approximations in convex nondifferentiable
optimization, SIAM J. Control Optim., 29 (1991), pp. 58–70.

[GV97] J. Gondzio and J.-P. Vial, Warm Start and ε-Subgradients in Cutting Plane Scheme
for Block-angular Linear Programs, Logilab Technical report, 1997.1, Paris, France,
1997.
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ON THE PROBLEM OF OPTIMAL CUTTING∗
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Abstract. This paper deals with the existence of an optimal cutting in a membrane satisfying
the following assumption: it has to connect two given points in order to leave the membrane the
strongest possible. We prove the existence of a solution for this problem in a rather general setting,
and we present some open questions related to the regularity of the optimum or to possible extensions
for plates in the elasticity framework.

Key words. optimal cut, membrane, variation of a crack
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1. Introduction. The main purpose of this paper is to raise the question of
existence and regularity of an optimal “cut” in a membrane with the only constraint
being that the cut has to connect two or more a priori given points and to leave
the membrane the strongest possible. More precisely, the problem, illustrated in
Figure 1.1, can be modeled as follows.

u0 Γ

A

BΩ

Fig. 1.1. An admissible cut Γ in the membrane Ω.

Notice that, in general, admissible cuts Γ do not need to be curves; for instance,
if we want to connect three points we have to expect that the optimal cut has a triple
junction shape.

Let Ω be a two-dimensional bounded open set with a smooth boundary (say, the
rectangle in the figure above), u0 ∈ H1(Ω), and A,B two given points in Ω. An
admissible cut in Ω will simply be a compact connected subset Γ of Ω containing the
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points A and B, and we denote by Uad the class of admissible cuts, that is,
Uad =

{
Γ ⊆ Ω : A,B ∈ Γ, Γ is compact and connected}.

For every Γ ∈ Uad, the energy E(Γ) associated with Γ will be

E(Γ) = min
{∫

Ω\Γ
|∇u|2 dx : u ∈ H1

loc(Ω \ Γ), u = u0 on ∂Ω

}
,

so that the optimization problem we deal with can be written as

max
{E(Γ) : Γ ∈ Uad}.(1.1)

For fixed Γ ∈ Uad, the function uΓ ∈ H1
loc(Ω \ Γ) minimizing the energy of the

membrane is the weak variational solution of the following problem:{ −∆uΓ = 0 in Ω \ Γ,
∂uΓ

∂n = 0 on ∂Γ, uΓ = u0 on ∂Ω \ Γ.(1.2)

A similar situation occurs in the so-called image segmentation problem, where, given
a function g ∈ L2(Ω), the energy of a segmentation Γ is

E(Γ) = min
{∫

Ω\Γ
|∇u|2 dx+

∫
Ω\Γ

(u− g)2 dx : u ∈ H1(Ω \ Γ)
}

.

The optimal segmentation of the image g is then obtained by minimizing the Mumford–
Shah functional, i.e., by solving the optimization problem

min
{E(Γ) +H1(Γ) : Γ ∈ Uad

}
,(1.3)

where Uad is the family of compact sets contained in Ω and H1(Γ) is the one-
dimensional Hausdorff measure of Γ. For a given Γ, the minimizer uΓ of the energy
satisfies in this case the following equation:{ −∆uΓ + uΓ = g in Ω \ Γ,

∂uΓ

∂n = 0 on Γ ∪ ∂Ω.
(1.4)

Let us observe that problems (1.1) and (1.3) are somehow similar in the sense that for
a given Γ the minimizer of the energy solves an elliptic equation with homogeneous
Neumann boundary conditions on Γ. From this point of view, one has to study in
both problems the dependence of the solution of a Neumann problem on the geometric
variation of Γ.

Problems (1.1) and (1.3) are nevertheless deeply different. First of all, in problem
(1.1) one has to maximize the energy, while in problem (1.3) one has to minimize
it. This is the main reason why problem (1.3) can be seen as a minimum problem
in the space SBV (see [2]), the “crack” Γ being seen as the “jump set” of the SBV
function u.

A second difference is that the elliptic equation (1.4) has a zero order term;
therefore the solution belongs to the Sobolev spaceH1(Ω\Γ). The solution of problem
(1.2) belongs only to the Dirichlet space (see [15])

L1,2(Ω \ Γ) = {u ∈ H1
loc(Ω \ Γ) : ∇u ∈ L2(Ω \ Γ)},
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which coincides with H1(Ω \ Γ) only if Γ is smooth enough, for instance, Lipschitz
continuous and connected (see [17, Corollary 2.2, p. 21]).

Another main difference between problems (1.1) and (1.3) is the presence of the
penalty term given by the Hausdorff measure. Without this term the minimizer of
the Mumford–Shah functional would not exist in general, the infimum being equal to
zero. On the other hand, the presence of this term in functional (1.1) is not necessary
(for the existence of a solution). From an intuitive point of view, since one looks for
the strongest membrane, the length of the crack should not be too big. One could
add in problem (1.1) a penalty term given by the Hausdorff measure by considering
the following:

max
Γ∈Uad

min

{∫
Ω\Γ
|∇u|2 dx− αH1(Γ) : u ∈ H1

loc(Ω \ Γ), u = u0 on ∂Ω \ Γ
}

,(1.5)

where α > 0 is fixed. In this case, the existence of an optimal crack could be derived
as a consequence of the result of Chambolle and Doveri [11].

An approach by duality was followed by Dal Maso and Toader in [12] where they
studied a model for the quasi-static growth of brittle fracture. They dealt with an
optimization problem of the type

min
Γ∈Uad

min

{∫
Ω\Γ
|∇u|2 dx+ αH1(Γ) : u ∈ H1

loc(Ω \ Γ), u = u0 on ∂Ω \ Γ
}

,

for which they proved the existence of an optimum.
The question of slitting a membrane and keeping a certain energy functional

unchanged has already been studied in the literature. We refer the reader to the pio-
neering papers of Weinberger [21] and Hersch [16]. For preserving the first eigenvalue
of the Laplacian, the cut is done along curves where the normal derivative of the
eigenfunction vanishes. This idea is discussed in a different manner in section 3. The
question of extremizing harmonic measures over various slit placements was studied
in [4, 5, 13]. Certain motivations and extensions arising in more physical problems
can be found in [18, 19].

In this paper, we prove the existence of a solution for problem (1.1) in a general
setting: an anisotropic membrane subject to an external force. The main technical
difficulty of this setting is that, for a given Γ, the function which minimizes the energy
does not have, in general, a conjugate; therefore a direct approach by duality is not
possible. We refer to [8, 9] for some results in shape optimization of cracks based on
duality. Here, we use an approach based on the Mosco convergence (see [3] for the
exact definition) of L1,2-spaces along with an adjustment procedure for the traces on
∂Ω in order to prove the existence of a solution to problem (1.1).

Section 2 is devoted to the proof of the existence result. The reader who is not
interested in this proof, which is rather technical, can skip section 2 and go directly
to section 3, which can be read independently. There we give some intuitive examples
and find the exact solution in some particular situations.

2. Existence of an optimal cutting. Let Ω be a two-dimensional bounded
open connected set. For simplicity, we suppose that the boundary of Ω is Lipschitz
(see [14]). Consequently the number of the connected components of Ωc is finite.

For i = 1, . . . , l let Ki be l compact sets contained in Ω, and K ⊆ Ω be a compact
set such that ∪li=1Ki ⊆ K. Let f ∈ L2(Ω) such that supp f ∩K = ∅.
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Remark 2.1. The assumption that supp f ∩K = ∅ is made for technical reasons
that will be clear in the proof of Theorem 2.2. However, we want to stress the fact
that the most interesting case is when f ≡ 0, so that the only datum of the problem
is the boundary condition u0.

We also notice that when the datum K is regular enough (for instance, with a
Lipschitz boundary), then, thanks to the equality L1,2(Ω \ K) = H1(Ω \ K), the
assumption supp f ∩K = ∅ can be relaxed into the weaker one f = 0 a.e. on K.

Notice also that the optimization criterion (1.1) rules out the admissible Γ with
E(Γ) = −∞. This automatically implies that the optimization (1.1) is performed on
the class of cuts Γ such that the integral of f vanishes on every connected component
of Γ which does not touch the boundary ∂Ω on a set of positive capacity.

In what follows, we denote by Uad the following admissible class of “cuts” which
is supposed to be nonempty:

Uad =
{
Γ : Γ = ∪li=1Γ

i,

∀i = 1, . . . , l, Ki ⊆ Γi ⊆ K, Γi compact connected
}
.

For every Γ ∈ Uad we consider the energy

E(Γ) = min{E(u,Γ) : u ∈ H1
loc(Ω \ Γ), u = u0 on ∂Ω

}
,(2.1)

where

E(u,Γ) =
1

2

∫
Ω\Γ
〈A∇u.∇u〉 dx−

∫
Ω

fu dx.

Here u0 ∈ H1(Ω) is a given function and A ∈ L∞(Ω,R4) is a given symmetric matrix
satisfying for some α > 0 the ellipticity condition

〈Aξ.ξ〉 ≥ α|ξ|2 for every ξ ∈ R
2.

If u ∈ H1
loc(Ω \ Γ), the trace of u on ∂Ω does not exist in general, even if ∂Ω is

smooth. Nevertheless, in our case ∇u ∈ L2(Ω \ Γ); hence u belongs to the Dirichlet
space L1,2(Ω \ Γ) (see [15]). In that case, the trace of u on ∂Ω \ Γ is well defined,
since ∂Ω is supposed to be Lipschitz. A second equivalent way to give sense to the
equality u = u0 on ∂Ω \ Γ is as follows. Let us fix an extension u∗

0 of u0 outside Ω,
say in Ω∗ \Ω, where Ω∗ is a Lipschitz bounded open set such that Ω ⊆ Ω∗. The trace
of u is equal to u0 on ∂Ω \ Γ if and only if the function

u∗ =

{
u(x) if x ∈ Ω \ Γ,

u∗
0(x) if x ∈ Ω∗ \ (Ω ∪ Γ)(2.2)

belongs to L1,2(Ω∗ \ Γ).
For every fixed Γ ∈ Uad, problem (2.1) has a solution. This is an immediate

consequence of the fact that the support of f is compactly embedded in Ω \K and
that, thanks to Remark 2.1, the integral of f vanishes on the connected sets of Ω \K
not touching ∂Ω on a set of positive capacity. In fact, if a connected component of
Ω \ Γ contains a part of the support of f and does not touch ∂Ω on a set of positive
capacity, in this region the solution is defined up to a constant, the gradient being
fixed. With this remark, the solution is unique (more precisely its gradient is unique)
and belongs to the Dirichlet space L1,2(Ω \ Γ).
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The main result of this section is contained in the following theorem.
Theorem 2.2. The optimization problem

max
{E(Γ) : Γ ∈ Uad}(2.3)

has at least one solution.
Proof. In order to prove the existence of a solution for problem (2.3), we follow

the direct method of the calculus of variations. Let {Γn}n ⊆ Uad be a maximizing
sequence for (2.3). Without loss of generality, we can suppose that for every i =
1, . . . , l

Γin
H→ Γi,

the convergence being understood in the Hausdorff metric (see, for instance, [11, 20]).
We denote Γ = ∪li=1Γ

i, the Hausdorff limit of Γn. Our purpose is to prove that Γ is
a solution for problem (2.3). Notice that for every i = 1, . . . , l the set Γi is compact
and connected and Ki ⊆ Γi ⊆ K; hence Γ ∈ Uad.

It remains to prove that for every u ∈ L1,2(Ω \Γ) with u = u0 on ∂Ω there exists
a sequence {un}n such that un ∈ L1,2(Ω \ Γn) with un = u0 on ∂Ω \ Γn and

E(Γ, u) ≥ lim sup
n→∞

E(Γn, un).(2.4)

The construction of the sequence {un}n is strongly related to the Mosco convergence
of the spaces L1,2(Ω \ Γn) (see [8] for the construction of the sequence). We observe
that if u �∈ L1,2(Ω \ Γ), then E(u,Γ) = +∞ and inequality (2.4) holds trivially. For
u ∈ L1,2(Ω \ Γ) we construct a sequence un ∈ L1,2(Ω \ Γn) with u = u0 on ∂Ω \ Γn
such that

∇̃un → ∇̃u strongly in L2(Ω)(2.5)

and ∫
Ω

unfdx→
∫

Ω

ufdx.

In relation (2.5) we denoted by ∇̃un the extension by zero of ∇un on Γn, since ∇un is
a priori defined only on Ω\Γn. Of course, the function ∇̃un is not anymore a gradient
on Ω.

In order to construct the sequence {un}n we recall the following lemma, which is
a consequence of [8, Theorem 4.1].

Lemma 2.3. Let Γn,Γ ∈ Uad be such that Γn H→ Γ. Then for every u ∈ L1,2(Ω\Γ)
there exists un ∈ {L1,2(Ω \ Γn)}n such that ∇̃un −→ ∇̃u strongly in L2(Ω).

Notice that the sequence {un}n given by Lemma 2.3 is not sufficient to con-
clude the proof of Theorem 2.2, since the trace of un on ∂Ω \ Γn is not equal to u0.
Nevertheless, Lemma 2.3 can be used to prove the following proposition.

Proposition 2.4. Let Γn,Γ ∈ Uad be such that Γn
H→ Γ. Then for every

u ∈ L1,2(Ω \ Γ) such that u|∂Ω\Γ = u0 there exists a sequence un ∈ L1,2(Ω \ Γn) such
that ∇̃un −→ ∇̃u strongly in L2(Ω) and un|∂Ω\Γn = u0.

Proof. Let us denote by u∗ the extension of u by u∗
0 on Ω

∗ \ Ω. Then we apply
Lemma 2.3 to Ω∗ and Γn,Γ, and we find a sequence u∗

n ∈ L1,2(Ω∗ \ Γn) such that
∇̃u∗

n −→ ∇̃u∗ strongly in L2(Ω∗).
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For every n ∈ N, let us denote by un the solution of the minimization problem

min

{∫
Ω∗\Γn

|∇φ−∇u∗
n|2 dx : φ ∈ L1,2(Ω∗ \ Γn), φ = u∗

0 on Ω
∗ \ Ω

}
.(2.6)

Since un−u∗
n ∈ L1,2(Ω∗ \Γn) and since Ω∗ \Ω is Lipschitz, we get that un−u∗

n ∈
H1(Ω∗ \ Ω). Moreover, there exists a bounded continuous linear extension operator
T from H1(Ω∗ \ Ω) to H1(Ω∗). Taking as a test function in (2.6) the function φ =
u∗
n + T (un − u∗

n), we get

min

{∫
Ω∗\Γn

|∇φ−∇u∗
n|2 dx : φ ∈ L1,2(Ω∗ \ Γn), φ = u∗

0 on Ω
∗ \ Ω

}

≤
∫

Ω∗\Γn
|∇T (un − u∗

n)|2dx.

Using the Poincaré inequality on the space {u ∈ H1(Ω∗) :
∫
∂Ω∗ udx = 0} and the

boundedness of the extension operator T , we get∫
Ω∗\Γn

|∇T ((un − u∗
n)|Ω∗\Ω)|2dx ≤ C

∫
Ω∗\Ω

|∇(un − u∗
n)|2dx

= C

∫
Ω∗\Ω

|∇(u∗
0 − u∗

n)|2dx.

This last term converges to zero from Lemma 2.3.
Taking the restrictions of un to Ω \ Γn, all the requirements are satisfied and the

proof is concluded.
Proof of Theorem 2.2 (continuation). Returning to the proof of Theorem 2.2,

we observe that the sequence {un}n defined in Proposition 2.4 satisfies relation (2.4).
Indeed, the gradients extended by zero converge strongly in L2 by construction; hence,
using the boundedness of A, we have∫

Ω

〈A∇̃un, ∇̃un〉dx→
∫

Ω

〈A∇̃u, ∇̃u〉dx.

It remains to prove that ∫
Ω

unfdx→
∫

Ω

ufdx.

Fix a connected component U of Ω \K containing a part of the support of f . Two
possibilities may occur.

Suppose first that cap(U ∩ ∂Ω) > 0. Since ∂Ω is Lipschitz and Γ is closed, the
set ∂Ω \ Γ is relatively open; hence there exists an open Lipschitz set V such that
supp f ⊆ V ⊆ U and cap(V ∩ ∂Ω) > 0. Then, the Poincaré inequality stands true in
H1((Ω∗ \ Ω) ∪ V ), so that un −→ u strongly in L2(V ), which implies∫

V

unfdx→
∫
V

ufdx.
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Suppose now that cap(U ∩ ∂Ω) = 0. In this case there exists an open Lipschitz
set V such that supp f ⊆ V ⊆ U and V ∩ ∂Ω = ∅. By hypothesis, we have that∫
V
fdx = 0; hence the Poincaré inequality holds in H1(V )/R. Consequently∫

V

unfdx→
∫
V

ufdx.

The support of f being compactly contained in Ω \K, the proof is concluded.
If K does not touch ∂Ω, one could drop the hypothesis on the regularity of Ω by

simply imposing a constraint of the type (u− u0)ϕ ∈ H1
0 (Ω \ Γ), where ϕ ∈ C∞(R2)

is a fixed function such that ϕ = 0 on Γ, and use a partition of unity.
Remark 2.5. Let c ≥ 0. If we denote

Ucad = {Γ ∈ Uad, |Γ| ≥ c},
the existence result of Theorem 2.2 still holds in Ucad. Indeed, the proof does not
change; the only point to be verified is that Ucad is closed for the Hausdorff convergence.
This is a direct consequence of the upper semicontinuity of the Lebesgue measure for
the Hausdorff convergence.

Remark 2.6. If in the previous remark we take c > 0 and Ki = ∅ for i =
1, . . . , l, the optimal cutting problem becomes, roughly speaking, the following: find
the “strongest” membrane attached on the boundary, of measure less than or equal to
|Ω| − c and with at most l holes.

A vector version of this problem, set into the elasticity frame, is the so-called
cantilever problem (see [1] and [10]). One of the main difficulties is to manage the
fact that the Korn inequality fails to be true on nonsmooth domains. We refer the
reader to the recent paper of Chambolle [10] for an existence result for this problem.

3. Additional remarks and open problems. The uniqueness of the optimal
cut does not hold in general. Trivially, let u0 ≡ 0, f ≡ 0, K1 = {A,B}, K = Ω. Then
any compact connected set containing A and B solves problem (2.3).

In some particular situations one can produce at least one solution of the problem.
In a symmetric setting, there exists an optimal cut which is also symmetric. Indeed,
let f ≡ 0 and Ω be a rectangle; let d be a symmetry line of the rectangle. Suppose
that K1 = {A,B} are two points on d and that u0 is also symmetric with respect to
d. It can be easily seen that a solution of problem (2.3) (with K = Ω) is the segment
AB. This follows by simply observing that the harmonic function in the rectangle
which is equal to u0 on the boundary of the rectangle has zero normal derivatives on
the segment AB.

There are some other situations when the position of the optimal cut can be
determined. Let Ω be a simply connected bounded open subset of R

2 with Lipschitz
boundary and let f ≡ 0. Let K1 = {A,B}, the points A and B being placed on a
connected level set of the conjugate function of the harmonic function v in Ω which
is equal to u0 on ∂Ω, i.e., { −∆v = 0 in Ω,

v = u0 on ∂Ω.
(3.1)

Since Ω is simply connected, we recall that v has a harmonic conjugate, denoted φ
and determined by the Cauchy–Riemann relations

∂φ

∂x
=

∂v

∂y
and

∂φ

∂y
= −∂v

∂x
.
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Suppose that φ(A) = φ(B), A,B belonging to a connected component of φ−1(φ(A)).
Let set Γ be a compact connected subset of φ−1(φ(A)) containing A,B. In order to
simplify the following proof, we assume that Γ does not touch the boundary of Ω. All
results remain true if Γ touches ∂Ω, but a few technical difficulties appear if Ω \ Γ is
not connected.

Under the previous assumptions, we observe that

min

{∫
Ω

|∇u|2 dx : u ∈ H1(Ω), u = u0 on ∂Ω

}
(3.2)

= min

{∫
Ω\Γ
|∇u|2 dx : u ∈ H1

loc(Ω \ Γ), u = u0 on ∂Ω

}
.

Indeed, on the one hand, we obviously have

min

{∫
Ω

|∇u|2 dx : u ∈ H1(Ω), u = u0 on ∂Ω

}

≥ min
{∫

Ω\Γ
|∇u|2 dx : u ∈ H1

loc(Ω \ Γ), u = u0 on ∂Ω

}
.

On the other hand, let v∗ ∈ H1
loc(Ω\Γ) be the minimizer in the right-hand side of the

previous relation. (Observe that all connected components of Ω\Γ touch ∂Ω since v∗

is harmonic.)
We give the following.
Lemma 3.1. There exists a function φ∗ ∈ H1

0 (Ω) and a constant c∗ ∈ R such
that ∇v∗ = curl φ∗ in Ω \ Γ and


−∆φ∗ = 0 in Ω \ Γ,

φ∗ = c∗ on Γ,
∂φ∗

∂n = ∂tu0 on ∂Ω,

(3.3)

where ∂tu0 is the weak tangential derivative in the sense of distribution on ∂Ω.
Since Γ is not smooth, the meaning of the equality φ∗ = c∗ on Γ is understood in

the sense of traces on nonsmooth sets, that is φ̃∗ = c∗ quasi-everywhere on Γ (i.e., up
to a set of capacity zero). Here φ̃∗ is a quasi-continuous representative of φ∗ (see [14]
or [15]).

Proof. The function φ∗ is the harmonic conjugate of v∗ in Ω \ Γ. The proof is a
consequence of the fact that ∂Ω is connected and the following equalities hold:∫

∂Ω

∂v∗

∂n
dH1 = 0,

∂v∗

∂n
= 0 on Γ.

The existence of the conjugate is a consequence of a result of [17, Theorem 3.1, p. 37]
through an approximation procedure of the nonsmooth boundary Γ. We refer to [8]
where this kind of result was proved in a slightly different setting.

If φ is the harmonic conjugate of v in Ω, then we have{ −∆φ = 0 in Ω,
∂φ
∂n = ∂tu0 on ∂Ω.

(3.4)
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By hypothesis, we also have φ = c on Γ. Consequently, by subtraction we get

−∆(φ− φ∗) = 0 in Ω \ Γ,
φ− φ∗ = c− c∗ on Γ,

∂(φ−φ∗)
∂n = 0 on ∂Ω.

(3.5)

If c− c∗ �= 0, then φ− φ∗ attains its minimum (or maximum, or both) on ∂Ω, and in

that point we would have, following the Hopf maximum principle, ∂φ
∗

∂n �= 0, which is
a contradiction with (3.5). Therefore c− c∗ = 0; hence φ = φ∗ in Ω \ Γ and v = v∗ in
Ω \ Γ. Since the level set of a nonconstant harmonic function cannot have a positive
Lebesgue measure, the set Γ, which is contained in the level set {φ = c}, has measure
zero. Then we get ∫

Ω\Γ
|∇v∗|2 dx =

∫
Ω

|∇v|2 dx

≥ min
{∫

Ω

|∇u|2 dx : u ∈ H1(Ω), u = u0 on ∂Ω

}
.

Consequently, equality (3.2) holds, and Γ is a solution for problem (2.3).
A natural question is whether the optimal cut Γ touches the boundary of Ω or

not. There are indeed some situations in which the optimal cut Γ necessarily touches
the boundary. We give the following example. Let Ω be the rectangle

Ω = {(x, y) ∈ R
2 : x ∈ [0, 1], y ∈ [−1, 1]}.

Let u(x, y) = 2(x + 1)y and u0 ∈ C(∂Ω) be given by the trace of u on ∂Ω, i.e.,

u0 = u∣∣∂Ω
. We take f ≡ 0 and K1 = {A,B} with A = (

√
5

2 − 1, 1
2 ), B = (

√
5

2 − 1,− 1
2 ),

and we take K = Ω. The optimal cut solving problem (2.3) is given by the curve

Γ =

{
(x, y) ∈ R

2 : x =
√

y2 + 1− 1, y ∈
[
−1
2
,
1

2

]}
,

which obviously touches the boundary of Ω at the origin.
The proof of the optimality of Γ follows the same scheme as presented in the

beginning of this section, where we studied the possibility of identifying the optimal
cut. In fact, one can observe that the points A and B belong to a level set of the
function v(x, y) = (x + 1)2 − y2 which is the harmonic conjugate of u. One can,
moreover, observe that all optimal cuts in Ω must touch the boundary. This is an
easy consequence of the uniqueness of the minimizer of E(u,Γ) over u ∈ L1,2(Ω \ Γ),
with u = u0 on ∂Ω.

Remark 3.2. When the dimension n is greater than 2, the formulation of the
optimal cutting problem (1.1) becomes trivial. Indeed, since curves have zero capacity
in R

n when n > 2, any curve Γ joining the points A,B would be optimal. We do not
know how to formulate in a natural way the optimal cutting problem (1.1) in higher
dimension in order to obtain connected sets Γ with positive capacity.

Another possible variant to investigate could be to consider the optimal cutting
problem (1.1) for the p-Laplacian:

Ep(Γ) = min
{∫

Ω\Γ
|∇u|pdx : u = u0 on ∂Ω

}
.
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It is known (see [6]) that if p > n − 1, curves have positive p-capacity and classes of
compact connected sets Γ, like Uad, are closed for a suitable γp-convergence. Neverthe-
less, the duality argument of [8], used in Theorem 2.2, does not work for p-harmonic
functions, which leaves the problem open.

We finally present some open problems which seem to be of interest.

Problem 1. The first question is concerned with the regularity of optimal cuts Γ.
As shown at the beginning of this section, the optimal cut is not unique. The question
is to prove that, among all the minimizers, there exists at least one “smooth” one.
This might be of interest even in the simple case of a rectangle and two points {A,B}
with u0 smooth and no force on the membrane.

Since the regularity of the optimal cut seems rather difficult to prove, a first
question would be to identify its Hausdorff dimension, in particular to prove (or
disprove) that its Lebesgue measure is zero.

The following simple example shows that in general we should not expect C1

solutions Γ, even if f ≡ 0 and K reduces to two points. Indeed, take Ω the unit ball
and the boundary datum u0(x, y) = 2xy; according to the argument at the beginning
of this section, if we consider two points A and B on a level line of the harmonic
conjugate function u + 0∗(x, y) = x2 − y2, then this level line is an optimal cut for
problem (1.1). Now, if we take A = (− 1

2 ,
1
2 ) and B = ( 12 ,

1
2 ), the optimal cut Γ is the

Cartesian curve y = |x| with x ∈ [− 1
2 ,

1
2 ], which has a singular point at the origin.

Problem 2. Instead of an optimal cut in a membrane, we may study the existence
of an optimal cut in a plate. Given a smooth bounded set Ω ⊆ R

2 and a constant
ν ∈ (0, 1), for every compact connected set Γ ⊆ Ω we define

E(Γ) =min


∫

Ω\Γ


ν(∆u)2 + (1− ν)

∑
1≤i,j≤2

(∂i∂ju)
2


 dx

: u ∈ H2
loc(Ω \ Γ), u = u0 on ∂Ω \ Γ, ∂u

∂n
= u1 on ∂Ω \ Γ


 ,

where u0 and u1 are both prescribed. Given two points A,B ∈ Ω, the question is to
prove the existence of a solution for the problem

max
Γ∈Uad

E(Γ)

in the same frame of Theorem 2.2. The difficulty comes from the fact that a result
similar to the one of Proposition 2.4 should be proved in H2-spaces, and this, to our
knowledge, is an open problem.
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under an elastic membrane with a crack, Dokl. Akad. Nauk, 339 (1994), pp. 331–334 (in
Russian); Phys. Dokl., 39 (1994), pp. 813–815 (in English).

[19] R. Lipton, The second Stekloff eigenvalue and energy dissipation inequalities for functionals
with surface energy, SIAM J. Math. Anal., 29 (1998), pp. 673–680.

[20] V. Sverak, On optimal shape design, J. Math. Pures Appl., 72 (1993), pp. 537–551.
[21] H. F. Weinberger, An effectless cutting of a vibrating membrane, Pacific J. Math., 13 (1963),

pp. 1239–1240.



A MULTIPLIER RULE FOR MULTIOBJECTIVE PROGRAMMING
PROBLEMS WITH CONTINUOUS DATA∗

DINH THE LUC†

SIAM J. OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 168–178
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1. Introduction. Let C ⊂ Rm be a convex and closed cone with apex at the
origin and with intC �= ∅, where intC stands for the interior of the set C. We recall
that C is said to be pointed if C ∩ (−C) = {0}. The positive polar cone of C, which
is denoted by C ′, is defined by C ′ := {ξ ∈ Rm : 〈ξ, c〉 ≥ 0, c ∈ C}.

For a and b ∈ Rm, we shall write a ≥C b iff a−b ∈ C, and a�C b iff a−b ∈ intC.
The notation a ≤C b means b ≥C a, and a �C b means b �C a. Throughout this
paper, C and K denote convex, closed, and pointed cones with apex at the origin and
with nonempty interior in Rm and Rk, respectively. For a nonempty set A ⊆ Rm,
the notation coA, coA, and A will stand for its convex hull, closed convex hull, and
its closure, respectively.

Let f , g, and h be vector functions from Rn to Rm, Rk, and Rl, respectively.
Consider the following constrained multiobjective programming problem (VP):

VMin f(x),

g(x) ≤K 0,(1.1)

h(x) = 0,(1.2)

which amounts to finding a point x0 ∈ Rm (called a weakly efficient solution) that
satisfies the constraints (1.1) and (1.2) such that there is no x ∈ Rn satisfying these
constraints and f(x) �C f(x0). If this is true for x ∈ U , where U is some neighbor-
hood of x0, then we call x0 a local weakly efficient solution. We refer the interested
reader to [4, 6, 13, 20] for a complete list of definitions of optimal solutions in mul-
tiobjective optimization and their relationships. To our knowledge, [12] is the first
paper that deals with optimality conditions of multiobjective programming. Nowa-
days, there exists a very rich literature on this topic (see [3, 4, 6, 13, 14, 15, 20] and
the references given therein). Most existing results concern the case in which the
functions f , g, and h are differentiable [6, 12, 20] or locally Lipschitz [3]. The more
general case of problems with inequality constraints when the data are not locally
Lipschitz, or even set-valued, has been treated in [1, 13, 14, 16] and some others. The
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main tool used in the nonsmooth case is Clarke’s generalized subdifferential for locally
Lipschitz data and the contingent derivative or its modifications for set-valued data.

On the other hand, quite recently the authors of [7] have introduced the notion of
an approximate Jacobian, which is a kind of generalized derivative for continuous vec-
tor functions, and applied it to the study of nonsmooth problems. It turns out from
a series of papers [7, 8, 9, 10, 11, 18] that an approximate Jacobian provides a very
useful tool to treat problems involving continuous, not necessarily locally Lipschitz,
functions. As we shall see in the next section, the approximate Jacobian is defined in
a flexible way by using a directional Dini derivative, so that several calculus rules of
differentiable functions can be extended to continuous functions, including elementary
rules (sum, product, composition, . . . ), the mean value theorem, open mapping theo-
rem, etc. More importantly, many known generalized derivatives of vector functions
such as Clarke’s generalized Jacobian [2], Ioffe’s prederivative (when it is given by
linear operators) [5], Mordukhovich’s coderivative [17], Warga’s unbounded derivate
containers [19], and others are examples of approximate Jacobians. Therefore, results
expressed in terms of approximate Jacobians are also true when applied to the gener-
alized derivatives above. As was noted in [7], a locally Lipschitz function may admit
an approximate Jacobian whose closed convex hull is strictly contained in Clarke’s
generalized Jacobian or in Mordukhovich’s coderivative. Therefore, even for locally
Lipschitz problems, optimality conditions obtained by using approximate Jacobians
sometimes yield sharp results. (See Example 3.1 of [18] for this situation.)

The purpose of this note is to use an approximate Jacobian to derive a multiplier
rule for problem (VP) when the data f , g, and h are continuous, not necessarily
locally Lipschitz. The paper is organized as follows. In the next section we recall the
definition of an approximate Jacobian and the elementary calculus rules that will be
needed in what follows. In section 3 we prove the main result of the paper about the
existence of multipliers for local weakly efficient solutions. This result is concretized
to the class of problems with Gâteaux differentiable data. An example is given in the
final section to illustrate our approach.

2. Approximate Jacobians. Let f be a continuous vector function from Rn to
Rm. A closed set of (m×n)-matrices ∂f(x) ⊆ L(Rn, Rm) is said to be an approximate
Jacobian of f at x if for every u ∈ Rn and v ∈ Rm one has

(vf)+(x, u) ≤ sup
M∈∂f(x)

〈v, M(u)〉,

where vf is the real function
∑n
i=1 vifi. Here v1, . . . , vm are components of v, f1, . . . , fm

are components of f , and (vf)+(x, u) is the upper Dini directional derivative of the
function vf at x in the direction u; that is,

(vf)+(x, u) := lim sup
t↓0

(vf)(x+ tu)− (vf)(x)

t
.

If, for every x ∈ Rn, ∂f(x) is an approximate Jacobian of f at x, then the set-valued
map ∂f : Rn ⇒ L(Rn, Rm) is called an approximate Jacobian map of f . When
m = 1, the approximate Jacobian is also called the generalized subdifferential.

It follows from the definition that if a function is Gâteaux differentiable at a point,
then its Gâteaux derivative is an approximate Jacobian, and any other approximate
Jacobian contains it in its convex hull. Conversely, if a function admits a singleton
approximate Jacobian, then the function is Gâteaux differentiable, and its Gâteaux
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derivative coincides with that singleton element. Approximate Jacobians were in-
troduced and studied in [7]. Further developments and applications of this concept
were given in [7, 8, 9, 10, 11]; we refer the interested reader to those papers for more
details on the approximate Jacobian. For our purposes we shall need the following
elementary calculus rules of approximate Jacobians, which were already established
in [7, 8, 9, 10, 11]:

(a) Suppose that f : Rn → R is continuous. If f admits an approximate Jacobian
∂f(x) at x and attains its minimum at x, then 0 ∈ co∂f(x).

(b) Suppose that f1 and f2 : Rn → Rm are continuous. If ∂f1(x) and ∂f2(x) are
approximate Jacobians of f1 and f2, respectively, at x, then ∂f1(x) + ∂f2(x)
is an approximate Jacobian of f1 + f2 at x.

(c) Suppose that f1 : Rn → Rm and f2 : Rn → Rl are continuous. If ∂f1(x) and
∂f2(x) are approximate Jacobians of f1 and f2 at x, then the set (∂f1(x), ∂f2(x))
is an approximate Jacobian of the function (f1, f2) : Rn → Rm ×Rl at x.

(d) Mean value theorem: Let f be a continuous function from Rn to Rm. Let
a, b ∈ Rn and let ∂f(x) be an approximate Jacobian of f at x ∈ [a, b]. Then
f(b)− f(a) ∈ co(∂f [a, b](b− a)).

Some more terminologies are in order. Let A ⊂ Rn be a nonempty set. The
recession cone of A, denoted by A∞, consists of all limits limi→∞ tiai, where ai ∈ A
and {ti} is a sequence of positive numbers converging to 0. It is important to notice
that when A is closed and convex, A + A∞ = A. Let F : Rn ⇒ Rm be a set-valued
map. It is said to be upper semicontinuous at x0 if for every ε > 0 there is some δ > 0
such that F (x0+δBn) ⊂ F (x0)+εBm, where Bn and Bm denote the closed unit balls
in Rn and Rm, respectively.

3. A multiplier rule. Let us consider problem (VP) described in the introduc-
tion. We define H := (f, g, h), a continuous function from Rn to Rm × Rk × Rl.
The product space Rm × Rk × Rl is equipped with the Euclidean norm. The space
L(Rn, Rm × Rk × Rl) is equipped with the norm of linear operators; i.e., for an
(m+ k + l)× n-matrix M ,

‖M‖ = max
x∈Rn,‖x‖≤1

‖M(x)‖.

The closed unit ball of this space is denoted by B. We also denote by T the set of all
vectors λ ∈ (C, K, {0})′ with ‖λ‖ = 1. The following lemma will be needed.

Lemma 3.1. Let ω0 ∈ Rm ×Rk ×Rl be a nonzero vector with

max
λ∈T
〈λ, ω0〉 > 0.

Then there exists a unique point λ0 ∈ T such that

〈λ0, ω0〉 = max
λ∈T
〈λ, ω0〉.

Moreover, for every ε > 0, there is some δ > 0 such that

max
λ∈T
〈λ, ω〉 = max

λ∈T,‖λ−λ0‖≤ε
〈λ, ω〉

for all ω with ‖ω − ω0‖ ≤ δ.
Proof. That the function 〈λ, ω0〉 attains its maximum on T is obvious because

T is compact. Suppose to the contrary that there are two distinct points λ0 and λ1
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that maximize this function on T . It follows from the hypothesis that λ1 �= −λ0. Let
λ2 := (λ0 + λ1)/‖λ0 + λ1‖. Then λ2 ∈ T and

〈λ2, ω0〉 = 2

‖λ0 + λ1‖〈λ0, ω0〉.

The Euclidean norm being strictly convex, we have

‖λ0 + λ1‖ < ‖λ0‖+ ‖λ1‖ = 2,

which yields a contradiction:

〈λ2, ω0〉 > 〈λ0, ω0〉.

To prove the second part, suppose to the contrary that there is some ε0 > 0 such that
for each δ = 1/i, i ≥ 1, one can find a vector ωi, with ‖ωi − ω0‖ ≤ 1/i, verifying

max
λ∈T
〈λ, ωi〉 �= max

λ∈T,‖λ−λ0‖≤ε
〈λ, ωi〉.

Let λi ∈ T be a maximizing point of the function 〈λ, ωi〉 on T . Then ‖λi − λ0‖ > ε0.
We may assume that the sequence {λi} converges to some λ∗ ∈ T. It follows, on one
hand, that ‖λ∗ − λ0‖ ≥ ε0. On the other hand, as T is compact, one has

〈λ∗, ω0〉 = lim
i→0
〈λi, ωi〉 = max

λ∈T
〈λ, ω0〉,

which shows that λ∗ is a maximizing point of the function 〈λ, ω0〉 on T . This contra-
dicts the uniqueness of λ0 by the first part. The proof is complete.

We now formulate and prove the main result of the paper.
Theorem 3.2. Assume that ∂H is an approximate Jacobian map of H which is

upper semicontinuous at x0. If x0 is a local weakly efficient solution of (VP), then
there is a vector λ0 = (ξ0, θ0, γ0) ∈ T such that

0 ∈ λ0(co∂H(x0) ∪ co[(∂H(x0))∞ \ {0}]),
θ0g(x0) = 0.

Proof. Let us choose a vector e ∈ intC so that

max
ξ∈C′ ,‖ξ‖≤1

〈ξ, e〉 = 1.

For each ε > 0, define functions Hε : Rn → Rm×Rk×Rl and Pε : Rn → R as follows:

Hε(x) := (f(x)− f(x0) + εe, g(x), h(x)),

Pε(x) := max
λ∈T
〈λ, Hε(x)〉.

It is clear that these functions are continuous. Let U ⊂ Rn be a neighborhood that
exists by the definition of the local weakly efficient solution x0. We claim that

Pε(x) > 0 for all x ∈ U.

Indeed, suppose that there is some x ∈ U such that Pε(x) ≤ 0. Setting λ = (0, 0, β) �=
0, we obtain βh(x) ≤ 0 for all β ∈ Rl \ {0} and hence h(x) = 0. Taking λ =
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(0, γ, 0), γ ∈ K
′ \{0}, we obtain γ(g(x)) ≤ 0 for all γ ∈ K

′ \{0}, which implies g(x) ∈
−K. By a similar argument, choosing λ = (ξ, 0, 0), we have ξ(f(x)− f(x0) + εe) ≤ 0
for all ξ ∈ C

′ \ {0}. Since e ∈ intC, we derive f(x)− f(x0) ∈ intC. This contradicts
the fact that x0 is a local weakly efficient solution of (VP).

Furthermore, since Pε(x0) = ε < inf Pε + ε, by Ekeland’s variational principle,
there is an xε such that ‖x0 − xε‖ <

√
ε and

Pε(xε) < Pε(x) +
√

ε‖x− xε‖ for all x �= xε.

In particular, the net {xε} converges to x0 as ε tends to 0, and xε provides a minimum
of the function

Qε(x) := Pε(x) +
√

ε‖x− xε‖.
According to rule (a), if ∂Qε(xε) is an approximate Jacobian of Qε at xε, then

0 ∈ co∂Qε(xε).(3.1)

Our aim at the moment is to find a suitable approximate Jacobian of Qε. This can
be done if we are able to find a suitable approximate Jacobian ∂Pε(xε) of Pε, because
the set

√
εBn is an approximate Jacobian of the function x �→ ‖x − xε‖ at xε. By

rule (b), the set ∂Pε(xε)+
√

εBn is an approximate Jacobian of Qε at xε. We observe
that ∂H(xε) is an approximate Jacobian of Hε at xε, because the function Hε is the
sum of H and of the constant function x �→ (−f(x0) + εe, 0, 0).

Moreover, for ε > 0, let λε be the unique vector that maximizes the function
〈λ, Hε(xε)〉 on T (by Lemma 3.1). We claim that for each integer r ≥ 1 there is some
ε(r) > 0 such that for every ε ∈ (0, ε(r)] the set

Lε :=

{
λ

(
M +

1

r
N

)
: λ ∈ T, ‖λ− λε‖ ≤ ε, M ∈ ∂H(x0), N ∈ B

}
is an approximate Jacobian of Pε at xε. Indeed, let δ > 0 be a positive number that
exists by virtue of Lemma 3.1. Since Hε is continuous, there is some t0 > 0 such that

‖Hε(xε)−Hε(x)‖ < δ for all x ∈ U with ‖x− xε‖ ≤ t0.

For every u ∈ Rn, we deduce from Lemma 3.1 that

Pε(xε + tu)− Pε(xε) = max
λ∈T
〈λ, Hε(xε + tu)〉 −max

λ∈T
〈λ, Hε(xε)〉

= max
λ∈T,‖λ−λε‖≤ε

〈λ, Hε(xε + tu)〉 − max
λ∈T,‖λ−λε‖≤ε

〈λ, Hε(xε)〉
≤ max
λ∈T,‖λ−λε‖≤ε

〈λ, Hε(xε + tu)−Hε(xε)〉

for every t ≥ 0 with ‖tu‖ ≤ t0. Applying the mean value theorem, we find for each
such t a matrix Mt ∈ co∂H[xε, xε + tu] + (1/2r)B such that

Hε(xε + tu)−Hε(xε) = Mt(tu).

Since ∂H is upper semicontinuous at x0 and limε→0 xε = x0, for each r ≥ 1 there is
some ε(r) > 0 such that for every ε ∈ (0, ε(r)] one has

co∂H[xε, xε + tu] ⊂ co∂H(x0) +
1

2r
B
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for t sufficiently small. It follows that

P+
ε (xε, u) ≤ lim sup

t↓0
max

λ∈T,‖λ−λε‖≤ε
〈λ, Mt(u)〉

≤ sup
M∈co∂H(x0),N∈B,λ∈T,‖λ−λε‖≤ε

〈
λ,

(
M +

1

r
N

)
(u)

〉
≤ sup
ξ∈Lε
〈ξ, u〉.

Similarly,

(−Pε)
+(xε, u) ≤ sup

ξ∈Lε
(−〈ξ, u〉).

Consequently, Lε is an approximate Jacobian of Pε at xε. Summing up the above, we
conclude that for each r ≥ 1 there is an ε(r) > 0 such that for 0 < ε ≤ ε(r) the set

∂Qε(xε) := Lε +
√

εBn

is an approximate Jacobian of Qε at xε. We may choose ε(r) ↓ 0 as r →∞. Relation
(3.1) becomes

0 ∈ co∂Qε(xε) ⊂ coLε +
√

εBn

⊂ co{λM : λ ∈ T, ‖λ− λε‖ ≤ ε, M ∈ ∂H(x0)}
+ co

{
1

r
λN : λ ∈ T, ‖λ− λε‖ ≤ ε, N ∈ B

}
+ 2
√

εBn.

Taking into account the fact that B, Bn, and T are all compacts, we derive the
existence of vectors

ξr ∈ co{λM : λ ∈ T, ‖λ− λε(r)‖ ≤ ε(r), M ∈ ∂H(x0)}
such that

lim
r→∞ ξr = 0.

We apply Caratheodory’s theorem to express the vectors ξr as

ξr =

n+1∑
j=1

arjλrjMrj ,

where
∑n+1
j=1 arj = 1, arj ≥ 0, λrj ∈ T with ‖λrj − λε(r)‖ ≤ ε(r), and Mrj ∈ ∂H(x0),

j = 1, . . . , n+ 1.
Since T is compact, without loss of generality we may assume that the sequence

{λε(r)} converges to some λ0 ∈ T. Then

lim
r→∞ λrj = λ0 for all j = 1, . . . , n+ 1.

Moreover, by taking a subsequence if necessary, we also may assume that the sequences
{arj}r converge to a0j , j = 1, . . . , n+ 1, and that

ξr =
∑
j∈I1

arjλrjMrj +
∑
j∈I2

arjλrjMrj +
∑
j∈I3

arjλrjMrj ,

where the above sums have the following properties:
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(1) for each j ∈ I1, the sequence {Mrj}r is bounded and converges to some
M0j ∈ ∂H(x0);

(2) for each j ∈ I2, the sequence {Mrj}r is unbounded, but the sequence {arjMrj}r
is bounded and converges to some M∗j ;

(3) for each j ∈ I3, the sequence {arjMrj}r is unbounded, and there is some
j0 ∈ I3 such that the sequences {arjMrj/‖arj0Mrj0‖}r converge to some
M∞j , j ∈ I3.

Let us first consider the case in which I3 is nonempty. By dividing ξr by ‖arj0Mrj0‖
and passing to the limit when r tends to ∞, we obtain

0 = lim
r→∞

ξr
‖arj0Mrj0‖

= lim
r→∞

∑
j∈I3

λrj
arjMrj

‖arj0Mrj0‖
= λ0

∑
j∈I3

M∞j .

In the latter sum, we have M∞j ∈ [∂H(x0)]∞ and M∞j0 �= 0. Hence

0 ∈ λ0co([∂H(x0)]∞ \ {0}).(3.2)

It remains to consider the case in which I3 is empty. For j ∈ I2, one has a0j = 0,
which implies that

∑
j∈I1 a0j = 1 and M∗j ∈ [∂H(x0)]∞. Thus,

0 = lim
r→∞ ξr

= λ0


∑
i∈I1

a0jM0j +
∑
j∈I2

M∗j


 ∈ λ0(co[∂H(x0)] + co[(∂H(x0))∞]) ⊂ λ0co∂H(x0).

This and (3.2) establish the multiplier rule. As to the complementary slackness
θ0g(x0) = 0, we observe that if gi(x0) < 0, then the vector λε must have the cor-
responding component θεi = 0, and when passing to limit we obtain θ0i = 0 as
requested.

The following modified version of Theorem 3.2 is useful in those situations in
which some of the components of the data admit bounded approximate Jacobians.

Theorem 3.3. Assume that H = (H1, H2) and ∂Hi, i = 1, 2, are approximate
Jacobian maps of H that are upper semicontinuous at x0. If x0 is a local weakly
efficient solution of (VP), then there is a vector λ0 = (ξ0, θ0, γ0) ∈ T such that
θ0g(x0) = 0 and

0 ∈ λ0(co∂H1(x0) ∪ co[(∂H1(x0))∞ \ {0}], co∂H2(x0) ∪ co[(∂H2(x0))∞ \ {0}]).

Proof. Use rule (c) and the proof of Theorem 3.2.

We notice that when the data of the problem are locally Lipschitz, one can use
Clarke’s generalized Jacobian as an approximate Jacobian. In this case the recession
part of the multiplier rule disappears, and Theorem 3.2 gives the multiplier rule of
[3]. In a private communication, N. V. Hung of the Hanoi Institute of Mathematics
has observed a similar result for the case in which H admits a bounded approximate
Jacobian. His result, however, is limited to the case of locally Lipschitz functions,
because a function that has a bounded upper semicontinuous approximate Jacobian
map is locally Lipschitz (see [11]). The recession part in the conclusion of Theorem 3.2
is a very characteristic feature of those problems that have continuous, but not locally
Lipschitz continuous, data. (See the example in the next section.)
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Let us now apply Theorem 3.2 to a particular problem in which the data are
Gâteaux differentiable but not necessarily locally Lipschitz. To this purpose let us
define for a Gâteaux differentiable function φ : Rn → Rm the following sets:

∇̃φ(x) = {lim∇φ(xi) : xi → x},
∇∞φ(x) = {lim ti∇φ(xi) : xi → x, ti ↓ 0}.

Actually ∇̃φ(x) is the upper limit of the sets {∇φ(x′)} when x′ → x in the sense
of Kuratowski–Painleve, and ∇∞φ(x) is the outer horizon limit of {∇φ(x′)} when
x′ → x. It follows that ∇̃φ(x) is a closed set, and ∇∞φ(x) is a nonempty closed
cone. When φ has a locally bounded derivative around x, one has ∇∞φ(x) = {0},
and ∇̃φ(x) is a compact set. This is the case when φ is locally Lipschitz. When m = 1
and φ is locally Lipschitz, the set ∇̃φ(x) is also called the B-subdifferential of f at x,
and co∇̃φ(x) is exactly the Clarke generalized subdifferential.

Corollary 3.4. Assume that x0 is a local weakly efficient solution of (VP) and
the functions f , g, and h are Gâteaux differentiable in a neighborhood of x0. Then
there exists a vector λ0 = (ξ0, θ0, γ0) ∈ T such that θ0g(x0) = 0 and

0 ∈ λ0(co∇̃H(x0) ∪ co[∇∞H(x0) \ {0}]).
Proof. We may assume without loss of generality that H = (f, g, h) is differ-

entiable at every x ∈ Rn with ‖x − x0‖ ≤ 1. For every k ≥ 1 let us construct an
approximate Jacobian of H as follows:

∂H(x) =




L(Rn, Rm) if ‖x− x0‖ ≥ 1/k,

{∇H(x)} if 0 < ‖x− x0‖ < 1/k,

{∇H(x′) : ‖x− x0‖ < 1/k} if x = x0.

It is evident that the set-valued map x �→ ∂H(x) is an approximate Jacobian map of
H which is upper semicontinuous at x0. According to Theorem 3.2, there is a vector
λk = (ξk, θk, γk) ∈ T such that

0 ∈ λk(co∂H(x0) ∪ co[(∂H(x0))∞ \ {0}]),
θkg(x0) = 0.

By taking a subsequence if necessary, we need consider only two cases:
(A) There exist αkj ≥ 0, xkj ∈ Rn, j = 1, . . . , mn+1, and m×n-matrices bk with

mn+1∑
j=1

αkj = 1, ‖xkj − x0‖ <
1

k
, j = 1, . . . , mn+ 1, ‖bk‖ ≤ 1

such that

0 = λk



mn+1∑
j=1

αkj∇H(xkj) +

(
1

k

)
bk


 ;

(B) There exist αkj ≥ 0, βkj ≥ 0, xkj ∈ Rn, j = 1, . . . , mn+1, and m×n-matrices
bk with

mn+1∑
j=1

αkj = 1, ‖xkj − x0‖ <
1

k
, ‖∇H(xkj‖ ≥ k, j = 1, . . . , mn+ 1, ‖bk‖ ≤ 1
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such that

0 = λk



mn+1∑
j=1

αkjβkj∇H(xkj) +

(
1

k

)
bk


 .

We may assume that {λk} converges to some λ0 ∈ T because T is compact. By using
an argument similar to that of the proof of Theorem 3.2, we derive from (A) that
either

0 ∈ λ0co∇̃H(x0) or 0 ∈ λ0co[∇∞H(x) \ {0}],

and from (B) that

0 ∈ λ0co[∇∞H(x) \ {0}].

This completes the proof.
We mention that Gâteaux differentiable functions are not necessarily locally Lip-

schitz or continuously differentiable. Therefore the existing multiplier rules of [3, 6]
do not apply to problems with Gâteaux differentiable data. Moreover, the method of
constructing approximate Jacobians that we have presented above can be extended
to the class of almost everywhere Gâteaux differentiable functions, and a similar
multiplier rule can be obtained for problems with data of this class. We leave this
extension to the interested reader.

4. Example. Consider the following biobjective problem in R5:

VMin (−x2 + x3 + (x5)
2, x2 + (x4)

2)x5 ≥ 0,
(x1)

2/3sgn(x1) + (x2)
4 − x3 = 0,

(x1)
1/3 + (x2)

2 − x4 = 0,

where the ordering cone of R2 is the positive orthant R2
+. The function H = (f, g, h),

where f(x) := (−x2+x3+(x5)
2, x2+(x4)

2), g(x) := x5, and h(x) := ((x1)
2/3sgn(x1)+

(x2)
4−x3, (x1)

1/3+(x2)
2−x4), is not locally Lipschitz at x = (x1, . . . , x5) with x1 = 0.

It is not hard to see that the set

∂H(x) :=







0 −1 1 0 2x5

0 1 0 2x4 0
0 0 0 0 1

2
3 (x1)

−1/3sgn(x1) 4(x2)
3 −1 0 0

1
3 (x1)

−2/3 2x2 0 −1 0







is an approximate Jacobian of H at x = (x1, . . . , x5) with x1 �= 0, and the set

∂H(x) :=







0 −1 1 0 2x5

0 1 0 2x4 0
0 0 0 0 1
α 4(x2)

3 −1 0 0
α2 2x2 0 −1 0


 : α ≥ 1




is an approximate Jacobian of H at x with x1 = 0. Moreover, the set-valued map
x �→ ∂H(x) is upper semicontinuous.
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Let us first consider x ∈ R5 with x1 �= 0. Observe that H is continuously differ-
entiable with ∂H(x) = {∇H(x)}, and the multiplier rule is written as

0 = λ0∇H(x).

In particular, we derive the following equation that a local weakly efficient solution
must satisfy:

2(x1)
−1/3sgn(x1)(1− 4x2x4) + (x1)

−2/3(1− 4(x2)
3) = 0.

This result can evidently be obtained by the classical necessary optimality condition
(see [6]), because the problem is continuously differentiable in a small neighborhood
of x.

Now we consider the case in which x ∈ R5 has x1 = 0. Set H1 = (f, g) and H2 = h.
The function H1 is continuously differentiable, and the map x′ �→ {∇H1(x

′)} is an
upper semicontinuous approximate Jacobian map of H1. The function H2 is neither
differentiable nor locally Lipschitz at x. By defining

∂H2(x) :=

{(
α 4(x2)

3 −1 0 0
α2 2x2 0 −1 0

)
: α ≥ 1

}
,

we see that the set-valued map x′ �→ ∇H2(x
′) for x′ having the first component

nonzero, and x �→ ∂H2(x) for the other x, is an upper semicontinuous approximate
Jacobian map of H2. The recession cone of ∂H2(x) is given by

(∂H2(x))∞ =

{(
0 0 0 0 0
α 0 0 0 0

)
: α ≥ 0

}
.

According to Theorem 3.3, a local weakly efficient solution must satisfy either of the
following conditions:

(i) 0 = (ξ0, θ0)∇H1(x) and 0 ∈ γ0∂H2(x);
(ii) 0 = (ξ0, θ0)∇H1(x) and 0 ∈ γ0[(∂H2(x))∞ \ {0}].

Let us look, for instance, at x = 0. Condition (i) implies ξ0 = (0, 0), θ0 = 0, and
γ0 = (0, 0). In other words, at x = 0 there is no multiplier λ0 ∈ T that verifies this
condition. However, the multiplier λ0 with ξ0 = (0, 0), θ0 = 0, and γ0 = (1, 0) verifies
(ii), which means that x = 0 is a candidate to be a local weakly efficient solution.
Actually a scalarization technique [15] confirms that it is.
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SIAM J. OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 179–203

Abstract. Recently the authors introduced the notions of self-regular functions and self-regular
proximity functions and used them in the design and analysis of interior-point methods (IPMs)
for linear and semidefinite optimization (LO and SDO). In this paper, we consider an extension
of these concepts to second-order conic optimization (SOCO). This nontrivial extension requires
the development of various new tools. Versatile properties of general analytical functions associated
with the second-order cone are exploited. Based on the so-called self-regular proximity functions, new
primal-dual Newton methods for solving SOCO problems are proposed. It will be shown that these
new large-update IPMs for SOCO enjoy polynomial O(max{p, q}N(q+1)/2q log N

ε
) iteration bounds

analogous to those of their LO and SDO cousins, where N is the number of constraining cones and
p, q are constants, the so-called growth degree and barrier degree of the corresponding proximity.
Our analysis allows us to choose not only a constant q but also a q as large as logN . In this case,
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1. Introduction. Mathematically, a typical second-order cone can be defined
by

K =

{
(x1, x2, . . . , xn) ∈ �n : x2

1 −
n∑
i=2

x2
i ≥ 0, x1 ≥ 0

}
.

Second-order conic optimization (SOCO) is the problem of minimizing a linear ob-
jective function subject to the intersection of an affine set and the direct product of
several second-order cones. SOCO can be viewed as a direct generalization of linear
optimization (LO). Several important types of problems can be modelled as SOCO
problems. For example, a general convex quadratic optimization problem with con-
vex quadratic constraints can be cast as a SOCO problem [14]. SOCO also includes
robust LO, robust least-squares, matrix-fractional problems, and problems involving
sums and maxima of norms, etc., as specific cases. For more details about various
applications of SOCO, we refer to the survey paper [12] and the references therein.

An alternative way to describe the second-order cone is via matrix representation.
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For any x = (x1, . . . , xn)T ∈ �n let us define the matrix

mat(x) =


x1 x2:n

xT2:n x1En−1


 ,(1.1)

where x2:n = (x2, x3, . . . , xn) and En−1 denotes the identity matrix in �(n−1)×(n−1).
Using the above definition, one can easily prove that the vector x ∈ K if and only if the
matrix mat(x) is positive semidefinite, i.e., mat(x) � 0. This observation means that
SOCO is essentially a specific case of semidefinite optimization (SDO). This delicate
circumstance partially explains why SOCO did not attract as much attention as its
counterparts LO and SDO.

We consider in this paper the standard SOCO problem, which takes the form

(SOCO) min cTx

subject to (s.t.) Ax = b, x�K0,

and its dual

(SOCD) max bT y

s.t. AT y + s = c, s�K0,

where K is the product of several second-order cones, i.e., K = K1 ×K2 × · · · ×KN

with

Kj =

{
(xj1, . . . , xjnj )

T ∈ �nj :
(

xj1

)2

≥
nj∑
i=2

(
xji

)2

, xj1 ≥ 0

}
,

A ∈ �m×n with n =
∑N
j=1 nj , and

x =




x1

x2

...

xN


 , xj ∈ �ni , j = 1, 2, . . . , N, x ∈ �n.

Further, K+ denotes the interior of K. As is standard, the notation x�Ks (or x�Ks)
means that x− s ∈ K (or x− s ∈ K+). In this paper the matrix A is further assumed
to be of full row rank, i.e., rank A = m.

An efficient approach to SOCO problems is to solve them using interior-point
methods (IPMs) (see [10]). To be more specific, let us go into more details. Through-
out this paper, we assume that both (SOCO) and (SOCD) satisfy the interior-point
condition (IPC), i.e., there exists (x0, y0, s0) such that

Ax0 = b, x0�K0, AT y0 + s0 = c, s0�K0.

It is known that the IPC is a rather mild assumption in the study of SOCO, since
by using the homogeneous self-dual model described in [4] we could cast the original
problem as a slightly larger SOCO problem such that a strictly feasible point for this
new problem could be easily obtained. For this and other properties of SOCO, we
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refer to [4], the recent book [27], and the references therein. Under the IPC, finding
an optimal solution of SOCO is equivalent to solving the following system:

Ax = b, x�K0,

AT y + s = c, s�K0,(1.2)

mat(x)s = 0.

The basic idea of primal-dual IPMs is to replace the third equation in (1.2), the
so-called complementarity condition for (SOCO) and (SOCD), by the parameterized
equation mat(x)s = µẽ, with µ > 0, where

ẽ =




ẽ1

ẽ2

...

ẽN


 , ẽj =




1

0
...

0


 ∈ �

nj , j = 1, 2, . . . , N.

Thus we consider the system

Ax = b, x�K0,

AT y + s = c, s�K0,(1.3)

mat(x)s = µẽ.

If the IPC holds, then for each µ > 0 the parameterized system (1.3) has a unique
solution. This solution is denoted by (x(µ), y(µ), s(µ)), and we call x(µ) the µ-center
of (SOCO) and (y(µ), s(µ)) the µ-center of (SOCD). The set of µ-centers (with µ
running through all positive real numbers) gives a homotopy path, which is called the
central path. The central path converges to the solution set of SOCO as µ reduces to
zero [5, 15, 24]. IPMs trace the central path appropriately and find an approximate
solution to the underlying SOCO problem as µ goes to zero.

To trace the central path efficiently, various strategies have been introduced to
keep the iterative sequence in a certain neighborhood of the central path as well as to
reduce the parameter µ. These strategies have played an important role in both the
analysis and practice of IPMs. It is worth pointing out that two general strategies
are widely used in IPMs with respect to the update of the parameter µ. These are
the so-called small-update and large-update IPMs. It has been proven and generally
accepted that the worst-case iteration bound of small-update IPMs is better than that
for large-update IPMs, while the latter are much more efficient in practice (see the
discussion in the introduction of [20]). This is a gap between the theory and practice
of IPMs.

Recently, we introduced the concept of an univariate self-regular function and
showed that any such function can be naturally extended to a proximity function
on the positive orthant and the cone of positive definite matrices [20]. The self-
regular proximities obtained in this way can be used in IPMs to keep control on
the distance of an iterative sequence from the central path as well as to define the
corresponding search directions. By using some new analysis tools developed in [19,
20] and employing the new search directions, we were able to show that the resulting
new large-update IPMs for LO and SDO have polynomial O(n(q+1)/2q log n

ε ) iteration
bounds, where q is a constant, the so-called barrier degree of the proximity. This
improves the previously known O(n log n

ε ) iteration bound of large-update IPMs.



182 JIMING FENG, CORNELIS ROOS, AND TAMÁS TERLAKY

The present work aims to extend the results of [20] to SOCO. We first point out
that because of the relations among LO, SDO, and SOCO, many IPMs for SOCO
can be cast as straightforward extensions of their counterparts for LO and SDO, and
the polynomial convergence of those IPMs for SOCO can also be obtained by directly
applying the known results of IPMs for SDO to SOCO. However, as pointed out in the
book [15], although a SOCO problem can be solved via using an SDO approach, IPMs
solving SOCO problems directly have iteration bounds depending on the number N
of cones, which is lower than those of IPMs applied to the semidefinite formulation of
the SOCO problem, where the complexity of an IPM is dependent on the number n
of variables. In the case of SOCO, n might be much larger than N . This observation
led to some works on IPMs for solving SOCO directly [13, 25]. It should also be
noted that by using the notion of Jordan algebra, Faybusovich [7] and Alizadeh and
Schmieta [3] discussed the complexity of IPMs for symmetric cones, which include
SOCO as a specific case. The approach based on Jordan algebra was extensively
investigated later by Schmieta and Alizadeh [22, 23], who proposed a way to transfer
the Jordan algebra associated with the second-order cone into the so-called Clifford
algebra in the cone of matrices and then carried out a unified analysis of the analysis
for many IPMs in symmetric cones. It is worth noting that the complexity of IPMs
for SOCO in [22] matches those presented in [2, 13, 16, 17, 25].

A direct and interesting question here is whether we can extend our approach
in [20] to SOCO by using the above-mentioned techniques and bound the number of
iterations by a function of N . As we will see later, this is far from an easy task. Let
us explain why. First we point out that the proof of the global convergence of IPMs
based on the self-regular approach involves the analysis of general analytic functions
which are defined on the associated cone and their derivatives. For instance, a key in
establishing the complexity of the algorithm for SDO in [20] is the following inequality:

Ψ(XS) ≤ 1

2

(
Ψ(X2) + Ψ(S2)

) ∀X, S � 0,

where Ψ(·) is a so-called self-regular function in the cone of positive definite matrices.
The proof of this inequality refers to the singular value decomposition of a matrix.
This prevents a direct extension of the proof in [20] to SOCO. As we will see in
section 2, this inequality does not hold in general for the case of SOCO. Another
important step in the analysis of [20] is to estimate the second-order derivative of a
matrix-valued mapping that involves the derivatives of each element of the underlying
matrix function. However, the approach suggested in [22] transfers a vector x ∈ �n in
the second-order cone into a matrix X ∈ �2n×2n . In this situation, it is too difficult
to get any reasonable estimation about the second-order derivative of the resulting
matrix-valued mapping. The above-mentioned issues indicate that in order to extend
the approach of [20] to SOCO, a new and separate treatment is necessary.

This work follows the same main steps as those in [20]. The paper is organized
as follows. In section 2, we introduce the definition of general analytic functions
defined on K and discuss versatile properties of these functions. Section 3 is devoted
to introducing the new search direction and the scaling technique for SOCO. The
notions of self-regular functions and self-regular proximities in the second-order cone
K are discussed as well. In section 4 we describe our new algorithm based on a self-
regular proximity. Then we establish the polynomial complexity of the algorithm and
finally close this paper with some concluding remarks.

We mention that in the rest of this paper we denote by �+ the nonnegative axis,
i.e., �+ = [0,∞), and by �++ the positive axis, i.e., �++ = (0,∞).
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2. Preliminary results on functions associated with second-order cones.
In the design and analysis of IPMs, we always resort to some functions defined in a
suitable space. In this section we will present some fundamental results about general
functions defined in the second-order cone. As we discussed in the introduction,
Jordan algebra [6, 7, 22, 23] has played an important role in extending IPMs to
symmetric cones. However, these existing known results on Jordan algebra are not
enough to generalize the approach presented in [20] to SOCO.

We first consider general functions on the second-order cone via Jordan algebra.
To ease the discussion, in this technical section we assume that the cone K is defined
with N = 1. First we observe that closely associated with the cone K is a matrix

Q = diag (1,−1, . . . ,−1).

We refer to Q as the representation matrix of the cone K since there holds simply

K = {x ∈ �n : xTQx ≥ 0, x1 ≥ 0}.
Obviously one has Q2 = E.

2.1. Jordan algebra. The Euclidean Jordan algebra for the second-order cone
K is defined by the bilinear operator

x ◦ s = (xT s, x1s2 + s1x2, . . . , x1sn + s1xn)T = (xT s, x1s2:n + s1x2:n)T ,(2.1)

where x, s ∈ �n. Obviously, the Jordan product ◦ is commutative, i.e., x ◦ s = s ◦ x.
It is also easy to verify that for any x, s ∈ �n one has

x ◦ s = mat(x)s.

It may be worthwhile to point out that the cone K is not closed under the Jordan
product. For example, if n = 3, then x = (1.5, 1, 1)T ∈ K and s = (1.5, 1,−1)T ∈ K,
but x ◦ s = (2.25, 3, 0)T �∈ K.

2.2. Eigenvalues, trace, and determinant associated with second-order
cones. We denote by λmax(x) and λmin(x) the maximal and minimal eigenvalues of
the matrix mat(x), respectively. Namely,

λmax(x) = x1 + ‖x2:n‖, λmin(x) = x1 − ‖x2:n‖.(2.2)

The trace and the determinant of a vector x ∈ �n associated with K can be defined
as follows [6].

Definition 2.1.1 For any x ∈ �n, the trace of x associated with K is defined by

Tr(x) = λmax(x) + λmin(x) = 2x1,(2.3)

and the determinant of x associated with K is given by

det (x) = λmax(x)λmin(x) = x2
1 − ‖x2:n‖2 .(2.4)

From the above definitions, one can easily see that for any x, s ∈ �n one has

Tr(x ◦ s) = 2xT s, Tr(x ◦ x) = 2 ‖x‖2 .

1These definitions can be viewed as variants of the trace and determinant of general matrices.
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Our next lemma collects several elementary results about the behavior of the trace
and determinant of the Jordan product of two vectors. These results demonstrate the
differences between the determinant and trace for elements of the second-order cone
K and those notions as usually defined for matrices.2

Lemma 2.2. Suppose that x and s are two vectors in K. Then we have

λmax(x)λmin(s)+λmin(x)λmax(s)≤Tr(x◦s)≤λmax(x)λmax(s)+λmin(x)λmin(s)(2.5)

and

det (x ◦ s) ≤ det (x) det (s).(2.6)

Furthermore, equality holds in (2.6) if and only if there exist two constants β1, β2 ∈ �
with |β1|+ |β2| > 0 such that β1x2:n = β2s2:n.

Proof. We first consider the relation (2.5). Using the notations λmax(·) and λmin(·)
given by (2.2) and the well-known Cauchy–Schwartz inequality, since both x and s
belong to K, one has

0 ≤ λmax(x)λmin(s) + λmin(x)λmax(s) = 2(x1s1 − ‖x2:n‖ ‖s2:n‖)
≤ 2xT s = Tr(x ◦ s) ≤ 2(x1s1 + ‖x2:n‖ ‖s2:n‖)
= λmax(x)λmax(s) + λmin(x)λmin(s),

which gives (2.5).
To prove (2.6), we note that, by making use of the definition (2.4), one gets

det (x ◦ s) = (xT s)2 − ‖x1s2:n + s1x2:n‖2
= (x1s1)

2 + (x2:nsT2:n)2 − (x1)
2 ‖s2:n‖2 − (s1)

2 ‖x2:n‖2
≤ (x1s1)

2 + ‖x2:n‖2 ‖s2:n‖2 − (x1)
2 ‖s2:n‖2 − (s1)

2 ‖x2:n‖2
= ((x1)

2 − ‖x2:n‖2)((s1)
2 − ‖s2:n‖2) = det (x) det (s),

and equality holds if and only if |x2:nsT2:n| = ‖x2:n‖ ‖s2:n‖. This means equality holds
only when the vectors x2:n and s2:n are linearly dependent. The proof of the lemma
is complete.

2.3. Functions associated with second-order cone and their derivatives.
Note that if n = 1, then K = �+, and if n ≥ 1, then �+ ⊆ K. Our aim in this section
is to show that any function mapping �+ into �+ can be naturally extended to a
function that maps K into itself. First we observe that for every x ∈ �n we have the
so-called spectral decomposition

x = λmax(x)z1 + λmin(x)z2,

where

z1 =
1

2

(
1,

x2:n

‖x2:n‖
)T

and z2 =
1

2

(
1,
−x2:n

‖x2:n‖
)T

.

2This distinction can be anticipated by noticing that Tr(mat(x)) = nx1 = n/2Tr(x) and that

det (mat(x)) = xn−2
1 (x21 − ‖x2:n‖2) = xn−2

1 det (x).
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Here by convention x2:n

‖x2:n‖ = 0 if x2:n = 0. It is easy to see that

z1 ◦ z2 = 0.(2.7)

Now we are ready to give the definition of general analytical functions associated with
the second-order cone K.

Definition 2.3. Suppose that ψ(t) is a function from � to � and x ∈ �n. Then
the function ψ(x) : �n → �n associated with the second-order cone K is defined as
follows: 3

ψ(x) = ψ(λmax(x))z1 + ψ(λmin(x))z2.(2.8)

The function ψ(t) is called the kernel function of ψ(x). It can easily be verified that
if ψ(t) ≥ 0 for any t ≥ 0 and x ∈ K, then the above definition implies that ψ(x) ∈ K.
Thus it becomes clear that every nonnegative (positive) function on the nonnegative
(positive) axis naturally extends to a function that maps (the interior of) K into itself.
Likewise for the LO and SDO cases the function ψ(t) is called the kernel function of
ψ(x). As a consequence of the above definition we have a big source of functions
mapping K into itself. For instance, we may write xp, where p is any number in �
and x ∈ K. Let us consider some special cases, for example, p = −1. In this case
Definition 2.3 yields

x−1 =
1

det (x)
(x1,−x2,−x3, . . . ,−xn)T ∀x�K0,

and one may easily see that x ◦ x−1 = ẽ. Moreover, it is also clear that any analytic
function like exp(x) is now well defined. Similarly we can define the function ψ′(x)
by (2.8), whose kernel function is ψ′(t).

The following result concerning the behavior of composing functions with respect
to the Jordan product follows directly from Definition 2.3 and (2.7).

Lemma 2.4. Suppose that ψ1(t) and ψ2(t) are two functions from � into �
and that ψ1(x) and ψ2(x) are two associated functions defined by (2.8). If ψ0(t) =
ψ1(t)ψ2(t), then ψ0(x) = ψ1(x) ◦ ψ2(x) holds for any x ∈ �n.

It is trivial to verify the following result about general functions associated with
the second-order cone defined by Definition 2.3.

Lemma 2.5. Suppose that the function ψ(x) : �n → �n is defined by Defini-
tion 2.3. Then

‖ψ(x)‖=
√

2

2

√
ψ2(λmax(x)) + ψ2(λmin(x)),

Tr(ψ(x))= ψ(λmax(x)) + ψ(λmin(x)),

det (ψ(x))= ψ(λmax(x))ψ(λmin(x)).

Let us elaborate a little more on the relations among the eigenvalues of two vectors
in the second-order cone and those of their Jordan product. Note that from Lemma 2.2
we know that for any x, s�K0, the determinant det (x ◦ s) = det(x) det(s) if and only
if the vectors x2:n and s2:n are linearly dependent. Without loss of generality, we may
assume that x2:n �= 0 and s2:n = βx2:n for some β ∈ �. In the following discussion we

3We note that recently Fukushima, Luo, and Tseng [9] also defined functions associated with
a second-order cone. Their definition is slightly different from our definition (2.8). However, the
definition given by (2.8) is clearer and more direct.
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will show that this further implies that the vector s can be represented as a function
of x and that the vector x ◦ s ∈ K+.

Lemma 2.6. Suppose that x and s are two vectors in K+ with x2:n �= 0. If

det (x ◦ s) = det(x) det(s),

then there exists a function ψ(t) : �+ → �+ such that s = ψ(x) and the Jordan
product x ◦ s ∈ K+. Moreover,

λmin(x)λmin(s) ≤ λmin(x ◦ s) ≤ λmax(x ◦ s) ≤ λmax(x)λmax(s).(2.9)

Proof. By making use of the last conclusion of Lemma 2.2, since det(x ◦ s) =
det(x) det(s), one can claim that

s2:n =
β ‖s2:n‖
‖x2:n‖ x2:n,

where β equals 1 or −1. Let ψ(t) be a univariate function from �++ into �++

satisfying the following equalities:

1

2
(ψ(λmax(x)) + ψ(λmin(x))) = s1,

1

2
(ψ(λmax(x))− ψ(λmin(x))) = β ‖s2:n‖ .

Such a function exists since s ∈ K+. Thus, by definition (2.8) we can claim s = ψ(x).
Now invoking Lemma 2.4, we can write x ◦ s = ψ1(x), where the kernel function
ψ1(t) = tψ(t). Therefore, since ψ1(t) > 0 for any t > 0 and x2:n �= 0, from its basic
definition (2.8) it follows that x ◦ s = ψ1(x)�K0.

It remains to prove (2.9). Since x ◦ s = ψ1(x), we thus have

λmax(x ◦ s) = max{ψ1(λmax(x)), ψ1(λmin(x))}
≤ λmax(x) max{ψ(λmax(x)), ψ(λmin(x))} = λmax(x)λmax(s),

which, together with the assumption in the lemma that det(x ◦ s) = det(x) det(s),
further yields

λmin(x ◦ s) ≥ λmin(x)λmin(s).

This completes the proof of the lemma.
It is worthwhile to compare the above lemma with its analogue in matrix theory.

Suppose that X and S are both symmetric and positive definite. Let λmax(·) and
λmin(·) denote the maximal and minimal eigenvalues of the corresponding matrix.
Then we have

λmin(X)λmin(S) ≤ λmin(XS) ≤ λmax(XS) ≤ λmax(X)λmax(S).(2.10)

Note that for any X, S ∈ �n×n the relation det(XS) = det(X) det(S) holds trivially.
The results presented in Lemma 2.6 are very helpful in our later discussion about the
features of self-regular functions associated with the second-order cone. These func-
tions can be viewed as a direct extension of univariate self-regular functions introduced
in [20].

Definition 2.7. A function ψ(t) ∈ C2 : �++ → �+ is self-regular if it satisfies
the following conditions:
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C.1 ψ(t) is strictly convex with respect to t > 0 and vanishes at its global minimal
point t = 1; i.e., ψ(1) = ψ′(1) = 0. Further, there exist positive constants
ν2 ≥ ν1 > 0 and p ≥ 1, q ≥ 1 such that

ν1(t
p−1 + t−1−q) ≤ ψ′′(t) ≤ ν2(t

p−1 + t−1−q) ∀t ∈ (0,∞).(2.11)

C.2 For any t1, t2 > 0,

ψ(tr1t1−r2 ) ≤ rψ(t1) + (1− r)ψ(t2) ∀r ∈ [0, 1].(2.12)

We call parameter q the barrier degree and p the growth degree of the function
ψ(t) if it is self-regular. A typical family of self-regular functions is given by

Υp,q(t)=
1

p(p + 1)

(
tp+1 − 1

)
+

1

q(q − 1)

(
t1−q − 1

)
+

p− q

pq
(t− 1), p, q≥1.(2.13)

It is worth mentioning that the function Υp,q(t) satisfies condition C.1 with ν1 = ν2 =
1.

The definition of a self-regular function for the second-order cone K is recorded
as follows.

Definition 2.8. A function ψ(x) associated with the second-order cone K given
by (2.8) is said to be self-regular if its kernel function ψ(t) is self-regular.

We denote by Ψ(x) the trace of the function ψ(x), i.e.,

Ψ(x) = Tr(ψ(x)) = ψ(λmax(x)) + ψ(λmin(x)).(2.14)

Our next proposition characterizes several important properties of a self-regular func-
tion for the second-order cone K.

Proposition 2.9. Let the functions ψ(x) : K+ → K and Ψ(x) : K+ → �+ be
defined by (2.8) and (2.14), respectively. If the function ψ(x) is self-regular, then the
following statements hold:

(i) Ψ(x) is strictly convex with respect to x ∈ K+ and vanishes at its global
minimal point x = ẽ; i.e., Ψ(ẽ) = 0, ψ(ẽ) = ψ′(ẽ) = 0. Further, there exist
positive constants ν1, ν2 > 0 and p, q ≥ 1 such that

ν1(x
p−1 + x−1−q) �K ψ′′(x) �K ν2(x

p−1 + x−1−q).(2.15)

(ii) Suppose that x and s are two vectors in K+. If v ∈ K+ satisfies

det
(
v2
)

= det (x) det (s), Tr
(
v2
)

= Tr(x ◦ s),

then

Ψ(v) ≤ 1

2
(Ψ(x) + Ψ(s)).(2.16)

Proof. To show that the first claim of the proposition is true, we need to show
that Ψ(x) is strictly convex for x�K0, that is, for any x, s�K0 and x �= s there holds

Ψ

(
x + s

2

)
<

1

2
(Ψ(x) + Ψ(s)).

Since x, s ∈ K+, through simple calculus one can prove that

λmax

(
x + s

2

)
=

x1 + s1

2
+

1

2
‖x2:n + s2:n‖ ≤ 1

2
(λmax(x) + λmax(s))
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and similarly

λmin

(
x + s

2

)
=

x1 + s1

2
− 1

2
‖x2:n + s2:n‖ ≥ 1

2
(λmin(x) + λmin(s)).

Recalling the definitions of λmax(·) and λmin(·), it follows trivially that

λmax

(
x + s

2

)
+λmin

(
x + s

2

)
= x1+s1 =

1

2
(λmax(x) + λmin(x) + λmax(s) + λmin(s)).

Thus, from the above three relations we can conclude that there exist two constants
β1 ≥ 0 and β2 ≥ 0 with β1 + β2 = 1 such that

λmax

(
x + s

2

)
=

β1

2
(λmin(x) + λmin(s)) +

β2

2
(λmax(x) + λmax(s)),

λmin

(
x + s

2

)
=

β2

2
(λmin(x) + λmin(s)) +

β1

2
(λmax(x) + λmax(s)).

Now, making use of the strict convexity of the function ψ(t) twice, one obtains

Ψ

(
x + s

2

)
= ψ

(
λmax

(
x + s

2

))
+ ψ

(
λmin

(
x + s

2

))

= ψ

(
β1

2
(λmin(x) + λmin(s)) +

β2

2
(λmax(x) + λmax(s))

)

+ ψ

(
β2

2
(λmin(x) + λmin(s)) +

β1

2
(λmax(x) + λmax(s))

)

≤ ψ

(
λmin(x) + λmin(s)

2

)
+ ψ

(
λmax(x) + λmax(s)

2

)
≤ 1

2
(ψ(λmax(x)) + ψ(λmin(x)) + ψ(λmax(s)) + ψ(λmin(s)))

=
1

2
(Ψ(x) + Ψ(s)).

Note that since x �= s, at least one of the two inequalities in the above proof holds
strictly. This proves the strict convexity of Ψ(x). The remaining terms in the first
statement can be verified through direct calculus.

It remains to prove the second statement of the proposition. For this we first
observe that, since v ∈ K+, there hold

det (v)=det
(
v2
) 1

2 =det(x)
1
2 det(s)

1
2 =(λmin(x)λmin(s))

1
2 (λmax(x)λmax(s))

1
2(2.17)

and

Tr(v) = λmax(v) + λmin(v) =
(
λmax(v)2 + λmin(v)2 + 2λmax(v)λmin(v)

) 1
2

=
(
Tr(v2) + 2 det (v)

) 1
2 =

(
Tr(x ◦ s) + 2(det (x) det (s))

1
2

) 1
2

≤
(

λmin(x)λmin(s) + λmax(x)λmax(s) + 2(λmin(x)λmin(s)λmax(x)λmax(s))
1
2

) 1
2

=
√

λmin(x)λmin(s) +
√

λmax(x)λmax(s),(2.18)
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where the inequality follows from (2.5). Therefore, by making use of (2.17) and (2.18),
we obtain

λmax(v) =
1

2
(Tr(v) + λmax(v)− λmin(v)) =

1

2
Tr(v) +

1

2

√
Tr(v)

2 − 4 det(v2)

≤ 1

2
Tr(v) +

1

2

(√
λmax(x)λmax(s)−

√
λmin(x)λmin(s)

)
≤ λmax(x)

1
2 λmax(s)

1
2 ,

where all inequalities follow from (2.17) and (2.18). Now, invoking (2.17), we can
further claim

λmin(v) ≥ λmin(x)
1
2 λmin(s)

1
2 .

From the above discussions we can easily verify that there exists a constant r ∈ [ 12 , 1)
such that

λmin(v) = λmin(x)
r
2 λmin(s)

r
2 λmax(x)

1−r
2 λmax(s)

1−r
2 ,

λmax(v) = λmax(x)
r
2 λmax(s)

r
2 λmin(x)

1−r
2 λmin(s)

1−r
2 .

By applying condition C.2 twice, we deduce

Ψ(v) = ψ(λmin(v)) + ψ(λmax(v))

= ψ
(

λmin(x)
r
2 λmin(s)

r
2 λmax(x)

1−r
2 λmax(s)

1−r
2

)
+ ψ

(
λmax(x)

r
2 λmax(s)

r
2 λmin(x)

1−r
2 λmin(s)

1−r
2

)
≤ ψ

(
λmin(x)

1
2 λmin(s)

1
2

)
+ ψ

(
λmax(x)

1
2 λmax(s)

1
2

)
≤ 1

2
(ψ(λmin(x)) + ψ(λmax(x)) + ψ(λmax(s)) + ψ(λmin(s)))

=
1

2
(Ψ(x) + Ψ(s)).

This completes the proof of the proposition.
It is of interest to compare Proposition 2.9 with its SDO analogue, Proposition 4.4

in [20]. First we find that statement (ii) in the present paper is slightly different from
condition C.4 which is required in [20]. Actually, one can easily see that the matrix
used in condition C.4 of [20] satisfies certain conditions similar to the one posed in
Proposition 2.9. However, the choice of the vector v allowing such conditions in the
second-order cone is much more restricted than in the case of SDO. One possible
reason for this phenomenon is that, for general x, s ∈ K+, the Jordan product x ◦ s
might not belong to K. For instance, let us consider an example in K ∈ �3 with
x = (2 + t, 1, 1)T , s = (2 + t, 1,−1)T ∈ K+, where t is some small positive number.
Obviously one has x ◦ s = ((2 + t)2, 4 + 2t, 0)T ∈ K+. Moreover, it is trivial to see
that λmin(x ◦ s) = 2t + t2. Thus when t reduces to zero, the function Ψ(x ◦ s) goes to
infinity. However, one can readily verify that for sufficiently small t > 0 both of the
functions Ψ(x) and Ψ(s) are bounded above. This example shows that, for x, s ∈ K+,
if det (x ◦ s) �= det(x) det(s), then the relation

Ψ(x ◦ s) ≤ 1

2

(
Ψ(x2) + Ψ(s2)

)
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might fail. We also mention that, in the SDO case, for any positive definite matrices
X and S, since the matrix XS is diagonalizable and has positive eigenvalues, the
function Ψ(XS) is well defined (see [20]).

Likewise, what we have observed in the LO and SDO cases [20] is that, in order to
establish the complexity of the algorithm, we need to bound the derivatives of certain
proximity functions in suitable spaces. With specification to SOCO, this requires us
to discuss the derivatives of the functions ψ(x(t)) and Ψ(x(t)), where

x(t) = (x1(t), . . . , xn(t))T

is a mapping from � into �n. Our next result for functions in the second-order cone
K resembles Lemma 4.9 for matrix function in [20]. However, our proof for the SOCO
case here is direct and much simpler. First, for simplicity, let us denote by x′(t) the
derivative of x(t) with respect to t such that

x′(t) = (x′
1(t), . . . , x

′
n(t))T .

Our following results provide means to measure the first-order directional derivative
of a general function Ψ(x(t)) and bound its second-order derivative with respect to
the variable t. Recall that, by (2.8), we can define the function ψ′(x) as the function
whose kernel function is ψ′(t).

Lemma 2.10. Suppose that x(t) is a mapping from � into �n. If x(t) is twice
differentiable with respect to t for all t ∈ (lt, ut), and ψ(t) is also a twice continuously
differentiable function in a suitable domain which contains λmax(x(t)) and λmin(x(t)),
then

d

dt
Tr(ψ(x(t))) = Tr(ψ′(x(t)) ◦ x′(t)) ∀t ∈ (lt, ut)

and

d2

dt2
Tr(ψ(x(t))) ≤ #Tr(x′(t) ◦ x′(t)) + Tr(ψ′(x(t)) ◦ x′′(t)),(2.19)

where

# = max

{
|ψ′′(λmax(x(t)))| , |ψ′′(λmin(x(t)))| , |ψ

′(λmax(x(t)))− ψ′(λmin(x(t)))|
2 ‖x2:n(t)‖

}
.

Proof. Without loss of generality, we assume that ‖x2:n‖ > 0. From Lemma 2.5
we obtain

Tr(ψ(x(t))) = ψ(λmax(x(t))) + ψ(λmin(x(t))).

It follows that

d

dt
Tr(ψ(x(t)))= ψ′(λmax(x(t)))

(
x′

1(t) +
1

‖x2:n(t)‖
n∑
i=2

xi(t)x
′
i(t)

)

+ ψ′(λmin(x(t)))

(
x′

1(t)−
1

‖x2:n(t)‖
n∑
i=2

xi(t)x
′
i(t)

)
.

Now recalling definition (2.8), we obtain

ψ′(x(t)) =
1

2

(
ψ′(λmax(x(t))) + ψ′(λmin(x(t))),

ψ′(λmax(x(t)))− ψ′(λmin(x(t)))

‖x2:n(t)‖ x2:n(t)

)T
.



NEW IPMs FOR SOCO BASED ON SELF-REGULARITY 191

By simple calculus, from the above two equalities one can readily check that

d

dt
Tr(ψ(x(t))) = 2ψ′(x(t))Tx′(t) = Tr(ψ′(x(t)) ◦ x′(t)).

This proves the first statement of the lemma.
To prove the second statement of the lemma, we first observe that

d2

dt2
Ψ(x(t)) = Tr

(
d

dt
ψ′(x(t)) ◦ x′(t)

)
+ Tr(ψ′(t) ◦ x′′(t)).

It is straightforward to check that

d

dt
ψ′(x(t))= v1 + v2 + v3,

where

v1 =

ψ′′(λmax(x(t)))

(
x′

1(t) +

∑n
i=2 xi(t)x

′
i(t)

‖x2:n(t)‖
)

2

(
1,

x2:n(t)

‖x2:n(t)‖
)T

,

v2 =

ψ′′(λmin(x(t)))

(
x′

1(t)−
∑n
i=2 xi(t)x

′
i(t)

‖x2:n(t)‖
)

2

(
1,− x2:n(t)

‖x2:n(t)‖
)T

,

v3 =
ψ′(λmax(x(t)))− ψ′(λmin(x(t)))

2 ‖x2:n(t)‖

(
0, x′

2:n(t)−
∑n
i=2 xi(t)x

′
i(t)

‖x2:n(t)‖2 x2:n(t)

)T
.

By using the well-known Cauchy–Schwarz inequality, we deduce∑n
i=2 xi(t)x

′
i(t)

‖x2:n(t)‖ ≤ ‖x′
2:n(t)‖ .

This relation, together with the definition of #, further implies

Tr((v1 + v2) ◦ x′(t)) = ψ′′(λmax(x(t)))

(
x′

1(t) +

∑n
i=2 xi(t)x

′
i(t)

‖x2:n(t)‖
)2

+ ψ′′(λmin(x(t)))

(
x′

1(t)−
∑n
i=2 xi(t)x

′
i(t)

‖x2:n(t)‖
)2

≤ 2#

(
(x′

1(t))
2 +

(∑n
i=2 xi(t)x

′
i(t)

‖x2:n(t)‖
)2
)

.

On the other hand, through simple calculus, one has

Tr(v3 ◦ x′(t))=
ψ′(λmax(x(t)))− ψ′(λmin(x(t)))

‖x2:n(t)‖

(
‖x′

2:n(t)‖2 −
(∑n

i=2 xi(t)x
′
i(t)

‖x2:n(t)‖
)2
)

≤ 2#

(
‖x′

2:n(t)‖2 −
(∑n

i=2 xi(t)x
′
i(t)

‖x2:n(t)‖
)2
)

.

Finally, by summing up the above two inequalities, we obtain the desired relation
(2.19), which completes the proof of the lemma.
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It is worthwhile to consider the special case K ⊂ �2, where we can also cast a
SOCO problem as an SDO problem. Note that for the SDO case one has

X(t) =


x1(t) x2(t)

x2(t) x1(t)


 .

In this situation, the equalities

‖X ′(t)‖2 = 2 ‖x′(t)‖2 = Tr(x′(t) ◦ x′(t))

hold trivially. Recalling the difference between the definitions of Ψ(x) by (2.14) and
Ψ(X) in [20], one can easily verify that the estimations given in Lemma 2.10 are
precisely the same as the ones presented in its SDO analogue Lemma 4.9 of [20].

3. Self-regular proximity functions and new search directions for SOCO.

3.1. Scaling schemes. In the present section we consider diverse search direc-
tions used in IPMs for solving SOCO and introduce some new search directions based
on self-regular proximity functions in the second-order cone.

Most IPMs for solving SOCO employ different search directions together with
suitable strategies for following the central path appropriately. As in the SDO case,
the search directions for SOCO are usually derived from certain Newton systems in
various scaled spaces. Note that the standard linearized Newton system for (1.3) can
be written as


A 0 0

0 En AT

mat(s) mat(x) 0






∆x

∆s

∆y


 =




0

0

µẽ−mat(x)s


 , x, s�K0.(3.1)

This system might not be well defined if its Jacobian matrix is singular. To obtain a
Newton-type system that has a unique solution, people usually refer to some scaling
schemes. In what follows we will introduce certain variants of such scaling schemes for
SOCO, as first proposed and studied by Tsuchiya [25, 26]. In the rest of this section,
we consider the more general case of N > 1. In this situation, the definitions ψ(x),
Ψ(x) and the Jordan algebra should be modified accordingly as follows:

ψ(x)= (ψ(x1), ψ(x2), . . . , ψ(xN ))T , Ψ(x) =

N∑
i=1

Ψ(xi),(3.2)

x ◦ s=
((

x1 ◦ s1
)T

,
(
x2 ◦ x2

)T
, . . . ,

(
xN ◦ sN

)T)T
.(3.3)

Before we discuss these scaling techniques, recall from section 2 that closely associated
with each cone Kj are the matrices

Enj := diag (1, 1, . . . , 1) and Qj = diag (1,−1, . . . ,−1),

where Enj denotes the identity matrix in space �nj×nj and Qj is the representation
matrix of the cone Kj , since

Kj = {xj ∈ �nj : (xj)TQjxj ≥ 0, xj1 ≥ 0}.
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It is trivial to see that (Qj)2 = Enj .
Now we are ready to give the definition of a scaling matrix for general second-order

cones.
Definition 3.1. A matrix W j ∈ �nj×nj is a scaling matrix for the cone Kj if

it satisfies the following condition:

W jQjW j = Qj , W j � 0.

We remind the reader that here W j � 0 means that W j is positive definite and
symmetric. In view of this definition, if W j is a scaling matrix for the cone Kj , so is(
W j

)−1
.

A scaled pair (x̃, s̃) is obtained by the transformation

x̃ = UWx, s̃ := (UW )
−1

s,

where

W := diag
(
W 1, W 2, . . . , WN

)
, U := diag (u1En1 , u2En2 , . . . , uNEnN ),

u1, . . . , uN > 0.

Several elementary properties of such a transformation are summarized in the follow-
ing proposition.

Proposition 3.2. For any j ∈ {1, 2, · · · , N}, we have
(i) Tr

(
xj ◦ sj

)
= Tr

(
x̃j ◦ s̃j

)
;

(ii) u2
j det

(
xj
)

= det
(
x̃j
)
, u−2

j det
(
sj
)

= det
(
s̃j
)
;

(iii) x�K0 (or x�K0) if and only if x̃�K0 (or x̃�K0).
Proof. The proof follows directly from the definition of scaling matrices. For

details, we refer to [4, 25].
Let us define

Ã = A(UW )
−1

, c̃ = (UW )
−T

c.

One can rewrite system (1.3) in the scaled space as


Ãx̃ = b,

ÃT y + s̃ = c̃,

mat(x̃)s̃ = µẽ, x̃, s̃�K0.

(3.4)

If both x and s are strictly feasible for (SOCO) and (SOCD), so are the vectors x̃ and
s̃ for the new SOCO problem in the scaled space. In this case, the linearized Newton
system for (3.4) amounts to solving the following equation system:


Ãd̃x = 0,

ÃT dy + d̃s = 0,

mat(x̃)d̃s + mat(s̃)d̃x = µẽ−mat(x̃)s̃, x̃, s̃�K0.

(3.5)

There are several popular choices for the scaling matrices W j and the constants uj .
For instance, if UW is the identity matrix and system (3.5) is well defined, then
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the solution of (3.5) yields the so-called A.H.O. search direction [1]; if UW is chosen
such that s̃ = ẽ (or x̃ = ẽ), then we obtain the primal (or dual) H.K.M. direction;
if UW is chosen such that x̃ = s̃, then we have the NT search direction [25, 26].
Note that when the NT-scaling is used, since x̃ = s̃, the matrix in the scaled space
Ãmat(s̃)

−1
mat(s̃)ÃT = ÃÃT is positive definite; thus in this case system (3.5) is

well defined. In [13], Monteiro and Tsuchiya studied some other search directions for
SOCO as well.

Analogous to [20], in this paper we choose the NT-scaling scheme to define the
corresponding proximity and thus the search direction. In what follows we present a
variational principle that exhibits an interesting relation between a self-regular prox-
imity function and the NT-scaling. This result is similar to that for SDO in [18].

Let us consider the primal SOCO problem in the scaled space,

(Scaled SOCO) min c̃T x̃

s.t. Ãx̃ = b, x̃�K0,

and its dual problem

(Scaled SOCD) max bT y

s.t. ÃT y + s̃ = c̃, s̃�K0.

We assume that a certain barrier method is employed to solve both the scaled primal
and dual problems; namely, we minimize a specific potential function c̃T x̃ + Ψ(x̃) and
maximize bT y − Ψ(s̃), where Ψ(·) is a barrier function for the second-order cone K.
The question arises: for which kinds of scaling matrix W and matrix U does the
function

c̃T x̃− bT y + Ψ(x̃) + Ψ(s̃)

attain its global minimal value? We have the following.
Proposition 3.3. Suppose that the functions ψ(x) and Ψ(·) are defined by (2.8)

and (3.2). If the function ψ(t) satisfies condition C.2 strictly, then the function c̃T x̃−
bT y + Ψ(x̃) + Ψ(s̃) attains its global minimal value with matrices W and U such that
x̃ = s̃.

Proof. First we observe that the inner product c̃T x̃ is invariant for any nonsingular
matrices W and U . Thus we need only to prove that Ψ(x̃) + Ψ(s̃) has a global
minimizer when the matrices W and U are chosen so that x̃ = s̃. The existence of
such matrices W and U follows from the choice of the NT-scaling. For any x, s�K0
and j = 1, 2, . . . , N , let us denote by uj , W

j
NT the scaling vector and scaling matrix

such that

uj :=

(
det

(
xj
)

det
(
sj
)
) 1

4

,(3.6)

wj :=
u−1
j sj + ujQ

jxj

√
2

√
Tr
(
xj ◦ sj

)
+
√

det
(
xj
)

det
(
sj
) ,(3.7)

and

W j
NT =


wj

1 (wj
2:nj

)T

wj
2:nj

Enj−1 + 1

1+wj1
wj

2:nj
(wj

2:nj
)T


 = −Qj +

1

1 + wj
1

(ẽj + wj)(ẽj + wj)T .
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Note that when x, s�K0, the denominator in the expression of wj is positive. For
the above choices there holds x̃j = ujW

j
NTxj = u−1

j (W j
NT )−1sj = s̃j (see [4, 25,

26]). For notational convenience, we also define WNT = diag (W j
NT ) and UNT =

diag (u1En1
, . . . , uNEnN ). Hence it remains to show that for these specific choices of

WNT and UNT the value of the function Ψ(x̃) + Ψ(s̃) is optimal. To distinguish the
NT-scaling scheme from many other scaling schemes, we denote by

v =




v1

v2

...

vN


 = x̃NT = s̃NT =




u1W 1
NTx1

u2W 2
NTx2

...

uNWN
NTxN


 =




u−1
1

(
W 1
NT

)−1
s1

u−1
2

(
W 2
NT

)−1
s2

...

u−1
N

(
WN
NT

)−1
sN




the scaled vector based on the NT-scaling, while x̃ and s̃ denote the scaled vectors
using general scaling techniques. It follows that

Ψ(v)=
1

2

N∑
j=1

(
ψ
(
λmax(vj)

)
+ ψ

(
λmin(vj)

))
.

Thus the proof will be finished if we can show that for any j = 1, . . . , N ,

ψ
(
λmax(vj)

)
+ ψ

(
λmin(vj)

)≤ 1

2

(
ψ
(
λmax(x̃j)

)
+ ψ

(
λmin(x̃j)

))
+

1

2

(
ψ
(
λmax(s̃j)

)
+ ψ

(
λmin(s̃j)

))
,(3.8)

and the equality is true if and only if x̃j = s̃j . Now by recalling the definitions of
the scaling matrices WNT and UNT , we can conclude that for any j = 1, . . . , N there
holds

Tr
(
xj ◦ sj

)
= Tr

(
x̃j ◦ s̃j

)
= Tr

(
vj ◦ vj

)
= Tr

(
[vj ]2

)
,(3.9)

det
(
vj
)

= u2
j det

(
xj
)

=
√

det
(
xj
)

det
(
sj
)

=
√

det
(
x̃j
)

det
(
s̃j
)
.(3.10)

Thus the vector vj satisfies the requirements in the second statement of Proposi-
tion 2.9, where x and s are replaced by x̃j and s̃j , respectively. Progressing in a
similar vein as we have done in the proof of the second statement of Proposition
2.9, we can obtain the desired relation (3.8), which concludes the proof of the prop-
osition.

We remark that, as observed by Tsuchiya [26], a large-update IPM for SOCO
based on the NT search direction always has a theoretically lower iteration bound
than the large-update IPMs relying on other search directions.

3.2. New proximity functions and search directions. To describe our new
search direction, we need more notation. Let us denote

Ā :=
1√
µ

A(UNTWNT )
−1

, v =
1√
µ

UNTWNTx,(3.11)

dx =
1√
µ

UNTWNT∆x, ds =
1√
µ

(UNTWNT )
−1

∆s.(3.12)
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Before introducing the new search direction for SOCO, let us first define the proximity
function used in our new IPM for SOCO. Analogously to the LO and SDO cases, the
new proximity function for SOCO is given by

Ψ(x, s, µ) := Ψ(v) = Tr(ψ(v)),(3.13)

where ψ(·) is a univariate self-regular function.
The new search direction that we propose for SOCO is a slight modification of

the NT direction defined by the solution of the following system:

Ādx= 0,

ĀT∆y + ds= 0,(3.14)

dx + ds= −ψ′(v).

Once we get dx and ds, we can compute ∆x and ∆s via (3.12). In view of the
orthogonality of ∆x and ∆s, one can easily verify that

dTx ds = 0.(3.15)

We proceed to discuss versatile properties of these self-regular proximities for
SOCO. For this we need more notation. Let us define

σ =
√

2 ‖ψ′(v)‖(3.16)

and

λmax(v) = max{λmax(vj) : j = 1, . . . , N},(3.17)

λmin(v) = min{λmin(vj) : j = 1, . . . , N}.
From Lemma 2.5 we obtain

σ2 =

N∑
j=1

((
ψ′(λmax(vj))

)2
+
(
ψ′(λmin(vj))

)2)
.

By using this relation and taking a similar chain of reasoning as in the proof of
Proposition 3.3 of [20], we can prove the following results, which include several
features of the proximity. These properties are naturally shared by general self-regular
functions in the second-order cone K.

Proposition 3.4. Let the proximity Ψ(v) be defined by (3.13), and σ by (3.16).
If the kernel function ψ(·) used in the proximity satisfies condition C.1, then we have

Ψ(v) ≤ σ2

2ν1
,(3.18)

λmin(v) ≥
(

1 +
qσ

ν1

)− 1
q

,(3.19)

and

λmax(v) ≤
(

1 +
pσ

ν1

) 1
p

.(3.20)
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For any ϑ > 1,

Ψ(ϑv)≤ ν2

ν1

(
ϑp+1Ψ(v) + 2ϑΥ′

p,q(ϑ)
√

Nν1Ψ(v) + 2Nν1Υp,q(ϑ)
)

.(3.21)

In particular, there exist two constant ν3 and ν4 depending only on the kernel function
ψ(t) such that for any ϑ ∈ (1, 1 + ν3] we have

Ψ(ϑv) ≤ ν2ν4

ν1
Ψ(v) +

2ν2ν4

√
Nν1Ψ(v)

ν1
(ϑ− 1) + 2Nν2ν4(ϑ− 1)2.(3.22)

We close this section by discussing the relations between the duality gap and the
proximity. By following a similar chain of reasoning as in the proof of Lemma 2.12 in
[20], we can easily deduce

Ψ(v)

ν1
≥ 1

2

N∑
j=1

((
λmax(vj)− 1

)2
+
(
λmin(vj)− 1

)2)

= ‖v‖2 −
N∑
j=1

(
λmax(vj) + λmin(vj)

)
+ N ≥ ‖v‖2 − 2

√
N ‖v‖+ N.

The above relation means that

‖v‖ ≤
√

N +

√
Ψ(v)

ν1
.

It readily follows that

Tr(x ◦ s) = 2µ ‖v‖2 ≤ 2Nµ + 4µ

√
NΨ(v)

ν1
+

2Ψ(v)

ν1
µ.(3.23)

Therefore, Tr(x ◦ s) ≤ O(Nµ) holds whenever Ψ(v) ≤ O(N). In such a situation, the
proximity plays the role of a potential function for minimizing the duality gap.

4. Polynomial primal-dual algorithms for SOCO.

4.1. The algorithm. The present section describes the new primal-dual algo-
rithm for solving SOCO. First we mention that, by using the NT-scaling, one can
rewrite the centrality condition for SOCO as v = ẽ. Consequently, the neighborhood
of the central path used in our new algorithm is also dependent on v. Define

FSOCO = {(x, s) ∈ K ×K : Ax = b; AT y + s = c}.
We define the neighborhood of the central path as follows:

N (τ, µ) = {(x, s) : (x, s) ∈ FSOCO, Ψ(x, s, µ) = Ψ(v) ≤ τ}.(4.1)

Assuming that an initial point in a certain neighborhood of the central path is available
(actually, by using the so-called self-dual embedding model, one can further get as
an initial point the point on the central path corresponding to µ = 1; see [11, 27]),
we can start from this point. By reducing µ properly and solving system (3.14), we
obtain a search direction. Then the iterate can be updated by means of line search.
If the current iterate goes outside the neighborhood of the targeted point µẽ, then we
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will utilize the inner iterations to get a new iterate in the neighborhood. Otherwise
we progress with the outer iteration and update µ by a fixed factor. The algorithm
will stop when the duality gap, bounded by a multiple of µ, is sufficiently small, and
hence an approximate solution of the underlying problem is presented. The procedure
of the new algorithm is outlined as follows.

Primal-Dual Algorithm for SOCO.
Input:

a proximity parameter τ ≥ ν−1
1 ,

an accuracy parameter ε > 0,
a fixed barrier update parameter θ ∈ (0, 1),
a strictly feasible (x, s) and µ = 1 such that Ψ(x, s, µ) ≤ τ .

begin
while Nµ ≥ ε, do
begin

µ := (1− θ)µ;
while Ψ(x, s, µ) ≥ τ , do
begin

Solve the system (3.14);
compute a step size α;
x := x + α∆x,
s := s + α∆s,
y := y + α∆y.

end
end

end
Remark 4.1. The algorithm will stop when an iterate satisfies Nµ ≤ ε and

Ψ(x, s, µ) ≤ τ . By recalling (3.23), we can claim

xT s =
1

2
Tr(x ◦ s) ≤ Nµ + 2µ

√
Nτ

ν1
+ µ

τ

ν1
.

For instance, let us choose the parameter τ = N and the proximity-satisfying condition
C.1 with ν1 = 1. In such a case, the algorithm indeed works in a large neighborhood
of the central path. One can easily verify that the algorithm will finally report a
solution satisfying xT s ≤ 4ε.

4.2. Complexity of the algorithm. Having stated the algorithm in the pre-
vious section, we are going to establish the polynomial complexity of the algorithm
in the present section. As we have already observed in [20] for LO and SDO, a cru-
cial step in the estimate of the algorithm’s complexity is to evaluate how fast we can
reduce the value of the proximity for a feasible step size along the search direction.

Note that once the search direction (∆x, ∆s) is obtained, we need to decide how
far we can go along this direction while staying in the feasible region; this amounts to
estimating the maximal feasible step size. It should be noticed that for any step size
α, the primal-dual pair (x+α∆x, s+α∆s) is feasible if and only if the scaled primal-
dual pair (v + αdx, v + αds) (see Proposition 3.2(iii)) is feasible. In what follows, we
give a certain sufficient condition for a step size to be strictly feasible and thus provide
a lower bound for the maximal step size. To facilitate the analysis, for any xj ∈ �nj ,
j = 1, . . . , N , we define

λmax(|xj |) = |xj1|+ ‖xj2:nj‖, λmin(|∣∣xj∣∣|) = |xj1| − ‖xj2:nj‖
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and

λmax(|x|) = max{λmax(|xj |) : j = 1, . . . , N},

λmin(|x|) = min{λmin(|xj |) : j = 1, . . . , N}.

A direct consequence of the above definitions is

1

2

N∑
j=1

(
λmax(|xj |)2 + λmin(|xj |)2) = ‖x‖2 , x = (x1, . . . , xN )T .(4.2)

Now we have the following result.
Lemma 4.2. Let αmax be the maximal feasible step size and

ᾱ = λmin(v)σ−1.(4.3)

Then we have

αmax ≥ ᾱ ≥ σ−1

(
1 +

qσ

ν1

)− 1
q

.

Proof. The proof is similar to that of Lemma 4.7 in [20] for SDO, and thus the
details are omitted here.

In view of Lemma 4.2, it is clear that we can use any α ∈ (0, ᾱ) as a step size.
Note that, after such a step, we get a new primal-dual pair (x + α∆x, s + α∆s) or
the scaled pair (v + αdx, v + αds), and then we need to use the NT-scaling scheme
to transform the primal and dual vectors to the same vector, which we denote by v+.
On the other hand, according to (3.13), the proximity after this step is defined as
Ψ(v+). Let us denote the gap between the proximity before and after one step as a
function of the step size, that is,

g(α) = Ψ(v+)−Ψ(v).(4.4)

The main task in the rest of this section is to study the decreasing behavior of g(α)
for α ∈ [0, ᾱ).

Since v+ is the vector scaled by using the NT-scaling, from Proposition 3.2 we
conclude that for every j ∈ {1, . . . , N}

det
(
((v+)j)2

)
= det (x + α∆x) det (s + α∆s) = det

(
vj + αdjx

)
det

(
vj + αdjs

)
and

Tr
(
((v+)j)2

)
= Tr((x + α∆x) ◦ (s + α∆s)) = Tr

(
(vj + αdjx) ◦ (vj + αdjs)

)
.

Thus for any j = 1, . . . , N the vectors (v+)j , vj + αdjx, and vj + αdjx satisfy the
requirement in the second statement of Proposition 2.9. Therefore, when the kernel
function ψ(·) in (3.13) is self-regular, it follows readily from the second statement of
Proposition 2.9 that

g(α) = Ψ(v+)−Ψ(v) ≤ 1

2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v) =: g1(α).
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In what follows, we estimate the decrement of the function g1(α) for α ∈ [0, ᾱ). For
our specific purpose, we will first estimate the first and second derivatives of g1(α).
From Lemma 2.10 it follows that

g′
1(α) =

1

2
Tr(ψ′(v + αdx) ◦ dx + ψ′(v + αds) ◦ ds)(4.5)

and

g′′
1 (α) =

1

2

d2

dα2
Tr(ψ(v + αdx) + ψ(v + αds)).(4.6)

The next result presents an upper bound for the second-order derivatives of g1(α).
This result is also similar to Lemma 4.8 for SDO in [20], and thus we omit its detailed
proof.

Lemma 4.3. Suppose that the kernel function ψ(·) used in (3.13) is self-regular.
Then

g′′
1 (α) ≤ 1

2
ν2σ2

(
(λmax(v) + ασ)p−1 + (λmin(v)− ασ)−q−1

) ∀α ∈ (0, ᾱ).

The remaining discussions in this section follow a very similar procedure as in the
LO and SDO cases. First we observe that, by applying Lemma 2.10 to the function
g(α), we readily claim

g′(0) = g′
1(0) = −σ2

2
.

From Lemma 4.3 it follows that

g(α) ≤ g1(α) ≤ −σ2α

2
+

1

2
ν2σ2

∫ α

0

∫ ξ

0

(
(λmax(v) + ζσ)p−1 + (λmin(v)− ζσ)−q−1

)
dζdξ,

which is essentially the same as its LO analogue (the relation (45) in [20]), where the
variables vmax, vmin are replaced by λmax(v) and λmin(v), respectively. Let us define

g2(α) := −σ2α

2
+

1

2
ν2σ2

∫ α

0

∫ ξ

0

(
(λmax(v) + ζσ)p−1 + (λmin(v)− ζσ)−q−1

)
dζdξ.

It is straightforward to verify that g2(α) is strictly convex and twice differentiable for
all α ∈ [0, ᾱ). Let α∗ be the unique global minimizer of g2(α) in the interval [0, ᾱ),
namely,

α∗ = arg min
0≤α<ᾱ

g2(α),(4.7)

or, equivalently, α∗ is the unique solution of the following equation:

−σ+
ν2

p
((λmax(v)+α∗σ)p − λmax(v)p)+

ν2

q

(
(λmin(v)− α∗σ)−q−λmin(v)−q

)
=0.(4.8)

For this choice of α∗, by applying Lemma 3.4 of [20], we can readily claim that

g(α∗) ≤ g2(α
∗) ≤ 1

2
g′
2(0)α∗ =

1

2
g′(0)α∗.(4.9)

Thus it remains to estimate the value of α∗.
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Lemma 4.4. Let the constant α∗ be defined by (4.7). Suppose that Ψ(v) ≥ ν−1
1

and vmax > 1, and let

ν5 = min

{
ν1

2ν1ν2 + p(ν1 + 2ν2)
,

ν2
1

(1 + ν1)(2ν2(ν1 + q) + ν1q)

}
.(4.10)

Then

α∗ ≥ ν5σ− q+1
q(4.11)

holds. In the special case in which ψ(t) = Υp,q(t) is given by (2.13) with ν1 = ν2 = 1,
the above bound simplifies to

α∗ ≥ min

(
1

3p + 2
,

1

4 + 6q

)
σ− q+1

q .(4.12)

Proof. See the proof of Theorem 3.6 of [20].
Our next result estimates the decreasing value of the proximity in the case in

which the step size α is given by α∗ (4.7) or α = ν5σ(q−1)/q. The proof of the theorem
is analogous to that of its LO counterpart; thus the details are omitted here.

Theorem 4.5. Let the function g(α) be defined by (4.4) with Ψ(v) ≥ ν−1
1 . Then

the step size α = α∗ given by (4.7) or α = ν5σ(q−1)/q is strictly feasible. Moreover,
we have

g(α) ≤ 1

2
g′(0)α ≤ −ν5ν

q−1
2q

1

4
Ψ(v)

q−1
2q .

In the special case of ψ(t) = Υp,q(t) with ν1 = ν2 = 1, the above bound simplifies to

g(α) ≤ −min

(
1

12p + 8
,

1

24q + 16

)
Ψ(v)

q−1
2q .

To get the total complexity result of the algorithm, we still need to describe
the growth behavior of the proximity Ψ(v). Suppose that the current point is in
the neighborhood N (µ, τ) given by (4.1) and thus the inequality Ψ(v) ≤ τ holds at
the present iterate; then we update µ to (1 − θ)µ for some θ ∈ (0, 1). By making
use of relation (3.21) in Proposition 3.4, one can show that after the update of µ,
the proximity is still bounded above by the number ψ0(θ, τ, 2N). Here ψ0(θ, τ, 2N)
denotes the expression at the right-hand side of (3.21), where ψ(v) and ϑ are replaced
by τ and 1√

1−θ , respectively; i.e.,

ψ0(θ, τ, 2N) :=
ν2τ

ν1(1− θ)
p+1
2

+2ν2Υ
′
p,q((1− θ)−

1
2 )

√
Nτ

ν1(1− θ)
+2Nν2Υp,q((1− θ)−

1
2 ).

The following lemma is an immediate consequence of Lemma 3.9 of [20].
Lemma 4.6. Let Ψ(x, s, µ) ≤ τ and τ ≥ ν−1

1 . Then, after an update of the barrier
parameter, no more than 

 8qν
− q−1

2q

1

ν5(q + 1)
(ψ0(θ, τ, 2N))

q+1
2q
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iterations are needed to recenter. In the special case in which ψ(t) = Υp,q(t) is given
by (2.13) with ν1 = ν2 = 1, at most⌈

8q max (3p + 2, 6q + 4)

q + 1
(ψ0(θ, τ, 2N))

q+1
2q

⌉

inner iterations are needed to recenter.
Thus the total complexity of the algorithm can be estimated as follows.
Theorem 4.7. If τ ≥ ν−1

1 , the total number of iterations required by the primal-
dual Newton algorithm is not more than

 8qν
− q−1

2q

1

ν5(q + 1)
(ψ0(θ, τ, 2N))

1+q
2q



⌈

1

θ
log

N

ε

⌉
.

In the special case in which ψ(t) = Υp,q(t) is given by (2.13) with ν1 = ν2 = 1, the
total number of iterations required by the primal-dual Newton algorithm is less than
or equal to ⌈

8q max (3p + 2, 6q + 4)

q + 1
(ψ0(θ, τ, 2N))

q+1
2q

⌉⌈
1

θ
log

N

ε

⌉
.

Neglecting the influence of the constants in the expression in Theorem 4.7, one can
safely conclude that for any fixed θ ∈ (0, 1) with constants p, q ≥ 1, our large-update
algorithm for SOCO in the present section has an O(max{p, q}N (q+1)/2q log N

ε ) iter-

ations bound, while the algorithm with small-update (θ = O(1/
√

N)) still stays with
the complexity of the O(

√
N log N

ε ) iterations bound. Furthermore, from Theorem 4.7
one can readily see that if p is a constant and q = log N , then the new large-update
algorithm has an O(

√
N log N log N

ε ) iterations bound.

5. Conclusions. In this paper, we extended the notion of self-regular proximity
functions to second-order cones. New IPMs for SOCO based on self-regular proxim-
ity functions were introduced, and the complexity results of these algorithms were
established. The complexity results of the algorithms in the present paper matched
those of their counterparts for LO and SDO in [20]. Therefore, everything relevant to
self-regularity, including algorithm, main claims, and complexity analysis, extends to
optimization over direct products of nonnegative orthant, second-order, and semidef-
inite cones in a “componentwise” fashion. However, as demonstrated in section 2, to
make such an extension, new analytical tools had to be developed, and this was a
nontrivial task.

In closing this paper we would like to point out that, although theoretically our
new large-update IPMs have better iteration bound than classical large-update IPMs,
much work will be required to test the practical efficiency of the new approach. Re-
garding this point, the considerable flexibility in choosing the parameters p and q
might help us to find new IPMs that are efficient in both theory and practice.
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Abstract. This paper presents a polynomial time algorithm for solving submodular flow prob-
lems with a class of discrete convex cost functions. This class of problems is a common generalization
of the submodular flow and valuated matroid intersection problems. The algorithm adopts a new
scaling technique that scales the discrete convex cost functions via the conjugacy relation. The algo-
rithm can be used to find a pair of optima in the form of the Fenchel-type duality theorem in discrete
convex analysis.
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1. Introduction. The Fenchel-type duality concerning M- and L-convex/concave
functions is of fundamental importance in the theory of discrete convex analysis [16,
18, 19]. This paper aims at an algorithmic approach to this duality framework.

Let V be a finite set, and χv denote the characteristic vector of v ∈ V . The
characteristic vector of X ⊆ V is denoted by χX . We write supp+(z) = {v | v ∈
V, z(v) > 0} and supp−(z) = {v | v ∈ V, z(v) < 0} for a vector z ∈ ZV . For
functions g : ZV → Z ∪ {+∞} and h : ZV → Z ∪ {−∞}, we denote by domZ g
and domZ h their effective domains, i.e., domZ g = {x | x ∈ ZV , g(x) < +∞} and
domZ h = {x | x ∈ ZV , h(x) > −∞}.

A function g : ZV → Z ∪ {+∞} with nonempty effective domain is said to be
M-convex [16, 18, 20] if it satisfies the following:

• ∀x, y ∈ domZ g, ∀u ∈ supp+(x− y), ∃v ∈ supp−(x− y) such that

g(x) + g(y) ≥ g(x− χu + χv) + g(y + χu − χv).

It is not difficult to see that the effective domain of an M-convex function forms the
set of integral points in a base polyhedron with an integral rank function. A function
h : ZV → Z ∪ {−∞} is called M-concave if −h is an M-convex function. M-concave
functions generalize matroid valuations invented by Dress and Wenzel [2].

Let 〈·, ·〉 designate the inner product of vectors, i.e., 〈p, x〉 =∑{p(v)x(v) | v ∈ V }.
In particular, we denote x(X) = 〈χX , x〉 for X ⊆ V . If g is an M-convex function,
x(V ) is constant for every x ∈ domZg.

For a pair of vectors p, q ∈ ZV , let p ∨ q and p ∧ q denote the vectors defined by
(p ∨ q)(v) = max{p(v), q(v)} and (p ∧ q)(v) = min{p(v), q(v)}, respectively. We also
denote by 1 the vector in ZV with all of its components being equal to one, i.e., the
characteristic vector of V .
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A function f : ZV → Z ∪ {+∞} with nonempty effective domain is said to be
L-convex [18] if it satisfies the following:

• ∃r ∈ Z ∀p ∈ ZV such that f(p+ 1) = f(p) + r;
• ∀p, q ∈ ZV , f(p) + f(q) ≥ f(p ∨ q) + f(p ∧ q).

L-convex functions generalize the Lovász extensions of submodular functions [13].
They are in a close relation to the submodular integrally convex functions of Favati
and Tardella [4]; see Fujishige and Murota [8] for this connection. A function h :
ZV → Z ∪ {−∞} is called L-concave if −h is an L-convex function.

These two notions of discrete convexity are conjugated to each other. For a
function g : ZV → Z∪ {+∞}, we denote by g• the convex conjugate function defined
by

g•(p) = sup{〈p, x〉 − g(x) | x ∈ ZV } (p ∈ ZV ).

The convex conjugate function of an M-convex function is L-convex, and vice versa
[18]. The concave conjugate function h◦ of h : ZV → Z ∪ {−∞} is similarly defined
by

h◦(p) = inf{〈p, x〉 − h(x) | x ∈ ZV } (p ∈ ZV ).

The concave conjugate function of an M-concave function is L-concave, and vice
versa. This conjugacy framework is a discrete counterpart of the well-known conjugate
duality in convex analysis [24].

Analogously to the Fenchel duality theorem in convex analysis, Murota [16] shows
that any pair of an M-convex function g and an M-concave function h satisfies

sup{h(x)− g(x) | x ∈ ZV } = inf{g•(p)− h◦(p) | p ∈ ZV }(1.1)

if g(x) − h(x) �= +∞ for some x ∈ ZV , or g•(p) − h◦(p) �= +∞ for some p ∈ ZV .
Throughout this paper, we assume M-convex/concave functions to have bounded
effective domains, and accordingly, L-convex/concave functions to be bounded. The
equality (1.1) always holds in this situation. The original proof by Murota [20] is based
on an algorithm that solves submodular flow problems with M-convex cost functions,
which we call discrete convex submodular flow problems. The time complexity of
this algorithm is pseudopolynomial, i.e., polynomial in the input values but not in
the input size. See Fujishige and Murota [8] for an alternative shorter proof of this
Fenchel-type duality theorem.

In this paper, we present a polynomial time algorithm for solving the discrete
convex submodular flow problem. The new algorithm naturally provides an efficient
method for finding both optima in (1.1).

In order to obtain a polynomial time bound, it is now standard to apply the
scaling approach. However, a straightforward scaling scheme does not work for M-
convex cost functions. For example, a function g′, defined by g′(x) = �g(x)/α� for an
M-convex function g and a positive integer α, is not necessarily M-convex. Instead,
we scale M-convex functions via the conjugacy relation, exploiting the fact that if f
is L-convex, then so is f ′, defined by f ′(p) = f(αp).

The outline of this paper is as follows. In section 2, we describe the discrete convex
submodular flow problem and its connection to Fenchel-type duality. Section 3 is
devoted to a primal-dual algorithm for solving the problem and its continuous version.
In section 4, we present the conjugate scaling method, which performs the primal-dual
algorithm in each scaling phase.
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2. The discrete convex submodular flow problem. Let G = (V,A) be a
directed graph with a vertex set V and an arc set A. The initial and terminal vertices
of an arc a are denoted by ∂+a and ∂−a. For a vertex v ∈ V , we denote by δ+v and
δ−v the sets of arcs leaving v and entering v, respectively. The boundary ∂ϕ of a
function ϕ on the arc set A is defined by

∂ϕ(v) =
∑
a∈δ+v

ϕ(a)−
∑
a∈δ−v

ϕ(a) (v ∈ V ).

We denote by n the cardinality of the vertex set V .
With the directed graph G = (V,A) are associated functions c : A → Z ∪ {+∞}

and c : A → Z ∪ {−∞} as upper and lower capacities. Let γ : A → Z be a cost
function on the arc set and g : ZV → Z∪ {+∞} an M-convex cost function such that
x(V ) = 0 for x ∈ domZg. As a common generalization of the submodular flow problem
[3, 6, 7] and the valuated matroid intersection problem [14, 15, 17, 21], Murota [18, 20]
addresses the following generalized submodular flow problem with a nonseparable
discrete convex cost function, which we call the discrete convex submodular flow
problem:

(DCSF) minimize g(∂ϕ) +
∑
a∈A

γ(a)ϕ(a)

subject to c(a) ≤ ϕ(a) ≤ c(a) (a ∈ A),
∂ϕ ∈ domZg,

ϕ(a) ∈ Z (a ∈ A).
This is nothing but the submodular flow problem if the M-convex cost function g is
constant. Thus there are efficient algorithms [5, 9, 27] for finding a feasible solution,
which will be referred to as a feasible flow.

For a vector p ∈ ZV , we denote by γp the reduced cost function, i.e.,

γp(a) = γ(a) + p(∂
+a)− p(∂−a) (a ∈ A).

Partition A into A+
p = {a | a ∈ A, γp(a) > 0}, A◦

p = {a | a ∈ A, γp(a) = 0}, and
A−
p = {a | a ∈ A, γp(a) < 0}. The following theorem of Murota [18, 20] characterizes

the optimality for the discrete convex submodular flow problem.
Theorem 2.1. A feasible flow ϕ : A→ Z is optimal if and only if there exists a

vector p ∈ ZV that satisfies the following:
(i) ∀a ∈ A−

p , ϕ(a) = c(a).
(ii) ∀a ∈ A+

p , ϕ(a) = c(a).

(iii) ∂ϕ ∈ argmin{g(x)− 〈p, x〉 | x ∈ ZV }.
In the rest of this section, we examine the connection between the Fenchel-type

duality theorem and the problem (DCSF).
Let V ′ be a copy of V , and setW = V ∪V ′. For each v ∈ V , we denote its copy by

v′ ∈ V ′. A vector ỹ ∈ ZW can be regarded as the direct sum of y ∈ ZV and y′ ∈ ZV
′
.

Given a pair of an M-convex function g : ZV → Z∪{+∞} and an M-concave function
h : ZV → Z∪ {−∞}, consider an M-convex function d : ZW → Z∪ {+∞} defined by
d(ỹ) = g(y)− h(−y′).

Let G = (W,A) be a directed graph with the arc set A = {(v, v′) | v ∈ V }. The
upper and lower capacity functions and the cost functions are given as c(a) = +∞,
c(a) = −∞, and γ(a) = 0 for each a ∈ A. Then we consider the discrete convex
submodular flow problem with the cost function d(∂ϕ).
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Let ϕ be an optimal flow, and determine x ∈ ZV by restricting ∂ϕ to V . Then
the resulting x attains the maximum in the left-hand side of (1.1). Let p̃ ∈ ZW be
a vector that proves the optimality of ϕ via Theorem 2.1. Then p̃(v) = p̃(v′) holds
for each v ∈ V . Restricting p̃ to V , we obtain a vector p ∈ ZV that achieves the
minimum in the right-hand side of (1.1) as well.

As an extension of M-convex functions, Murota and Shioura [22] have introduced
M
-convex functions. The effective domain of an M
-convex function is the set of
integer points in an integral generalized polymatroid. Fujishige and Murota [8] have
extended L-convex functions to L
-convex functions and established the conjugacy
relation between M
- and L
-convex functions. The Fenchel-type duality theorem
naturally extends to this framework, and the pair of optima can be obtained by
solving the discrete convex submodular flow problem constructed in the same way.

3. A primal-dual algorithm. This section introduces a continuous version of
problem (DCSF) and presents an algorithm for solving it. The algorithm extends the
primal-dual submodular flow algorithm in [1, 12].

We first extend the concept of L-convexity by saying that a function f : ZV →
R ∪ {+∞} is L-convex if it satisfies the following:

• ∃r ∈ R ∀p ∈ ZV such that f(p+ 1) = f(p) + r;
• ∀p, q ∈ ZV , f(p) + f(q) ≥ f(p ∨ q) + f(p ∧ q).

We also extend the definition of convex conjugate functions. For a function f : ZV →
R ∪ {+∞}, the convex conjugate function f• : RV → R ∪ {+∞} is now defined by

f•(x) = sup{〈p, x〉 − f(p) | p ∈ ZV } (x ∈ RV ).

We denote by domRf
• the effective domain of f• in RV . Then x(V ) = r for any

x ∈ domRf
• if f is an L-convex function that satisfies f(p+ 1) = f(p) + r for every

p ∈ ZV . See Murota and Shioura [23] for a more general framework of discrete convex
functions with continuous variables.

With a directed graph G = (V,A), associate lower and upper capacity functions
c : A → R ∪ {−∞} and c : A → R ∪ {+∞} as well as an integral arc cost function
γ : A→ Z. Let f be an L-convex function that satisfies f(p+ 1) = f(p) + r for every
p ∈ ZV . The following continuous version of (DCSF) will be referred to as CSF(f, γ):

minimize f•(∂ϕ) +
∑
a∈A

γ(a)ϕ(a)

subject to c(a) ≤ ϕ(a) ≤ c(a) (a ∈ A),
∂ϕ ∈ domRf

•,
ϕ(a) ∈ R (a ∈ A).

For an integral vector p ∈ ZV , let Bp(f) denote a polyhedron defined by

Bp(f) = {x | x ∈ RV , x(V ) = 0, ∀X ⊆ V : x(X) ≤ f(p+ χX)− f(p)}.
Recall the partition of A into A+

p = {a | a ∈ A, γp(a) > 0}, A◦
p = {a | a ∈ A, γp(a) =

0}, and A−
p = {a | a ∈ A, γp(a) < 0}. An optimality criterion for CSF(f, γ) is given

by the following continuous version of Theorem 2.1.
Theorem 3.1. A feasible flow ϕ : A→ R is optimal if and only if there exists a

function p : V → Z that satisfies the following:
(i) ∀a ∈ A−

p , ϕ(a) = c(a).
(ii) ∀a ∈ A+

p , ϕ(a) = c(a).
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(iii) ∂ϕ ∈ Bp(f).
Proof. Note that the “if” part is rather trivial. The “only if” part follows from

the validity of the primal-dual algorithm described below.
The primal-dual algorithm repeats the following process for a feasible flow ϕ and

a potential p with ∂ϕ ∈ Bp(f). Given such ϕ and p, we denote D+
ϕ (v) = {a | v =

∂+a, a ∈ A−
p , ϕ(a) < c(a)}, D−

ϕ (v) = {a | v = ∂−a, a ∈ A+
p , ϕ(a) > c(a)}, and

Dϕ(v) = D
+
ϕ (v) ∪D−

ϕ (v) for v ∈ V .
The algorithm picks up a vertex v∗ with nonempty Dϕ(v

∗). If no such vertex
exists, the current ϕ and p are optimal. Otherwise, with reference to the new lower
and upper capacities defined by

c∗(a) =

{
ϕ(a) (a ∈ A−

p ),

c(a) (a ∈ A◦
p ∪A+

p ),
c∗(a) =

{
ϕ(a) (a ∈ A+

p ),

c(a) (a ∈ A◦
p ∪A−

p ),

the algorithm solves the following maximum submodular flow problem:

(MSF) maximize ψ(D+
ϕ (v

∗))− ψ(D−
ϕ (v

∗))
subject to c∗(a) ≤ ψ(a) ≤ c∗(a) (a ∈ A),

∂ψ ∈ Bp(f).
A cut for (MSF) means a vertex subset that contains v∗. For each cut S, let ∆+S

and ∆−S, respectively, denote the sets of arcs leaving S and entering S. We now
consider the cut capacity

κϕ(S) = c
∗(∆−S\D−

ϕ (v
∗))− c∗(∆+S\D+

ϕ (v
∗))

+ c∗(D+
ϕ (v

∗)\∆+S)− c∗(D−
ϕ (v

∗)\∆−S) + f(p+ χS)− f(p).
Then it follows from [7, Theorem 5.11] that the optimal objective value of (MSF) is
equal to the minimum cut capacity min{κϕ(S) | v∗ ∈ S ⊆ V } unless Dψ(v∗) becomes
empty.

If Dψ(v
∗) is empty, the algorithm updates ϕ to ψ without changing p. Otherwise,

it finds a minimum capacity cut S containing v∗. Since ψ(S) = f(p + χS) − f(p), it
follows from ∂ψ ∈ Bp(f) and Lemma 3.2 below that every X ⊆ V satisfies

∂ψ(X) = ∂ψ(X ∪ S) + ∂ψ(X ∩ S)− ∂ψ(S)
≤ f(p+ χS∪X) + f(p+ χS∩X)− f(p)− f(p+ χS)
≤ f(p+ χS + χX)− f(p+ χS),

which means ∂ψ ∈ Bp+χS (f). Thus the algorithm updates p to p + χS , as well as ϕ
to ψ, without violating Theorem 3.1(iii).

The primal-dual algorithm repeats this process until Theorem 3.1(i) and (ii) are
satisfied. Note that one iteration reduces by at least one the sum of max{|γp(a)| | a ∈
Dϕ(v)} for those vertices with nonempty Dϕ(v). Since γp is integral, the algorithm
eventually terminates after a finite number of iterations. Thus Theorem 3.1 has been
proved.

The following easy lemma, to which we have referred in the above argument, will
also be used later in section 4. Although it is immediate from the local projected
submodularity in [8, Theorem 3], we describe a direct proof here.

Lemma 3.2. If f is an L-convex function, then Y ⊆ Z ⊆ V implies

f(p) + f(p+ χY + χZ) ≥ f(p+ χY ) + f(p+ χZ)
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for any p ∈ ZV .
Proof. For q = p+ χY − χZ , we have p∨ q = p+ χY and p∧ q = p− χZ . Then it

follows from the L-convexity of f that

f(p) + f(p+ χY + χZ) = f(p) + f(p+ χY − χZ) + r
≥ f(p+ χY ) + f(p− χZ) + r
= f(p+ χY ) + f(p+ χZ)

holds for p ∈ ZV .

4. Conjugate scaling. This section presents a cost-scaling framework to solve
the discrete convex submodular flow problem (DCSF).

Given a vector y ∈ domZg, we can efficiently find an integer subgradient of g at
y, i.e., a vector p ∈ ZV such that g(x)−g(y) ≥ 〈p, x− y〉 holds for x ∈ ZV , by solving
a shortest path problem [18, Theorem 4.7]. Thus we henceforth assume without loss
of generality that an initial submodular flow ϕ satisfies in Theorem 2.1(iii) for p = 0
by replacing g appropriately.

Let fα : ZV → R ∪ {+∞} with α ∈ Z be an L-convex function defined by

fα(p) =
g•(αp)
α

(p ∈ ZV ).

Recall here that g• denotes the convex conjugate function of the M-convex function g.
Our cost-scaling algorithm repeatedly applies the primal-dual algorithm concerning
fα with an integer parameter α as follows.

Algorithm Conjugate Scaling.
Step 0: Let ϕ be an initial feasible flow satisfying ∂ϕ ∈ argmin{g(x) | x ∈ ZV }.

Put p∗ ← 0, K ← max{|γ(a)| | a ∈ A}, and α← 2
log2K�.
Step 1: Repeat the following (1-1)–(1-4) while α ≥ 1.

(1-1) ξ(a)← �γ(a)/α� for a ∈ A.
(1-2) Find an integer vector p ∈ ZV that maximizes 〈p, ∂ϕ〉 − fα(p)

subject to 2p∗ ≤ p ≤ 2p∗ + n1.
(1-3) Solve CSF(fα, ξ) by the primal-dual algorithm starting from ϕ

and p to obtain an optimal flow ϕ∗ and an optimal potential p∗.
(1-4) ϕ← ϕ∗, α← α/2.

Recall that the primal-dual algorithm requires initial ϕ and p with ∂ϕ ∈ Bp(fα).
We now intend to verify that the integer vector p obtained in Step 1 (1-2) satisfies
this condition.

Let q be a minimal integer vector that maximizes 〈q, ∂ϕ〉 − fα(q) subject to
q ≥ 2p∗. Denote by d the minimum positive integer that is not equal to q(v)− 2p∗(v)
for any v ∈ V , and consider a vertex subset U = {u | q(u) − 2p∗(u) > d}. Note that
q(v) = 2p∗(v) holds for some v ∈ V because fα(p) = fα(p+ 1) for any p ∈ ZV .

Lemma 4.1. The vertex subset U is empty.
Proof. We first claim

fα(2p
∗ + 2χU )− fα(2p∗ + χU ) ≤ fα(q)− fα(q − χU ).(4.1)

Put * = max{q(v)−2p∗(v)}, and consider Yi = {v | q(v)−2p∗(v) ≥ i} for i = 1, . . . , *.

We also denote qj = 2p∗ +
∑j
i=1 χYi for j = 0, 1, . . . , *. Note that q0 = 2p∗, q� = q,

and Yd = Yd+1 = U hold. Since Yi ⊇ U for i = 1, . . . , d, Lemma 3.2 implies that
fα(qj−1 + 2χU ) − fα(qj−1 + χU ) ≤ fα(qj + 2χU ) − fα(qj + χU ) for j = 1, . . . , d − 1.
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Since Yi ⊆ U for i = d, . . . , *, Lemma 3.2 also implies that fα(qj) − fα(qj − χU ) ≤
fα(qj+1)−fα(qj+1−χU ) for j = d+1, . . . , *−1. Thus, by qd−1+χU = qd = qd+1−χU ,
we obtain (4.1).

The current ϕ, obtained by the primal-dual algorithm in the previous scaling
phase, satisfies ∂ϕ(U) ≤ f2α(p∗+χU )− f2α(p∗) = {fα(2p∗+2χU )− fα(2p∗)}/2. The
L-convexity of fα implies fα(2p

∗+χU )− fα(2p∗) = fα(2p∗+χU +1)− fα(2p∗+1) ≤
fα(2p

∗ +2χU )− fα(2p∗ + χU ). Therefore, ∂ϕ(U) ≤ fα(2p∗ +2χU )− fα(2p∗ + χU ) ≤
fα(q) − fα(q − χU ), where the last inequality follows from (4.1). Hence 〈q, ∂ϕ〉 −
fα(q) ≤ 〈q − χU , ∂ϕ〉 − fα(q − χU ), which contradicts the definition of q unless U is
empty.

As a consequence of Lemma 4.1, we have q ≤ 2p∗ + n1. Hence the integer vector
p obtained in Step 1 (1-2) in fact maximizes 〈p, ∂ϕ〉 − fα(p) over ZV . In particular,
〈p+ χX , ∂ϕ〉 − fα(p + χX) ≤ 〈p, ∂ϕ〉 − fα(p) holds for every X ⊆ V , which implies
∂ϕ ∈ Bp(fα).

We now discuss the time complexity, provided that an evaluation oracle for the
M-convex function g is available. The algorithm performs O(logK) scaling phases. In
each scaling phase, fα is computed in polynomial time by an M-convex function min-
imization algorithm of Shioura [26]. The maximization problem in Step 1 (1-2) is in
fact submodular function minimization over a distributive lattice. Hence it is solvable
in polynomial time by the ellipsoid method [10] or recently developed combinatorial
algorithms [11, 25]. The number of iterations in the primal-dual algorithm in Step 1
(1-3) is at most

∑
vmax{|γp(a)| | a ∈ Dϕ(v)}, where the summation is taken over

those vertices adjacent to arcs violating Theorem 3.1(i) or (ii), and hence bounded by
O(n2). Each iteration solves one maximum submodular flow problem in polynomial
time. Thus we have the following theorem.

Theorem 4.2. The algorithm Conjugate Scaling solves the discrete convex
submodular flow problem (DCSF) in polynomial time.

5. Conclusion. We have devised a polynomial time algorithm for the discrete
convex submodular flow problem by scaling the convex cost function via the conjugacy
relation. The resulting algorithm is an extension of the primal-dual algorithm [1,
12]. It may be interesting to know whether other polynomial time submodular flow
algorithms extend to this general framework.
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Abstract. In this paper, we give a sufficient condition for the asymptotic convergence of penalty
trajectories in convex programming with multiple solutions. We show that, for a wide class of penalty
methods, the associated optimal trajectory converges to a particular solution of the original problem,
characterized through a minimization selection principle. Our main assumption for this convergence
result is that all the functions involved in the convex program are tubular. This new notion of
regularity, weaker than that of quasianalyticity, is defined and studied in detail.
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1. Introduction. Let us consider a general convex program

(CP0) inf {Φ0(x) : x ∈ C} ,

where Φ0 is convex and the constraint C is a convex subset of R
N which can be

written in the form

C :=
{
x ∈ R

N : Φi(x) ≤ 0, i = 1, . . . ,M
}

with continuous convex functions Φi. In order to handle this kind of constraint, for
numerical computations or theoretical study, it has become standard to approximate
this problem by means of a penalization method. Given a penalty function θ : R →
R ∪ {+∞}, we associate with (CP0) a family (CPr)r>0 of approximating problems
given by

(CPr) inf

{
Φ0(x) + α(r)

M∑
i=1

θ

(
Φi(x)

r

)
: x ∈ R

N

}
,

where α : ]0,+∞[→ ]0,+∞[ is a rescaling function. Suitable assumptions (see section
2) on the functions Φi, θ, and α guarantee that the optimal values v(CPr) converge
to v(CP0) as r goes to 0. Our work addresses the asymptotic behavior of the net of
optimal solutions (xr)r>0 of the approximating problems (CPr) as r goes to 0. One
of the fundamental properties of usual penalty methods is that the penalty trajectory
(xr)r>0 is bounded as r goes to 0 and that every cluster point of this net is an optimal
solution of the initial problem (CP0). Here, we are particularly interested in the case
in which (CP0) has more than one solution (so it has infinitely many, since the optimal
set is convex). In this case, the penalty trajectory may have several cluster points as
r goes to 0; see section 5.3.
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The convergence of the whole trajectory to a single solution may be of practi-
cal interest in numerical computations: when the trajectory does not converge, it
may have a bad oscillating behavior as r tends to 0. In linear programming, it is
known that the penalty trajectory converges to a particular solution (related to the
penalty function used) for some penalty methods. For example, this particular solu-
tion is called the analytic center for the logarithmic barrier method (see MacLinden
[11], Sonnevend [15], or Auslender, Cominetti, and Haddou [3] for comments) and
is also called the absolute minimizer for the exponential penalty (see Cominetti and
San Martin [6]). In [3], the authors present a general analysis for the asymptotic
convergence of penalty trajectories in linear programming. For more general convex
programs, asymptotic convergence to the analytic center for the logarithmic barrier
was obtained for analytic functions Φi by Monteiro and Zhou [13], while convergence
to the absolute minimizer for the exponential penalty was proven for quasianalytic
functions Φi by Alvarez [1]. Recently, Cominetti [5] proposed a unified approach to
this problem of asymptotic convergence for a wide class of penalty functions.

In this work, we use the notion of nonlinear averages introduced in this context
in [5]. It allows us to isolate particular solutions of (CP0), the θ-centers, which are
local solutions (in the sense of Dal Maso and Modica [7]) of an auxiliary optimization
problem. This notion of a particular solution generalizes those discussed above in
linear programming and that defined in [5]. We provide sufficient conditions which
ensure that there is a unique θ-center and that the penalty trajectory converges to
this optimal solution. The main assumption we make to show the convergence of the
penalty trajectory is the tubularity of the functions Φi. The notion of tubularity for
a function Φ, introduced in section 4, is a regularity condition on the behavior of Φ in
the neighborhood of any nontrivial segment on which it is constant. The tubularity
condition generalizes that of quasianalyticity and may be of independent interest for
the study of convex (or nonconvex) problems with multiple solutions.

In section 2, we recall the basic results and state the assumptions needed in the
rest of the paper. In section 3, we define the θ-center of the convex mathematical
program (CP0), while section 4 is devoted to the definition and the study of tubular
functions. This notion then allows us to show our main convergence result (Theorem
5.1). Finally, we discuss the possible extension of this convergence result to more
general penalty methods and show that when the hypotheses of Theorem 5.1 are not
fulfilled, the approximating net (xr) may fail to converge.

2. Penalty methods in convex programming. Let us consider the convex
programming problem (CP0) given as before by

(CP0) inf {Φ0(x) : x ∈ C} ,
where the feasible set C is a nonempty closed convex subset of R

N of the form

C :=
{
x ∈ R

N : Φi(x) ≤ 0 , i = 1, . . . ,M
}
.

In what follows, we will make the following assumptions on the functions Φi:

(H0)




Φ0 : R
N → R ∪ {+∞} is a closed proper convex function;

for 1 ≤ i ≤M , Φi : R
N → R are continuous convex functions;

the set S(CP0) of the optimal solutions of (CP0) is nonempty
and compact.

We follow [3] and [5] and consider the class of penalty methods for (CP0) which
consist of approximating (CP0) by the family (CPr)r>0 of optimization problems



214 T. CHAMPION

given above, where the positive parameter r is intended to go to 0. We shall assume
that the functions α : ]0,+∞[→ ]0,+∞[ and θ : R→ R ∪ {+∞} satisfy

(H1)




θ is increasing and convex on dom (θ) =]−∞, η[ , η ∈ [0,+∞];
limt→η− θ(t) = +∞, θ∞(−1) = 0, θ∞(1) > 0;
limr→0+ α(r) = 0, θ∞(1) lim infr→0+ α(r)/r = +∞ .

As noted in [3], many penalty methods of the type (CPr)r>0 with a function θ satis-
fying (H1) appear in the literature. We refer to [3] for an extensive list.

Examples. The logarithmic barrier method is obtained for the choice θ1(t) =
− log(−t), the inverse barrier method for θ2(t) = −1/t (both with η = 0 and α(r) = r),
while the exponential penalty method is obtained with θ1(t) = exp(t), η = +∞, and
α(r) = r.

In the case of interior penalty methods (when η = 0), we shall assume that
Slater’s condition holds; that is, there exists x in dom (Φ0) such that Φi(x) < 0 for
all i in {1, . . . ,M}.

We recall the following result from [5], which states that the penalty method
defined above is a good approximation scheme for solving (CP0).

Theorem 2.1. Suppose that (H0) and (H1) hold. Then for r > 0 sufficiently
small, the optimal set S(CPr) is nonempty and compact. This holds for any positive
r if one has θ∞(1) = +∞. Moreover, each selection xr ∈ S(CPr) stays bounded as r
tends to 0, any cluster point x0 of such a net (xr)r>0 belongs to S(CP0), and

lim
r→0

[
Φ0(xr) + α(r)

M∑
i=1

θ

(
Φi(xr)

r

)]
= inf {Φ0(x) : x ∈ C} .

Remark. This result also holds when the constraints Φi (for i ∈ {1, . . . ,M}) are
assumed to be l.s.c. only on R

N . The continuity assumption for these functions will
be revealed only as necessary in the proof of the selection property (see Theorem 5.2).

The following easy lemma ensures the uniqueness of the optimal solution to (CPr)
under a further condition on the functions Φi.

Lemma 2.2. Suppose that (H0), (H1) hold and that θ is strictly convex. Assume
that the functions Φi are such that

(H2) if the function z 	→ (Φ0(z), . . . ,ΦM (z)) is constant on [x, y], then x = y.

Then for every positive r, (CPr) has at most one solution.
Remark. In the case of linear programming, (H2) is satisfied as soon as the

kernel of the linear part of the affine operator (Φ0, . . . ,ΦM ) is reduced to {0}, which
is obviously the case when S(CP0) is compact.

3. Nonlinear averages and θ-centers. We now want to identify those optimal
solutions x0 ∈ S(CP0) which can be obtained as cluster points (when r → 0) of a
selection xr ∈ S(CPr). Following Cominetti [5], we are thus led to introduce a notion
of a particular (or viscosity) solution of (CP0), the notion of a θ-center. To this end,
we first recall the notion of θ-average (see [5]), which can be viewed as an asymptotic
nonlinear average for vectors in R

m
− .

Proposition and Definition 3.1. Let θ : ] − ∞, 0[→ R be increasing and
convex. Then for any m ≥ 1 there exists a unique continuous function Amθ : R

m
− → R,

which we call the θ-average, such that for any y ∈ ]−∞, 0[m one has

Amθ (y) = lim sup
r→0+

rθ−1

(
1

m

m∑
i=1

θ
(yi
r

))
.
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Moreover, Amθ is positively homogeneous, convex, symmetric, componentwise nonde-
creasing, and satisfies

∀y ∈ ]−∞, 0]m
1

m

m∑
i=1

yi ≤ Amθ (y) ≤ max
1≤i≤m

yi.

We refer to [5] for the proof of this proposition and for further properties of the
θ-average.

Examples. The computation of the θ-averages for the examples of the preceding
section leads to the following:

(1) (logarithmic barrier) ∀y ∈ R
m
− Amθ1(y) = −


 ∏

1≤i≤m
(−yi)




1
m

,

(2) (inverse barrier) ∀y ∈ ]−∞, 0[m Amθ2(y) =


 1

m

∑
1≤i≤m

1

yi


−1

,

(3) (exponential penalty) ∀y ∈ R
m
− Amθ3(y) = max

1≤i≤m
yi .

Notice that the limsup in the definition of the θ-average over ] − ∞, 0[m need
not be a limit: it is still an open problem whether it is a limit or not in the general
case. However, it is a limit for the above examples, as well as for the other examples
of penalty functions θ given in [3]. In the proof of our main result, we will have to
assume that this also holds, i.e.,

(H3) ∀m ≥ 1, ∀y ∈ ]−∞, 0[m Amθ (y) = lim
r→0+

rθ−1

(
1

m

m∑
i=1

θ
(yi
r

))
.

We next define the notion of a θ-center of (CP0): as Theorem 5.2 shows, this is the
viscosity solution (in the sense of [2]) associated with the penalty function θ.

Definition 3.2. An optimal solution x∗ ∈ S(CP0) is a θ-center of (CP0) if for
any J ⊂ {1, . . . ,M}, x∗ is an optimal solution of

(CP0,θ,J) inf
{
A

|J|
θ ((Φj(x))j∈J) : x ∈ S(CP0) such that ∀i /∈ J , Φi(x) = Φi(x∗)

}
.

Examples. We give two examples in the setting of linear programming: for ev-
ery i ∈ {0, . . . ,M}, Φi is affine and x 	→ (Φ0(x), . . . ,ΦM (x)) is injective (otherwise
S(CP0) is not compact).

(4) In the case θ = θ1, i.e., for the logarithmic barrier method, there exists a
unique θ-center, usually called the analytic center. Indeed, set I = {i : 1 ≤ i ≤
M , ∀x ∈ S(CP0), Φi(x) = 0}; either I = {1, . . . ,M}, in which case S(CP0) is a
singleton (and thus is reduced to the unique θ-center), or I = {1, . . . ,M}, in which

case, since the nonlinear average A
M−|I|
θ1

is strictly convex on ] − ∞, 0[M−|I|, the
analytic center of (CP0) is the unique optimal solution of the auxiliary problem

inf


A

M−|I|
θ1

((Φi(x))i/∈I) = −
(∏
i/∈I

(−Φi(x))

) 1
M−|I|

: x ∈ S(CP0)


 .
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(5) When θ = θ3, i.e., for the exponential penalty method, the θ-center is also
called the centroid, or absolute minimizer. Its existence and uniqueness is proven in
[6]. In this case, the above definition reads: x∗ ∈ S(CP0) is the centroid if, for any
J ⊂ {1, . . . ,M}, x∗ is an optimal solution of

inf

{
max
j∈J

Φj(x) : x ∈ S(CP0) such that ∀i /∈ J, Φi(x) = Φi(x∗)

}
.

The notion of θ-center defined above is equivalent to that given in [5] under the
more restrictive assumptions therein. With the hypotheses made in [5], the θ-center
is shown to exist and be unique, while our hypotheses don’t a priori imply either
the existence or the uniqueness of a θ-center. However, Theorems 5.1 and 5.2 below
ensure the existence of at least one θ-center when the functions Φi are tubular. We
now give a condition on the functions Amθ (for m ≥ 1) under which the θ-center is
uniquely defined.

Proposition 3.3. Assume that (H0), (H1), (H2), and the following (H4) hold
for m ≥ 1:

(H4) ∀x, y ∈ R
m
− max

1≤i≤m
xi = max

1≤i≤m
yi ⇒ Amθ

(
x + y

2

)
< max{Amθ (x), Amθ (y)}.

Then (CP0) has at most one θ-center.
Proof. By contradiction, suppose that x and y are two distinct θ-centers of (CP0).

Then the set I ⊂ {1, . . . ,M} of indices i for which Φi is not constant over [x, y] is
nonempty; otherwise (H2) implies that x = y. Since x and y are both θ-centers of
(CP0), they are both optimal solutions of

(CP0,θ,I) inf
{
A

|I|
θ ((Φi(z))i∈I) : z ∈ S(CP0) such that ∀j /∈ I, Φj(z) = Φj(x)

}
.

Let z = (x + y)/2 be the middle of [x, y]; then we claim that for any i in I

Φi(z) < max{Φi(x),Φi(y)}.(3.1)

By contradiction, assume that (3.1) is false; then, since Φi is convex, we obtain

Φi(z) = max{Φi(x),Φi(y)}.
We infer from the definition of z that Φi is constant on [x, y], which contradicts the
definition of I. Hence, one either has maxi∈I Φi(z) < maxi∈I Φi(x) or maxi∈I Φi(z) <
maxi∈I Φi(y). Without loss of generality, we assume that the first inequality holds.
Then (H4) yields

A
|I|
θ ((Φi((x + y)/4))i∈I) < max{A|I|

θ ((Φi(x))i∈I), A
|I|
θ ((Φi(z))i∈I)}.

Since A
|I|
θ is convex and A

|I|
θ ((Φi(x))i∈I) = A

|I|
θ ((Φi(y))i∈I), this implies

A
|I|
θ ((Φi((x + y)/4))i∈I) < A

|I|
θ ((Φi(x))i∈I).

But for j /∈ I, one has Φj((x+ y)/4) = Φj(x), so the above inequality contradicts the
optimality of x for (CP0,θ,I).

Notice that for the usual penalty functions (e.g., for θ1, θ2, and θ3), hypothesis
(H4) is satisfied, so that under condition (H2), the θ-center is uniquely determined by
Definition 3.2.
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4. Tubularity and related notions. In [5], Cominetti shows that when all
the functions Φi are quasianalytic, and under conditions (H0)–(H4) and some more
hypotheses on the nonlinear averages Amθ , the penalty trajectory (xr)r>0 converges
towards the unique θ-center of (CP0) as r goes to 0. We recall that quasianalyticity
is defined as follows.

Definition 4.1. A function Φ : E → R ∪ {+∞} is quasianalytic if whenever
x = y are such that Φ is finite and constant on [x, y], then Φ is constant on the whole
line passing through x and y.

For example, every convex analytic function or strictly convex function is quasi-
analytic. However, simple functions such as convex piecewise affine functions or finite
suprema of quadratic forms are not in general quasianalytic. This motivates the in-
troduction of a weaker property than quasianalyticity for which the convergence of
the penalty trajectory towards the θ-center still holds. Before giving the definition
of this weaker property, we recall the notion of tubularity for subsets of R

N . In the
study of the l∞-projection on a closed convex subset of R

N , Huotari and Marano were
led to define the notion of total tubularity for a convex set (also called property P; see
[9], [10] and [12]) as a sufficient condition for the convergence of the Polya algorithm.
Here we shall use the term tubular instead of totally tubular.

Definition 4.2. Let d belong to R
N \ {0}. A closed convex set C is d-tubular

if for all x in C such that x + td belongs to C for some positive t there exists a
neighborhood V of x in C and a positive ε such that z + εd ∈ C ∀ z in V ∩ C.

A closed convex subset C of R
N is tubular if it is d-tubular for any d in R

N \{0}.
In terms of local recession vectors (see Definition 6.33 in [14]), the above definition

reads as follows: C is d-tubular if d is a local recession vector for C at x whenever
x ∈ C is such that x + td belongs to C for some positive t.

Examples. Any convex polyhedron and any cylinder of convex base in R
3 is

tubular. One can also prove that any convex subset of R
2 is tubular (see Proposition

4.5). Notice that simple convex sets may fail to be tubular, as shown in Proposition 4.4

for the convex cone of R
N+1, obtained as the epigraph of x 	→ ‖x‖N,2 = (

∑N
i=1 x

2
i )

1
2

(for N ≥ 2). We refer to [10] for further comments and examples.

Let us introduce the sufficient condition for the convergence Theorem 5.1, which
is a generalization of the notion of tubularity to functions.

Definition 4.3. A closed proper function Φ : R
N → R ∪ {+∞} is d-tubular

(with d = 0) if whenever x ∈ R
N and t > 0 are such that Φ is finite and constant on

[x, x + td], there exists a neighborhood V of x and a positive ε such that for any z in
V the function s 	→ Φ(z + sd) is nonincreasing on [0, ε] whenever Φ(z) ≤ Φ(x) + ε.

The function Φ is tubular if it is d-tubular for any d = 0.

Example. The tubularity property is satisfied by Ψ1(x, y) = y2 since it is always
constant in the direction (1, 0), whereas Ψ2(x, y) = (x2 + 12)y2 (which is convex on
[−2, 2]×R) is constant on [−2, 2]×{0} but is increasing on ]0, 2[×R

∗ in the direction
(1, 0). See Figure 4.1 for an illustration.

The following proposition establishes some links between general tubularity, quasi-
analyticity, and the tubularity of the epigraph.

Proposition 4.4. i. If Φ is convex and quasianalytic, then it is tubular.

ii. A closed convex set C is d-tubular if and only if its indicator function δC is
d-tubular.

iii. If a continuous convex function Φ is d-tubular, then its epigraph is (d, 0)-
tubular. Conversely, if the epigraph of a closed convex function Φ is (d, 0)-tubular,
then Φ is d-tubular.
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Ψ1(x, y) = y2 is tubular. Ψ2(x, y) = (x2 + 12)y2 is not tubular.

Fig. 4.1.

iv. A closed proper convex function Φ : R
N → R∪ {+∞} is tubular if and only if

whenever Φ is constant on [x, y], there exists a neighborhood V of x and a positive ε
such that

∀z ∈ dom (∂Φ) ∩ V such that Φ(z) ≤ Φ(x) + ε ∀ξ ∈ ∂Φ(z), 〈ξ, y − x〉 ≤ 0.

v. For any N ≥ 2, the continuous convex function Ψ : x 	→ ‖x‖N,2 is tubular, but
its epigraph is not tubular.

Proof. i. Suppose that Φ is quasianalytic and that x ∈ R
N and t > 0 are such

that Φ is finite and constant on [x, x+ td] for some d = 0. Then Φ is constant on the
line (x, x + d), and since it is convex, Φ is constant on any line (z, z + d) for z in the
domain of Φ.

ii. This is straightforward from the definitions.
iii. Let Φ be continuous and d-tubular. Let (x, r) in epi(Φ) and t > 0 be such

that (x, r) + t(v, 0) belongs to epi(Φ).
Suppose first that there exists a positive s such that (x, r)+s(d, 0) is in the interior

of epi(Φ). Then there exists an open subset V of R
N+1 such that (x, r) + s(d, 0) ∈

V ⊂ epi(Φ). Therefore, for any (z, r′) in the neighborhood (V − s(d, 0)) ∩ epi(Φ) of
(x, r) in epi(Φ), one has (z, r′) + s(d, 0) ∈ V ⊂ epi(Φ). This shows that epi(Φ) is
(d, 0)-tubular in this case.

On the other hand, suppose that [(x, r), (x, r)+t(d, 0)] is included in the boundary
of epi(Φ). This means that r = Φ(x) and that Φ is constant on the segment [x, x+td].
Since Φ is d-tubular, there exist a neighborhood U of x and a positive ε such that, for
any z in U for which Φ(z) ≤ Φ(x) + ε, the function s 	→ Φ(z + sd) is nonincreasing
on [0, ε]. Let U ′ be a neighborhood of x such that U ′ + sd ⊂ U for some positive s.
Then for any (z, r′) in the neighborhood U ′× ]Φ(x)− ε,Φ(x) + ε[ ∩epi(Φ) of (x, r) in
epi(Φ), (z, r′) + s(d, 0) belongs to epi(Φ). This concludes the proof of the first part of
the claim.

Suppose now that the epigraph of Φ is (d, 0)-tubular for some d = 0. Let x
and t > 0 be such that Φ is finite and constant on [x, x + td]. Then (x,Φ(x)) and
(x + td,Φ(x)) belong to epi(Φ), so there exists a neighborhood V of x and a positive
ε such that

∀z ∈ V such that Φ(z) ∈ ]Φ(x)− ε,Φ(x) + ε[, (z + εd,Φ(z)) ∈ epi(Φ).

Let η > 0 be such that B(x, η) ⊂ V ∩{y : Φ(y) > Φ(x)− ε}. Then it is easy to check
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that for every z in B(x, η) such that Φ(z) ≤ Φ(x) + ε, the function s 	→ Φ(z + sd) is
nonincreasing on [0, ε].

iv. This part is a straightforward consequence of Proposition 8.50 (equivalence
between (d) and (f)) of [14].

v. The function Ψ is tubular since it is never constant on a nontrivial segment.
To show that its epigraph is not tubular, we use characterization iv above to prove
that its indicator function is not tubular. We are then led to show that there exist x
and y in epi(Ψ) such that for any neighborhood V of x one has

∃z ∈ epi(Ψ) ∩ V, ∃ξ ∈ Nepi(Ψ)(z), 〈ξ, y − x〉 > 0.

Suppose that N ≥ 2 and x = 0. We notice that Nepi(Ψ)(x,Ψ(x)) = R+

(
x

‖x‖2
,−1

)
.

As the segment [(x,Ψ(x)), (0, 0)] is included in epi(Ψ), one is led to consider the
expression 〈(

z

‖z‖2 ,−1

)
, (−x,−Ψ(x))

〉
= − 1

‖z‖2 〈z, x〉+ ‖x‖N,2

for z = 0 in a neighborhood of x. The Cauchy–Schwarz inequality implies that this
is positive for any z which is not colinear to x. Such a z exists in any neighborhood
of x since N ≥ 2; thus the epigraph of Ψ is not tubular.

Remark. We deduce from Proposition 4.4ii and iv the following characterization
of tubular sets: a closed convex set C is tubular if and only if whenever x and y belong
to C, there exists a neighborhood V of x such that

∀z ∈ C ∩ V, ∀ξ ∈ NC(z) 〈ξ, y − x〉 ≤ 0.

We now prove that, in low dimension, every closed convex subset of R
N is tubular.

Notice that the result below is sharp since Proposition 4.4 provides an example of a
nontubular convex subset of R

N for any N � 3.
Proposition 4.5. Every closed convex subset of R and R

2 (or of any vector
space of dimension less than two) is tubular. As a consequence, any l.s.c. proper
convex function Φ : R→ R ∪ {+∞} is tubular.

Proof. For N = 1, the proof is straightforward since a convex subset of R is an
interval.

Let C be a closed convex subset of R
2, and let x, y belong to C. Without loss

of generality, we may assume that x = (0, 0) and y = (1, 0). We first show that
C ∩ R× [0,+∞[ is tubular.

If C ∩ R× ]0,+∞[ is empty, there is nothing to prove (it reduces to the one-
dimensional case). On the contrary, assume that some z = (z1, z2) belongs to this set.
Let δ denote the distance from x to the line (y, z), and set ε = min(δ, z2)/2. We claim
that for any v in C ∩ R × [0,+∞[∩B(x, ε), v + ε(y − x) belongs to C. Indeed, we
infer from the definition of ε that there exists t0 > ε such that v + t0(y − x) belongs
to [z, y]. Since C is convex, v + ε(y − x) belongs to C. This proves our claim.

The same arguments yield a positive η such that for any v in C ∩ R×]−∞, 0] ∩
B(x, η), v + η(y−x) belongs to C. We now set γ = min(ε, η); then the neighborhood
V = B(x, γ) of x and the positive γ are such that for any z ∈ C ∩B(x, γ), z+ t(y−x)
belongs to C. This completes the proof.

We may apply characterization iii of Proposition 4.4 to get that any closed proper
convex function Φ : R → R ∪ {+∞} is tubular, but we can also deduce this directly
from the definition. Indeed, assume that Φ is constant and finite on [x, x + td] (with
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d = 0 and t > 0). Without loss of generality, we may assume that d > 0; then, since
Φ is convex, one has

∀s < r ≤ t
Φ(x + rd)− Φ(x + sd)

(r − s)d
≤ Φ(x + td)− Φ(x)

td
= 0,

so that Φ is nonincreasing on ]−∞, x + td].
Remark. Notice that in the proof of the tubularity of a closed convex subset C

of R
2, the trick is to write C as the union of its intersection with the two half planes

R× [0,+∞[ and R× ]−∞, 0]. In R
3 one would need infinitely many half planes, which

is the reason why this proof can’t be adapted to dimensions higher than 3.
It is noticed in Proposition 4.4v that the Euclidean norm x 	→ ‖x‖2 is tubular.

This may be checked using calculus, but it is also a consequence of the strict convexity
of its sublevels, as the next proposition shows. We also prove below that the set of
proper tubular convex functions is stable under composition by an increasing convex
function.

Proposition 4.6. i. If Φ : R
N → R ∪ +∞ is a closed proper convex function

whose sublevel sets are (void or) strictly convex, then it is tubular.
ii. If Φ : R

N → R ∪ {+∞} is a closed proper tubular convex function and θ :
R→ R∪ {+∞} is an increasing convex function such that θ ◦Φ ≡ +∞, then θ ◦Φ is
tubular.

Proof. i. Suppose that Φ : R
N → R ∪ {+∞} is a closed proper convex function

whose level sets are strictly convex, and assume that Φ is finite and constant over
[x, y], with x = y. As the set {z ∈ R

N : Φ(z) ≤ Φ(x) = Φ(y)} is strictly convex, there
exists an open ball B centered at the middle (x + y)/2 of [x, y] included in this set.
We claim that the neighborhood B − (y − x)/2 of x and ε = 1/2 have the desired
property. To show this, we first notice that

Φ(x) = Φ(y) = Φ

(
x + y

2

)
= min {Φ(z) : z ∈ R

N}.

Otherwise, there exists z ∈ R
N such that Φ(z) < Φ(x). If we set h(t) = Φ(tz + (1 −

t)(x + y)/2), then h is convex and we have

h(1) < h(0) and h(t) ≤ h(0) = Φ(x)

for any negative t such that tz + (1 − t)(x + y)/2 belongs to B. This obviously
contradicts the convexity of h.

Let z belong to B− (y−x)/2; then the function s 	→ Φ(z+ s(y−x)) is convex on
[0, ε] and attains its minimum at ε, so that it is nonincreasing on [0, ε]. This concludes
the proof.

ii. Assume that Φ : R
N → R ∪ {+∞} is a closed proper tubular convex function

and θ : R→ R∪{+∞} is an increasing convex function. If θ ◦Φ is finite and constant
on a segment [x, x+ td], then since θ is increasing, Φ is also constant on [x, x+ td]. As
a consequence, there exists a neighborhood V of x and a positive ε such that for any
z ∈ V the function s 	→ Φ(z+sd) is nonincreasing on [0, ε] whenever Φ(z) ≤ Φ(x)+ε.
Since θ is increasing, s 	→ θ ◦ Φ(z + sd) is also nonincreasing on [0, ε] for any z in V
such that θ ◦ Φ(z) ≤ θ(ε + Φ(x)). Therefore θ ◦ Φ is tubular.

The following proposition provides different ways to build tubular sets and func-
tions.

Proposition 4.7. i. If C1, . . . , CM are closed tubular convex subsets of R
N ,

then
⋂M
i=1 Ci is tubular.
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ii. If Φ1, . . . ,ΦM are continuous tubular convex functions, then sup1≤i≤M Φi is
tubular.

iii. Let Φ1, . . . ,ΦM : R→ R ∪ {+∞} be l.s.c. proper convex functions. Then the
l.s.c. proper convex function (x1, . . . , xM ) 	−→∑M

i=1 Φi(xi) is tubular on R
M .

Proof. i. This is a simple consequence of Definition 4.2.

ii. Let Φ1, . . . ,ΦM be continuous convex functions, and set Φ = supi Φi; then
epi(Φ) =

⋂
i epi(Φi). From Proposition 4.4iii, we know that each epi(Φi) is (d, 0)-

tubular for every d = 0. It is easily checked that this also holds true for the finite
intersection

⋂
i epi(Φi). Applying Proposition 4.4 again yields that Φ is tubular.

iii. We limit ourselves to the case M = 2, the proof being easily adapted to the
general case. We infer from Proposition 4.5 that, as Φ1 and Φ2 are proper l.s.c. convex
functions on R, they are tubular.

We set Ψ(x, y) = Φ1(x) + Φ2(y). Assume that Ψ is constant on [(x, y), (x, y) +
t(d1, d2)] for some positive t. We must find a neighborhood V of (x, y) and a positive
ε such that for any z ∈ V the function s 	→ Ψ(z + s(d1, d2)) is nonincreasing on [0, ε]
whenever Ψ(z) ≤ Ψ(x, y) + ε. If d1 = d2 = 0, there is nothing to prove.

Suppose first that d1 = 0 or d2 = 0. Without loss of generality, we assume that
the first holds. Then Φ2 is constant on [y, y+td2], so that there exists a neighborhood
V of y and a positive ε such that s 	→ Φ2(z + sd2) is nonincreasing on [0, ε] whenever
z ∈ V and Φ2(z) ≤ Φ2(y) + ε. Recalling the definition of Ψ, it is easy to check that
for any (z1, z2) in the neighborhood {x′ : Φ1(x′) > Φ1(x) − ε/2} × V of (x, y) and
such that Ψ(z1, z2) ≤ Ψ(x, y) + ε/2, the function s 	→ Ψ(z + s(0, d2)) is nonincreasing
on [0, ε/2]. This concludes the proof in this case.

Now, suppose that d1 = 0 and d2 = 0. Without loss of generality, we may
assume that both d1 and d2 are positive. Since Φ1(x+ std1) = Ψ(x, y)−Φ2(y + std2)
for s in [0, 1], we deduce that Φ1 is linear on [x, x + td1]. By symmetry, Φ2 is also
linear on [y, y + td2]. As a consequence, Ψ is constant on any segment included in
[x, x + td1] × [y, y + td2] with direction (d1, d2). We claim that the neighborhood
V = ]x− d1

4 , x+ d1
4 [× ]y− d2

4 , y + d2
4 [ of (x, y) and ε = 1/2 have the desired property.

Indeed, let (z1, z2) belong to V ; then the convex function s 	→ Ψ((z1, z2) + s(d1, d2))
is constant on [1/4, 3/4]. Reasoning as in the proof of Proposition 4.5, we infer that
this function is nonincreasing on ]−∞, 1/2]. This completes the proof.

Corollary 4.8. Any closed convex polyhedron as well as any convex piecewise
affine function is tubular. Moreover, every finite sup of convex analytic functions on
R
N is tubular.

Remark. The notion of tubularity is not stable with respect to the addition. In-
deed, the functions Φ1(x, y) = (x2 +12)y2 + y (which is never constant on a nontrivial
segment of R

2) and Φ2(x, y) = −y are convex and tubular on [−2, 2] × R, but their
sum is no longer tubular (see the example after Definition 4.3).

5. Asymptotic convergence to the θ-center.

5.1. The convergence result. We turn to the main result of this paper, which
is a generalization of previous similar results in [3] and [5] on the selection of a par-
ticular solution of (CP0) by a penalty method.

Theorem 5.1. Assume that (H0)–(H4) hold and that the function Φi is tubular
for any i in {0, . . . ,M}. Then the net (xr)r>0 of the optimal solutions of the penalized
problems (CPr) converges as r tends to 0 towards the unique θ-center of (CP0).

Remark. To use this selection result, it would be of practical interest to be able
to associate with any given function Am (having the properties of nonlinear averages
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described in Definition 3.1) a penalty function θ such that Am = Amθ . It is still an open
problem whether this is possible in the general case. For example, for the function

Am(x) := −( 1
m

∑m
i=1(−xi)p) 1

p (where p ∈ ]0, 1[), one may choose θp(t) := −(−t)p.
Before proving Theorem 5.1, we illustrate it with two examples. In the case

of the logarithmic penalty method, MacLinden [11] shows the convergence of the
penalty trajectory towards the analytic center (i.e., the θ-center when θ = θ1 is the
log penalty) under the strict complementarity assumption. In the following example,
this assumption does not hold, while Theorem 5.1 ensures the convergence of the
penalty trajectory.

Example. Set Φ0(x, y) = x2 + max{0,−1 − y}, Φ1(x, y) = x, and Φ2(x, y) = y.
Then (H0)–(H4) are fulfilled (with θ = θ1 being the log penalty function), and the
functions Φi are tubular (see Proposition 4.7), so that the penalty trajectory converges
to the unique θ-center (0,−1). However, every optimal solution of problem (CP0) is
of the form (0, α) for α in [−1, 0], and the unique solution of the dual problem is (0, 0),
so that the strict complementarity assumption does not hold.

When (H0)–(H4) hold, the penalty trajectory may converge to an optimal solution
different from the θ-center if the functions Φi are not tubular (as the following example
shows), or may not converge at all (see section 5.3).

Example. Set Φ0(x, y) = (x2 + 3)y2 + δC(x, y) with C = [−1, 1]× R, Φ1(x, y) =
x−6, and Φ2(x, y) = y. Then hypotheses (H0)–(H4) are fulfilled (with θ = θ1), but Φ0

is not tubular on C. Let (xr, yr) denote the unique solution of (CPr); then for r > 0
sufficiently small, (xr, yr) belongs to the interior of C, and the optimality conditions
read

2xry
2
r =

r

xr − 6
and 2yr(x

2
r + 3) =

r

yr
.

As a consequence, (xr, yr)r converges to (− 1
2 , 0), whereas the θ-center is (−1, 0).

Theorem 5.1 is, in fact, a straightforward consequence of the following selection
result. Theorem 5.2 below characterizes those optimal solutions of (CP0) which can
be obtained as limit points (as r → 0) of nets (xr)r of optimal approximate solutions.
Notice that when (H4) does not hold, there may be several θ-centers, so the following
theorem does not imply the convergence of the penalty trajectories.

Theorem 5.2. Suppose that (H0), (H1), and (H3) hold. Also assume that the
function Φi is tubular for any i in {0, . . . ,M}. Let x0 ∈ S(CP0) be a cluster point of
(xr)r>0 as r goes to 0, where xr ∈ S(CPr) ∀ r. Then x0 is a θ-center of (CP0).

We shall need the following lemma in the proof of Theorem 5.2.
Lemma 5.3. Let x0 and x∗ belong to S(CP0). Then there exists t ∈ ]0, 1[ such

that for any i in I = {1 ≤ i ≤ M : Φi(x0) = Φi(x
t)} the function Φi is constant on

[x0, x
t], where we have set xt := tx0 + (1− t)x∗.
Proof. For 1 ≤ i ≤M , we set si = max{s ∈ [0, 1/2] : Φi(x0) = Φi(x

s)}, where xs

denotes sx0 + (1 − s)x∗. Notice that if s ∈ ]0, si[ is such that Φi(x
s) = Φi(x0), then

Φi is constant on ]0, si[.
If for every 1 ≤ i ≤ M one has si = 0, then t = 1/4 has the desired property.

Indeed, I = {1 ≤ i ≤M : Φi(x0) = Φi(x
t)} is empty for this choice of t.

Otherwise, we set t = 1/2 min{si : si > 0}. Then if i belongs to I = {1 ≤ i ≤
M : Φi(x0) = Φi(x

t)}, the function Φi is constant on ]x0, x
t[ since t ∈ ]0, si[. This

concludes the proof.
Proof of Theorem 5.2. Let x0 ∈ S(CP0) be a cluster point of (xr)r>0 as r goes to

0, where xr ∈ S(CPr) ∀ r. To simplify the notations, we assume that the whole net
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converges to x0 as r tends to 0. Let x∗ belong to S(CP0) and I ⊂ {1, . . . ,M} such
that ∀ i in I, Φi(x0) = Φi(x

∗). Then we must check that

A
M−|I|
θ ((Φj(x0))j /∈I) ≤ A

M−|I|
θ ((Φj(x

∗))j /∈I).

We apply Lemma 5.3 to get a real t ∈ ]0, 1[ for which the function Φj is constant
on [x0, x

t] for every j ∈ J = {1 ≤ i ≤ M : Φi(x0) = Φi(x
t)}, where we have set

xt = tx0 + (1 − t)x∗. Notice that as x0 and xt both belong to S(CP0), the function
Φ0 is constant on the segment [x0, x

t]. The optimality condition for xr reads

0 ∈ ∂Φ0(xr) + α(r)

M∑
i=1

∂

(
θ

(
Φi(.)

r

))
(xr).

Since the functions Φ0 and θ(Φj(.)/r) are tubular (see Lemma 4.6) and constant over
[x0, x

t] for j in J , we infer from Proposition 4.4iv that for r small enough,∑
i/∈J
〈ξri , xt − x0〉 ≥ 0

for some vectors ξri in ∂(θ(Φi(.)/r))(xr). We deduce from the previous inequality and
the convexity of the functions θ(Φi(.)/r) that

∑
i/∈J

θ

(
Φi(xr)

r

)
≤

∑
i/∈J

θ

(
Φi(xr + xt − x0)

r

)
.

We notice that for i in I \ J we have Φi(x
t) < Φi(x

∗) = Φi(x0). As a consequence,
for r small enough, we deduce from the strict monotonicity of θ and the continuity of
the functions Φi that∑

i/∈J,i/∈I
θ

(
Φi(xr)

r

)
≤

∑
i/∈J,i/∈I

θ

(
Φi(xr + xt − x0)

r

)
.

We can now choose real numbers δi and δti such that δi < Φ(x0) ≤ 0 and Φi(x
t) < δti <

0 for i /∈ (I∪J). Indeed, for i /∈ (I∪J), Φi(x
t) belongs to ]−∞,max{Φi(x0),Φi(x

∗)}[ ,
so that Φi(x

t) < 0. For i ∈ J \ I, we notice that Φi(x0) = Φi(x
t) ≤ Φi(x

∗), and we
choose δi = δti < Φi(x0). With these notations, we conclude from the monotonicity
of θ that ∑

i/∈I
θ

(
δi
r

)
≤

∑
i/∈I

θ

(
δti
r

)
.

Notice that δ and δt both belong to ]−∞, 0[M−|I|. We thus divide the above inequality
by M − |I|, compose it by the increasing function θ−1, then divide by r and let r go
to 0 (that’s where (H3) is needed). This leads to

A
M−|I|
θ (δ) ≤ A

M−|I|
θ (δt).

Then, letting δi (resp., δti) go to Φi(x0) (resp., Φi(x
t)), we get

A
M−|I|
θ ((Φj(x0))j /∈I) ≤ A

M−|I|
θ ((Φj(x

t))j /∈I).

As A
M−|I|
θ is convex and componentwise nondecreasing, and since xt = tx0 +(1− t)x∗

with 0 < t < 1, this proves our claim.
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5.2. Extensions to other penalty methods. In the proof of the selection
result Theorem 5.2, the hypotheses (H0) and (H1) are mainly assumed in order to
ensure that the conclusion of Theorem 2.1 holds. To be more precise, in Theorem 5.2
we can take the following hypotheses, (H′

0) and (H′
1), instead of (H0) and (H1), with

(H′
0)

{
Φ0 : R

N → R ∪ {+∞} is a closed proper convex function;
for 1 ≤ i ≤M , Φi : R

N → R are continuous convex functions.

(H′
1)

{
θ is increasing and convex on dom (θ) =]−∞, η[ , η ∈ [0,+∞];
α is positive on ]0,+∞[, and the conclusions of Theorem 2.1 hold.

Notice that the boundedness of a selection (xr)r of approximate solutions xr ∈ S(CPr)
as well as the optimality of any cluster point x0 of such a family is contained in (H′

1),
so that S(CP0) is nonempty. We can then get the following convergence result, which
is a simple extension of Theorem 5.1 to this setting.

Theorem 5.4. Assume that (H′
0), (H′

1), (H2)–(H4) hold and that the function
Φi is tubular for any i in {0, . . . ,M}. Then as r tends to 0 the net (xr)r>0 of the
optimal solutions of the penalized problems (CPr) converges towards the unique θ-
center of (CP0).

For example, the above result applies to the nonlinear algorithm studied in [4].
This algorithm is based on the penalty scheme (CPr) and generates a bounded se-
quence of approximate optimal solutions (xr) whose cluster points are optimal so-
lutions of (CP0). For this algorithm, hypothesis (H1) is not satisfied (because it is
associated with a function α such that α(r)/r is bounded near 0), whereas hypothesis
(H′

1) follows from Lemma 6 therein.

5.3. A nonconvergence result. It is possible, under some further hypotheses
on the penalty function θ, to build a continuous convex function Φ0 : R

2 → R such
that (H0) holds with the affine constraints Φ1(x) = x1 − 1 and Φ2(x) = x2 − 1 and
for which the net (xr)r>0 of the optimal solutions of (CPr)r>0 does not converge
as r goes to 0. Notice that for Φ1 and Φ2 defined as above, the hypothesis (H2) is
clearly satisfied. Our example is defined as follows: Φ0 is given as the supremum of a
denumerable family of affine functions φn, which corresponds to defining its epigraph
as a denumerable intersection of half spaces. The difficulty is to define φn so that it
is associated with a point xn and a real number rn for which xn = xrn (the optimal
solution of (CPrn)), φn = Φ0 in a neighborhood of xn, the net xn has at least two
cluster points, and rn goes to 0 as n→ +∞. Our construction requires the following
hypothesis on θ:

(H5)

{
θ is differentiable on ]−∞,K[ for some negative K,

and t 	→ |t|θ′(t) is nondecreasing on ]−∞,K[.

The hypothesis of differentiability on θ is not really restrictive since most penalty
functions studied in the literature (and, in particular, any such function cited in [3])
are at least of class C1 on their domain. The monotonicity of t 	→ |t|θ′(t) is more
technical, but simple calculations show that the penalty functions θ1, θ2, and θ3 of
the preceding sections have this property. As a consequence, Theorem 5.5 applies to
the exponential penalty method and the logarithmic barrier method. We also refer
to a recent work by Gilbert, Gonzaga, and Karas [8], where the particular case of
the logarithmic barrier method is considered: they give an example of a C∞-smooth
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function Φ0 such that, for the constraint Φ1(x1, x2) := x2 ≥ 0, the penalty trajectory
does not converge as r goes to 0. Notice that such behavior is impossible for an
analytic function Φ0, since analyticity implies tubularity.

Theorem 5.5. Assume that (H5) holds and that (H1) is valid with α(r) = r.
Then there exists a continuous convex function Φ : R

2 → R such that the net (xr)r>0

of the optimal solutions of the family of problems (CP′
r)r>0 with

(CP′
r) inf

{
Φ(x1, x2) + rθ

(
x1 − 1

r

)
+ rθ

(
x2 − 1

r

)
: (x1, x2) ∈ R

2

}

has at least two cluster points as r goes to 0.

Proof. We shall define Φ through its epigraph epi(Φ). We first assume that there
exist two sequences (an)n≥1 and (rn)n≥1 of elements of ]0, 1/3] × ]0, 1[ × ]1,+∞[ and
]0,+∞[, respectively, such that

(i) (rn)n is decreasing and limn→+∞ rn = 0,

(ii) ∀n ≥ 1, a2n
1 = 1/3 − 1/4n and a2n+1

1 = 1/4n, an2 < an+1
2 < 1, (an2 − 1)/rn

≤ 3K/2, and an3 > an+1
3 > 1,

(iii) ∀n ≥ 1, ∀k = n, ak ∈ D(an, rn),

where D(x, r) is the open subset of R
3 given by

D(x, r) =

{
z ∈ R

3 : z3 > x3 − θ′
(
x1 − 1

r

)
(z1 − x1)− θ′

(
x2 − 1

r

)
(z2 − x2)

}

when (x1, x2) belongs to ]−∞, 1[2 and r > 0 are such that max
{
x1−1
r , x2−1

r

}
< K.

Let C :=
⋂
n≥1 D(an, rn); then C is a closed convex subset of R

3 and is the

epigraph of a continuous convex function φ : R
2 −→ R. Indeed, let x = (x1, x2) ∈ R

2.
We must show that there exists φ(x) in R such that {(x1, x2, x3) : x3 ≥ φ(x)} =
C ∩ {(x1, x2, x3) : x3 ∈ R}. From the definition of C we infer that if (x1, x2, x3) ∈ C,
then {(x1, x2, y) : y ≥ x3} ⊂ C. Moreover, we deduce from (ii) and (H5) that ∀ n ≥ 1

an3 −
∑
i=1,2

θ′
(
ani − 1

rn

)
(xi − ani ) ≤ |an3 |+ θ′

(
3K

2

) ∑
i=1,2

|xi − ani |,

and as (an)n is bounded, there exists x3 in R such that (x1, x2, x3) belongs to C. We
can thus define φ(x) := min{x3 : (x1, x2, x3) ∈ C}.

From the definition of C, we have that for any n ≥ 1, φ(an1 , a
n
2 ) = an3 and(

−θ′
(
an1 − 1

r

)
,−θ′

(
an2 − 1

r

))
∈ ∂φ(an1 , a

n
2 ).

Let m = min{φ(x) : x ∈ [−1, 2]2}; then we claim that the function Φ : (x1, x2) 	→
max{φ(x1, x2), x2

1 + x2
2 − 5 + m} has the desired properties. Indeed, Φ is continuous,

convex, and coercive on R
2, so that (H0) is satisfied. Moreover, Φ is equal to φ on

[−1, 2]2, so we infer from the previous remarks that for any n ≥ 1 the optimal solution
xrn of (CPrn) is (an1 , a

n
2 ). As a consequence, the net (xr)r>0 has at least two cluster

points as r goes to 0, namely, (0, l) and (1
3 , l), where l = limn→+∞ an2 . This proves

the claim.

It remains to prove that there exist two sequences (an)n≥1 and (rn)n≥1 for which
(i)–(iii) hold. We build such sequences by induction on n.
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Since θ is convex and increasing, θ′ is positive on ] − ∞,K[. We set a1 =
(1/3, 1/2, 1 + ε), with ε = 1/9θ′(2K) (notice that ε is positive) and r1 = −1/3K.
Then (0, 1, 1) and (1, 1, 1) belong to D(a1, r1).

Now fix n ∈ N\{0} and assume that a1, . . . , an belong to ]0, 1/3] × ]0, 1[ × ]1,+∞[
and that 0 < rn < · · · < r1 are such that (ii) and (iii) hold up to n. Then we claim
that for r ∈ ]0,min{ 1

n+1 , rn}[ small enough, one has

1. an2 < a(r)2 < 1, a(r)2−1
r ≤ 3K

2 , and an3 > a(r)3 > 1,
2. ∀i ∈ {1, . . . , n} , a(r) ∈ D(ai, ri) and ai ∈ D(a(r), r),
3. (0, 1, 1) ∈ D(a(r), r) and (1, 1, 1) ∈ D(a(r), r),

where a(r) = (β, 1−√r, 1+δ(r)), with β := 1/3−1/(2(n+1)) if n is odd, β := 1/(2n)
otherwise, and δ(r) = 1/12θ′(−1/2r). Notice that since θ∞(−1) = 0, the limit of θ′

at −∞ is equal to 0, so that δ(r) tends to 0 as r decreases to 0. Let us check that if
r > 0 is small enough, then a = a(r) and r satisfy properties 1, 2, and 3.

1. It is easily seen that a(r) belongs to ]0, 1/3[ × ]0, 1[ × ]1,+∞[ for r small

enough. Moreover, a(r) and a(r)2−1
r , respectively, tend to (β, 1, 1) and −∞ as r goes

to 0, so that for r small enough, condition 1 is fulfilled for a = a(r).
2. The set

⋂n
i=1 D(ai, ri) is a convex open subset of R

3 containing the segment
[(0, 1, 1), (1, 1, 1)]. This implies that a(r) belongs to

⋂n
i=1 D(ai, ri) for r small enough,

which is the first part of condition 2. The second part of condition 2 for i ∈ {1, . . . , n}
reads

ai3 > 1 + δ(r)− θ′
(
β − 1

r

)
(ai1 − β)− θ′

(
− 1√

r

)
(ai2 − 1 +

√
r)

⇐⇒ f(r) = ai3 − 1− δ(r) + θ′
(
β − 1

r

)
(ai1 − β) + θ′

(
− 1√

r

)
(ai2 − 1 +

√
r) > 0.

Since β < 1 and θ′ tends to 0 at −∞, we have limr→0+ f(r) = ai3 − 1 > 0. As a
consequence, condition 2 is satisfied for r > 0 small enough.

3. It is sufficient to check that (0, 1, 1) ∈ D(a(r), r). This amounts to

−δ(r)− βθ′
(
β − 1

r

)
+ θ′

(
− 1√

r

)√
r > 0.

Since θ′ is nondecreasing on ]−∞,K[ and β belongs to ]0, 1/3[, 4δ(r) is greater than
βθ′(β−1

r ). It is therefore sufficient to check that

−5δ(r) + θ′
(
− 1√

r

)√
r = − 5

12
θ′

(
− 1

2r

)
+ θ′

(
− 1√

r

)√
r > 0.

We infer from (H5) that

1√
r
θ′

(
− 1√

r

)
≥ 1

2r
θ′

(
− 1

2r

)
>

5

12r
θ′

(
− 1

2r

)

as soon as 0 < r < min{1/4, 1/K2}.
As a consequence, if we set an+1 := a(r) and rn+1 = r for r small enough, the

families (ak)1≤k≤n+1 and (rk)1≤k≤n+1 satisfy (ii) and (iii) and rn+1 ≤ 1
n+1 .

The induction on n thus yields two sequences (an)n and (rn)n which satisfy (i)–
(iii). This concludes the proof.
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Abstract. We study best approximation problems with nonlinear constraints in Hilbert spaces.
The strong “conical hull intersection property” (CHIP) and the “basic constraint qualification”
(BCQ) condition are discussed. Best approximations with differentiable constraints and convex
constraints are characterized. The analysis generalizes some linearly constrained results of recent
works [F. Deutsch, W. Li, and J. Ward, J. Approx. Theory, 90 (1997), pp. 385–444; F. Deutsch,
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1. Introduction. In recent years, a lot of attention has been focused on con-
strained best approximation problems in Hilbert spaces; see, e.g., [5, 6, 9, 10, 11, 16,
17]. These problems find applications (cf. [2]) in statistics, mathematical modeling,
curve fitting, and surface fitting. The setting is as follows. Let X be a Hilbert space,
C a nonempty closed convex subset of X, and A a bounded linear operator from X
to a finite-dimensional Hilbert space Y . Given “data” b ∈ Y , the problem consists of
finding the best approximation PK(x) to any x ∈ X from the set

K := C ∩A−1(b) = C ∩ {x ∈ X : Ax = b}.
Generally, it is easier to compute the best approximation from C than from K.

Therefore, the interest of several papers [5, 6, 9, 11, 16, 17] was centered on the
following problem: for any x ∈ X, does there exist a y ∈ Y such that PK(x) =
PC(x + A∗y)? It was proved in [9] that a sufficient and necessary condition for an
affirmative answer to this question is that the pair {C,A−1(b)} satisfy the strong
“conical hull intersection property” (CHIP).

Very recently, Deutsch, Li, and Ward in [10] considered a more general problem
of finding the best approximation PK(x) to any x ∈ X from the set

K = C ∩ {x ∈ X : Ax ≤ b}(1.1)

and established a result similar to that of [9]. More precisely, they proved the following
theorem (see Theorem 3.2 and Lemma 3.1 in [10]).

Theorem DLW. Let A be defined on X by

Ax := (〈x, h1〉, 〈x, h2〉, . . . , 〈x, hm〉)
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for some hi ∈ X \ {0} for i = 1, 2, . . . ,m. Let b ∈ R
m and x∗ ∈ K = C ∩ {x ∈ X :

Ax ≤ b}. Then the following two statements are equivalent:
(i) For any x ∈ X, x∗ = PK(x) ⇐⇒ x∗ = PC(x −

∑m
i=1 λihi) for some λi ≥ 0

with λi(〈x, hi〉 − bi) = 0 for all i.
(ii) {C,H1, . . . , Hm} has the strong CHIP at x∗, where Hi := {x ∈ X : 〈x, hi〉 ≤

bi} for all i.
Theorem DLW gives an unconstrained reformulation for the linearly constrained

system, for which a complete theory has been established. The importance of such
a theory was described in detail in [10, 11], etc. One natural problem is: can one
extend such a theory to a nonlinearly constrained system? Admittedly, this problem
for a general nonlinearly constrained system is quite difficult. In this paper, we shall
relax the linearity assumption made on the operator A in the constraint (1.1) in two
ways. First, we study the case in which A is assumed to be Fréchet differentiable, and
second, we examine the case in which A is convex (i.e., each component is convex).

In the Fréchet differentiable case, we will give a theorem (Theorem 4.1) that
is similar to Theorem DLW, where hi in Theorem DLW is replaced by the Fréchet
derivative Ai(x∗) of Ai at x

∗, for i = 1, 2, . . . ,m. Note that, when A is nonlinear,
the approximating set K is, in general, nonconvex (see Example 4.1). Thus Theorem
DLW does not work in this case, since K can not be re-expressed as the intersection
of C and a polyhedron. In addition, the nonconvexity of the set K makes the original
problem very complicated. In fact, there is no successful way to characterize the best
approximation from general nonconvex sets. The merit of the present results lies in
converting a nonconvex constrained problem into a convex unconstrained one.

In the convex case, the sets Hi, i = 1, 2, . . . ,m, may not be well defined, although
K is convex and, in general, Theorem DLW does not work either (see Example 5.1).
To establish a similar unconstrained reformulation result, we introduce the concept of
the “basic constraint qualification” (BCQ) relative to C, which is a generalization of
the BCQ considered in [12, 13]. We prove that the BCQ relative to C is a sufficient
and necessary condition to ensure the following “perturbation property”: for any
x ∈ X, PK(x) = x∗ if and only if PC(x−

∑m
1 λihi) = x∗ for some hi ∈ ∂Ai(x

∗) and
λi ≥ 0 with λi(Ai(x

∗)− bi) = 0. Clearly, in either case, the present results generalize
the main results in [10].

The paper is organized as follows. We describe some notations and a useful
proposition in section 2. To deal with the problem with differentiable constraints, we
need to linearize the constraints in section 3. Unconstrained reformulation results for
differentiable constraints and convex constraints are established in sections 4 and 5,
respectively. Finally, a concluding remark is given in section 6.

2. Preliminaries. Let X be a Hilbert space. For a nonempty subset S of X,
the convex hull (resp., conical hull) of S, denoted by convS (resp., coneS), is the
intersection of all convex sets (resp., convex cones) including S, while the dual cone
S◦ of S is defined by

S◦ = {x ∈ X : 〈x, y〉 ≤ 0 ∀y ∈ S}.
Then the normal cone of S at x is defined by NS(x) = (S − x)◦. The closure (resp.,
interior, relative interior) of any set S is denoted by S (resp., intS, riS).

For a function f from X to R, the subdifferential of f at x ∈ X, denoted by
∂f(x), is defined by

∂f(x) = {z ∈ X : f(x) + 〈z, y − x〉 ≤ f(y) ∀y ∈ X}.
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It is well known that ∂f(x) �= ∅ for all x ∈ X if f is a continuous convex function.
Let G be a nonempty closed convex set in X. Then for any x ∈ X, there exists a

unique best approximation PG(x) from G to x. We define

τ(x, y) = lim
t→+0

‖x+ ty‖ − ‖x‖
t

.

Since x/‖x‖ is the unique supporting functional of x, we have

τ(x, y) =
〈x, y〉
‖x‖ .

The following well-known characterization of the best approximation is useful; see
[9, 10].

Proposition 2.1. Let G be a convex subset of X, x ∈ X, and g0 ∈ G. Then
PG(x) = g0 ⇐⇒ 〈x− g0, g0 − g〉 ≥ 0 for any g ∈ G⇐⇒ x− g0 ∈ (G− g0)

◦.

3. Linearization of the constraints. In the remainder of the paper, we always
assume that C �= ∅ is a closed convex subset of X. Suppose that

A(·) = (A1(·), . . . , Am(·))
is Fréchet differentiable from X to R

m and b = (b1, . . . , bm) ∈ R
m. Let me ∈

{1, 2, . . . ,m} be a fixed integer. Define

K0 = {x ∈ X : Ai(x) = bi, i ∈ E} ∩ {x ∈ X : Ai(x) ≤ bi, i ∈ I}
and

K = C ∩K0,

where

E = {1, 2, . . . ,me}, I = {me + 1, . . . ,m}.
Furthermore, let

I(x∗) = {i ∈ I : Ai(x
∗) = bi} ∀x∗ ∈ K.

The following concepts can be easily found in any book on constrained optimiza-
tion; see, e.g., [14, 20].

Definition 3.1. Let x∗ ∈ K. A vector d �= 0 is called a feasible direction of K
at x∗ if there exists δ > 0 such that

x∗ + td ∈ K ∀t ∈ [0, δ].

The set of all feasible directions of K at x∗ is denoted by FD(x∗).
Definition 3.2. Let x∗ ∈ K. A vector d is called a linearized feasible direction

of K at x∗ if

〈d,Ai(x∗)〉 = 0 ∀i ∈ E

and

〈d,Ai(x∗)〉 ≤ 0 ∀i ∈ I(x∗),
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where Ai(x∗) is the Fréchet derivative of Ai at x
∗. The set of all linearized feasible

directions of K at x∗ is denoted by LFD(x∗).
Definition 3.3. Let x∗ ∈ K. A vector d is called a sequentially feasible direction

of K at x∗ if there exist a sequence {dk} ⊂ X and a sequence {δk} of real positive
numbers such that

dk → d, δk → 0, x∗ + δkdk ∈ K, k = 1, 2, . . . .

The set of all sequentially feasible directions of K at x∗ is denoted by SFD(x∗).
Obviously, we have the following inclusion relationship for various feasible direc-

tions.
Proposition 3.1. Let x∗ ∈ K. Then

FD(x∗) ⊆ SFD(x∗) ⊆ LFD(x∗).

For convenience, let

KS(x
∗) = conv(x∗ + SFD(x∗)) ∩ C

and

KL(x
∗) = (x∗ + LFD(x∗)) ∩ C.

Then KS(x
∗) and KL(x

∗) are closed convex cones.
The following two theorems describe the equivalence of the best approximation

from K and from KS(x
∗), which plays an important role in our study.

Theorem 3.1. Let x∗ ∈ K. Then, for any x ∈ X, if PK(x) � x∗, we have

PKS(x∗)(x) = x∗.

Proof. For any x̄ ∈ x∗ +SFD(x∗), d = x̄− x∗ ∈ SFD(x∗) there exist dk ∈ X with
dk → d and δk > 0 with δk → 0 such that x∗ + δkdk ∈ K. It follows from PK(x) � x∗

that

‖x− x∗‖ ≤ ‖x− x∗ − δkdk‖, k = 1, 2, . . . .

Since

τ(x− x∗, x∗ − x̄) = lim
k

‖x− x∗ − δkd‖ − ‖x− x∗‖
δk

≥ lim
k

‖x− x∗ − δkd‖ − ‖x− x∗ − δkdk‖
δk

and ∣∣∣∣‖x− x∗ − δkd‖ − ‖x− x∗ − δkdk‖
δk

∣∣∣∣ ≤ ‖dk − d‖,

it follows that

〈x− x∗, x∗ − x̄〉 ≥ 0 ∀x̄ ∈ x∗ + SFD(x∗).

Since KS(x
∗) ⊆ conv(x∗ + SFD(x∗)), we have

〈x− x∗, x∗ − x̄〉 ≥ 0 ∀x̄ ∈ KS(x
∗).

This, with Proposition 2.1, implies that PKS(x∗)(x) = x∗, and the theorem fol-
lows.

Theorem 3.2. Let x∗ ∈ K. Then the following two statements are equivalent:
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(i) K ⊆ KS(x
∗).

(ii) For any x ∈ X, PKS(x∗)(x) = x∗ =⇒ PK(x) = x∗.
Proof. It suffices to prove that (ii) =⇒ (i). LetG = conv(x∗ + SFD(x∗)). Suppose

on the contrary that K �⊆ KS(x
∗). Then K �⊆ G, so that there is x̄ ∈ K but

x̄ /∈ G. Let g0 = PG(x̄) and x = x̄ − g0 + x∗. Then PG(x) = x∗. In fact, since
G = x∗ +conv(SFD(x∗)), for any g ∈ G, there exist ḡ0, ḡ ∈ conv(SFD(x∗)) such that

g0 = x∗ + ḡ0 and g = x∗ + ḡ.

Note that G is a cone with vertex x∗. It follows that

g + g0 − x∗ = x∗ + ḡ + ḡ0 ∈ G,

which, by Proposition 2.1, implies that

〈x̄− g0, g0 − (g + g0 − x∗)〉 ≥ 0

as g0 = PG(x̄). Thus we have

〈x− x∗, x∗ − g〉 = 〈x̄− g0, g0 − (g + g0 − x∗)〉 ≥ 0,

which proves that PG(x) = x∗. Now define

xt = x∗ + t(x− x∗) ∀t > 0.

From

‖xt − x∗‖ = t‖x− x∗‖ ≤ t

∥∥∥∥x−
[(

1− 1

t

)
x∗ +

(
1

t

)
g

]∥∥∥∥ = ‖xt − g‖ ∀g ∈ G, t > 1,

it follows that PG(xt) = x∗ for t > 1. Therefore, from (ii) and KS(x
∗) ⊆ G, we have

PK(xt) = x∗ for t > 1.
On the other hand, for t > 1 we obtain

‖xt − x̄‖2 = ‖x∗ + t(x̄− g0)− x̄‖2 = ‖x∗ − g0 + (t− 1)(x̄− g0)‖2

= (t− 1)2‖x̄− g0‖2 + 2(t− 1)〈x̄− g0, x
∗ − g0〉+ ‖x∗ − g0‖2.

Since g0 = PG(x̄), it follows from Proposition 2.1 that 〈x̄−g0, x
∗−g0〉 ≤ 0, and hence

‖xt − x̄‖2 ≤ (t− 1)2‖x̄− g0‖2 + ‖x∗ − g0‖2

= t2‖x̄− g0‖2 − 2t‖x̄− g0‖2 + ‖x̄− g0‖2 + ‖x∗ − g0‖2

< t2‖x̄− g0‖2 = ‖xt − x∗‖2

for all t > 1 large enough. This means that x∗ /∈ PK(xt), which is a contradiction.
The proof is complete.

Similarly, we have the following result for KL(x
∗).

Theorem 3.3. Let x∗ ∈ K. Then the following statements are equivalent:
(i) K ⊆ KL(x

∗).
(ii) For any x ∈ X, PKL(x∗)(x) = x∗ ⇐⇒ PK(x) � x∗.
Corollary 3.1. Let x∗ ∈ K. Consider the following statements:
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(i) K ⊆ KL(x
∗) and KS(x

∗) = KL(x
∗).

(ii) For any x ∈ X, PK(x) � x∗ ⇐⇒ PKL(x∗)(x) = x∗.
(iii) For any x ∈ X, PK(x) � x∗ =⇒ PKL(x∗)(x) = x∗.

Then (i) =⇒ (ii) =⇒ (iii). Furthermore, if K ⊆ KS(x
∗), then (i)⇐⇒ (ii)⇐⇒ (iii).

Proof. If (i) holds, by Theorems 3.1 and 3.2, we have

PK(x) � x∗ ⇐⇒ PKS(x∗)(x) = x∗ ⇐⇒ PKL(x∗)(x) = x∗.

Therefore (ii) holds. The implication (ii) =⇒ (iii) is trivial. Now assume that K ⊆
KS(x

∗). If (iii) holds, then, for any x ∈ X,

PKS(x∗)(x) = x∗ =⇒ PK(x) � x∗ =⇒ PKL(x∗)(x) = x∗.

Thus, with almost the same arguments as in the proof of Theorem 3.2, we have
KL(x

∗) ⊆ KS(x
∗). By Proposition 3.1, KL(x

∗) = KS(x
∗) and so K ⊆ KL(x

∗); i.e.,
(i) holds.

It should be noted that ifK is convex (e.g., A1, . . . , Ame are linear and Ame+1, . . . ,
Am are convex), K ⊆ KS(x

∗) holds. We therefore have the following corollary.
Corollary 3.2. Let x∗ ∈ K. If K is convex, then the following statements are

equivalent:
(i) KS(x

∗) = KL(x
∗).

(ii) For any x ∈ X, PK(x) = x∗ ⇐⇒ PKL(x∗)(x) = x∗.
(iii) For any x ∈ X, PK(x) = x∗ =⇒ PKL(x∗)(x) = x∗.

4. Reformulations of differentiable constraints. The following notation of
the strong CHIP, taken from [9, 10], plays an important role in optimization theory;
see, e.g., [7, 8, 12, 18].

Definition 4.1. Let {C0, . . . , Cm} be a collection of closed convex sets and
x ∈ ∩mj=0Cj. Then {C0, . . . , Cm} is said to have the strong CHIP at x if

 m⋂
j=0

Cj − x


◦

=

m∑
j=0

(Cj − x)◦.

Now, for convenience, we write

Ai+m(x∗) = −Ai(x
∗), i = 1, 2, . . . ,me,

b̄i = bi −A(x∗) + 〈x∗,Ai(x∗)〉, i = 1, 2, . . . ,m+me,

Hi = {d ∈ X : 〈d,Ai(x∗)〉 ≤ b̄i}, i = 1, 2, . . . ,m+me,

and

E0 = E ∪ I(x∗) ∪ {m+ 1, . . . ,m+me}, E1 = I \ I(x∗).

We define the bounded linear mapping A(x∗)| from X to R
me by

A(x∗)|x = (〈x,A1(x
∗)〉, . . . , 〈x,Ame(x∗)〉) ∈ R

me ∀x ∈ X.

The inverse of A(x∗)|, which is generally a set-valued mapping, is denoted by
A(x∗)|−1. Let

b̄ = (b̄1, . . . , b̄me).
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Then we are ready to give the main result of this section.
Theorem 4.1. Let x∗ ∈ K. Suppose that K ⊆ KL(x

∗) and KS(x
∗) = KL(x

∗).
Then the following statements are equivalent:

(i) {C, A(x∗)|−1(b̄), Hi, i ∈ I(x∗)} has the strong CHIP at x∗.
(ii) {C, A(x∗)|−1(b̄), Hi, i ∈ I} has the strong CHIP at x∗.
(iii) For any x ∈ X,

PK(x) � x∗ ⇐⇒ PC

(
x−

m∑
1

λi Ai(x
∗)

)
= x∗

for some λi, i = 1, . . . ,m, with λi ≥ 0 for all i ∈ I, and λi = 0 for all
i /∈ E ∪ I(x∗).

Proof. We first assume that (i) holds. Since x∗ ∈ int ∩i∈E1 Hi, it follows from
Proposition 2.3 of [10] that {C ∩ (∩i∈E0Hi), Hi, i ∈ E1} has the strong CHIP at x∗.
Thus (i) implies that {C, A(x∗)|−1(b̄), Hi, i = 1, . . . ,m} has the strong CHIP at
x∗. Therefore, (ii) holds.

Now suppose that (ii) holds. By Corollary 3.1, we have that, for any x ∈ X,
PK(x) � x∗ ⇐⇒ PKL(x∗)(x) = x∗. We will show that PKL(x∗)(x) = x∗ if and

only if PK0
L(x∗)(x) = x∗, where K0

L(x
∗) = C ∩ (∩m+me

i=1 Hi). In fact, it is clear that

PKL(x∗)(x) = x∗ implies PK0
L(x∗)(x) = x∗. Conversely, assume that PK0

L(x∗)(x) =

x∗. Since KL(x
∗)
⋂
U(x∗, r) ⊆ K0

L(x
∗) for some r > 0, where U(x∗, r) denotes the

open ball with center x∗ and radius r > 0, x∗ is a best approximation to x from
KL(x

∗)
⋂
U(x∗, r), that is, x∗ is a local best approximation to x from KL(x

∗), and
hence PKL(x∗)(x) = x∗ by [3]. Note that any finite collection of half-spaces has the
strong CHIP [9]. It follows that {C, A(x∗)−1(b̄), Hi : i ∈ I} has the strong CHIP
at x∗ ⇐⇒ {C, Hi : i = 1, 2, . . . ,m +me} has the strong CHIP at x∗. Thus, using
Theorem DLW, we have

PK0
L(x∗)(x) = x∗ ⇐⇒ PC

(
x−

m+me∑
i=1

λi Ai(x
∗)

)
= x∗

for some λi ≥ 0, i = 1, . . . ,m +me, with λi(〈x∗,Ai(x∗)〉 − b̄i) = 0. Consequently,
(iii) holds.

Finally, if (iii) holds, it follows from Corollary 3.1 that, for any x ∈ X,

PKL(x∗)(x) = x∗ ⇐⇒ PK(x) � x∗ ⇐⇒ PC

(
x−

m∑
1

λi Ai(x
∗)

)
= x∗

for some λi, i = 1, . . . ,m, with λi ≥ 0 for all i ∈ I, and λi = 0 for all i /∈ E ∪ I(x∗).
Consequently,

PKL(x∗)(x) = x∗ ⇐⇒ PC


x−

∑
i∈E∪I(x∗)

λi Ai(x
∗)


 = x∗

for some λi, i ∈ E ∪ I(x∗), satisfy λi ≥ 0 for all i ∈ I(x∗), or equivalently,

PKL(x∗)(x) = x∗ ⇐⇒ PC

(
x−

∑
i∈E0

λi Ai(x
∗)

)
= x∗
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for some λi ≥ 0, i ∈ E0. Thus, using Theorem DLW again, we know that {C, Hi, i ∈
E0} has the strong CHIP at x∗, and so does {C, A(x∗)|−1(b̄), Hi, i ∈ I(x∗)}; i.e.,
(i) holds. The proof of the theorem is complete.

Remark 4.1. Recall that the constraint qualification condition on span(C − x∗)
is satisfied at x∗ if SFD(x∗)∩span(C−x∗) = LFD(x∗)∩span(C−x∗), which plays an
important role in nonlinear optimization theory; see [1, 14]. Clearly, if the constraint
qualification condition is satisfied at x∗ (indeed, it does if each Ai, i ∈ I(x∗), is linear
or the Mangasarian–Fromovitz constraint qualification on span(C − x∗) (see [15]) is
satisfied, with x∗ ∈ riC), then KS(x

∗) = KL(x
∗).

The following proposition shows that the conditions K ⊆ KL(x
∗) and KS(x

∗) =
KL(x

∗) are “almost” necessary.
Proposition 4.1. Suppose that the conclusion of Theorem 4.1 is valid. Suppose

in addition that one of conditions (i)–(iii) holds; then K ⊆ KL(x
∗). Moreover, if

K ⊆ KS(x
∗), in particular if K is convex, then KS(x

∗) = KL(x
∗).

Proof. Under the assumption of Proposition 4.1, we have that, for any x ∈ X,
PK(x) � x∗ ⇐⇒ PKL(x∗)(x) = x∗. Thus, by Theorem 3.1, K ⊆ KL(x

∗). Moreover, if
K ⊆ KS(x

∗), we have KS(x
∗) = KL(x

∗) from Corollary 3.1.
Now we give an example to illustrate the main theorem of this section.
Example 4.1. Let X = R

2, C = {(x1, x2) : (x1 − 4)2 + x2
2 ≤ 16}, and

A1(x) = x2 − sinx1, A2(x) = −x1 − x2 ∀x = (x1, x2) ∈ X.

For x∗ = (0, 0) we have

A1(x
∗) = (−1, 1), A2(x

∗) = (−1,−1),

and

KL(x
∗) = KS(x

∗) = {(x1, x2) : x2 ≤ x1,−x1 ≤ x2}.

Let me = 0. Clearly, K ⊂ KL(x
∗). Since intC ∩ H1 ∩ H2 �= ∅, it follows from

Proposition 2.3 of [10] that {C,H1, H2} has the strong CHIP. Then, by Theorem 4.1,
for any x = (x1, x2) ∈ X, PK(x) � x∗ if and only if there exist λ1, λ2 ≥ 0 such that
PC(x− λ1(−1, 1)− λ2(−1,−1)) = x∗. Observe that, for any y = (y1, y2), PC(y) = x∗

if and only if y1 ≤ 0, y2 = 0. It follows that PK(x) � x∗ if and only if x = (x1, x2)
satisfies that x1 + x2 ≤ 0 and x1 − x2 ≤ 0. We remark that this result can not be
deduced from Theorem DLW.

5. Reformulations of convex constraints. Throughout this section, we al-
ways assume that Ai, i = 1, . . . ,m, are convex continuous functions. Without loss of
generality, let

Ci = {x ∈ X : Ai(x) ≤ 0}, i = 1, . . . ,m,

and

K = C ∩
(

m⋂
i=1

Ci

)
.

We first introduce the concept of the BCQ relative to C. For convenience, in
what follows, cone{∂Ai(x) : Ai(x) = 0} is understood to be 0 when Ai(x) < 0 for
all i.
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Definition 5.1. Let x ∈ K. The system of convex inequalities

A1(x) ≤ 0, . . . , Am(x) ≤ 0(5.1)

is said to satisfy the BCQ relative to C at x if

NK(x) = NC(x) + cone{∂Ai(x) : Ai(x) = 0}.

The system of convex inequalities (5.1) is said to satisfy the BCQ relative to C if it
satisfies the BCQ relative to C at any x ∈ K.

Remark 5.1. When C = X, the BCQ relative to C at x is just the BCQ at x
considered in [12, 13]. Note that if x ∈ K and Ai(x) = 0, then cone(∂Ai(x)) ⊆ NCi(x),
and the equality holds if x is not a minimizer of Ai; see [4, Corollary 1, p. 50].

Similar to the general BCQ, we also have the following properties about the BCQ
relative to C.

Proposition 5.1. Let x ∈ K. The system (5.1) satisfies the BCQ relative to C
at x if and only if

NK(x) ⊆ NC(x) + cone{∂Ai(x) : Ai(x) = 0}.

Proof. Note that

NC(x) + cone{∂Ai(x) : i ∈ I(x)} ⊆ NC(x) +
∑
i∈I(x) NCi(x)

⊆ NC(x) +
∑m
i=1 NCi(x) ⊆ NK(x).

The result follows.
Proposition 5.2. Let x ∈ K. Suppose that the system (5.1) satisfies the BCQ

relative to C at x. Then {C,C1, . . . , Cm} has the strong CHIP at x.
Definition 5.2. The system (5.1) is said to satisfy the weak Slater condition on

C if there exists some x̄ ∈ (riC) ∩K, called a weak Slater point, such that for any i,
Ai is affine or Ai(x̄) < 0.

Remark 5.2. When C = X, the weak Slater condition on C is just the weak
Slater condition studied in [12, 13].

The following proposition is a generalization of Corollary 7 of [12].
Proposition 5.3. Suppose that the system (5.1) satisfies the weak Slater condi-

tion on C. Then it satisfies the BCQ relative to C.
Proof. Let I0 = {i ∈ I : Ai is affine}, H0 = ∩i/∈I0Ci, and H = ∩i∈I0Ci. From

Theorem 5.1 of [10] and Proposition 2.3 of [10], it follows that {C,H} and {C∩H,H0}
have the strong CHIP. Thus, for any x ∈ K, we have

NK(x) = NC∩H(x) +NH0(x) = NC(x) +NH(x) +NH0(x).

Observe that the system (5.1) satisfies the weak Slater condition [12]. Then Remark
5.1 implies that the system (5.1) satisfies the BCQ. Hence

NH(x) +NH0
(x) = cone{∂Ai(x) : i ∈ I(x)}

for {H,H0} has the strong CHIP by Proposition 2.3 of [10]. Therefore, the system
(5.1) satisfies the BCQ relative to C. The proof is complete.

The following lemma isolates a condition that does not depend upon the BCQ
but also still allows the computation of PK(x) via a perturbation technique.
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Lemma 5.1. Let x∗ = PC(x−
∑m

1 λihi) ∈ K for some hi ∈ ∂Ai(x
∗) and λi ≥ 0

with λi = 0 for i /∈ I(x∗). Then x∗ = PK(x).
Proof. Since λi = 0 for all i /∈ I(x∗) and x∗ = PC(x −

∑
i∈I(x∗) λihi), it follows

from Proposition 2.1 that

x−
∑

i∈I(x∗)

λihi − x∗ ∈ (C − x∗)◦.

Hence

x−x∗ ∈ (C−x∗)◦+
∑

i∈I(x∗)

λihi ⊆ (C−x∗)◦+cone{∂Ai(x∗) : i ∈ I(x∗)} ⊆ (K−x∗)◦.

Using Proposition 2.1 again, we have x∗ = PK(x).
The main theorem of this section is stated as follows.
Theorem 5.1. Let x∗ ∈ K. Then the following two statements are equivalent:
(i) The system (5.1) satisfies the BCQ relative to C at x∗.
(ii) For any x ∈ X,

PK(x) = x∗ ⇐⇒ x∗ = PC

(
x−

m∑
1

λihi

)

for some hi ∈ ∂Ai(x
∗) and λi ≥ 0 with λi = 0 for i /∈ I(x∗).

Proof. Assume that (i) holds. To show (ii), by Lemma 5.1, we need only to
prove that, for any x ∈ X, PK(x) = x∗ implies that x∗ = PC(x−

∑m
1 λihi) for some

hi ∈ ∂Ai(x
∗) and λi ≥ 0, with λi = 0 for i /∈ I(x∗). From Proposition 2.1 and (i), we

have

x− x∗ ∈ (K − x∗)◦ ⊆ (C − x∗)◦ + cone{∂Ai(x∗) : i ∈ I(x∗)}.
Therefore, there exist hi ∈ ∂Ai(x

∗) and λi ≥ 0 for i ∈ I(x∗) such that

x− x∗ ∈ (C − x∗)◦ +
∑

i∈I(x∗)

λihi.

That is,

x−
∑

i∈I(x∗)

λihi − x∗ ∈ (C − x∗)◦.

It follows from Proposition 2.1 that x∗ = PC(x−
∑m

1 λihi) and (ii) holds.
Conversely, assume that (ii) holds. For z ∈ (K − x∗)◦, let x = z + x∗. Observe

that x − x∗ ∈ (K − x∗)◦ implies that PK(x) = x∗. It follows from (ii) that x∗ =
PC(x−

∑m
1 λihi) for some hi ∈ ∂Ai(x

∗) and λi ≥ 0, with λi = 0 for i /∈ I(x∗). Using
Proposition 2.1, we have

z = x−
m∑
1

λihi − x∗ +
m∑
1

λihi ∈ (C − x∗)◦ + cone{∂Ai(x∗) : i ∈ I(x∗)}.

Hence

(K − x∗)◦ ⊆ (C − x∗)◦ + cone{∂Ai(x∗) : i ∈ I(x∗)}.
From Proposition 5.1, (i) holds. The proof is complete.

Corollary 5.1. The following two statements are equivalent:
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(i) The system of convex inequalities (5.1) satisfies the BCQ relative to C.
(ii) For any x ∈ X, x∗ ∈ K, PK(x) = x∗ ⇐⇒ x∗ = PC(x −

∑m
1 λihi) for some

hi ∈ ∂Ai(x
∗) and λi ≥ 0, with λi = 0 for i /∈ I(x∗).

The following corollary describes the relationship between the BCQ and the strong
CHIP.

Corollary 5.2. Let x∗ ∈ K. Suppose that Ai, i = 1, . . . ,m, are, in addition,
differentiable at x∗. Let KS(x

∗), KL(x
∗), and Hi, i ∈ I(x∗), be defined as in the

previous sections. Then the following statements are equivalent:
(i) The system of convex inequalities (5.1) satisfies the BCQ relative to C at x∗.
(ii) {C,H1, H2, . . . , Hm} has the strong CHIP at x∗ and KS(x

∗) = KL(x
∗).

(iii) For any x ∈ X, PK(x) = x∗ ⇐⇒ x∗ = PC(x −
∑m

1 λi  Ai(x
∗)) for some

λi ≥ 0, with λi = 0 for all i /∈ I(x∗).
Proof. The equivalence of (i) and (iii) is a direct consequence of Theorem 5.1;

hence we need only to prove that (ii) is equivalent to (iii). Since K is convex, Theorem
4.1 gives the implication (iii) =⇒ (ii). Conversely, assume that (iii) holds. By Lemma
3.1 of [10], we have that

PK(x) = x∗ =⇒ PKL(x∗)(x) = x∗.

Then from Corollary 3.2 it follows that KS(x
∗) = KL(x

∗). Again, using Theorem
4.1, we have that {C,H1, H2, . . . , Hm} has the strong CHIP at x∗. The proof is
complete.

Finally, we give an example with nondifferentiable convex constraints.
Example 5.1. Let X = l2 and C be the half-space defined by

C = {x = (x1, x2, . . .) ∈ l2 : x1 ≤ 0}.

Define

A(x) =

∞∑
k=1

|xk| − 1 ∀x = (x1, x2, . . .) ∈ l2,

and take x∗ = (x∗
k) ∈ K, where

x∗
k =

{
0 for k = 2n+ 1, n = 0, 1, 2, . . . ,
1
2n for k = 2n, n = 1, 2, . . . .

Then x∗ ∈ K, A(x∗) = 0, and

∂A(x∗) = {z = (z1, z2, . . .) : z2n = 1, z2n+1 ∈ [−1, 1], n = 0, 1, 2, . . .}.

Since the system of convex inequalities A(x) ≤ 0 satisfies the weak Slater condition
on C, it satisfies the BCQ relative to C. Thus, using Theorem 5.1, we get that, for
any x = (x1, x2, . . .) ∈ l2, PK(x) = x∗ if and only if there exists b ≥ 0 such that

x1 ≥ −b, x2n =
1

2n
+ b, x2n+1 ∈ [−b, b], n = 1, 2, . . . .

In fact, for any x ∈ l2, PC(x) = x∗ if and only if x1 ≥ 0, xk = x∗
k, k > 1. By

Theorem 5.1, PK(x) = x∗ if and only if there exist λ ≥ 0 and t2n+1 ∈ [−1, 1] such
that PC(x− λ(t1, 1, t3, 1, . . .)) = x∗. From this we can deduce our desired result.
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6. Concluding remark. Nonlinear best approximation problems in Hilbert
spaces have been studied in this paper. As in the case of linear constraints, the
strong CHIP is used to characterize the “perturbation property” of best approxima-
tions in the case of differentiable constraints. However, this is the first time that
the “perturbation property” has been characterized using the generalized BCQ for
convex constraints. Our main results are Theorems 4.1 and 5.1. In particular, for
both differentiable and convex constraints, the equivalence of the generalized BCQ,
the “perturbation property,” and the strong CHIP with the constraint qualification
condition KL(x

∗) = KS(x
∗) has been obtained. Moreover, some examples with non-

linear constraints have been given to show that our main results genuinely generalize
some recent work obtained in [9, 10] on best approximations with linear constraints.
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and suggestions. We wish to express our gratitude to Dr. K. F. Ng and Dr. W. Li for
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Abstract. This work develops stochastic optimization algorithms for a class of stock liquida-
tion problems. The stock liquidation rules are based on hybrid geometric Brownian motion models
allowing regime changes that are modulated by a continuous-time finite-state Markov chain. The
optimal selling policy is of threshold type and can be obtained by solving a set of two-point boundary
value problems. The total number of equations to be solved is the same as the number of states of
the underlying Markov chain. To reduce the computational burden, using a stochastic optimization
approach, recursive algorithms are constructed to approximate the optimal threshold values. Con-
vergence and rates of convergence of the algorithm are studied. Simulation examples are presented,
and the computation results are compared with the analytic solutions. Finally, the algorithms are
tested using real market data.

Key words. geometric Brownian motion, regime change, stochastic optimization, recursive
algorithm
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1. Introduction. This work is concerned with decision making in stock liqui-
dation, which is crucial in successful trading. In finance literature, the celebrated
Black–Scholes model based on geometric Brownian motion (GBM) is widely used in
the analysis of options pricing and portfolio management; see Merton [13], among
others. This model uses a stochastic differential equation with deterministic expected
returns and nonrandom volatility and gives a reasonably good description of the mar-
ket in a short period of time. However, it has limitations due to its insensitivity to
random parameter changes. In fact, one of the reservations from “Wall Street” about
using the traditional GBM is that stock price movements are far from being a “ran-
dom walk” in a longer time horizon. Thus, various modifications to the model have
been made. For example, to characterize price movements, Merton [14] considered
diffusions with pure jumps, Clark [3] studied time-changed Brownian motions, and
Praetz [16] proposed a hyperbolic model in lieu of the traditional log-normal distri-
bution. More recently, Fouque, Papanicolaou, and Sircar [6], Hull [8], and Musiela
and Rutkowski [15] have studied stochastic volatility that is dictated by an additional
stochastic differential equation. For a complete review of the literature, we refer the
reader to the books [4, 8, 9, 10, 15] and the references therein.

One of the main factors that affects decision making in a marketplace is the trend
of the stock market. It is necessary to incorporate such trends into models to capture
detailed stock price movements. In a recent paper of Zhang [20], a hybrid switching
GBM model, i.e., a number of GBMs modulated by a finite-state Markov chain, is
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proposed and developed. Such switching processes can be used to represent market
trends or the trends of an individual stock. In addition, various economic factors such
as interest rates, business cycles, etc. can also be incorporated into the model; see
[7, 19] for related references.
In liquidation decision making for a single nondividend stock, a selling rule is

determined by two threshold levels, a target price and a stop-loss limit. One makes
a selling decision whenever the price reaches either the target price or the stop-loss
limit. The objective is to choose these threshold levels so as to maximize an expected
return function. In [20], such optimal threshold levels are obtained by solving a set
of two-point boundary value problems. In particular, if the underlying Markov chain
has only two states, then the corresponding two-point boundary value problem has an
analytic solution, and the optimal solution can be obtained in a closed form. However,
more detailed market study that requires the underlying Markov chain to have more
than two states (m > 2) is often necessary. In this case, the computation becomes
much more involved because a set of two-boundary value problems must be solved,
and a closed-form solution is difficult to obtain, although the existence of solutions
was proved in [20]. It is thus of practical interest to find feasible algorithms yielding
good approximations to the optimal policy.
With the goal of reducing computational effort, we develop an alternative ap-

proach in this work. Focusing our attention on threshold selling rules, in lieu of
solving a set of boundary value problems, we formulate the problem as a stochastic
optimization procedure and propose a class of stochastic recursive algorithms for res-
olution. The essential feature of our approach is the use of stochastic approximation
methods; see Kushner and Yin [12] for up-to-date development of stochastic approxi-
mation algorithms. Recent references on stochastic approximation can also be found
in [2].
The rest of the paper is arranged as follows. Section 2 offers a precise formula-

tion of the problem. We introduce the model and present the stochastic optimization
algorithms. To maximize the expected return as a function of the threshold values,
gradient estimates of the objective function are provided via finite difference meth-
ods. One of the advantages of our approach, which is particularly useful for on-line
computation, is the simple form and systematic nature of the algorithms. Section 3
describes the asymptotic properties of the algorithm. By virtue of weak convergence
methods, we obtain the convergence of the algorithm and ascertain the convergence
rates. Section 4 presents modifications and variations of the algorithms, which include
projection procedures, gradient estimates made without averaging of the observations,
and random direction finite difference gradient estimates. To demonstrate the util-
ity of the algorithms, simulations and numerical experiments are given in section 5.
Our simulation study demonstrates that the stochastic optimization algorithms pro-
posed indeed produce good approximation results. For the hybrid GBM model when
m = 2, a closed-form solution is available, which enables us to make comparisons of
the analytic solution with that of the approximation. Next, we proceed to use real
market data to test our algorithms, showing that one need not estimate the generator
of the “hidden” Markov chain. Only observed data are used in the recursive calcu-
lation, which provides an opportunity for on-line implementation. Finally, the paper
concludes with some further remarks in section 6.
Before we proceed, some notes on the notation are in order. Throughout the

paper, we use K to denote a generic positive constant whose values may be different
for different usages. For a suitable function g(·), gx(·) and gxx(·) denote the gradient
and Hessian of g, respectively. For any z ∈ R

�1×�2 with some �1, �2 ≥ 1, z′ denotes its
transpose. For a vector v, vi denotes its ith component.
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2. Formulation.

2.1. Hybrid GBM model. Suppose that α(t) is a finite-state continuous-time
Markov chain with state space M = {1, . . . ,m}, which represents market trends
and other economic factors. For example, when m = 2, α(t) = 1 stands for an
upward trend, and α(t) = 2 a downward trend. We may also consider, for instance,
α(t) = (α1(t), α2(t)), where α1(t) models the market trends and α2(t) represents the
interest rates at time t. To account for more complex situations and finer distinctions,
we assume that the chain has more than two states, i.e., m ≥ 2 in general. Let S(t)
be the price of the stock. We consider a hybrid GBM model, in which S(t) satisfies
the stochastic differential equation

dS(t)

S(t)
= µ(α(t))dt+ σ(α(t))dw(t), S(0) = S0 initial price,(2.1)

where w(·) is a real-valued standard Brownian motion that is independent of α(·).
The model can be viewed as a hybrid or switching Black–Scholes model.
Note that in (2.1), both the drift (appreciation rate) and the diffusion coefficient

(volatility) depend on the Markov chain α(t). Define another process

X(t) =

∫ t

0

r(α(s))ds+

∫ t

0

σ(α(s))dw(s),(2.2)

where

r(i) = µ(i)− σ2(i)

2
for each i = 1, . . . ,m.(2.3)

Using X(t), we can write the solution of (2.1) as S(t) = S0 exp(X(t)).
Let z = (z1, z2)′ ∈ (0,∞) × (0,∞). We consider two barriers or two boundaries

of the threshold, a lower boundary z1 > 0 and an upper boundary z2 > 0 such that
whenever the stock price reaches the upper bound S0 exp(z

2) or the lower bound
S0 exp(−z1), we sell the stock to take profit or to prevent further loss.
In what follows, we formulate the task of finding optimal threshold values as

an optimization problem. Let τ be a stopping time defined by τ = inf{t > 0 :
S(t) 
∈ (S0 exp(−z1), S0 exp(z

2))}, or equivalently, τ = inf{t > 0 : X(t) 
∈ (−z1, z2)}.
Noting that τ is independent of S0, we aim to find the optimal threshold level z∗ =
(z1

∗, z
2
∗)

′ ∈ (0,∞)× (0,∞), so that a suitable objective function (the expected return)
is maximized. The problem can be rewritten as:

Problem P :
{
Find argmax ϕ(z) = E[Φ(X(τ)) exp(−�̃τ)],
z = (z1, z2)′ ∈ (0,∞)× (0,∞),(2.4)

where Φ(·) is a suitable real-valued function (for example, Φ(x) = ex − 1), and �̃ > 0
is the discount rate.
Although in simple cases such as m = 2 an analytic solution may be available,

in general a closed-form solution may be virtually impossible to obtain. Even in the
case of m = 2, the computation for obtaining the closed-form solution is not simple.
Our contribution is to devise a numerical approximation procedure that estimates the
optimal lower and upper bounds in a systematic way. We will use a stochastic opti-
mization procedure to resolve the issue by constructing a sequence of estimates of the
optimal threshold value z∗, using zn+1 = zn+{step size}·{gradient estimate of ϕ(z)},
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where the step size can be either a decreasing sequence of real numbers or a small
positive constant.

Remark 2.1. In accordance with (2.4), we need zn ∈ (0,∞)×(0,∞). Nevertheless,
for ease of presentation, to obtain asymptotic properties of the recursive algorithm, we
first work out the details under no constraints (zn ∈ R

2). That is, we solve Problem
P defined in (2.4) with the constraint removed. Then, in the subsequent sections, we
modify the algorithm by adding the constraints via the use of a projection method.
The proofs of the untruncated algorithms are then easily adapted to those of the
constraint algorithms.

2.2. Gradient estimates and recursive algorithm. The approximation pro-
cedures will depend on how the gradient estimates of ϕz(z) are constructed. Let
us begin with a simple noisy finite difference scheme. Several of its variants will be
discussed in section 4.
Using (2.1), generate a sample path of X(t) that is the solution of (2.2). At time

n (n being the iteration number), with the threshold value fixed at zn = (z
1
n, z2

n)
′ ∈ R

2

(see Remark 2.1), we compute τn, the first exit time of X(t) from Izn = (−z1
n, z2

n)
′

(the interval with the lower and upper boundaries set at −z1
n and z2

n, respectively),
by

τn = inf{t > 0 : X(t) 
∈ Izn}.(2.5)

2.3. Method 1: Gradient estimates using averaged samples (FDEA).
Define a combined process ξn that includes the random effects from X(t) and the
stopping time τn as

ξn = (X(τn), τn)
′,(2.6)

where X(τn) denotes the random process X(t) stopped at τn. In what follows, we call
{ξn} the sequence of collective noise. Let ϕ̃(·, ·) and ϕ̂(·, ·) be real-valued functions
defined on R

2 × R
1. When the threshold value is set at z, take random samples of

size n0 with random noise sequences {ξ±n,�}n0

�=1 such that

ϕ̂(z, ξ±n )
def
=

ϕ̃(z, ξ±n,1) + · · ·+ ϕ̃(z, ξ±n,n0
)

n0
.(2.7)

We assume that

Eϕ̂(z, ξ±n ) = ϕ(z) for each z.(2.8)

Then, for each z, ϕ̂(z, ξ±n ) is an estimator of ϕ(z). In our simulation study, we can
use independent random samples to estimate the mean of Φ(X(τn)) exp(−�̃τn). By
the law of large numbers, ϕ̂(z, ξn) converges to ϕ(z) w.p.1 as n0 → ∞. To allow
more flexibility, we will not assume the independence in the proof of convergence
theorem, which is useful for dealing with real data. In what follows, in lieu of using
(2.7) with ϕ̃(z, ξ±n,�), we will work with the form ϕ̂(z, ξn), give conditions needed for
obtaining convergence and rate of convergence, and derive the asymptotic properties
of the underlying algorithms.
Consider a stochastic approximation procedure with finite difference-type gradient

estimates. Use Y ±
n = (Y ±,1

n , Y ±,2
n )′ ∈ R

2 to denote the outcomes of two simulation
runs or two observations from real data taken at the nth iteration, where Y ±,ι

n =
Y ±,ι(zn, ξ±n ) with

Y ±,ι
n (z, ξ±n ) = ϕ̂(z ± δneι, ξ

±
n ) for ι = 1, 2,(2.9)
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eι being the standard unit vectors e1 = (1, 0)
′ and e2 = (0, 1)

′, and ξ±n being two
different (collective) noises taken at the threshold values z ± δneι, respectively. For
notational simplicity, here and hereafter, we often use ξn to represent both ξ+

n and
ξ−n whenever there is no confusion. The gradient estimate at time n is given by

Dϕ̂(zn, ξn)
def
= (Y +

n − Y −
n )/(2δn). A stochastic optimization algorithm then takes the

form

zn+1 = zn + εnDϕ̂(zn, ξn),(2.10)

where {εn} is a sequence of real numbers known as step sizes.
To proceed, define

ρn = (Y
+
n − Y −

n )− En(Y
+
n − Y −

n ),

χι
n = [EnY +,ι

n − ϕ(zn + δneι)]− [EnY −,ι
n − ϕ(zn − δneι)], ι = 1, 2,

bιn =
ϕ(zn + δneι)− ϕ(zn − δneι)

2δn
− ϕzι(zn), ι = 1, 2,

(2.11)

where En denotes the conditional expectation with respect to Fn, the σ-algebra gener-
ated by {z1, ξ

±
j : j < n}, ϕzι(z) = (∂/∂zι)ϕ(z), and ϕz(·) = (ϕz1(·), ϕz2(·))′ denotes

the gradient of ϕ(·). Note that the σ-algebras generated by {z1, ξ
±
j : j < n} and

{zj , ξ±j : j < n} are the same (see also [12]). In the above, χι
n and bιn for ι = 1, 2

represent the noise and bias, and {ρn} is a martingale difference sequence. Note that
it is reasonable to assume that, after taking conditional expectation, the resulting
function is smooth. Thus we separate the noise into two parts, uncorrelated noise
{ρn} and correlated noise {χn}.
In what follows, whenever we wish to emphasize the dependence on (z, ξ), we spell

it out, for example, using the notation χι(z, ξ), similar to that of Y ±,ι
n (z, ξ±) defined

in (2.9). Write χn = (χ
1
n, χ2

n)
′ and bn = (b

1
n, b2

n)
′, and note that χn = χn(zn, ξn),

which will be used in what follows. With the noise χn(zn, ξn) and the bias bn defined
above, algorithm (2.10) becomes

zn+1 = zn + εnϕz(zn) + εn
ρn
2δn
+ εnbn + εn

χn(zn, ξn)

2δn
.(2.12)

3. Asymptotic properties of the recursive algorithm. This section is de-
voted to the study of asymptotic properties of the recursive stochastic approximation
algorithm (2.10). We begin with the study of the convergence of the underlying al-
gorithm. In lieu of dealing with the discrete iterations, we take a continuous-time
interpolation leading to a limit ordinary differential equation (ODE). The stationary
points of the ODE are the threshold values that we are searching for. Then the rate
of convergence is studied via an appropriate scaling. We show that a suitably scaled
sequence of the estimation errors converges weakly to a diffusion process. The scaling
factor, together with the asymptotic covariance of the limit diffusion, gives us the
desired rates of convergence.

3.1. Conditions. To carry out the asymptotic analysis, we define the following:


tn =

n−1∑
i=1

εi, m(t) = max{n : tn ≤ t},

Nn = min{i : tn+i − tn ≥ T} for an arbitrary T > 0,

z0(t) = zn for t ∈ [tn, tn+1), zn(t) = z0(t+ tn).

(3.1)
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Note that z0(·) is a piecewise constant process and zn(·) is its shift, whose purpose is
to bring the asymptotics to the foreground. It follows that the interpolated process
zn(·) can be rewritten as

zn(t) = zn+

m(tn+t)−1∑
j=n

εjϕz(zj)+

m(tn+t)−1∑
j=n

εj
ρj
2δj
+

m(tn+t)−1∑
j=n

εjbj+

m(tn+t)−1∑
j=n

εj
2δj

χj(zj , ξj).

(3.2)
Note that zn(·) ∈ D2[0,∞), the space of R2-valued functions that are right continuous
and have left-hand limits, endowed with the Skorohod topology [5]. To proceed, we
need the following conditions.
(A0) The sequences {εn} and {δn} satisfy 0 < εn → 0,

∑
n εn = ∞, 0 < δn → 0,

and εn/δ2
n → 0 as n→∞. Moreover,

lim sup
n

sup
0≤i<Nn

(
εn+i

εn

)
<∞, lim sup

n

(
δn+i

δn

)
<∞,

lim sup
n

[
(εn+i/δ

2
n+i)

(εn/δ2
n)

]
<∞.

(A1) The second derivative ϕzz(·) is continuous.
(A2) For each compact set G,

(a) supn E|Y ±
n I{zn∈G}|2 <∞;

(b) for each z belonging to a bounded set,

sup
n

n+Nn−1∑
j=n

E1/2 |Enχj(z, ξj)|2 <∞, lim
n

sup
0≤i<Nn

E|γ̃n
i | = 0,

where

γ̃n
i =

(
1

εn+i

) n+Nn−1∑
j=n+i

εj
2δj

En+i[χj(zn+i+1, ξj)− χj(zn+i, ξj)], i < Nn.

3.2. Remarks on conditions. Strictly speaking, since the step size {εn} and
the finite difference sequence {δn} are at our disposal, (A0) is not a condition or
restriction. We put it here as a condition for convenience of presentation. A frequently
used choice is εn = O(1/n) and δn = O(1/n1/6). In such a case, (A0) is satisfied.
Using (2.11), condition (A2)(a) yields supn E|χn(zn, ξn)I{zn∈G}|2 < ∞. It then

follows that for any zn ∈ G, {χn(zn, ξn)} is uniformly integrable. Due to the finite
difference approximation, the noise χn/(2δn) has a covariance that is inversely propor-
tional to δn. As a result, the algorithm will have a rate of convergence slower than a
root-finding stochastic approximation algorithm. One possible choice for diminishing
the noise effect is to select a constant step size δn = δ. Then the noise covariance will
be reduced at the expense of a nonzero bias.

Smoothness of ϕ(·). Note that our objective is to minimize the function ϕ(z)
given in (2.4). Condition (A1) is satisfied in the context of typical stock selling
scenarios. For example, taking Φ(x) = (exp(x)−1), it can be shown that the function
ϕ ∈ C∞. The smoothness of ϕ(z) in (A1) is verifiable for various situations. Here,
we give an explicit representation of ϕ(·) for the case m = 2 (i.e., the Markov chain
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has two states). Let the generator of α(·) be given by

Q =


 −λ1 λ1

λ2 −λ2


 ,

with λ1 > 0 and λ2 > 0. As in [20, p. 74], it can be shown that ϕ(z) is given by

ϕ(z) =

4∑
i=1

ci(z)(P (α(0) = 1) + κiP (α(0) = 2))eηiz
1

(3.3)

such that ηi (i = 1, 2, 3, 4) are the four real roots of ψ(η) = 0, with ψ(η) given by

ψ(η) =
σ2(1)σ2(2)

4

{(
η2 +

2r(1)

σ2(1)
η − 2(�̃+ λ1)

σ2(1)

)(
η2 +

2r(2)

σ2(2)
η − 2(�̃+ λ2)

σ2(2)

)

− 4λ1λ2

σ2(1)σ2(2)

}
;

that κi for i = 1, 2, 3, 4 are defined by κi = 1
λ1

(− σ2(1)
2 η2

i − r(1)ηi+ �̃+λ1

)
; and that

(c1, c2, c3, c4) = (c1(z), c2(z), c3(z), c4(z)) (as a function of the threshold z = (z1, z2))
is the unique solution of


1 1 1 1

κ1 κ2 κ3 κ4

eη1(z
1+z2) eη2(z

1+z2) eη3(z
1+z2) eη4(z

1+z2)

κ1eη1(z
1+z2) κ2eη2(z

1+z2) κ3eη3(z
1+z2) κ4eη4(z

1+z2)







c1

c2

c3

c4


 =




Φ(−z1)

Φ(−z1)

Φ(z2)

Φ(z2)


 .

(3.4)

It can be shown as in [20] that the 4 × 4 matrix on the left-hand side of (3.4) is
invertible. Since Φ(x) = ex − 1 for x ∈ R, and the inverse of the matrix involves
combinations of exponential functions of z1 and z2, ci(z) are infinitely differentiable
on (0,∞)× (0,∞) for i = 1, 2, 3, 4. Consequently, the infinite differentiability of ϕ(·)
on (0,∞)× (0,∞) follows from the differentiability of ci(z)’s and expression (3.3).

Noise conditions. Condition (A2)(b) is essentially a mixing condition. If
Eχj(x, ξj) = 0 and {χj(z, ξj)} is a stationary ϕ-mixing sequence such that
E|χj(z, ξj)|2+∆ < ∞ for some ∆ > 0 and the mixing measure satisfies a certain
summability condition (see also the conditions in (A3) given in the next section),
then (A2)(b) is verified.

Take, for instance, ϕ̃(z, ξ) = ϕ(z) + f0(z)ξ, where f0(·) is a bounded and con-
tinuous function. Suppose that for a positive integer m0, {ξ±n,�} are m0-dependent

sequences (see [1, p. 167]), for example, ξ±n,� =
∑m0

j=0 cjζ
±
n−j,�, where {ζ±n,�} are martin-

gale difference sequences satisfying E|ζ±n,�|2 < ∞. Then {ξ±n,�} are mixing processes,
and the mixing measures satisfy 9(j) = 0 for all j > m0. For each z belonging to
a bounded set, it is easily verified that E| 1

n0

∑n0

�=1[ϕ̃(z + δneι, ξ
±
n,�)]|2 < ∞. Thus

E|Y ±,ι
n |2 < ∞ and (A2)(a) is verified.In addition, for each j > n, Enχj(z, ξj) =
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En{[EjY
+,ι
j (z, ξj)− ϕ(z + δneι)]− [EjY

−,ι
j − ϕ(z − δneι)]} = 0. Thus (A2)(b) is also

verified.

Next consider the case of ξ±n,� = g0(ζ
±
n,�), where g0(·) is a real-valued function

and {ζ±n,�} are homogeneous finite-state Markov chains whose transition matrices are
irreducible and aperiodic. In this case, the noise is bounded since the Markov chain
takes only finitely many values. Then {ξ±n,�} are φ-mixing sequences with exponential

mixing rates [1, p. 167], i.e., 9(j) = c09
j for some c0 > 0 and some 0 < 9 < 1.

Take either ϕ̃(z, ξ) = ϕ(z) + f1(z)ξ with f1(·) a continuous function and Eξ±n,� = 0,
or ϕ̃(z, ξ) = ϕ(z) + h0(z, ξ) with h0(·, ξ) a smooth function for each ξ satisfying
Eh0(z, ξ

±
n,�) = 0 for each z. Using the exponential mixing rates, again, it is easily

verified that both (A2)(a) and (A2)(b) are satisfied.

3.3. Convergence. To obtain the desired convergence results, we need to prove
the tightness of {zn(·)} and then to characterize its weak limit. We proceed by using
a truncation device [11, 12]. Let ν be a fixed but otherwise arbitrary positive real
number, and πν(·) be a smooth function with compact support satisfying πν(z) = 1
when |z| ≤ ν, and πν(z) = 0 when |z| ≥ ν + 1. Corresponding to (2.12), define {zνn}
recursively by zν1 = z1 and

zνn+1 = zνn +

[
εnϕz(z

ν
n) +

εn
2δn

ρn + εnbn + εn
χn(z

ν
n, ξn)

2δn

]
πν(z

ν
n), n ≥ 1.(3.5)

Define the interpolation as z0,ν(t) = zνn for t ∈ [tn, tn+1) and zn,ν(t) = z0,ν(tn + t).
Then zn,ν(t) = zn(t) up until the first exit from the ν-sphere Sν = {z ∈ R

2 : |z| ≤ ν}.
Thus, zn,ν(·) is a ν-truncation of zn(·) (see [11, p. 43] and [12, p. 278]).
In view of (A1), the continuity of ϕzz(·) implies the boundedness of ϕzz(z) for z

in a bounded set. Thus, for each ι = 1, 2,

bιnπν(z
ν
n) =

[
ϕ(zn + δneι)− ϕ(zn − δneι)

2δn
− ϕzι(zn)

]
πν(z

ν
n)

= O

( |ϕzz(z
+
n )|δ2

n

2δn

)
= O(δn),

(3.6)

where z+
n is on the line segment joining zνn − δneι and zνn + δneι.

In what follows, we first show that the truncated process {zn,ν(·)} is tight in
D2[0,∞), the space of R

2-valued functions that are right continuous, have left-hand
limits, and are endowed with the Skorohod topology. Then we obtain the weak con-
vergence of zn,ν(·) and characterize the limit as a solution of an ODE. Finally, letting
ν →∞, we conclude that the untruncated process zn(·) also converges.
In view of (3.2) and (3.5),

zn,ν(t) = zνn +

m(tn+t)−1∑
j=n

(
εjϕz(z

ν
j ) +

εj
2δj

ρj + εjbj +
εj
2δj

χj(z
ν
j , ξj)

)
πν(z

ν
j ).

One term that is difficult to deal with is
∑m(tn+t)−1

j=n (εj/(2δj))χj(z
ν
j , ξj)πν(z

ν
j ) in the

process of averaging. To proceed, we claim that this term has weak limit 0. Working
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with i < Nn (or, equivalently, i ≤ Nn − 1), define

∆n,i =

n+i∑
j=n

εj
2δj

χj(z
ν
j , ξj)πν(z

ν
j ), i < Nn,

∆n(t) = ∆n,i for t ∈ [tn+i, tn+i+1),

Γni =

n+Nn−1∑
j=n+i

εj
2δj

En+iχj(z
ν
n+i, ξj)πν(z

ν
n+i), i < Nn,

γn
i =

1

εn+i

n+Nn−1∑
j=n+i

εj
2δj

En+i

[
χj(z

ν
n+i+1, ξj)πν(z

ν
n+i+1)− χj(z

ν
n+i, ξj)πν(z

ν
n+i)

]
,

i < Nn.
(3.7)
Note that Γni and γn

i are introduced to facilitate the analysis. Their purpose is to
add some perturbations so as to eliminate certain unwanted terms. This follows from
the use of perturbed test function methods, which were first introduced to treat prob-
lems arising in partial differential equations and later successfully used in stochastic
systems. (See [12] for applications in stochastic approximation.)

Lemma 3.1. Under (A0)–(A2), ∆n(·) converges weakly to 0.
Proof. For each κ > 0, define �κn = n + min{i : |∆n,i| > κ}. We first show that

for each κ > 0 the truncated sequence {∆n,κ(·)}, defined by

∆n,κ(t) =

(m(tn+t)−1)∧�κn∑
j=n

εj
2δj

χj(z
ν
j , ξj)πν(z

ν
j ),

converges weakly to 0, where (a ∧ b) = min(a, b).
Define

∆κ
n,i =

(n+i)∧�nκ∑
j=n

εj
2δj

χj(z
ν
j , ξj)πν(z

ν
j ), i < Nn.(3.8)

Then

sup
0≤i<Nn

|∆κ
n,i| ≤ κ+ sup

1≤j<Nn

εn+j

2δn+j
|χn+j(z

ν
n+j , ξn+j)πν(z

ν
n+j)|.(3.9)

By virtue of (A0), an application of the Chebyshev inequality yields that for 0 ≤ j <
Nn and for any µ > 0,

P

(
sup

0≤j<Nn

εn+j

2δn+j
|χn+j(z

ν
n+j , ξn+j)πν(z

ν
n+j)| ≥ µ

)

≤
Nn−1∑
j=0

P

(
εn+j

2δn+j
|χn+j(z

ν
n+j , ξn+j)πν(z

ν
n+j)| ≥ µ

)

≤ KT

µ2
O

(
εn
δ2
n

)Nn−1∑
j=0

εn+j lim sup
n

[
(εn+j/δ

2
n+j)

(εn/δ2
n)

]
→ 0 as n→∞.

(3.10)

Thus for each κ, {∆n,κ(·)} is bounded in probability by virtue of (3.9) and (3.10).
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Next we apply the perturbed test function method of [12, Theorem 7.4.3]. Let
ψ(·) ∈ C2

0 (the space of real-valued C2 functions with compact support). Note that,
owing to definition (3.8), En+i[ψ(∆

κ
n,i+1)−ψ(∆κ

n,i)] = 0 for n+ i ≥ �nκ. Thus in what
follows, we need consider only n+ i < �nκ. In this range,

En+i

[
ψ(∆κ

n,i+1)− ψ(∆κ
n,i)

]
= ψ′

z(∆
κ
n,i)

εn+i

2δn+i
En+iχn+i(z

ν
n+i, ξn+i)πν(z

ν
n+i)

+ O

(
ε2
n+i

δ2
n+i

) ∣∣En+iχn+i(z
ν
n+i, ξn+i)πν(z

ν
n+i)

∣∣2 .

Define the perturbed test function by

ψn
i = ψ(∆κ

n,i) + ψ′
z(∆

κ
n,i)Γ

n
i ,

where Γni is given by (3.7). Note that

En+i

[
ψ′
z(∆

κ
n,i)Γ

n
i+1 − ψ′

z(∆
κ
n,i)Γ

n
i

]
= En+i

[
ψ′
z(∆

κ
n,i+1)− ψ′

z(∆
κ
n,i)

]
Γni+1 + En+iψ

′
z(∆

κ
n,i)[Γ

n
i+1 − Γni ],

that

En+i[ψz(∆
κ
n,i+1)− ψ′

z(∆
κ
n,i)]Γ

n
n+i ≤ KEn+i|(∆κ

n,i+1 −∆κ
n,i)Γ

n
i+1|

≤ K
εn+i

2δn+i
En+i|χn+i(z

ν
n+i, ξn+i)πν(z

ν
n+i)||Γni+1|,

and that

En+i[Γ
n
i+1 − Γni ] = εn+iψ

′
z(∆

κ
n,i)γ

n
i −

εn+i

2δn+i
En+iχj(z

ν
n+i, ξn+i)πν(z

ν
n+i).

Note also that supi<Nn |Γni | → 0 in probability by (A0)–(A2). We write
En+i[ψ

n
i+1 − ψn

i ](3.11)

= εn+iO

(
εn+i

δ2
n+i

|χn+i(z
ν
n+i, ξn+i)πν(z

ν
n+i)|2

)

+
εn+i

δn+i
O


∣∣En+iχn+i(z

ν
n+i, ξn+i)πν(z

ν
n+i)

∣∣

·
∣∣∣∣∣∣

n+Nn∑
j=n+i+1

εj
2δj

En+i+1χj(z
ν
n+i+1, ξj)πν(z

ν
n+i+1)

∣∣∣∣∣∣



+ εn+iψ
′
z(∆

κ
n,i)γ

n
i πν(z

ν
n+i).

The use of the truncation function πν(·) and (A2) imply that {|χn(z
ν
n, ξn)|πν(z

ν
n)} is

uniformly integrable. This together with εn/δ2
n → 0 then yields that the term on the

second line of (3.11) goes to 0 in mean, uniformly in 0 ≤ i < Nn. Using (A2), the
term on the third and fourth lines also tends to 0 in mean, uniformly in 0 ≤ i < Nn.
Again using (A2), the expectation of the last term is bounded by O(εn/δ2

n) → 0,
uniformly in 0 ≤ i < Nn. Thus, [12, Theorem 7.4.3] implies that the κ-truncated
sequence {∆n,κ(·)} converges weakly to the zero process. Finally, by virtue of [12,
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Theorem 7.3.6], the original untruncated sequence {∆n(·)} also converges to the zero
process.

Theorem 3.2. Assume (A0)–(A2) and that {zn} is tight in R
2. Suppose the

differential equation

ż = ϕz(z)(3.12)

has a unique solution for each initial condition. Then zn(·) converges weakly to z(·),
the solution of (3.12). In addition, suppose that (3.12) has a unique stationary point
z∗, globally asymptotically stable in the sense of Liapunov, and that {sn} is a sequence
of real numbers satisfying sn →∞. Then zn(sn + ·) converges weakly to z∗.

Remark 3.3. In lieu of the tightness assumption of {zn}, we could provide a set
of sufficient conditions under which we can derive the tightness of {zn} by means
of perturbed Liapunov function methods. The basic idea is that we use a Liapunov
function V (·) for (3.12) and show via a stability argument that EV (zn) is bounded.
In this process, we need to introduce a small perturbation of the Liapunov function,
resulting in the desired cancellation. However, for convenience here, we simply assume
that this condition holds.
If the collection of stationary points of (3.12) is not a singleton, we can consider

the associated invariant sets of the ODE; further details can be found in [12]. The
singleton-set assumption, however, is convenient for the rate of convergence study.
A sufficient condition guarantees that the uniqueness of z∗ is the convexity of the
objective function. As far as applications are concerned, since we are interested in
approximated optimal solutions, we will not worry even if the set of minimizers is
nonunique.

Proof. The proof is divided into four steps.
Step 1: We will obtain the tightness of {zn,ν(·)}. For any η > 0, t > 0, and

0 ≤ s ≤ η, by use of (3.5), it is easily seen that

zn,ν(t+ s)− zn,ν(t) = z̃n,ν(t+ s)− z̃n,ν(t) + on(1),(3.13)

where

z̃n,ν(t+ s)− z̃n,ν(t) =

m(tn+t+s)−1∑
j=m(tn+t)

εj

[
ϕz(z

ν
j ) +

ρj
2δj
+ bj

]
πν(z

ν
j ),(3.14)

and on(1) converges weakly (or in probability) to 0 as n → ∞. In accordance with
[11, Lemma 5, p. 50], the tightness of {zn,ν(·)} will follow from that of {z̃n,ν(·)}.
Use En

t to denote the conditional expectation with respect to Fn
t = σ{zn(s) : s ≤

t}. Then

En
t |z̃n,ν(t+ s)− z̃n,ν(t)|2

≤ KEn
t

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

εjϕz(z
ν
j )πν(z

ν
j )

∣∣∣∣∣∣
2

+KEn
t

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

εj
ρj
2δj

πν(z
ν
j )

∣∣∣∣∣∣
2

+ KEn
t

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

εjbjπν(z
ν
j )

∣∣∣∣∣∣
2

≤ O




m(tn+t+s)−1∑

j=m(tn+t)

εj


2

+

m(tn+t+s)−1∑
j=m(tn+t)

ε2
j

4δ2
j




2

.
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Thus limη→0 lim supn EEn
t |z̃n,ν(t+ s)− z̃n,ν(t)|2 = 0. By the tightness criterion (see

[5, section 3.8, p. 132] and [11, p. 47]), {z̃n,ν(·)} is tight and so is {zn,ν(·)}.
Step 2: We obtain the weak convergence of {zn,ν(·)}. Since {zn,ν(·)} is tight, we

can extract convergent subsequences. Select such a subsequence and, for simplicity,
still denote it by zn,ν(·). Choose a sequence of positive real numbers {ςn} such that

ςn → 0 and
1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

εj → 1 as n→∞.

For t, s > 0, by virtue of (3.6), as n→∞,

E

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

εjbjπν(z
ν
j )

∣∣∣∣∣∣ ≤ K


m(tn+t+s)−1∑

j=m(tn+t)

εj


O(δm(tn+t))→ 0.

Thus the last term in the square brackets of (3.14) has limit 0. Since {ρn} is a
martingale difference sequence,

E

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

εj
2δj

ρjπν(z
ν
j )

∣∣∣∣∣∣
2

=

m(tn+t+s)−1∑
j=m(tn+t)

ε2
j

4δ2
j

E|ρjπν(z
ν
j )|2 → 0 as n→∞.

Therefore, the second term in the square brackets of (3.14) goes to 0 in probability
uniform in t as n→∞. As for the first term on the right-hand side of (3.14),

m(tn+t+s)−1∑
j=m(tn+t)

εjϕz(z
ν
j )πν(z

ν
j ) =

∑
l

ςn
1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

εjϕz(z
ν
j )πj(z

ν
j ).

Since ϕz(·) and πν(·) are smooth functions, we can deduce that the limit of
1
ςn

∑m(tn+t+(l+1)ςn)−1
j=m(tn+t+lςn) εjϕz(z

ν
j )πν(z

ν
j ) is the same as that of

1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

εjϕz(z
ν
m(tn+t+lςn))πν(z

ν
m(tn+t+lςn))

as n→∞. Fix ũ and let tm(tn+t+lςn) → ũ as n→∞. We need verify only that

1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

εjϕz(z
ν
m(tn+t+lςn))πν(z

ν
m(tn+t+lςn))→ ϕz(z

ν(ũ))πν(z
ν(ũ))(3.15)

in probability as n→∞. For each η > 0, choose a finite number of disjoint sets Bη
ι ,

ι = 1, . . . , r, such that ∪rι=1B
η
ι contains the range of {zνn} and

P (zn,ν(ũ) ∈ ∂Bη
ι ) = 0 and diam(Bη

ι ) ≤ η,(3.16)

where ∂Bη
ι denotes the boundary of B

η
ι . Select a point zηι ∈ Bη

ι . Then the term on
the left-hand side of (3.15) can be approximated by using a small η > 0 via

r∑
ι=1

I{zn,ν(ũ)∈Bηι }
1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

εjϕz(z
η
ι )πν(z

η
ι ).
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The interpolation and the choice of ςn then lead to

∑
l

ςn
1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

εjϕz(z
ν
j )πν(z

ν
j )→

∫ t+s

t

ϕz(z
ν(ũ))πν(z

ν(ũ))dũ.

Therefore, we obtain that zn,ν(·) converges weakly to zν(·) as n→∞ such that

zν(t+ s)− zν(t) =

∫ t+s

t

ϕz(z
ν(ũ))πν(z

ν(ũ))dũ,

and thus the mean ODE żν(t) = ϕz(z
ν(t))πν(z

ν(t)) is obtained.
Step 3: We obtain the convergence of zn(·). In fact, we need show only that for

each T > 0,

lim sup
ν→∞

lim sup
n→∞

P (zn,ν(t) 
= zn(t) for some t ≤ T ) = 0.

This follows from the argument of [12, p. 250]; the details are omitted.
Step 4: We show the convergence of zn(sn + ·). Choose T > 0 and select a

convergent subsequence {(zn(sn + ·), zn(sn − T + ·))} with limit (z(·), zT (·)). It is
easily seen that z(0) = zT (T ). The value of zT (0) may not be known, but the
collection of possible {zT (0)} over all T and all convergent subsequences belongs to a
set that is tight. The stability of the ODE then implies that for any η > 0 there is a
0 < Tη < ∞ such that for all T > Tη, P (zT (T ) ∈ N(z∗, η)) ≥ 1 − η, where N(z∗, η)
denotes a neighborhood of z∗ with radius η. This yields the desired result.

3.4. Rate of convergence. This section is devoted to the rate of convergence
of the algorithm (2.10). The question is studied through a suitably scaled sequence
nκ0(zn−z∗) of the estimation errors, where κ0 > 0. Taking εn = 1/n

κ1 and δn = δ/nκ2

for some 0 < κ2 < κ1 ≤ 1 and δ > 0, it is known that the optimal choice is given
by κ0 + κ2 = κ1/2 and κ0 = 2κ2. To be more specific, we take εn = 1/n in what
follows. Then δn = δ/n1/6 and κ0 = 1/3. To proceed, we define un = n1/3(zn − z∗)
and assume that the following condition holds.
(A3) Assume that (A1) and (A2) hold, zn → z∗ in probability, and ϕzzz(·) exists

and is continuous in a neighborhood of z∗. In addition,
(a) {un} is tight;
(b) all eigenvalues of ϕzz(z∗) + (1/3)I have negative real parts;
(c) for each z,

χn(z, ξ) = χn(z∗, ξ) + χn,z(z∗, ξ)(z − z∗)

+

(∫ 1

0

[χn,z(z∗ + (zn − z∗)s, ξ)− χn,z(z∗, ξ)]ds
)
(z − z∗);

(d) {χn(z∗, ξn)} is a stationary ϕ-mixing sequence such that E|χn(z∗, ξn)|2+∆

<∞ for some ∆ > 0 and Eχn(z∗, ξn) = 0 and that the mixing measure
9(·) is given by

9(j) = sup
A∈Fn+j

E(1+∆)/(2+∆)|P (A|Fn)− P (A)|(2+∆)/(1+∆),

satisfying
∑∞

j=1 (9(j))
∆/(1+∆)

<∞.
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Remark 3.4. Similar to what was mentioned in Remark 3.3, (A3)(a) can be ob-
tained by perturbed Liapunov function methods (see [12, section 10.4]). The existence
and continuity of ϕzzz(·) in a neighborhood of z∗ allows us to linearize ϕ(·) about z∗.
Conditions (A3)(c) and (d) concern the sequence χn(z, ξ). It is important to note
that due to the use of the stopping time τ , the ϕ̂(z, ξ) defined in (2.8) may not be
continuous in z. However, we can assume that its expectation is smooth. As with
the comments given in section 5, it is easily verified that χn(z∗, ξn) is a zero mean
sequence and is ϕ-mixing (in fact, n0-dependent). Thus (A3)(d) is verified.
Set

ρ∗,ιn = ϕ̂(z∗ + δneι, ξ
+
n )− ϕ̂(z∗ − δneι, ξ

−
n ) and ρ∗n = (ρ

∗,1
n , ρ∗,2n )

′.

With the stipulation of (2.9), the integrability and the convergence of zn to z∗ imply
that

E|ρn − ρ∗n|2 → 0 as n→∞.(3.17)

To proceed, let us state a lemma concerning the asymptotic normality of a scaled
sequence of {χj(z∗, ξj) + ρ∗j}.

Lemma 3.5. Under (A3),
(a) the following inequalities hold:

|Eχj(z∗, ξj)χk(z∗, ξk)| ≤ K (9(j))
∆/(1+∆)

,

E|E(χn+j(z∗, ξn+j)|Fn)| ≤ K (9(j))
∆/(1+∆)

;

(b) the sequence
∑m(tn+t)−1

j=n (χj(z∗, ξj)+ρ∗j )/
√

j converges weakly to an R
2-valued

Brownian motion w̃(·) with covariance Σt.
Remark 3.6. Note that the proof of part (a) of the lemma follows that of [5,

Propositions 7.2.2 and 7.2.4]; part (b) can be proved similarly to [5, Theorem 7.3.1].
Using (2.10), (A1), and δn = δ/n1/6, we obtain

zn+1 − z∗ = zn − z∗ +
1

n
ϕzz(z∗)(zn − z∗) +

1

n5/6

ρn
2δ
+
1

n
bn +

1

n5/6

χn(zn, ξn)

2δ

+
1

n

(∫ 1

0

(zn − z∗)′ϕzzz(z∗ + (zn − z∗)s)ds
)
(zn − z∗).

(3.18)

Without loss of generality, assume that {un} is bounded; otherwise, we can use a
truncation device as in the proof of the convergence of the algorithm in the previous
section. Then we show that the truncated process converges, and finally we conclude
that the untruncated process also converges. By virtue of (A3) and using ((n +
1)/n)1/3 = 1 + (1/(3n)) +O(1/n2), this leads to

un+1 = un +
1

n

(
ϕzz(z∗) +

(
1

3

)
I

)
un +

1

n
(n1/3bn) +

1√
n

1

2δ
(χn(z∗, ξn) + ρ∗n)

+

(
n+ 1

n

)1/3
1

n

(∫ 1

0

u′
nϕzzz

(
z∗ +

( s

n1/3

)
un

)
ds

)
un

+

(
n+ 1

n

)1/3
1

n7/6

(∫ 1

0

[
χn,z

(
z∗ +

( s

n1/3

)
un, ξn

)
− χn,z(z∗, ξn)

]
ds

)
un

+

(
n+ 1

n

)1/3
1√
n

1

2δ
(ρn − ρ∗n) +

1

n
o(1 + |un|).

(3.19)
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Take a piecewise constant interpolation

u0(t) = un, t ∈ [tn, tn+1), and un(t) = u0(tn + t).

It can be demonstrated that, using the definition of interpolation in (3.19), the fol-
lowing three terms,

m(tn+t+s)−1∑
j=m(tn+t)

(
j + 1

j

)1/3
1

j

(∫ 1

0

u′
jϕzzz

(
z∗ +

(
s

j1/3

)
uj

)
ds

)
uj ,

m(tn+t+s)−1∑
j=m(tn+t)

(
j + 1

j

)1/3
1

j7/6

(∫ 1

0

[
χj,z

(
z∗ +

(
s

j1/3

)
uj , ξj

)
− χj,z(z∗, ξj)

]
ds

)
uj ,

m(tn+t+s)−1∑
j=m(tn+t)

1

j
o(1 + |uj |),

are asymptotically unimportant and contribute a limit 0 in distribution. Furthermore,
noting that {ρn − ρ∗n} is a martingale difference sequence,

E

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

(
n+ 1

n

)1/3
1√
j
(ρj − ρ∗j )

∣∣∣∣∣∣
2

=

m(tn+t+s)−1∑
j=m(tn+t)

(
n+ 1

n

)2/3
1

j
E|ρj − ρ∗j |2 → 0 as n→∞

by (3.17). Then we arrive at

un(t+ s)− un(t) =

m(tn+t+s)−1∑
j=m(tn+t)

1

j

(
ϕzz(z∗) +

(
1

3

)
I

)
uj +

m(tn+t+s)−1∑
j=m(tn+t)

1

j
(j1/3bj)

+

m(tn+t+s)−1∑
j=m(tn+t)

1√
j

1

2δ
(χj(z∗, ξj) + ρ∗j ) + o(1),

(3.20)
where o(1)→ 0 in probability uniformly in t.
We proceed to establish the tightness of un(·). Under the boundedness of {un}

(being assumed for ease of presentation), for each η > 0, t, s > 0 with s < η, we
obtain

En
t |un(t+ s)− un(t)|2

≤ KEn
t

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

1

j

(
ϕzz(z∗) +

(
1

3

)
I

)
uj

∣∣∣∣∣∣
2

+KEn
t

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

1

j
(j1/3bj)

∣∣∣∣∣∣
2

+ KEn
t

∣∣∣∣∣∣
m(tn+t+s)−1∑
j=m(tn+t)

1√
j
(χj(z∗, ξj) + ρ∗j )

∣∣∣∣∣∣
2

+ o(1)

≤ Ks2 +K

m(tn+t+s)−1∑
j=m(tn+t)

∑
k>j

1√
j

1√
k
|En

t [χj(z∗, ξj) + ρ∗j ][Ej+1(χk(z∗, ξk) + ρ∗k)]|+ o(1),

(3.21)



RECURSIVE ALGORITHMS FOR STOCK LIQUIDATION 255

where o(1) → 0 as n → ∞. An application of part (a) of Lemma 3.5 yields
limη→0 lim supn→∞ EEn

t |un(t+ s)− un(t)|2 = 0. Hence the tightness follows.
We proceed to characterize the limit process u(·). Consider the bias term. By

virtue of (A1) and (A3), a Taylor expansion of bιn leads to

bιn =
ϕ(zn + δneι)− ϕ(zn − δneι)

2δn
− ϕzι(zn)

=
1

3!
ϕzι,zι,zι(z∗) +

1

3!
(ϕzι,zι,zι(zn)− ϕzι,zι,zι(z∗)) + o(δ2

n),

and the last term above goes to 0 in mean and hence in probability as n→∞. Noting
that δ2

n = δ2/n1/3, we thus have

m(tn+t+s)−1∑
j=m(tn+t)

1

j
j1/3bj

=
δ

3!

m(tn+t+s)−1∑
j=m(tn+t)

1

j

(
ϕz1,z1,z1(zj)
ϕz2,z2,z2(zj)

)
+

m(tn+t+s)−1∑
j=m(tn+t)

1

j
o(1)

=
δ

3!

∑
l

ςn
1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

1

j

(
ϕz1,z1,z1(z∗)
ϕz2,z2,z2(z∗)

)
+

m(tn+t+s)−1∑
j=m(tn+t)

1

j
o(1)

+
δ

3!

∑
l

ςn
1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

1

j
O(|ϕzzz(zn)− ϕzzz(z∗)|)

=
δ

3!

∑
l

(
ϕz1,z1,z1(z∗)
ϕz2,z2,z2(z∗)

)
ςn


 1

ςn

m(tn+t+(l+1)ςn)−1∑
j=m(tn+t+lςn)

1

j


+ o(1),

where o(1)→ 0 in probability as n→∞ by virtue of zn → z∗ in probability and the
continuity of ϕzzz(·) (in a neighborhood of z∗). Moreover, since (1/ςn)

∑m(tn+t+(l+1)ςn)−1
j=m(tn+t+lςn)

·(1/j)→ 1 as n→∞, the limit of the next-to-last term yields
m(tn+t+s)−1∑
j=m(tn+t)

1

j
j1/3bj → δ2

(
ϕz1,z1,z1(z∗)
ϕz2,z2,z2(z∗)

)
s.

We summarize what has been proved via the following theorem.
Theorem 3.7. Assume that (A3) holds. Then un(·) converges weakly to a diffu-

sion process u(·) that is a solution of the stochastic differential equation

du =

{(
ϕzz(z∗) +

I

3

)
u+

δ2

3!

(
ϕz1,z1,z1(z∗)
ϕz2,z2,z2(z∗)

)}
dt+

1

2δ
dw̃,(3.22)

where w̃(·) is the Brownian motion with covariance Σ1/2(Σ1/2)′t = Σt given by
Lemma 3.5.

Remark 3.8. Since (3.22) is linear, it has a unique solution for each initial condi-
tion. Note that (3.22) includes a nonzero bias

(δ2/3!)

(
ϕz1,z1,z1(z∗)
ϕz2,z2,z2(z∗)

)
.
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As a direct consequence of Theorem 3.7, n1/3(zn − z∗) is asymptotically normally
distributed with mean (

ϕzz(z∗) +
I

3

)−1
δ2

3!

(
ϕz1,z1,z1(z∗)
ϕz2,z2,z2(z∗)

)

and asymptotic covariance Σ̃, where the covariance is given by

Σ̃ =

∫ ∞

0

exp

((
ϕzz(z∗) +

I

3

)
t

)
Σexp

((
ϕ′
zz(z∗) +

I

3

)
t

)
dt.

Note that, due to (A3)(b), the integral above is well defined.
If in lieu of εn = 1/n we use εn = 1/n

κ1 with κ1 < 1, then the limit differential
equation becomes

du =

{
ϕzz(z∗)u+

δ2

3!

(
ϕz1,z1,z1(z∗)
ϕz2,z2,z2(z∗)

)}
dt+

1

2δ
dw̃.

In this case, assuming that ϕzz(z∗) is stable, we have that nκ0(zn− z∗) is asymp-
totically normal with a mean equal to the bias and asymptotic covariance given by

Σ̃ =

∫ ∞

0

exp(ϕzz(z∗)t)Σ exp(ϕ′
zz(z∗)t)dt.

4. Variants of algorithms. This section is devoted to variants of the stochastic
optimization algorithms. Using essentially the same approach as in the previous
section, we can obtain the convergence and rate of convergence results. In order not
to dwell on it, we present the results but omit the details.

4.1. Projection algorithm. To ensure the boundedness of the iterates, one
often uses a projection scheme. In addition, the projection schemes may also be used
in conjunction with constrained algorithms. For example, one may decide to set a
lower bound for the algorithm, e.g., one might choose to sell the stock if there is a
20% loss. Let the boundaries be set so that for all n, z1

n ∈ [θ1
l , θ

1
u] and z2

n ∈ [θ2
l , θ

2
u],

where θιl and θιu for ι = 1, 2 are some predetermined values. In accordance with
Remark 2.1, with the requirement zin > 0, we choose the lower boundaries to be
strictly positive. That is, θιl > 0 for ι = 1, 2. Thus, the constraint region satisfies
[θ1
l , θ

1
u]× [θ2

l , θ
2
u] ⊂ (0,∞)× (0,∞). The resulting stochastic approximation algorithm

becomes one with a projection

zn+1 = Π[zn + εnDϕ̂(zn, ξn)],(4.1)

or in component form,

zιn+1 = Π[θι
l
,θιu][z

ι
n + εn(Dϕ̂(zn, ξn))

ι], for ι = 1, 2,

where for each real value x,

Π[θι
l
,θιu]x =

{
θιl if x < θιl ,
θιu if x > θιu,
x otherwise.

The idea can be explained as follows. For component ι, after the increment zιn +
εnDϕ̂(zιn, ξn) is computed, we compare its value with the bounds θιl and θιu. If the
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increment is smaller than the lower value θιl , reset the value to θιl ; if it is larger than
the upper value θιu, reset its value to θιu; otherwise, keep its value as it was.
Introduce a correction term rn by defining εnrn = zn+1 − zn − εnDϕ̂(zn, ξn),

which is the vector of shortest Euclidean length needed to bring zn + εnDϕ̂(zn, ξn)
back to the constraint set [θ1

l , θ
1
u]× [θ2

l , θ
2
u] if it is outside this set. Thus, (4.1) can be

rewritten as

zn+1 = zn + εnDϕ̂(zn, ξn) + εnrn.(4.2)

We can then carry out the analysis as in the previous section, with the modification
of the added correction. In addition to the other interpolations defined in the last

section, define r̃0(t) =
∑m(t)−1

j εjrj and r̃n(t) = r̃0(t + tn) − r̃0(tn). Then we can
establish the tightness of (zn(·), r̃n(·)) and show that (zn(·), r̃n(·)) converges weakly
to (z(·), r̃(·)) such that r̃(t) =

∫ t

0
r(s)ds and r(t) = 0 when z(t) ∈ [θ1

l , θ
1
u] × [θ2

l , θ
2
u].

The details can be worked out in light of [12, Chapters 5 and 8]. We obtain the
following result.

Proposition 4.1. The following assertions hold.
(a) Assume (A0)–(A2) and z∗ ∈ (θ1

l , θ
1
u) × (θ2

l , θ
2
u). Then the conclusions of

Theorem 3.2 continue to hold, with (3.12) replaced by the projected ODE

ż(t) = ϕz(z(t)) + r(t).

(b) Assume (A3) with z∗ ∈ (θ1
l , θ

1
u) × (θ2

l , θ
2
u). Then the conclusions of Theo-

rem 3.7 continue to hold.
Remark 4.2. Compared with Theorems 3.2 and 3.7, the limit ODE is replaced

by the projected ODE. Moreover, we require z∗ to be interior to the constraint set.
Since the iterates are in the box [θ1

l , θ
1
u] × [θ2

l , θ
2
u], the tightness assumption of {zn}

in Theorem 3.2 is no longer needed.

4.2. Method 2: Finite difference estimates without averages of samples
(FDE). This is similar to the gradient estimates presented in section 2.3. Neverthe-
less, we do not take a sample average as in (2.7). Rather, we use ϕ̂(z, ξ±n ) = ϕ̃(z, ξ±n ).
That is, n0 = 1 without using sample averages. The resulting estimate is not ex-
pected to be as smooth, and the bias will be larger. However, it does provide us with
a reasonable estimate. Moreover, this method is also simpler to use in handling real
market data.
Define Y ±,ι

n as in (2.9), and use algorithm (2.12). We obtain the convergence and
rate of convergence of the algorithm just as in the previous section.

Proposition 4.3. Under the conditions of Theorems 3.2 and 3.7, the conclusions
of these theorems continue to hold.

4.3. Method 3: Random directions (RD). This method has been found to
be especially efficient for high-dimensional problems; see Spall [17]. The procedure
is the following: Generate a sequence of independently and identically distributed
(i.i.d.) random vectors {dn} = {(d1

n, d2
n)} that is independent of all other random

processes such that for each ι = 1, 2, dιn is a Bernoulli random variable taking values
±1 with equal probability 1/2. Replacing eι by dn in the definition of Yn results in

Ddϕ̂(zn, ξn) = ϕ̂(zn + δndn, ξ+
n )− ϕ̂(zn − δndn, ξ−n ).(4.3)

The recursive formula then reads

zn+1 = zn + εndn
Ddϕ̂(zn, ξn)

2δn
.(4.4)
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Note that, compared with (2.9), the standard unit vectors are replaced by the random
direction vectors. The advantage is that, by using the random direction vector dn,
all the components of the numerator of the finite difference are the same; only the
denominators differ. That is,

dn
Ddϕ̂(zn, ξn)

2δn
=




ϕ̂(zn + δndn, ξ+
n )− ϕ̂(zn − δndn, ξ−n )
2δnd1

n

ϕ̂(zn + δndn, ξ+
n )− ϕ̂(zn − δndn, ξ−n )
2δnd2

n


 .

Proposition 4.4. In addition to the conditions of Theorems 3.2 and 3.7, assume
that {dn} = {(d1

n, d2
n)} is a sequence of i.i.d. random variables that is independent of

all other random processes of the problem such that for each ι = 1, 2, dιn is a Bernoulli
random variable taking values ±1 with equal probability 1/2. Then the conclusions of
Theorems 3.2 and 3.7 continue to hold.

Remark 4.5. We remark that the results in Propositions 4.3 and 4.4 can be
extended to the case in which a projection algorithm is used.

5. Numerical results. In this section, we report simulation results and numer-
ical experiments. First we consider a case with m = 2 and compare our approach with
an analytic solution. Then we use real market data to demonstrate how our method
would work if it were used in the market. Using the proposed stochastic optimization
procedure, one need not estimate the generator of the underlying “hidden” Markov
chain. The calculation is done via only the observed real data, which is advantageous
and provides opportunity for on-line recursive estimates.

5.1. Simulation study. This section is devoted to the numerical examples. It
is further divided into several parts. By comparing the simulation results with the
closed-form solution in the simple case, we demonstrate that the algorithms con-
structed indeed provide good approximation results.

5.1.1. Comparison with an analytic solution. We take the reward Φ(x) =
ex − 1, m = 2, and the generator

Q =


 −6.04 6.04

8.90 −8.90


 .

Choose �̃ = 4, (z1, z2)′ ∈ I = [0.01, 0.36] × [0.01, 2.3], r(1) = 1.50, r(2) = −1.61,
σ(1) = 0.44, σ(2) = 0.63, and the initial probability of the Markov chain P (α(0) =
1) = P (α(0) = 2) = 0.5. Then the analytic solution in [20] is given by (z1

∗, z
2
∗)

′ =
(0.36, 0.277)′.
In the following simulations, the sequences {εn} and {δn} are chosen to be εn =

1/(n+ k0) and δn = 1/(n
1/6 + k1), respectively, where k0 and k1 are some positive

integers.

Method 1 (FDEA). In this experiment, we choose k0 = 1, k1 = 10, and n0 = 1000.
Recall that n0 is the number of random samples used in each iteration (see (2.7)).
The iterates stop whenever εn < 0.001. Several different initial values of z0 = (z

1
0 , z

2
0)

are used. Figure 5.1 demonstrates the convergence of the algorithm for two extreme
starting points, one from far below and the other from far above the optimal point.
In Table 5.1, z = (z1, z2) denotes the estimated optimal threshold value. The error
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Table 5.1
Estimates using the FDEA method.

Initial (z1, z2) (0.05, 0.05) (0.10, 0.20) (0.20, 0.40) (0.10, 0.60) (0.05, 0.85)

(z1, z2) (0.36, 0.275) (0.36, 0.269) (0.36, 0.274) (0.36, 0.274) (0.36, 0.271)

|z − z∗| 0.002 0.008 0.003 0.003 0.006

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z1

z2

Initial (z1, z2)=(0.05, 0.85)

Initial (z1, z2)=(0.05, 0.05)

Optimal (z*
1
, z*

2
)=(0.36, 0.277)

Fig. 5.1. Convergence: FDEA method (total iteration number = 999).

|z − z∗| is computed by

|z − z∗| =
√
(z1 − z1∗)2 + (z

2 − z2∗)2.

It can be seen from Table 5.1 that the estimates are insensitive to the initial values
of (z1, z2); the algorithm leads to accurate estimation of the optimal value.

Method 2 (FDE). We use k0 = k1 = 10 in this experiment. As mentioned earlier
for this method, we take n0 = 1. The results are shown in Table 5.2 and Figure 5.2.

The advantage of this approach is that it does not require taking averages of
samples, which is more desirable in practice for handling real data. Although the
estimates obtained using the FDE method are not as good as those of the FDEA
method, Figure 5.2 does demonstrate that the iterates are getting closer and closer
to the optimal threshold value. Since fewer observation or measurement points are
needed, this method is often preferred, especially if one is interested in obtaining a
rough estimate quickly.

Method 3 (RD). As for Method 2, we use k0 = k1 = 10, and the gradient estimates
are computed based on the random directions method. Table 5.3 and Figure 5.3 show
the simulation results. The convergence of using the random direction method is
similar to that of using the single sample path algorithm. However, it is slightly
better than that of the FDE method (Method 2).
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Table 5.2
Estimates using the FDE method.

Initial (z1, z2) (0.10, 0.10) (0.20, 0.20) (0.30, 0.40) (0.20, 0.60) (0.10, 0.80)

(z1, z2) (0.315, 0.276) (0.314, 0.296) (0.303, 0.291) (0.311, 0.307) (0.308, 0.314)

|z − z∗| 0.045 0.050 0.059 0.058 0.064

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z1

z2

Initial (z1, z2)=(0.10, 0.80)

Initial (z1, z2)=(0.10, 0.10)

Optimal (z*
1
, z*

2
)=(0.36, 0.277)

Fig. 5.2. Convergence: FDE method (total iteration number = 990).

5.1.2. Using real market data. In this section, we use the FDE method and
the RD method to test the algorithms with real market data. We use the closing
prices of Cisco (CSCO) (see Figure 5.4) from January 1, 1999, to June, 2001.

First, suppose that we bought the stock on January 3, 2000, at the closing price
S0 = 54.03 and wish to use the 1999 prices to find the threshold values (z

1, z2) and
to determine the target prices (A,B) = (S0 exp(−z1), S0 exp(z

2)).

We use our algorithms with constraints θιl > 0 for ι = 1, 2. To use the most
recent information, let us use the closing prices from July 1, 1999, to December 31,
1999, as observed data in the algorithms. This is consistent with the choice of �̃ = 4.0
in Problem P defined in (2.4); such a �̃ corresponds to a half-year average holding
duration (see [20]). We take the initial estimate to be z0 = (0.2, 0.2) and choose the
projection region for z to be [0.01, 0.223] × [0.01, 2.3], corresponding to the stop-loss
level of 20%. The computation results are summarized in Table 5.4. In this case, both
the FDE and the RD methods give similar results.

Next we consider another set of data. Suppose the stock was bought a year
later, on January 2, 2001, at the closing price S0 = 33.31. We would like to use the
information of the stock prices for the year 2000 to figure out target prices for the
year 2001. We still choose the projection region for z to be [0.01, 0.223]× [0.01, 2.3],
select the initial data z0 = (0.2, 0.2), and use the data starting from July 3, 2000.
The results are given in Table 5.5.
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Table 5.3
Estimates using the RD method.

Initial (z1, z2) (0.10, 0.10) (0.20, 0.20) (0.30, 0.40) (0.20, 0.60) (0.10, 0.80)

(z1, z2) (0.313, 0.283) (0.310, 0.296) (0.325, 0.301) (0.319, 0.299) (0.324, 0.296)

|z − z∗| 0.047 0.054 0.042 0.047 0.041
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1
, z*

2
)=(0.36, 0.277)

Fig. 5.3. Convergence: RD method (total iteration number = 990).
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Fig. 5.4. Closing prices of Cisco stock from January, 1999, to June, 2001.
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Table 5.4
Target prices of Cisco stock for the year 2000.

(z1, z2) (A,B) Sold on % of return

FDE (0.2,0.340) (44.24,75.91) March 23, 2000 (75.91− 54.03)/54.03 = 40.5%

RD (0.187,0.340) (44.81,75.91) March 23, 2000 (75.91− 54.03)/54.03 = 40.5%

Table 5.5
Target prices of Cisco stock for the year 2001.

(z1, z2) (A,B) Sold on % of return

FDE (0.18,0.200) (27.82,40.68) Jan 3, 2001 (40.68− 33.31)/33.31 = 22.13%

RD (0.18,0.201) (27.82,40.73) Jan 3, 2001 (40.73− 33.31)/33.31 = 22.28%

However, if we bought the stock on January 3, 2001, at the closing price S0 =
41.31, using the FDE method, we obtain (A,B) = (34.50, 50.46). Therefore, the stock
should be sold on February 7 at 34.50 with a a loss of (41.31−34.50)/41.31 = 16.48%.
Similarly, using the RD method, we have (A,B) = (34.50, 50.51), which yields the
same result with a loss of 16.48%.

6. Further remarks. A class of stochastic optimization algorithms has been
developed for threshold selling rules in stock trading. Although a hybrid GBM model
is used, one need not estimate the generator of the Markov chain. As demonstrated
by using real data, the algorithm can be applied to on-line estimation so as to provide
sound estimates for target prices or stop-loss limits. The approach developed is simple
and systematic; it provides a useful guideline for stock liquidation.

Throughout the paper, we have used the hybrid GBM model, with α(·) being
a continuous-time Markov chain. It should be pointed out that in the asymptotic
studies, other stochastic processes (e.g., certain non-Markovian α(·)) can be dealt
with. What is needed is that the hidden process can be averaged out.

In this work, we have developed stochastic optimization algorithms using de-
creasing step sizes {εn} and {δn}. Constant-step-size algorithms with εn = ε and
δn = δε → 0 as ε → 0 and ε/δ2

ε → 0 as ε → 0 may also be considered. Global
stochastic optimization algorithms may be developed, but it is known that such an
algorithm normally converges much slowly; see, for example, [18]. Further effort may
also be devoted to the improvement of the efficiency of the algorithms and to the
reduction of variance and bias.
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Abstract. We present a new class of optimization methods that incorporates a parallel direct
search (PDS) method within a trust-region Newton framework. This approach combines the inherent
parallelism of PDS with the rapid and robust convergence properties of Newton methods. Numerical
tests have yielded favorable results for both standard test problems and engineering applications. In
addition, the new method appears to be more robust in the presence of noisy functions, which are
inherent in many engineering simulations.
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1. Introduction. Optimization of functions derived from the modeling and sim-
ulation of some physical process constitutes an important class of problems in many
engineering and scientific applications. Often, the computer simulation entails the
solution of a system of nonlinear partial differential equations (PDE) in two or three
dimensions. Other applications include particle dynamics simulations or problems
in chemical kinetics. The main characteristic of these types of problems is that the
function evaluation is computationally expensive and dominates the total cost of the
optimization problem. Depending on the nature of the application and the solution
method employed, there can also be noise associated with the evaluation of the objec-
tive function. This noise can usually be reduced, but only at the cost of making the
computation time even greater. In many of these applications, derivative information
is also not available or must be computed using finite differences, thereby generating
noisy gradients. Fortunately, the dimension of the optimization problem in many of
these optimal design problems is small (usually on the order of tens of parameters).
In this study, we will concentrate on the development of parallel unconstrained opti-
mization algorithms for the solution of these types of problems on small-scale shared
memory processors (SMPs), where the number of available processors is comparable
to the number of optimization parameters. The rationale for this decision is that,
although massively parallel computers are available, the majority of computational
power in most industrial or scientific settings consists of small-scale clusters of SMPs
or networks of workstations (NOWs) that can be used in a similar capacity.

There have been many attempts at parallelizing nonlinear optimization methods.
In the area of Newton methods, one of the earliest attempts at parallelization was
the work of Straeter [22], who developed a parallel rank-one updating formula for
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the Hessian approximations used in variable metric methods. This formula was later
extended by Laarhoven [16] to more general updating formulas. Byrd, Schnabel, and
Shultz [2] also proposed parallel quasi-Newton methods based on speculative gradient
and Hessian evaluations. Schnabel [21] gave an excellent review of the challenges and
limitations in parallel optimization. In that review, Schnabel identified three major
levels for introducing parallelism: (i) parallelize the function, gradient, and constraint
evaluations; (ii) parallelize the linear algebra; and (iii) parallelize the optimization
algorithm at a high level.

In this study, due to the characteristics of the problems mentioned above, we
choose to focus on the third option. In particular, the first option is not usually
available to us because for many situations we do not have access to the source code
for the function or the constraints. In addition, the dimension of the optimization
problems of interest is usually small, and therefore parallelizing the linear algebra
would not yield any benefits.

The third option, that of parallelizing optimization at a high level, has recently
received more attention. Some attempts that fit into this category include meth-
ods such as parallel direct search methods [7], genetic algorithms [14], and simulated
annealing [13]. These methods are inherently parallel and extremely popular in en-
gineering optimization. Although these search methods can be powerful tools, they
suffer from slow convergence and thus may require many function evaluations. In a
setting in which each function evaluation may take several CPU hours to compute,
this is highly undesirable.

Newton-based methods, on the other hand, have good convergence properties, but
there are few options for parallelizing a standard Newton method at a high level. For
the purposes of this paper, we will assume that the gradient of the objective function is
not available and that finite differences are used to compute any necessary derivative
information. This calculation is trivially parallelized, so we focus our attention on
finding less apparent opportunities. Another approach to parallelization is the work
by Phua and Zeng [19] in which they use a multiple line search, multiple direction
algorithm to introduce parallelism into a Newton method. However, it is not clear
how robust a line search method would be in a situation where the function and
gradient are noisy. Carter [3] has addressed the issue of inexact gradients for another
class of algorithms known as trust-region methods and has given conditions under
which these algorithms will converge. In a separate paper, Carter presented various
numerical results [4] for this class of algorithms.

In this paper, we consider a new class of methods that combines the parallel
direct search (PDS) method and the trust-region method to produce a new class of
algorithms that takes advantage of the best properties of each approach. In particular,
we will show that the rapid convergence rates typical of Newton-type methods are
preserved while the advantage of parallelism inherent in the PDS methods is gained.
In section 2, we describe the new class of algorithms and in section 3 consider their
convergence properties. In section 4, we give numerical results from a set of test
problems and an application in optimal design. We conclude in section 5 with a
summary and a brief discussion of future research directions.

2. The trust-region PDS algorithm. Before describing the new class of al-
gorithms, we first give a brief overview of the standard trust-region method and the
PDS method of Dennis and Torczon [7]. In each iteration of a trust-region method,
a quadratic model of the objective function, f , is formed, and a region in which the
model is trusted to approximate the actual function accurately is determined. A trial
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Fig. 1. Standard trust-region method.

step is then computed by approximately solving the following subproblem:

min
s∈Rn

ψ(s) = g(xc)
T s+

1

2
sTHcs,(1)

s.t. ‖s‖2 ≤ δc,

where xc is the current point, s is the step, g(xc) is the gradient of f at the current
point, Hc ≈ ∇2f(xc) is the Hessian approximation at the current point, and δc is
the size of the trust region. We will refer to this as the trust-region subproblem. It is
well known that the step generated at each iteration, k, can be computed using any
method, as long as it satisfies a fraction of Cauchy decrease condition according to
the quadratic model. In particular, there must exist constants, β > 0 and C > 0,
independent of k, for which the step sk taken at iteration k satisfies

ψk(sk) ≤ β ‖g(xk)‖2min
(
δk,
‖g(xk)‖2

C

)
.(2)

There are several well-known procedures for computing the solution to (1) that sat-
isfy (2). One such example is the dogleg step (see [6, p. 139]), which is a convex
combination of the steepest descent direction and the Newton direction. This ap-
proach is illustrated in Figure 1.

The PDS algorithm belongs to a class of optimization methods that do not com-
pute derivatives. The PDS algorithm can be briefly described as follows. Starting
from an initial simplex, S0, the function value at each of the vertices in S0 is com-
puted, and the vertex corresponding to the lowest function value, v0, is determined.
Using an underlying grid structure, S0 is reflected about v0, and the function values
at the vertices of this rotation simplex, Sr, are compared against the function value
at v0. If one of the vertices in Sr has a function value less than the function value
corresponding to v0, then an expansion step to form a new simplex, Se, is attempted
in which the size of Sr is expanded by some multiple, usually 2. The function values
at the vertices of Se are compared against the lowest function value found in Sr. If a
lower function value is encountered, then Se is accepted as the starting simplex for the
next iteration; otherwise, Sr is accepted for the next iteration. If no function value
lower than the one corresponding to v0 is found in Sr, then a contraction simplex is
created by reducing the size of S0 by some multiple, usually 1/2, and is accepted for
the next iteration.
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Fig. 2. PDS method.

Fig. 3. TRPDS method.

Because PDS uses only function comparisons, it is easy to implement and use.
Since the rotation, expansion, and contraction steps are all well determined, it is
also possible to precompute a set of grid points corresponding to the vertices of the
simplices constructed from various combinations of rotations, expansions, and con-
tractions. Given this set of grid points, called a search scheme, the PDS algorithm
can compute the function values at all of these vertices in parallel and determine the
vertex corresponding to the lowest function value. The number of points used in the
search scheme is referred to as the search scheme size, and it usually is adjusted to
be at least equal to the number of processors available. Figure 2 demonstrates one
possible PDS iteration.

Both the trust-region and the PDS methods have advantages and disadvantages,
as described in section 1. In order to combine the strengths of these methods, we
propose a new class of algorithms which uses the PDS method within a trust-region
framework. This type of algorithm, which we will refer to as TRPDS, is illustrated
in Figure 3 and is described below. The controlling framework is the same as that
for standard trust-region algorithms, but the method of computing the new step
is different. Rather than solving the trust-region subproblem, the TRPDS method
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approximately solves the following problem:

min
s∈Rn

f(xc + s),(3)

s.t. ‖s‖2 ≤ 2δc,

ψ(s) ≤ β ‖g(xc)‖2min
(
δc,
‖g(xc)‖2

C

)
,

where β > 0, C > 0, and ψ is defined as in (1). We will refer to this as the PDS
subproblem. There are several notable differences between this and the standard
trust-region approach. The first is that the actual objective function, as opposed
to a quadratic model of the objective function, is being minimized. Second, this
subproblem is not solved to optimality; only a small amount of decrease is required
from the PDS method. Third, the step length is allowed to be twice the size of the
trust region to allow for the possibility of taking a step longer than the Newton step,
as is sometimes done to accelerate local convergence of singular problems. Further
discussions of this acceleration idea can be found in [20] and [15]. Finally, because
by design the steps computed by PDS do not satisfy the fraction of Cauchy decrease
condition (2), we must include an explicit constraint to enforce this condition.

An overview of the TRPDS algorithm appears below, followed by a discussion of
the critical steps.

Algorithm 1 (TRPDS).
Given x0, g0, H0, δ0, and η ∈ (0, 1),
for k = 0, 1, . . . until convergence do
1. Solve HksN = −gk.
for i = 0, 1, . . . until step accepted do
2. Form an initial simplex using sN .
3. Find an approximate solution si to (3) using PDS.
4. Compute ρi = (f(xk + si)− f(xk))/ψk(si).
if ρi > η, then
5. Accept step and set xk+1 = xk + si, eval gk+1 and Hk+1.

else
6. Reject step.

end if
7. Update δ.

end for
end for
Here we use the notation gk = g(xk) and Hk = H(xk), where H(·) is the Hessian

approximation. There are several points to consider within this framework. The
initial simplex formed in step 2 needs to be chosen carefully. While there is a lot of
freedom in the choice of the initial simplex, it will have an impact on the solution
to (3) and on the performance of the algorithm. There is also a question as to how
accurately we should solve (3). In many applications it may be reasonable to ask for
only a small fraction of decrease in the function since each function evaluation is so
expensive. This also has a bearing on the decision to accept or reject the new step.
Finally, the updating of the trust region must be addressed within the context of this
framework. In the following sections, we address each one of these issues.

2.1. Choosing the initial simplex. In step 2 of the TRPDS algorithm we
require the formation of an initial simplex. The choice of this simplex is important
to the performance of the PDS algorithm and deserves careful consideration. There
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are three points that must be included in the simplex: the current point, the Cauchy
point, and the Newton point. The Cauchy point is defined to be the minimizer of the
quadratic model along the steepest descent direction. Likewise, we define the Newton
point, sN , to be the minimizer of the quadratic model along the Newton direction.
The current point must be in the simplex so that PDS can determine whether or not
it has found a descent direction. The Cauchy point is required to ensure convergence
of the algorithm. Finally, the Newton point is necessary to allow for the possibility
of rapid convergence in the limit. In practice, all three of these points are not always
included, but instead related points are used. A discussion of these substitutions
follows.

Recall that, in the standard trust-region algorithm, the step length is limited
by the size of the trust region. When the Cauchy point or the Newton point falls
outside of the trust region, it is projected onto the trust region. As we are seeking to
preserve as much of the trust-region framework as possible, the construction of the
initial simplex includes similar features. There are three different scenarios that must
be addressed.

1. Both the Cauchy point and the Newton point are inside the trust region. This
case is straightforward. The Cauchy point and the Newton point are used in
the initial simplex.

2. The Cauchy point is inside the trust region, and the Newton point is outside
the trust region. The Cauchy point is used in the initial simplex. The dogleg
point is computed and replaces the Newton point in the initial simplex.

3. Both the Cauchy point and the Newton point are outside the trust region.
Both points are projected onto the trust region, and the resulting points are
used in the initial simplex.

For a problem of dimension n, PDS requires the initial simplex to have n + 1
vertices. We have described the selection of only three. The question of how to pick
the remaining n − 2 vertices remains. While there are many logical ways to choose
these points, the only real restriction on them is that they be chosen such that the
initial simplex is not degenerate. Our current implementation uses n−2 vertices from
a right angle simplex constructed around the Newton point; i.e., vertices 4, . . . , n+1
are defined as follows:

vi+3 = xN + δcei, i = 1, . . . , n− 2,
where xN is the Newton point, δc is the current trust-region radius, and ei is the ith
column of the n× n identity matrix.

When the simplex is constructed in the manner described here, there are two
situations in which it may be degenerate. One case can arise in the first iteration of
the trust-region method. If the initial Hessian is a multiple of the identity, then the
Newton direction and the Cauchy direction will be the same, so the simplex needs to
be constructed in a slightly different manner in the first iteration. We use the current
point, the Newton point, and n−1 of the vertices from the right angle simplex around
the Newton point. The other case of degeneracy arises if the edges of the simplex
are badly scaled. This is easily corrected by rescaling all of the edges to be the same
length as the Newton edge. Note that this allows longer steps than if all edges were
rescaled to be the same length as the Cauchy edge.

2.2. Solving the PDS subproblem. One way to think about the TRPDS
algorithm is to imagine using an optimization algorithm within an optimization algo-
rithm. As such, the PDS method needs algorithmic parameters in order to solve the
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PDS subproblem. In particular, PDS needs information about the search space, and
it needs stopping criteria. Recall that the PDS method evaluates the function at a set
of predetermined reflection, contraction, and expansion points in order to determine
a trial step. This search scheme can be determined ahead of time and need only be
generated once; however, during the optimization phase, the PDS method must know
how many points in that search scheme to evaluate at each iteration. One possible
choice in a parallel setting is to set this number equal to the number of processors
that are available. PDS also needs to be aware of the constraints on the step. Clearly,
it must know the size of the trust region, as that constrains the step length. As noted
earlier, we relax the trust region by a factor of two in order to allow for the possi-
bility of taking a step longer than the Newton step. Finally, PDS must have access
to the quadratic model used by the trust-region framework in order to ensure that it
generates trial steps that satisfy the fraction of Cauchy decrease constraint.

Since the PDS subproblem is not solved to optimality, we use four criteria to
determine when to return a trial step. The first is a simple decrease requirement. If
fc is the function value at the current point, then we return a step when

ft ≤ pdstol ∗ fc,(4)

where ft is the function value at the trial point, and pdstol < 1 is the amount of
decrease desired. The second is a restriction on how much PDS is allowed to decrease
the step length. Ideally, the trust-region framework should maintain control of the
step length; however, if stopping criteria for PDS are not chosen appropriately, it is
possible for PDS to “hijack” control of the step length. Recall that PDS, in its effort
to find decrease, may reduce the size of the simplex. If allowed too many opportunities
to shrink the simplex, PDS can return a step that is significantly smaller than the
current trust region. As we will see in section 2.4, the trust-region update is based
on this step length. As a result, the trust region will become unacceptably small,
causing the algorithm to halt prematurely. In order to prevent that from happening,
we return a trial step when

‖Et‖2 ≤ etol ∗ ‖E0‖2 ,

where Et is the longest edge in the simplex producing the trial point, E0 is the
longest edge in the initial simplex, and etol ≤ 1 is the edge reduction tolerance. If
PDS cannot find a trial point that satisfies either of these criteria, then it returns when
it has exceeded either the maximum number of function evaluations or the maximum
number of iterations allowed.

2.3. Acceptance/rejection of step. Once a step has been computed, it is
necessary to determine whether or not it is acceptable. This is handled by the trust-
region framework. If the step yields sufficient decrease, then the step will be accepted.
Otherwise, the step is rejected. In a standard trust-region method, sufficient decrease
is determined by computing ρk as given in step 4 of the algorithm and comparing it
to some tolerance. If ρk is greater than the tolerance, then the decrease is sufficient.
There is some flexibility in the choice of this tolerance, and computational expense of
the function plays a role in determining the appropriate choice. There is one situation
that arises in the TRPDS algorithm that requires a minor modification to this scheme.
It is possible that PDS will find no decrease, and thus return a step of zero length.
In this case, ρk is not computed, and the step is rejected immediately.
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2.4. Updating the trust region. The procedure for updating the trust region
is based on the strategy proposed in [3]. At each iteration, the trust region is updated
as follows:

δk+1 =




min(δk, ‖E‖2)
10

if ρk < η1 or ‖sk‖2 = 0,

‖sk‖2
2

if η1 ≤ ρk ≤ η2,

2 · δk if η3 ≤ ρk ≤ 2− η3,
max(2 · ‖sk‖2 , δk), otherwise.

Here E is the longest edge of the final PDS simplex, and η1, η2, η3 ∈ (0, 1). Notice
that when the trust-region size is reduced, we incorporate information about the size
of the final simplex in order to reduce the possibility of rechecking points that are
already known to be unacceptable. In our algorithm, we also impose a maximum on
the trust-region size that is allowed at any iteration.

3. Convergence results. It is interesting to note that Algorithm 1 falls into
the class of generalized trust-region methods described in [1]. As such, it offers a great
deal of flexibility, and the convergence theory is straightforward. In order to apply
the work of [1], we first demonstrate how TRPDS fits into the generalized trust-region
framework.

The first feature of interest is the approximation model used by the trust-region
framework. The model used to approximate the objective function can be any model
suitable for the application in question as long as it satisfies the following mild con-
ditions:

ak(xk) = f(xk),(5)

grad ak(xk) = grad f(xk),(6)

where ak is the approximation model at iteration k. In the TRPDS setting, ak is the
quadratic model, so these conditions are clearly satisfied.

The second feature of interest in the generalized trust-region framework is that
the step generated at each iteration can be computed using any method as long as it
satisfies a fraction of Cauchy decrease condition according to the approximation model
being used. In particular, there must exist constants, β > 0 and C > 0, independent
of k, for which the step taken at iteration k, sk, satisfies

f(xk)− ak(xk + sk) ≥ β ‖g(xk)‖2min
(
δk,
‖g(xk)‖2

C

)
,(7)

where ak denotes the model being used to approximate the objective function. To
obtain a trial step, we use PDS to solve the PDS subproblem (3), which includes a
fraction of Cauchy decrease as an explicit constraint. Therefore, we know that the
trial step will satisfy (7). We note that numerical results indicate that ignoring the
fraction of Cauchy decrease condition rarely has undesirable effects on the convergence
of the algorithm in practice. Given the computational expense of the function, we
believe that excluding steps that do not satisfy a fraction of Cauchy decrease should
be optional in practice.

With the conditions on the model and the steps satisfied, we can now apply
standard trust-region theory.
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Theorem 3.1. Assume that f is uniformly continuously differentiable, bounded
below, and that the Hessian approximations are uniformly bounded. Furthermore,
assume that the sequence of iterates generated by Algorithm 1 satisfies (5)–(7). Then

lim
k→∞

inf ‖grad f(xk)‖2 = 0.

In fact, since Algorithm 1 uses widely accepted criteria for updating the steps
within the trust-region framework, it is easy to show that the stronger condition

lim
k→∞

‖grad f(xk)‖2 = 0

holds.
This is satisfying, in that the new class of algorithms inherits all of the good

theoretical convergence properties of the classical trust-region methods while incor-
porating all of the practical advantages of PDS for typical engineering optimization
problems.

4. Numerical results. In order to evaluate the performance of the TRPDS
algorithm, we chose a set of test problems from the literature. One set of 24 problems
was obtained from papers by Moré, Garbow, and Hillstrom [18] and Byrd, Schnabel,
and Shultz [2]. Another set of 22 problems was obtained from the CUTE test set
developed by Conn, Gould, and Toint [5]. A list of the problems used can be found
in the appendix. For comparison purposes, we also solved these problems using a
standard BFGS trust-region algorithm.

To evaluate the effectiveness of the TRPDS algorithm, we ran a series of tests
varying several of the algorithmic parameters. The first set of 24 problems allow
a variable dimension, so we ran problems with dimensions of dim = 4, 8, 16. The
search scheme size (sss) was then chosen so that sss = dim + 1, 2 ∗ dim, 4 ∗ dim, 8 ∗
dim. The function tolerance used for the inner PDS iteration was also varied using
values of 0.1, 0.5, 0.9, and 0.99995. The CUTE test problems were run using the
default dimension and varying only the sss and the function tolerance for PDS. The
combination of all of these experiments resulted in a total of 1504 test cases run,
though we present only a representative subset of the results here. In addition, we
also present results for the case of noisy functions, as well as the results from an
engineering application problem based on a computer model of a chemical vapor
deposition furnace.

All tests were run on a 64-processor SGI Origin 2000 with the IRIX 6.5 operating
system. The starting points used for these problems were the same as those given
in the references, and the gradients were computed using parallel central differences.
The BFGS algorithm was run with the number of processors equal to the dimension
of the problem, which is the maximal amount of parallelism for our implementation
of the parallel central differences. The TRPDS algorithm was run with the number
of processors equal to the sss, which we varied in our tests. Algorithmic parameters
are listed in Table 1.

The step tolerance, the function tolerance, and the gradient tolerance are used as
stopping criteria in termination tests like those found in [8, p. 306].

The next three sections contain the results for all of the test runs: (1) the noise-
free case, (2) noisy functions, and (3) a furnace problem.

4.1. Noise-free tests. The results for the noise-free case are contained in Fig-
ures 4–7. While reporting the number of iterations may be useful in some settings,
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Table 1
Algorithmic parameters.

Parameter Value

Initial trust region 0.1 · ‖g0‖2
Machine epsilon 2.22045 · 10−16

Maximum step 4000

Minimum step 1.49012 · 10−8

Maximum iter 500

Maximum fcn eval 1, 000, 000

Step tolerance 1.49012 · 10−8

Function tolerance 10−10

Gradient tolerance 10−6
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Fig. 4. Ratios of the number of concurrent function evaluations for BFGS to that for TRPDS
for dimension 4. Ratios greater than one indicate that the TRPDS algorithm takes fewer concurrent
function evaluations and thus less overall time.

we believe that it is not useful here. In our applications, the most important measure
of performance is the total time to solution of the problem. Since the computational
cost of the function evaluations dominates the cost of the algorithm, we base our
comparison of TRPDS with BFGS on the number of function evaluations. However,
since the two algorithms have different degrees of parallelism, comparing the total
number of function evaluations required for each is not a fair method of comparison,
as this would not reflect the amount of time required to solve the problems. Instead,
we compare the number of concurrent function evaluations, which are defined as fol-
lows. Suppose that p processors are available, where p ≥ 1. If p independent function
evaluations are required, then each processor can be tasked to perform one of them.
This means that p function evaluations can be done simultaneously. Thus, we define
a concurrent function evaluation to be one instance of p function evaluations being
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Fig. 5. Ratios of the number of concurrent function evaluations for BFGS to that for TRPDS
for dimension 8. Ratios greater than one indicate that the TRPDS algorithm takes fewer concurrent
function evaluations and thus less overall time.
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Fig. 6. Ratios of the number of concurrent function evaluations for BFGS to that for TRPDS
for dimension 16. Ratios greater than one indicate that the TRPDS algorithm takes fewer concurrent
function evaluations and thus less overall time.

performed simultaneously. Comparing the number of concurrent function evaluations
is therefore roughly equivalent to comparing total wall clock time. The results that
appear in Figures 4–7 are the ratios of the number of concurrent function evaluations
taken by the trust-region method to the number of concurrent function evaluations
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Fig. 7. Ratios of the number of concurrent function evaluations for BFGS to that for TR-
PDS for CUTE problems. Ratios greater than one indicate that the TRPDS algorithm takes fewer
concurrent function evaluations and thus less overall time.

taken by the TRPDS algorithm. Ratios greater than one indicate that the TRPDS
algorithm will take less overall time.

Overall, we find that TRPDS does at least as well as BFGS in 60% of the test
cases. We now take a closer look at the effects of the parameters on the performance
of the algorithm. The results shown in Figures 4–6 allow us to make some general
observations about the effect of the sss. For a given problem, the size of the search
scheme has very little effect on the performance of the algorithm in comparison to the
standard trust-region algorithm. There are several factors that may be contributing
to this effect. The first is that we have biased the search directions towards the
Newton point through our method for constructing the initial simplex. A second
factor is the order in which the search scheme points are chosen and evaluated. In
the standard PDS algorithm, the reflection points are evaluated first, followed by the
contraction points and the expansion points. Since the Newton point is often a good
trial point we would not expect nearby points to have a lower function value, and
we need to take a large step before finding a better point. Due to the construction
of the search pattern, this requires a search scheme larger than those used in our
tests. In a situation where we are far away from the solution, or where the function
or gradient is noisy, the Newton point might not be a good trial point. In this case,
the reflection and contraction points may yield better trial points than the Newton
point, and thus the sss represented here might affect the performance of the algorithm.
This is a point that will require further investigation. It would also be interesting to
try different methods for creating the initial simplex to determine the effect on the
algorithm’s efficiency.

We have also examined the effects of changing the amount of function decrease
requested from the inner PDS iteration by (4). The results are shown for the CUTE
problems in Figure 7. We find that changing the amount of function decrease required
has very little effect on the performance of TRPDS. The reason is that PDS satisfies
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Table 2
Convergence tolerances for noisy functions.

Parameter Value

Function tolerance η/10

Gradient tolerance 100η2/3

other stopping criteria before it attains the required amount of function decrease,
particularly for larger amounts of decrease.

Schnabel [21] presents an argument for the merits of a line search algorithm with
speculative gradient evaluation. This entails using extra processors to compute the
components of a finite difference gradient at the current point while the function is
being evaluated at that point. He argues that it is difficult to develop a parallel
line search algorithm that will perform better than a speculative gradient algorithm,
particularly when the dimension of the problem is not much larger than the number
of available processors. A similar argument holds for a trust-region approach. Thus,
we should also compare TRPDS to a speculative gradient implementation of a trust-
region method. We have begun to address this work, and we refer the reader to [11]
for an analytical comparison of the methods, and to [12] for preliminary numerical
results.

4.2. Noisy functions. Since one of the motivations for proposing this new al-
gorithm was to improve the robustness of Newton methods when applied to noisy
functions, we also ran a set of test problems in which random noise was added to the
functions. These test problems were generated by computing a function value such
that

f̂(x) = f(x) + ηu,

where u is a random number from a uniform distribution, U(0, 1), and η is the noise
level. We ran tests with η = 10−9, 10−6, and 10−3. One of the more difficult issues in
this set of test problems was choosing the stopping criteria. Since we are computing
gradients using finite differences, the noise in the function will propagate into the
gradients. As such, it is sometimes difficult to detect convergence using the standard
stopping criteria. In our case, we used the tolerances given in Table 2.

The results shown in Figures 8–9 allow us to make some general observations
about the effect of noise on the algorithms. For the first set of test problems, the
TRPDS algorithm either beats or ties the BFGS algorithm in 66% of the test cases.
More importantly, TRPDS fails to converge on only 3% of the tests while the BFGS
algorithm fails to converge on 17% of the tests. The results from the CUTE test set
are not quite as convincing with regard to robustness, although the TRPDS algorithm
does win 70% of the time. As in the noise-free case, we suspect that a different choice
of the initial simplex and perhaps a larger search scheme size will benefit the TRPDS
algorithm in the noisy function case; we are pursuing this line of research.

4.3. Furnace design test problem. As another test case, we chose an opti-
mization problem derived from the design of a vertical, multiwafer furnace. Vertical
furnaces can process up to 200 silicon wafers in a single batch and have been used
for thin film deposition, oxidation, and other thermal process steps. The evolution of
vertical furnaces has been driven by the need for process uniformity (that is, wafer-
to-wafer and within-wafer uniformity) and high wafer throughput. A recent variation
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Fig. 8. Ratios of the number of concurrent function evaluations for BFGS to that for TRPDS
for noisy problems. Ratios greater than one indicate that the TRPDS algorithm takes fewer concur-
rent function evaluations and thus less overall time.

5 10 15 20
0

0.5

1

1.5

2

pdstol = 0.99995,      
 sss = 2*dim, noise = 0

R
at

io
 o

f C
on

. F
ev

al
s

Problem number
5 10 15 20

0

0.5

1

1.5

2

pdstol = 0.99995,          
 sss = 2*dim, noise = 1e09

R
at

io
 o

f C
on

. F
ev

al
s

Problem number

5 10 15 20
0

0.5

1

1.5

2

pdstol = 0.99995,          
 sss = 2*dim, noise = 1e06

R
at

io
 o

f C
on

. F
ev

al
s

Problem number
5 10 15 20

0

0.5

1

1.5

2

pdstol = 0.99995,          
 sss = 2*dim, noise = 0.001

R
at

io
 o

f C
on

. F
ev

al
s

Problem number

Fig. 9. Ratios of the number of concurrent function evaluations for BFGS to that for TRPDS
for noisy CUTE problems. Ratios greater than one indicate that the TRPDS algorithm takes fewer
concurrent function evaluations and thus less overall time.

of the multiwafer reactor design is the small-batch, fast-ramp (SBFR) furnace. The
SBFR is designed to heat up and cool down quickly, thus reducing cycle time and ther-
mal budget. The SBFR consists of a stack of silicon wafers eight inches in diameter
enclosed in a vacuum-bearing quartz jar. The stack is radiatively heated by resistive
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Fig. 10. Vertical batch furnace with seven control zones.

coil heaters contained in an insulated canister. The heating coils can be individually
controlled or can be ganged together in zones to vary the emitted power along the
length of the reactor; a seven-zone configuration is shown in Figure 10. There are six
control zones (each containing several heating coils) along the length of the furnace
and one heater zone in the base. The zones near the ends of the furnace are usually
run hotter than the middle zones to make up for heat loss.

The thermal design optimization problem can be described as follows. Given a
set number of fixed heating coils, how can the coils be grouped in the fewest number
of control zones such that the temperature deviation about a fixed set-point is min-
imized? For this example, we concentrate on finding the optimal power settings and
related temperature uniformity for a fixed zone configuration. The objective function,
F , is defined by a least-squares fit of the N discrete wafer temperatures, Tw,i, to a
prescribed profile, Ts,i,

F (pj) =

N∑
i=1

(Tw,i − Ts,i)2 ,(8)

where pj are the unknown power parameters.
The engineering heat transfer model used in this example was developed by Houf,

Grcar, and Breiland [10] specifically for the analysis of vertical furnaces. (The actual
simulation code used in our experiments is called TWAFER.) Given a set of powers,
pj , each call to TWAFER produces a set of temperatures for the entire furnace, from
which the wafer temperatures are extracted. The heat transfer formulation is sim-
plified by using mass lumping and one-dimensional approximations. The nonlinear
transport equations are solved using the TWOPNT solver [9], which uses a Newton
method with a time evolution feature that computes the steady-state solution. By
varying the tolerances for the TWOPNT solver, it is possible to increase the accuracy
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Table 3
Number of nonlinear iterations and wall clock time.

BFGS TRPDS

RTOL Iter Time Iter Time

10−2 3∗ 154.471 100 5217.98
10−3 30∗ 1603.75 100 6872.32
10−4 64 4470.97 100 8857.03
10−5 31 2729.82 25 2786.17
10−6 39 4145.88 33 4468.22
10−7 34 4516.57 24 3832.82
10−8 31 4612.38 26 4548.66
10−9 31 5152.05 25 4969.36
10−10 31 6044.57 22 5101.78
10−11 31 6576.52 28 6915.97
10−12 31 6600.24 23 5774.78

∗ indicates the method did not converge

of the steady-state solution at the cost of increasing the computational time. In par-
ticular, we have chosen to vary a parameter that determines the relative convergence
tolerance, RTOL, for the steady-state solution of the underlying PDE.

There are many different parameter combinations that have been considered in
previous studies of the TWAFER code [17]. For this particular example we used only
one configuration, namely, a design problem with seven heater zones: one bottom
heater and six equally sized side heaters. Each simulation used a model that contained
100 wafers with ten discretization points per wafer. Our initial guess for the powers
was p0 = {100, 200, 300, 2700, 100, 400, 2000}.

Table 3 contains the total number of iterations as well as the total wall clock time
taken by each method in computing a solution. With respect to the total wall clock
time, the new method is competitive with the standard BFGS method in almost all
cases. In addition, the new method is more robust for the larger values of RTOL.
These values correspond to a very loose convergence tolerance for the PDE solver in
the TWAFER modeling code. In these cases, the standard BFGS method did not
converge to a solution, while the new method still managed to proceed; the BFGS
algorithm terminated with the trust region shrinking below its minimum allowed
size. This failure to converge is probably due to large inaccuracies in the gradient
evaluations due to the loose tolerances in the PDE solutions.

The resulting power values were then given to the TWAFER simulation using a
value of RTOL = 10−12. Figures 11–12 show the wafer temperatures that result with
the computed powers. The interesting point here is that, even with relatively large
values of the parameter RTOL, the resulting temperatures are still quite reasonable.
As we have already noted, for these same values of RTOL the BFGS algorithm did
not converge.

5. Summary. We have described a new class of algorithms for parallel optimiza-
tion. The general framework consists of a trust-region model in which a nonstandard
subproblem is solved using a PDS method that takes advantage of parallelism to
solve the problem more efficiently on multiple processors. This new algorithm can be
shown to have the same convergence properties as standard trust-region methods. In
addition, the practical properties of PDS methods can be used to solve engineering
optimization problems that are noisy or lack analytic derivatives.
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Fig. 11. Computed temperatures for various values of RTOL using TRPDS.
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Fig. 12. Computed temperatures for various values of RTOL using BFGS.
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This new class of algorithms was tested on a standard set of test problems, where
it performed favorably against the traditional BFGS method. We also tested this new
algorithm on a test case derived from an optimal design problem for a chemical vapor
deposition furnace. The results indicate that the new method is competitive with
the traditional BFGS method. In addition, the new method is more robust in the
presence of noise that is generated by the use of less accurate PDE solvers. This is
an important feature since many users would prefer to use less accurate PDE solvers
in order to reduce the total computational time.

There are many new options to explore. In particular, it would be useful to
develop strategies for bound constrained and general inequality constrained problems.
It is also necessary to address issues related to the distribution of function evaluations
in order to improve the efficiency of the algorithm. It would also be interesting to
explore more general approximation models within this new framework.

Appendix. Tables 4–5 list the problems corresponding to the “Problem number”
referred to in the various plots in the paper. Table 4 contains the first set of 24 test
problems. Table 5, which also includes the dimension, contains the 22 CUTE test
problems.

Table 4
Test problems.

Number Problem

1 almost

2 broyden1a

3 broyden1b

4 broyden2a

5 broyden2b

6 bv

7 chain singular

8 chain wood

9 chebyquad

10 cragg levy

11 epowell

12 erosen

13 gen brown

14 gen wood

15 ie

16 lin

17 lin0

18 lin1

19 penalty1

20 penalty2

21 toint trig

22 tointbroy

23 trig

24 vardim

Table 5
CUTE problems.

Number Problem Dimension

1 arglinb 10

2 brownal 10

3 cosine 10

4 dixmaana 15

5 dixmaanl 15

6 eigenals 6

7 engval1 2

8 fletcbv2 10

9 freuroth 2

10 mancino 10

11 morebv 10

12 msqrtals 4

13 nondia 10

14 nonmsqrt 9

15 power 10

16 schmvett 3

17 sensors 2

18 sinquad 5

19 sparsine 10

20 sparsqur 10

21 tquartic 5

22 vareigvl 10



282 P. D. HOUGH AND J. C. MEZA

Acknowledgments. We wish to thank John Dennis and Matthias Heinken-
schloss for many helpful discussions and for pointing out the relationship between
our new algorithm and the framework for approximation models. We would also like
to thank Vicki Howle and Suzanne Shontz for their work on parallel finite differenc-
ing and the comparisons of TRPDS to a speculative gradient trust-region algorithm.
Finally, we thank an anonymous referee for many helpful comments and suggestions.

REFERENCES

[1] N. Alexandrov, J. E. Dennis, Jr., R. M. Lewis, and V. Torczon, A trust region framework
for managing the use of approximation models in optimization, Structural Optim., 15
(1998), pp. 16–12.

[2] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Parallel quasi-Newton methods for uncon-
strained optimization, Math. Programming, 42 (1988), pp. 273–306.

[3] R. G. Carter, On the global convergence of trust region algorithms using inexact gradient
information, SIAM J. Numer. Anal., 28 (1991), pp. 251–265.

[4] R. G. Carter, Numerical experience with a class of algorithms for nonlinear optimization us-
ing inexact function and gradient information, SIAM J. Sci. Comput., 14 (1993), pp. 368–
388.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint, Testing a class of methods for solving
minimization problems with simple bounds on the variables, Math. Comp., 50 (1988),
pp. 399–430.

[6] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice–Hall, Englewood Cliffs, NJ, 1983.

[7] J. E. Dennis, Jr., and V. Torczon, Direct search methods on parallel machines, SIAM J.
Optim., 1 (1991), pp. 448–474.

[8] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, San
Diego, CA, 1981.

[9] J. F. Grcar, TWOPNT Program for Boundary Value Problems, Version 3.10, Tech. report
SAND91–8230, Sandia National Laboratory, Livermore, CA, 1992.

[10] W. G. Houf, J. F. Grcar, and W. G. Breiland, A model for low pressure chemical va-
por deposition in a hot-wall tubular reactor, Materials Science Engineering B, Solid State
Materials for Advanced Technology, 17 (1993), pp. 163–171.

[11] P. D. Hough and J. C. Meza, A Class of Trust-Region Methods for Parallel Optimization,
Tech. report SAND98-8245, Sandia National Laboratories, Livermore, CA, 1999.

[12] V. E. Howle, S. M. Shontz, and P. D. Hough, Some Parallel Extensions to Optimization
Methods in OPT++, Tech. report SAND2000-8877, Sandia National Laboratories, Liver-
more, CA, 2000.

[13] L. Ingber, Simulated annealing: Practice versus theory, Math. Comput. Modelling, 18 (1993),
pp. 29–57.

[14] P. Jog, J. Y. Suh, and D. Van Gucht, Parallel genetic algorithms applied to the traveling
salesman problem, SIAM J. Optim., 1 (1991), pp. 515–529.

[15] C. T. Kelley, A Shamanskii-like acceleration scheme for nonlinear equations at singular roots,
Math. Comp., 47 (1986), pp. 609–623.

[16] P. J. M. Laarhoven, Parallel variable metric algorithms for unconstrained optimization,
Math. Programming, 33 (1985), pp. 68–81.

[17] C. D. Moen, P. A. Spence, and J. C. Meza, Automatic differentiation for gradient-based op-
timization of radiatively heated microelectronics manufacturing equipment, in Proceedings
of the 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimiza-
tion, Bellevue, WA, 1996, pp. 1167–1175.
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BLOCK-ITERATIVE ALGORITHMS WITH UNDERRELAXED
BREGMAN PROJECTIONS∗
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Abstract. The notion of relaxation is well understood for orthogonal projections onto convex
sets. For general Bregman projections it was considered only for hyperplanes, and the question of how
to relax Bregman projections onto convex sets that are not linear (i.e., not hyperplanes or half-spaces)
has remained open. A definition of the underrelaxation of Bregman projections onto general convex
sets is given here, which includes as special cases the underrelaxed orthogonal projections and the
underrelaxed Bregman projections onto linear sets as given by De Pierro and Iusem [J. Optim. Theory
Appl., 51 (1986), pp. 421–440]. With this new definition, we construct a block-iterative projection
algorithmic scheme and prove its convergence to a solution of the convex feasibility problem. The
practical importance of relaxation parameters in the application of such projection algorithms to
real-world problems is demonstrated on a problem of image reconstruction from projections.

Key words. convex feasibility, projection algorithms, Bregman functions, block-iterative algo-
rithms, underrelaxation
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1. Introduction. The convex feasibility problem of finding a point in the non-
empty intersection C := ∩mi=1Ci �= ∅ of a family of closed convex subsets Ci ⊆ Rn,
1 ≤ i ≤ m, of the n-dimensional Euclidean space is fundamental in many areas of
mathematics and the physical sciences; see, e.g., Stark and Yang [32], Combettes
[15], [16], and references therein. It has been used to model significant real-world
problems in image reconstruction from projections—see, e.g., the general discussion
in Herman [21]; in radiation therapy treatment planning, see Censor, Altschuler, and
Powlis [7]; and in crystallography, see Marks, Sinkler, and Landree [28], to name but
a few—and has been used under additional names such as set theoretic estimation or
the feasible set approach. A common approach to such problems is to use projection
algorithms (see, e.g., Bauschke and Borwein [2]), which employ orthogonal projections
(i.e., nearest point mappings) onto the individual sets Ci.

Flexibility in the actual use of such projection algorithms is often gained by using
relaxation parameters. If PΩ(z) is the orthogonal projection of a point z ∈ Rn onto a
closed convex set Ω ⊆ Rn, i.e.,

PΩ(z) := argmin{‖ z − x ‖2 | x ∈ Ω},(1.1)

where ‖ · ‖2 is the Euclidean norm in Rn, and if λ is the so-called relaxation parameter,
then

PΩ,λ(z) := (1− λ)z + λPΩ(z)(1.2)
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is the relaxed projection of z onto Ω with relaxation λ. In this paper we restrict our
attention to the case in which PΩ,λ(z) is a convex combination of z and PΩ(z), i.e.,
when λ ∈ [0, 1]. This is referred to as underrelaxation.

The well-known “projections onto convex sets” (POCS) algorithm for the convex
feasibility problem allows such underrelaxation parameters; see Bregman [5], Gubin,
Polyak, and Raik [20], Youla [33], and the reviews by Combettes [15], [16]. Starting
from an arbitrary initial point x0 ∈ Rn, the POCS algorithm’s iterative step is

xk+1 = xk + λk(PCi(k)(x
k)− xk),(1.3)

where {λk}k≥0 are relaxation parameters and {i(k)}k≥0 is a control sequence, 1 ≤
i(k) ≤ m, for all k ≥ 0, which determines the set Ci(k) onto which the current iterate

xk is projected. The effects of relaxation parameters have been studied theoretically;
see, e.g., Censor, Eggermont, and Gordon [9]. Their practical effect on early iterates
of the POCS algorithm can be dramatic in some real-world situations, as we describe
in section 6 below.

Bregman projections onto closed convex sets were introduced and utilized by
Censor and Lent [10], based on Bregman’s seminal paper [6], and were subsequently
used for building sequential and parallel feasibility and optimization algorithms; see,
e.g., Censor and Elfving [8], Censor and Reich [11], Censor and Zenios [13], De Pierro
and Iusem [17], Kiwiel [24], [25], Bauschke and Borwein [3], and the references therein.

A Bregman projection of a point z ∈ Rn onto a closed convex set Ω ⊆ Rn with
respect to a suitably defined (see, Definition A.1 in the appendix) Bregman function

f is denoted by P fΩ(z). It is formally defined as

P fΩ(z) := argmin{Df (x, z) | x ∈ Ω ∩ clS},(1.4)

where clS is the closure of the open convex set S, which is the zone of f , and Df (x, z)
is the so-called Bregman distance, defined by

Df (x, z) := f(x)− f(z)− 〈∇f(z), x− z〉(1.5)

for all pairs (x, z) ∈ clS × S. If Ω ∩ clS �= ∅, then (1.4) defines a unique P fΩ(z) ∈ clS

for every z ∈ S; see [13, Lemma 2.1.2]. If, in addition, P fΩ(z) ∈ S for every z ∈ S,
then f is called zone consistent with respect to Ω.

Orthogonal projections are a special case of Bregman projections, obtained from
(1.4) by choosing f(x) = (1/2)‖x‖2 and S = Rn (see, e.g., [13, Example 2.1.1]).
However, despite this, relaxation of general (nonorthogonal) Bregman projections has
not yet been defined. The lone exception is the special case in which the set Ω is
a half-space, which has been described by De Pierro and Iusem [17] in the following
manner. Let, for some a ∈ Rn, a �= 0, and b ∈ R,

L = {x ∈ Rn | 〈a, x〉 ≤ b}(1.6)

be a half-space. For a z /∈ L, De Pierro and Iusem [17] define the underrelaxed
Bregman projection of z onto L, with respect to a Bregman function f and with
relaxation parameter ρ ∈ [0, 1], by

P fL,ρ(z) := P
f

L̃
(z),(1.7)

where

L̃ = {x ∈ Rn | 〈a, x〉 ≤ (1− ρ)〈a, z〉+ ρb}.(1.8)
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This means that the relaxed Bregman projection of z onto L is the unrelaxed Bregman
projection of z onto a half-space L̃ whose bounding hyperplane is parallel to that of
L and lies between that of L and the point z.

Rewriting (1.6) as

L = {x ∈ Rn | g(x) ≤ 0},(1.9)

with g(x) := 〈a, x〉 − b, we can view (1.7) as the unrelaxed Bregman projection onto

the inflated set L̃ of (1.8), which can be redefined as

L̃ = {x ∈ Rn | g(x) ≤ ε},(1.10)

where ε = (1 − ρ)g(z). (Note that it is easy to show that if Ω = L and f(x) =

(1/2)‖x‖2, then PΩ,ρ(z) as defined by (1.2) is the same as P fL,λ(z) as defined by (1.7)
for any λ ∈ [0, 1] and any z ∈ Rn.) This approach of projection onto an inflated set
would not necessarily work for a set Ω defined by a nonlinear function g(x). This
can be seen by taking a planar closed convex set Ω that is defined by an ellipse and
considering its inflated set Ω̃ to be a confocal ellipse lying between Ω and the point
z /∈ Ω. Obviously, the orthogonal projection of some z /∈ Ω onto Ω̃ in this case is not a
relaxed orthogonal projection of z onto Ω, because the two projections do not always
lie along the same line.

Thus, we ask the following questions: (i) How should one define a relaxed Breg-
man projection onto a (not necessarily linear) closed convex set? The new definition
should, of course, include as special cases at least both the orthogonal case for general
convex sets and the underrelaxed Bregman projections onto half-spaces of De Pierro
and Iusem [17] mentioned above. (ii) Can such relaxed Bregman projections be in-
corporated into a Bregman’s projection algorithm for the convex feasibility problem?
The Bregman’s projection algorithm of [6] (see also [13, Algorithm 5.8.1]) allows only
unrelaxed projectionsl; i.e., its iterative step is of the form

xk+1 = P fCi(k)(x
k) for all k ≥ 0.(1.11)

(iii) Is it possible to construct a block-iterative Bregman projection algorithm that
will allow relaxed Bregman projections and variable blocks? Such an algorithm, with
dynamically changing blocks, will naturally extend earlier block-iterative projection
algorithms, such as the block-iterative ART (Kaczmarz) algorithm of Eggermont,
Herman, and Lent [18], and the block-iterative projections (BIP) method of Aharoni
and Censor [1] for the convex feasibility problem.

In this paper we constructively answer these three questions. We propose a defi-
nition for an underrelaxed Bregman projection onto a closed convex (not necessarily
linear) set and prove convergence of a block-iterative projection algorithmic scheme
with underrelaxed Bregman projections and dynamically varying blocks. This block-
iterative scheme contains, as a new special case, the underrelaxed sequential Bregman
projection algorithm for the convex feasibility problem, generalizing the underrelaxed
POCS method. The paper is organized as follows. In section 2 we define under-
relaxed Bregman projections and analyze some of their properties. In section 3 we
present the new block-iterative algorithmic scheme with underrelaxed Bregman pro-
jections and prove its convergence in section 4. In section 5 we demonstrate the new
block-iterative algorithmic scheme by working out in detail the case with underre-
laxed entropy projections. Computational experience with any algorithm that uses
underrelaxed nonorthogonal Bregman projections is still missing, but in section 6 we



286 YAIR CENSOR AND GABOR T. HERMAN

provide evidence of the advantages of using underrelaxation parameters when working
with orthogonal projections in the real-world application of image reconstruction from
projections. For the reader’s convenience, we attach an appendix that summarizes
the definitions and results from the theory of Bregman functions which are used in
this paper.

2. Underrelaxation of Bregman projections. We consider that the un-
derrelaxed Bregman projection with Bregman function f and relaxation parameter
λ ∈ [0, 1] of a point z onto a closed convex set Ω, denoted by P fΩ,λ(z), should satisfy

∇f(P fΩ,λ(z)) = (1− λ)∇f(z) + λ∇f(P fΩ(z)).(2.1)

The justification for this is that it makes P fΩ,λ(z) the appropriate (for λ) convex
combination with respect to the Bregman function f , as defined by Censor and Reich
[11, Definiton 4.1], of z and of P fΩ(z). In stating conditions under which (2.1) is a

valid definition of P fΩ,λ(z), we make use of a result which appears in Bauschke and
Borwein [3, Fact 2.9] and is based on a finding of Rockafellar [30, Theorem 26.5]; see
Theorem A.6 in the appendix of this paper.

Proposition 2.1. Let f : Rn → R be a Bregman function with zone S =
int(dom f), and let Ω ⊆ Rn be a closed convex set such that Ω ∩ clS �= ∅. If f is a
Legendre function, then for any z ∈ S and any λ ∈ [0, 1] there exists a unique x ∈ S
satisfying

∇f(x) = (1− λ)∇f(z) + λ∇f(P fΩ(z)).(2.2)

Proof. Since f is of the Legendre type, we have, from Theorem A.7 below, that
it is zone consistent with respect to Ω. Moreover, [3, Fact 2.9] (see also Theorem A.6
in the appendix below) guarantees that ∇f(S) is equal to the interior of the domain
of the conjugate function f∗. Since dom f∗ is a convex set (see, e.g., Luenberger [26,
Proposition 1, p. 196]), its interior is also convex, and thus the right-hand side of
(2.2) is in ∇f(S). Theorem A.6 now ensures the existence and uniqueness of an x in
S satisfying (2.2).

In view of this, our definition of P fΩ,λ(z) is that it is the x whose existence and
uniqueness is guaranteed by the proposition. The ability to invert the gradient opera-
tor is crucial for the applicability of Proposition 2.1, as well as for the applicability of
the algorithmic formula; see (3.4) below, which describes our proposed block-iterative
algorithmic scheme. Therefore, using functions which are both Bregman and Legendre
(see [3, Remark 5.4]) secures both the zone consistency and gradient invertibility. An
anonymous referee made the conjecture that in Proposition 2.1 it may be necessary
to assume only that f is of the Bregman/Legendre type, a less restrictive property.
Examples of Bregman and Legendre functions are provided in Bauschke and Borwein
[3].

Remark 2.2. If there exists an x ∈ S that minimizes

(1− λ)Df (x, z) + λDf (x, P fΩ(z))(2.3)

over clS, then that x satisfies (2.2), as follows by substituting for Df using (1.5) and
setting the gradient to zero. This provides additional indication of the reasonableness
of our definition of underrelaxed Bregman projections.

For f(x) = (1/2)‖x‖2 with S = Rn, our definition of an underrelaxed Bregman
projection coincides with the notion of underrelaxation of orthogonal projections. The
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next proposition shows that, when Ω is the L of (1.6), our definition of underrelaxation
of Bregman projections coincides with the one given by De Pierro and Iusem in [17],
provided that their assumptions and the conditions of Proposition 2.1 are met. De
Pierro and Iusem made the additional assumption that f is not only zone consistent
with respect to the bounding hyperplane of L but also with respect to the bounding
hyperplane of any half-space L̃ as defined in (1.8). (This was termed in [10] the
strong zone consistency of f with respect to the bounding hyperplane of L; see, e.g.,
[13, Definition 2.2.1].)

Proposition 2.3. Let f be a Bregman function with zone S, and Ω be a half-
space L as in (1.6) satisfying the conditions of Proposition 2.1. Assume also that f is
strongly zone consistent with respect to the bounding hyperplane of L. Then, for every
ρ (0 ≤ ρ ≤ 1), there exists a λ (0 ≤ λ ≤ 1) such that P fL,ρ(z) of (1.7) fulfills (2.2) with
Ω = L for every z ∈ S.

Proof. If z ∈ S∩L, then there is nothing to prove. Therefore, let z ∈ S be outside
the half-space L. From the well-known characterization of Bregman projections onto
hyperplanes (see [13, Lemma 2.2.1]), we know that the projection P fH(z) onto the
bounding hyperplane H of the half-space L is uniquely determined, along with the
(real) associated projection parameter θ, by the system

∇f(P fH(z)) = ∇f(z) + θa,
〈P fH(z), a〉 = b.

(2.4)

We claim that P fL(z) = P
f
H(z). To see this, first note that the θ of (2.4) is negative

(because z is outside L, see [13, Lemma 2.2.2, equation (2.27)]). Now consider any
x ∈ L. Multiplying the inequality of (1.6) by the negative of the θ of (2.4), and then
using the second line and, subsequently, the first line of (2.4), we get that

〈∇f(z)−∇f(P fH(z)), x− P fH(z)〉 ≤ 0 for all x ∈ L ∩ clS.(2.5)

This uniquely characterizes P fH(z) as the projection P
f
L(z); see [13, Theorem 2.4.2].

Similarly, by letting H̃ be the bounding hyperplane of L̃ and using strong zone con-
sistency, we find that the Bregman projection P f

L̃
(z) of z onto L̃ of (1.8) is in fact

P f
H̃
(z) and is uniquely determined, along with the associated projection parameter θ̃,

by the system

∇f(P f
L̃
(z)) = ∇f(z) + θ̃a,

〈P f
L̃
(z), a〉 = (1− ρ)〈a, z〉+ ρb.(2.6)

Using (1.7) and the first lines of (2.4) and (2.6), we obtain that (recall that θ < 0)

∇f(P fL,ρ(z)) = ∇f(z) + θ̃a = ∇f(z) +
θ̃

θ
(∇f(P fL(z))−∇f(z))(2.7)

=

(
1− θ̃

θ

)
∇f(z) + θ̃

θ
∇f(P fL(z)).(2.8)

Since θ is negative and by [13, Lemma 2.2.2] θ̃ is nonpositive, we have from [13, Lemma

2.2.4] that θ ≤ θ̃. These facts guarantee that if we define λ = θ̃/θ, then 0 ≤ λ ≤ 1,
which completes the proof.
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If f : Rn → R is a Bregman function with zone S, Ω ⊆ Rn is a closed convex
set such that Ω ∩ clS �= ∅, and f is zone consistent with respect to Ω, then it follows
immediately from (1.4) that P fΩ is an idempotent operator ; i.e.,

P fΩ(P
f
Ω(z)) = P

f
Ω(z)(2.9)

for any z ∈ S. For underrelaxed projections we have the result of the next proposition,
which trivially holds for orthogonal projections.

Proposition 2.4. Let f be a Bregman function with zone S, and Ω be a closed
convex set satisfying the conditions of Proposition 2.1. Then, for any z ∈ S, we have

P fΩ(P
f
Ω,λ(z)) = P

f
Ω(z)(2.10)

for all λ ∈ [0, 1].
Proof. In the case of λ = 1, (2.10) follows from (2.9). We now assume that

λ ∈ [0, 1). The projection P fΩ(z) can be characterized (see Theorem A.4) as the unique
element of Ω ∩ clS for which

〈∇f(z)−∇f(P fΩ(z)), x− P fΩ(z)〉 ≤ 0 for all x ∈ Ω ∩ clS.(2.11)

Multiplying this by (1− λ) and substituting for (1− λ)∇f(z) using (2.1) yields that,
for all x ∈ Ω ∩ clS,

〈∇f(P fΩ,λ(z))−∇f(P fΩ(z)), x− P fΩ(z)〉 ≤ 0.(2.12)

Using the characterization of Theorem A.4 in the appendix, we again get (2.10).

3. A block-iterative algorithmic scheme with underrelaxed Bregman
projections. In this section we propose a block-iterative algorithmic scheme with
underrelaxed Bregman projections for the solution of the convex feasibility problem.
By block-iterative we mean that, at the kth iteration, the next iterate xk+1 is generated
from the current iterate xk by using a subset (called a block) of the family of sets
{Ci}mi=1 of the convex feasibility problem; see, e.g., [13, section 1.1.3]. We use the term
algorithmic scheme to emphasize that different specific algorithms may be derived by
different choices of Bregman functions and by various block structures. For example, if
all blocks consist of a single set, then our scheme gives rise to a sequential row-action-
type algorithm (cf. [13, Definition 6.2.1] for this term). Taking the other extreme, if we
let every block contain all sets, then we obtain a fully simultaneous algorithm. Such a
block-iterative scheme for the convex feasibility problem was first proposed by Aharoni
and Censor [1], using orthogonal projections onto convex sets. That block-iterative
projections (BIP) method generalizes the sequential POCS method of Bregman [5] and
Gubin, Polyak, and Raik [20]. (See also Stark and Yang [32] and Censor and Zenios
[13] for many more related references.) Our proposed block-iterative scheme extends
Aharoni and Censor’s BIP method by employing underrelaxed Bregman projections
which contain the underrelaxed orthogonal projections as a special case.

Appealing again to the definition of a convex combination with respect to a Breg-
man function f as defined by Censor and Reich [11, Definiton 4.1], the natural formula
for a block-iterative step using underrelaxed Bregman projections is

∇f(xk+1) =

m∑
i=1

vki∇f(P fCi,λki (x
k)),(3.1)
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where xk is the kth iterate, λki ∈ [0, 1] is the relaxation parameter used in the under-
relaxed Bregman projection onto the set Ci during the kth iterative step, and the vki
are the weights of the convex combination for the kth iterative step (i.e., vki ≥ 0 for
1 ≤ i ≤ m and

∑m
i=1 v

k
i = 1). Note that, under the assumptions of Proposition 2.1, if

xk ∈ S, then xk+1 is uniquely defined by (3.1) and is also in S.

To simplify notation, from now on we use P fi to abbreviate P fCi . Further, we
observe that, according to (2.1),

∇f(xk+1) =

m∑
i=1

vki ((1− λki )∇f(xk) + λki∇f(P fi (xk))).(3.2)

Defining wki = v
k
i λ

k
i for 1 ≤ i ≤ m, and introducing

wkm+1 = 1−
m∑
i=1

wki and Cm+1 = R
n,(3.3)

we get that

∇f(xk+1) =

m+1∑
i=1

wki∇f(P fi (xk)),(3.4)

with wki ≥ 0 for 1 ≤ i ≤ m+ 1 and
∑m+1
i=1 w

k
i = 1.

4. A convergence theorem. The following theorem establishes the conver-
gence to a solution of the convex feasibility problem of a sequence generated by any
block-iterative algorithm with underrelaxed Bregman projections. The method of
proof is closely related to previous proofs of other results in this field; see, e.g.,
Bauschke and Borwein [3, Theorem 8.1] and Censor and Reich [11, Theorem 3.1].
We will make use of a further condition on the wki of (3.4).

Condition 4.1. Let wki be real numbers for k ≥ 0 and 1 ≤ i ≤ m, and for each
k let

I(k) := {i | 1 ≤ i ≤ m, wki > 0}.(4.1)

(i) There exists an ε > 0 such that wki ≥ ε for all k ≥ 0 and i ∈ I(k).
(ii) Each i, 1 ≤ i ≤ m, is included in infinitely many sets I(k).
A practitioner might desire to rephrase Condition 4.1 in terms of the weights

vki and the relaxation parameters λki , using (3.3) and the line above it. Condition
4.1(i) states that, for some positive ε, if vki and λki are both positive, then they are
both greater than or equal to ε. It should be noted, however, that Condition 4.1(i)
is stronger than the condition used by Aharoni and Censor [1] regarding the weights
they used in their BIP method. The (weaker) condition that they use is that “for all
i = 1, 2, . . . ,m, the series

∑∞
k=0 v

k
i = +∞.” The purpose of our condition, as well

as that of the condition of [1], is to guarantee that none of the sets Ci is “gradually
ignored” by ever-diminishing weights. We do not know whether our convergence
result, presented below, can be strengthened by using a condition similar to that
of [1]. Notice also that if λki = 1 for all i = 1, 2, . . . ,m and all k ≥ 0, then no
underrelaxation takes place and wkm+1 = 0 for all k ≥ 0, leaving only the weights vki
to affect the algorithm’s progress. Finally, observe that the sequential algorithm is
obtained from (3.4) by choosing, for every k ≥ 0, the weights

vki =

{
1 if i = i(k),
0 otherwise,

(4.2)
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where {i(k)}k≥0 is a control sequence such as, e.g., the cyclic control defined by
i(k) = k(modm) + 1 for all k ≥ 0.

Theorem 4.2. Let f : Rn → R be a Bregman function, and let S = int(dom f)
be its zone. Let Ci ⊆ Rn be closed convex sets such that ∩mi=1Ci∩ clS �= ∅. Assume
that f is also a Legendre function. For k ≥ 0, let wki be nonnegative for 1 ≤ i ≤ m+1

such that
∑m+1
i=1 w

k
i = 1 and Condition 4.1 is satisfied. Then the sequence {xk}k≥0

generated by (3.4) from any x0 ∈ S converges to a point x∗ ∈ ∩mi=1Ci ∩ clS.
Proof. The well-definedness of the algorithm described by (3.4) can be shown

by a straightforward generalization of the proof of Proposition 2.1 (in which (3.4)
is replaced by (2.2)). Legendreness of the function f also ensures, by Theorem A.7
below, the zone consistency of f with respect to each set Ci, a fact which is repeatedly
used in this proof. Using (1.5) and (3.4), we have, for every k ≥ 0 and for any x ∈ clS,

Df (x, x
k+1) =

m+1∑
i=1

wki (f(x)− f(xk+1)− 〈∇f(P fi (xk)), x− xk+1〉).(4.3)

By repeated application of (1.5) to the expression inside the parentheses on the right-
hand side of (4.3), we obtain

Df (x, x
k+1) =

m+1∑
i=1

wki (Df (x, P
f
i (x

k))−Df (xk+1, P fi (x
k))).(4.4)

Therefore,

Df (x, x
k)−Df (x, xk+1) =

m+1∑
i=1

wkiDf (x
k+1, P fi (x

k))

+

m+1∑
i=1

wki (Df (x, x
k)−Df (x, P fi (xk))).(4.5)

For any point x ∈ Ci ∩ clS, the difference under the sum in the last line fulfills

Df (x, x
k)−Df (x, P fi (xk)) ≥ Df (P fi (xk), xk) ≥ 0.(4.6)

This follows from well-known inequalities in the theory of Bregman distances. The
left-hand inequality in (4.6) follows by replacing z, y, and Ω in Theorem A.3 by x, xk,
and Ci, respectively, and the nonnegativity in (4.6) follows from [13, Lemma 2.1.1].
Since all quantities on the right-hand side of (4.5) are nonnegative, we conclude from
(4.5) that, for any point x ∈ ∩mi=1Ci ∩ clS,

Df (x, x
k+1) ≤ Df (x, xk) for all k ≥ 0,(4.7)

which means that the sequence {xk}k≥0 is Df -Fejér-monotone with respect to ∩mi=1Ci
and implies that {xk}k≥0 is bounded; see [13, p. 108]. Therefore, to conclude the proof,
we will show the following: (i) if there exists a cluster point x∗ in C = ∩mi=1Ci, then
it is the limit of the sequence, and (ii) every cluster point must belong to C.

We first make the observation that, for any x ∈ C ∩ clS, (4.7) and the nonnega-
tivity of {Df (x, xk)}k≥0 guarantee the existence of the limit

lim
k→∞

Df (x, x
k) = θ.(4.8)
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To prove (i), let x∗ ∈ C be a cluster point of {xk}k≥0, and assume that x∗∗ is
another cluster point, i.e.,

lim
k→∞
k∈K1

xk = x∗ and lim
k→∞
k∈K2

xk = x∗∗,(4.9)

with infinite K1 ⊆ N and infinite K2 ⊆ N and N := {0, 1, 2, . . . }. Since xk ∈ S for
all k ≥ 0, x∗ ∈ clS, and thus (4.8) holds for x = x∗ (for some θ). Applying the
property of Bregman functions given by Definition A.1(iv) to the subsequence defined
by k ∈ K1, we get that in fact

lim
k→∞

Df (x
∗, xk) = 0,(4.10)

which is true, in particular, for the subsequence defined by k ∈ K2. Then, using
another property of Bregman functions given by Definition A.1(v), x∗ = x∗∗ follows.

To prove (ii), assume, by way of negation, that

lim
l→∞

xkl = x∗ and x∗ /∈ C.(4.11)

Define

Iin := {i | 1 ≤ i ≤ m, x∗ ∈ Ci},(4.12)

Iout := {i | 1 ≤ i ≤ m, x∗ /∈ Ci}.(4.13)

Because of Condition 4.1(ii), we may assume without loss of generality (passing to a
subsequence if necessary) that, for every l = 1, 2, . . . ,

I(kl) ∪ I(kl + 1) ∪ · · · ∪ I(kl+1 − 1) = {i | 1 ≤ i ≤ m}.(4.14)

For every l = 1, 2, . . . , let µl be the smallest element in the set

{kl, kl + 1, kl + 2, . . . , kl+1 − 1}(4.15)

such that

I(µl ) ∩ Iout �= ∅.(4.16)

Such an element exists by (4.14) and since, by (4.11) and (4.13), Iout �= ∅.
We want to show now that the sequence {xµl}l≥0 also converges to x∗. By defi-

nition, kl ≤ µl for all l = 1, 2, . . . . If ν ∈ [kl, µl), then

I(ν) ⊆ Iin,(4.17)

and so, from (4.5), for any x ∈ clS,

Df (x, x
ν)−Df (x, xν+1) =

∑
i∈Iin

wνiDf (x
ν+1, P fi (x

ν))

+
∑
i∈Iin

wνi (Df (x, x
ν)−Df (x, P fi (xν))).(4.18)
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For any point x ∈ ∩i∈IinCi∩clS, it follows from (4.6) and (4.18) that, for ν ∈ [kl, µl),

Df (x, x
ν+1) ≤ Df (x, xν).(4.19)

In other words, with x replaced by x∗, we have, for all l = 1, 2, . . . ,

0 ≤ Df (x∗, xµl) ≤ Df (x∗, xµl−1)

≤ · · · ≤ Df (x∗, xkl+1) ≤ Df (x∗, xkl).(4.20)

Letting l→∞ in (4.20) yields, by (4.11) and Definition A.1(iv) in the appendix,

lim
l→∞

Df (x
∗, xµl) = 0.(4.21)

As a subsequence of the whole sequence {xk}k≥0, which is bounded, {xµl}l≥0 is
bounded and thus has a cluster point. Combining Definition A.1(v) with (4.21) shows
that any convergent subsequence of {xµl}l≥0 must converge to x∗; hence

lim
l→∞

xµl = x∗.(4.22)

From (4.16) it follows that there exists an index ı̂ ∈ Iout such that ı̂ ∈ I(µl) for
infinitely many indices l. Removing from the sequence {µl}l≥0 all elements µl for which
ı̂ /∈ I(µl), we end up with a new infinite sequence {µl}l≥0 such that ı̂ ∈ I(µl) ∩ Iout
for l = 1, 2, . . . . Taking an arbitrary x ∈ C ∩ clS, consider the limits of both sides of
(4.5) for the new sequence {µl}l≥0. Due to (4.8), the left-hand side converges to zero,
and, therefore, so must the right-hand side. Since all quantities on the right-hand side
are nonnegative and wµlı̂ ≥ ε > 0 (for all l = 1, 2, . . . ) by Condition 4.1(i), we obtain
that

lim
l→∞

(Df (x, x
µl)−Df (x, P fı̂ (xµl))) = 0.(4.23)

From (4.6) we obtain

lim
l→∞

Df (P
f
ı̂ (x

µl), xµl) = 0.(4.24)

If we could show that {P fı̂ (xµl)}l≥0 is bounded, then (4.22) and (4.24) would imply,
by using again Definition A.1(v), that

lim
l→∞

P fı̂ (x
µl) = x∗,(4.25)

which means that x∗ ∈ Cı̂, yielding the sought-after contradiction with the choice of
ı̂ made above.

Therefore, we conclude the proof by showing that {P fı̂ (xµl)}l≥0 is bounded. In-
deed, (4.6) for i = ı̂, with k = µl and for x ∈ C ∩ clS, shows that

Df (x, P
f
ı̂ (x

µl)) ≤ Df (x, xµl)−Df (P fı̂ (xµl), xµl) for every l ≥ 0.(4.26)

Applying (4.7) and (4.24) to (4.26) shows that {Df (x, P fı̂ (xµl))}l≥0 is bounded, which,

by Definition A.1(iii) in the appendix, implies that {P fı̂ (xµl)}l≥0 is bounded, and this
concludes the proof.
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5. An example: Block-iterative underrelaxed entropy projections. A
well-known Bregman function is the negative “x log x” entropy (also called “Shan-
non’s entropy”) function; see [13, Example 2.1.2] and the many references given to
the literature on this topic in that book, or consult the book by Fang, Rajasekera,
and Tsao [19] and its references. The “x log x” entropy has been used in numerous
applications in science and engineering, up to and including recent work in the field
of computational machine learning; see, e.g., Collins, Shapire, and Singer [14]. It is
denoted by entx and maps the nonnegative orthant Rn+ into R according to

entx := −
n∑
j=1

xj log xj ,(5.1)

where “log ” denotes the natural logarithmic function and, by definition, 0 log 0 = 0.
Its negative, f(x) =

∑n
j=1 xj log xj , is a Bregman function with zone S = intRn+ (see

[13, Lemma 2.1.3]), the jth component of whose gradient is ∂f/∂xj = 1 + log xj .
In order to derive a block-iterative algorithm with underrelaxed Bregman entropy

projections for the iterative solution of a linear system of equations Ax = b, we
consider the sets

Ci = {x | 〈ai, x〉 = bi} for i = 1, 2, . . . ,m,(5.2)

where ai ∈ Rn is the ith column of the transposed matrix AT and bi ∈ R is the ith
component of b ∈ Rm. The iterative step (3.4) takes the form

log xk+1
j =

m+1∑
i=1

wki log(P
f
i (x

k))j for j = 1, 2, . . . , n.(5.3)

Using the first line of (2.4) (with H, z, a, and θ replaced by Ci, x
k, ai, and θki ,

respectively), substituting into (5.3), and taking exponents, we obtain

xk+1
j = xkj

m∏
i=1

exp(wki θ
k
i a
i
j) for j = 1, 2, . . . , n,(5.4)

where θki is the Bregman parameter associated with the “entropy projection” of xk

onto the ith hyperplane Ci. If one replaces the θ
k
i ’s in the iterative step (5.4) with the

quantities

dki := log
bi

〈ai, xk〉(5.5)

for all i and all k, then the resulting formula resembles the iterative step formula of the
block-iterative MART algorithm of Censor and Segman [12] (see also [13, Algorithm
6.7.1, equation (6.124)]), the difference being the lack of underrelaxation parameters
and of variable block structure and composition in the latter.

6. On the practical usefulness of underrelaxation parameters. In this
section we demonstrate the importance of underrelaxation parameters in the field of
image reconstruction from projections. Projection algorithms have been used to solve
the fully discretized model in this field, and experimental work has shown again and
again that there are great advantages in using underrelaxation of the projections.
For a recent example in the area of positron emission tomography (PET), see Obi et
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Fig. 6.1. Slices of the phantom (left), reconstruction with no relaxation (center), and recon-
struction with underrelaxation (right). See the text for details.

al. [29], and in the area of electron microscopy, see Marabini, Herman, and Carazo
[27]. Since in such practical applications the data are physically collected, and thus
the feasibility condition in Theorem 4.2 cannot be guaranteed, we report here on an
experiment that illustrates the usefulness of underrelaxation when all conditions of
Theorem 4.2 are satisfied.

The experiment has been performed with the algebraic reconstruction technique
(ART) described in Herman, Matej, and Carvalho [23, equation (6)] for the purpose
of image reconstruction from x-ray data obtained by a scanner utilizing a helical
cone-beam data collection geometry. In terms of our block-iterative step formula
(3.1), f(x) = (1/2)‖x‖2, the Ci are hyperplanes, and, for every k ≥ 0, vki = 1 for
exactly one i = i(k) and is zero otherwise, and the relaxation parameters λki = λ
are constant. We will be comparing the values λ = 1, that is, no relaxation, with
λ = 0.01, which amounts to quite strong underrelaxation. The number of hyperplanes
is m = 4,915, 000, and the dimensionality of the image vector x is n = 965,887. To
insure feasibility, we used the object reconstructed in [23] from the not necessarily
feasible data used in that paper. (In other words, we replaced the system of equations
Ax = b that was treated in [23] by the system Ax = As, where s is the output of the
algorithm reported in [23].) This reconstructed object is to be interpreted as values
within a rectangular region of the three-dimensional space; a graphical representation
of a single slice through this region is shown on the left of Figure 6.1. In this graphical
representation, all values less than or equal to 1.00 are shown as black, all values
greater than or equal to 1.04 are shown as white, and the intermediate values are
represented by grey levels. For our purposes, this previously reconstructed object
is the “phantom” (test image), which is the object (vector) in the intersection of
4, 915, 000 hyperplanes whose descriptions are known to our program.

Under the conditions of this special case of (3.1), it is known that the algorithm
(provided that it is started with the same vector) should, in the limit, converge to
the same vector irrespective of which of the two investigated values of the relaxation
parameter is chosen (assuming perfect computer accuracy); this follows, e.g., from
Herman, Lent, and Lutz [22, Corollary 1] or from Bauschke et al. [4, Fact 2.2]. How-
ever, for such large problems, the algorithm is computationally intensive, and thus it
is important that one should get to a reasonable solution in relatively few steps. For
those who have not had experience with such projection algorithms, it may come as
a surprise that underrelaxation is actually useful for this purpose. We illustrate this
in Figure 6.1, in which the central and right images show our new reconstructions,
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using no relaxation, i.e., λ = 1, and underrelaxation, i.e., λ = 0.01, respectively.
The iteration index k at which the algorithm was stopped is the same in both cases,
k = 16m; i.e., we have cycled through the data 16 times. The same slice through
the three-dimensional region is shown in all three images, represented in the same
way. The quality of the underrelaxed reconstruction is so good that it is practically
indistinguishable from the phantom; this is certainly not the case for the reconstruc-
tion with no relaxation. This is also reflected by numerical calculations: considering
only those locations in space (not only in the slice shown in Figure 6.1) for which the
values of the phantom are in the range [1.00, 1.04], the Euclidean distance between
the phantom and reconstruction is 2.2 in the underrelaxed case and it is 6.9 in the
no-relaxation case.

Thus this experiment, satisfying the conditions of Theorem 4.2, confirms the
previously reported results in applications: a small relaxation parameter allows us to
get to a high quality reconstruction faster than is possible with no relaxation.

Appendix. Some definitions and results from Bregman function theory.
In this appendix we review some definitions and results from the theory of Bregman
functions used in this paper.

Definition A.1. Let S be a nonempty open convex set in Rn with closure clS.
Let f : clS → R be a differentiable function, and define Df (x, z) : clS × S → R by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉.
We say that f is a Bregman function with zone S, and that Df is the Bregman distance
associated with it, if the following conditions are satisfied:

(i) f is continuous and strictly convex on clS;
(ii) f is continuously differentiable on S;
(iii) for any x ∈ clS the level sets {y ∈ S |Df (x, y) ≤ α} are bounded;
(iv) if yk ∈ S and limk→∞ yk = y∗, then limk→∞Df (y∗, yk) = 0;
(v) if xk ∈ clS and yk ∈ S, with {xk} bounded, limk→∞ yk = y∗, and

limk→∞ Df (x
k, yk) = 0, then limk→∞ xk = y∗.

Remark A.2. (i) It can be shown that, if the Bregman function f is separable,
then the condition that {xk} be bounded in Definition A.1(v) is redundant.

(ii) As noted by Bauschke and Borwein [3], conditions (i)–(v) of Definition A.1
imply that for any y ∈ S the level sets {x ∈ clS |Df (x, y) ≤ α} are also bounded.

(iii) Solodov and Svaiter [31] showed recently that condition (v) of Definition A.1
is redundant (i.e., it follows from the remaining conditions).

Let Ω be a closed convex set in Rn and z ∈ S a given point. The Bregman
projection of z onto Ω is the point P fΩ(z) ∈ Ω which minimizes Df (x, z) over all
x ∈ Ω ∩ clS. Bregman projections exist and are unique, provided that the set Ω
is closed and convex and that Ω ∩ clS is nonempty (see, e.g., [13, Lemma 2.1.2]).

Furthermore, we assume that P fΩ(z) ∈ S whenever z ∈ S. (This is commonly called
zone consistency.) The useful inequality expressed in the next theorem then holds;
see, e.g., [13, Theorem 2.4.1].

Theorem A.3. Let f be a Bregman function with zone S, and let Ω ⊆ Rn be a
closed convex set such that Ω∩ clS �= ∅. Assume that f is zone consistent with respect
to Ω, and let z ∈ Ω ∩ clS be given. Then for any y ∈ S the inequality

Df (z, y)−Df (z, P fΩ(y)) ≥ Df (P fΩ(y), y)(A.1)

holds.
The next result is a characterization of Bregman projections onto convex sets,

given in [13, Theorem 2.4.2].



296 YAIR CENSOR AND GABOR T. HERMAN

Theorem A.4. Under the assumptions of Theorem A.3, for any y ∈ S the point
P fΩ(y) is the Bregman projection of y onto Ω with respect to f if and only if

〈∇f(y)−∇f(P fΩ(y)), x− P fΩ(y)〉 ≤ 0 for all x ∈ Ω ∩ clS.(A.2)

We make use in this paper of Legendre functions and some of their basic proper-
ties. Therefore, we give here a definition from Bauschke and Borwein [3, Definition
2.8]; see also Rockafellar [30, section 26].

Definition A.5. Suppose that f is a closed convex proper function on Rn. Then
f is a Legendre function if it is both essentially smooth and essentially strictly convex,
i.e., f satisfies the following properties:

(i) int(dom f) �= ∅;
(ii) f is differentiable on int(dom f);
(iii) for every x ∈ bd(dom f) and every y ∈ int(dom f)

lim
t→0+

〈∇f(x+ t(y − x)), y − x〉 = −∞;(A.3)

(iv) f is strictly convex on int(dom f).
The next result, characterizing and describing Legendre functions, is quoted from

[3, Fact 2.9] and based on [30, Theorem 26.5].
Theorem A.6. A convex function f is a Legendre function if and only if its

conjugate f∗ is. In this case, the gradient mapping

∇f : int(domf)→ int(domf∗)(A.4)

is a topological isomorphism with inverse mapping (∇f)−1 = ∇f∗.
Finally, we quote from Bauschke and Borwein [3, Theorem 3.14] the following

important fact.
Theorem A.7. If f is a Legendre function and S = int(dom f), then f is zone

consistent with respect to any closed convex set Ω such that Ω ∩ clS �= ∅.
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Abstract. We study the fundamental geometric problem of finding the distance between two
ellipsoids. An algorithm is proposed for computing the distance and locating the two closest points.
The algorithm is based on a local approximation of the two ellipsoids by balls. It is simple, geometric
in nature, and has excellent convergence properties.
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1. Introduction. In this paper we are concerned with the geometric problem of
finding the distance between two ellipsoids. The problem is a fundamental optimiza-
tion problem which can be expressed in the following form:

min ‖x− y‖
subject to x ∈ E1,

y ∈ E2,
(1.1)

where E1 := {x : q1(x) ≤ 0} and E2 : {y : q2(y) ≤ 0} are two given ellipsoids
determined by the two quadratic functions

q1(x) :=
1

2
xTA1x+ bT1 x+ α1 and q2(y) :=

1

2
yTA2y + bT2 y + α2,

with positive definite symmetric matrices A1 and A2, vectors b1 and b2, and scalars
α1 and α2. The norm ‖ · ‖ is the Euclidean norm. Though simple, the problem
is nonlinear in nature and cannot be effectively solved by any linear technique such
as a linear programming or quadratic programming method. On the other hand, it
is highly structured, and any general nonlinear programming method that fails to
exploit its structure may also not be very efficient. As an attempt to overcome such
difficulties, we present in this paper a special algorithm for solving problem (1.1).
The algorithm, which is an extension of our algorithm for finding the projection of
a point on an ellipsoid [4], is extremely simple, easy to implement, and has excellent
convergence properties.

In section 2 we describe our algorithm. In section 3, to facilitate our analysis
of the algorithm, we characterize the optimal solution in terms of angles between
some vectors. The convergence analysis of the algorithm is given in section 4, and
some comments about the implementation and computational experiment are given
in section 5. A proof for a key lemma is given in the appendix.

2. The algorithm. To describe the algorithm, we first introduce some notation.
As usual, the angle between two nonzero vectors x and y is defined to be

θ(x, y) := arccos

(
xT y

‖x‖‖y‖
)
, 0 ≤ θ(x, y) ≤ π,
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and a ball with center y and radius β is defined by

B(y;β) := {x : ‖y − x‖ ≤ β}.

Also, we use d(E1, E2) to denote the distance between E1 and E2.
In the algorithm we will generate two sequences of points {xk} and {yk} on the

boundaries of the two ellipsoids Ω(E1) and Ω(E2), respectively, and it will be shown
that limk→∞ ‖xk − yk‖ = d(E1, E2).

The algorithm is an iterative process. To avoid some cumbersome superscripts
or subscripts, we use the undaunted symbols such as x and y to denote our current
computed vectors, and the barred symbols x̄ and ȳ to denote the new vectors. More
specifically, we use x, y for xk, yk and use x̄, ȳ for xk+1, yk+1, etc.

The algorithm can now be described geometrically as follows. At the kth iteration,
having two points x ∈ Ω(E1) and y ∈ Ω(E2), we construct a ball B(c1; r1) completely
inside the ellipsoid E1 and tangent to E1 at x, and a ball B(c2; r2) completely inside
the ellipsoid E2 and tangent to E2 at y (see Figure 1). Then we check whether the
line segment [c1, c2] between the two centers is entirely contained in E1 ∪E2. If it is,
then the two ellipsoids have a nonempty intersection and the distance d(E1, E2) = 0;
otherwise, we continue and compute the new point x̄ as the intersection of the line
segment [c1, c2] with the boundary Ω(E1), and also ȳ as the intersection of [c1, c2]
with the boundary Ω(E2).

Two issues need to be addressed to make the algorithm viable. First, can the
two balls B(c1, r1) and B(c2, r2) be easily constructed? Second, how can we check
[c1, c2] ⊂ E1∪E2 and compute new estimates x̄ and ȳ? The first issue can be resolved
by the following lemma. (A slightly different but equivalent version of the lemma is
given in [4]. However, because the proof is short and because we want the paper to
be self-contained, we include its proof here.)

Lemma 2.1. Let E := {w : 1
2w

TAw + bTw + α ≤ 0} be a nonempty ellipsoid
determined by a positive definite symmetric matrix A, a vector b, and a scalar α. Let
z be a point on the boundary Ω(E) of E; then for any 0 < γ ≤ 1

ρ(A)

B(z − γ(Az + b); γ‖Az + b‖) ⊂ E,

where ρ(A) is the spectral radius of A.
Proof. Let q(x) := 1

2x
TAx+ bTx+α, and let y be any vector on the boundary of

the ball B(z − γ(Az + b); γ‖Az + b‖). It suffices to show q(y) ≤ 0. We have

‖y − z + γ(Az + b)‖2 = γ2‖Az + b‖2.
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By expanding both sides of the above equality, we get

‖y − z‖2 + 2γ(y − z)T (Az + b) = 0.

Equivalently, we have

∇q(z)T (y − z) = − 1
2γ
‖y − z‖2.

Now, we can show q(y) ≤ 0 when 0 < γ ≤ 1
ρ(A) by

q(y) = q(z) +∇q(z)T (y − z) +
1

2
(y − z)TA(y − z)

≤ q(z)− 1

2γ
‖y − z‖2 + ρ(A)

2
‖y − z‖2

=
1

2

(
ρ(A)− 1

γ

)
‖y − z‖2

≤ 0.

From the above lemma we can construct the two balls in the ellipsoids by choosing
the centers c1 and c2 as x− γ1(A1x+ b1) and y− γ2(A2y+ b2) and choosing the radii
r1 and r2 as γ1‖A1x+ b1‖ and γ2‖A2y + b2‖, respectively, with γ1 and γ2 satisfying

0 < τ ≤ γ1 ≤ 1

ρ(A1)
and 0 < τ ≤ γ2 ≤ 1

ρ(A2)
.(2.1)

Here τ is a prescribed small fixed number. Such a lower bound is needed because, for
the method to work properly, it is also required that the radii of the balls be bounded
away from zero. Obviously, we can choose a matrix norm ‖ · ‖ and set γ1 and γ2 to be

γ1 =
1

‖A1‖ , γ2 =
1

‖A2‖ .

For such a choice, the γ’s are independent of the iteration, and the lower bound τ can
be

τ = min

{
1

‖A1‖ ,
1

‖A2‖
}
.

Of course, the 1-norm and the ∞-norm are particularly useful here because of their
ease of computation.

As for the second issue of checking the condition [c1, c2] ⊂ E1 ∪ E2 and the
computation of new estimates x̄ and ȳ, we compute two stepsizes t1 and t2 by

t1 = max{t ∈ [0, 1] : (1− t)c1 + tc2 ∈ E1},
t2 = min{t ∈ [0, 1] : (1− t)c1 + tc2 ∈ E2}.(2.2)

Because [c1, c2] ∩ E1 and [c1, c2] ∩ E2 are both nonempty closed sets, t1 and t2 are
well defined and can be easily computed by solving two one-dimensional quadratic
equations.

If t2 ≤ t1, then E1 and E2 have a nonempty intersection. In this case d(E1, E2) =
0 and we are done. If t2 > t1, then we let x̄ = c1+ t1(c2− c1) and ȳ = c1+ t2(c2− c1).
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In this case, we have x̄ ∈ Ω(E1), ȳ ∈ Ω(E2), and the open line segment (x̄, ȳ) has no
intersection with the union E1 ∪ E2.

Now we summarize the above discussion and give a precise description of the
algorithm below.

Algorithm 1.
Initiation. Start from an interior point c1 in E1 and an interior point c2 in E2.

The natural choices for these two points are the centers −A−1
1 b1 and −A−1

2 b2 of the
two ellipsoids, respectively.

General steps. At the kth iteration, having an interior point c1 of E1 and an
interior point c2 of E2, we proceed as follows:

1. We solve two one-dimensional quadratic equations to get the stepsizes t1 and
t2 as given in (2.2).

2. If t2 ≤ t1, we are done, and we set d(E1, E2) = 0. In this case, any point
c1 + t(c2 − c1) with t2 ≤ t ≤ t1 is in E1 ∩ E2. Otherwise, we compute new points x̄
and ȳ by

x̄ = c1 + t1(c2 − c1), ȳ = c1 + t2(c2 − c1).

3. We compute θ1 and θ2 by

θ1 = θ(ȳ − x̄, A1x̄+ b1), θ2 = θ(x̄− ȳ, A2ȳ + b2).

If θ1 = θ2 = 0, then terminate.
4. We compute the new centers c̄1 and c̄2 by

c̄1 = x̄− γ1(A1x̄+ b1), c̄2 = ȳ − γ2(A2ȳ + b2),

with γ1 and γ2 satisfying (2.1).
We note here that the algorithm will terminate in a finite number of iterations

when any of the two situations occurs: (1) t2 ≤ t1 or (2) t2 > t1 but θ1 = θ2 = 0.
When t2 ≤ t1, as mentioned before, an intersection point of E1 and E2 is found and
we stop. When t2 > t1 and θ1 = θ2 = 0, the new points x̄ and ȳ are distinct, and it
will be shown in Corollary 3.6 that, in this case, the two sets E1 and E2 are disjoint
and the pair (x̄, ȳ) is the unique optimal solution of problem (1.1). We will also justify
the usage of the angle values θ1 and θ2 for determining convergence in Theorem 3.5.
Of course, in practice we check θ1 ≤ ε and θ2 ≤ ε instead of θ1 = θ2 = 0.

3. Optimality conditions via angles. To study the convergence properties of
the algorithm, we need to characterize the optimal solution of problem (1.1). Recall
that a pair (x∗, y∗) is a Karush–Kuhn–Tucker point of problem (1.1) if there exist
Lagrange multipliers λ and µ such that



x∗ − y∗ + λ(A1x
∗ + b1) = 0,

y∗ − x∗ + µ(A2y
∗ + b2) = 0,

λ( 12x
∗TA1x

∗ + bT1 x
∗ + α1) = 0,

µ( 12y
∗TA2y

∗ + bT2 y
∗ + α2) = 0,

1
2x

∗TA1x
∗ + bT1 x

∗ + α1 ≤ 0,
1
2y

∗TA2y
∗ + bT2 y

∗ + α2 ≤ 0,

λ ≥ 0 and µ ≥ 0.
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We assume that the matrices A1 and A2 are positive definite and that both ellip-
soids E1 and E2 are nonempty. Under these assumptions, the problem is a well-defined
separable convex optimization problem. Therefore, a pair (x∗, y∗) is an optimal solu-
tion of problem (1.1) if and only if (x∗, y∗) is also a Karush–Kuhn–Tucker point [1, 5].
When E1∩E2 �= ∅, then for any z in E1∩E2 the pair (z, z) is a Karush–Kuhn–Tucker
point with both multipliers λ = 0 and µ = 0. In this section, we are more concerned
with the case in which E1 ∩ E2 = ∅. In this case, the optimal value d(E1, E2) > 0,
and the optimal solution (x∗, y∗) is unique.

For our convergence analysis of the algorithm, we need to consider an equivalent
optimality condition in terms of angles. Since E1 ∩ E2 = ∅, we must have x∗ �= y∗.
Hence it follows from the first two Karush–Kuhn–Tucker equations that λ and µ must
be strictly positive. This implies that x∗ ∈ Ω(E1) and y∗ ∈ Ω(E2). Moreover, it again
follows from the first two equations that the three vectors y∗ − x∗, A1x

∗ + b1, and
−(A2y

∗ + b2) are all in the same direction. Therefore, under the assumption that
E1∩E2 = ∅, the optimal solution (x∗, y∗) also satisfies the following angle conditions:


x∗ ∈ Ω(E1) and y∗ ∈ Ω(E2),

θ(y∗ − x∗, A1x
∗ + b1) = 0,

θ(x∗ − y∗, A2y
∗ + b2) = 0.

(3.1)

We note here that the above angle condition is also sufficient for optimality.
Actually, we need to establish the stronger and more useful result that, if two points
x ∈ Ω(E1) and y ∈ Ω(E2) have small angles θ(y−x,A1x+ b1) and θ(x− y,A2y+ b2),
the pair (x, y) is close to the optimal solution (x∗, y∗). To show this we need two
simple lemmas.

Lemma 3.1. If u and v are two nonzero vectors in Rn with ‖u‖ = ‖v‖ and
θ = θ(u, v), then

‖u− v‖ = 2‖u‖ sin 1
2
θ.

Proof. The result follows immediately from the following equations:

‖u− v‖2 = ‖u‖2 − 2uT v + ‖v‖2
= ‖u‖2 − 2‖u‖‖v‖ cos θ + ‖v‖2
= (‖u‖ − ‖v‖)2 + 2‖u‖‖v‖(1− cos θ)
= 4‖u‖2 sin2 θ

2
.

Lemma 3.2. Let z, p, and h be vectors in Rn with p �= 0, h �= 0, and let
θ = θ(p, h) and φ be a scalar. If zT p ≤ φ, then

zTh ≤ 2‖z‖‖h‖ sin θ

2
+
‖h‖
‖p‖φ.

Proof. It follows from the previous lemma that

zTh = zT
(
h− ‖h‖‖p‖ p

)
+
‖h‖
‖p‖ z

T p

≤ ‖z‖
∥∥∥∥h− ‖h‖‖p‖ p

∥∥∥∥+ ‖h‖‖p‖φ
= 2‖z‖‖h‖ sin θ

2
+
‖h‖
‖p‖φ.
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To facilitate our presentation of our next key theorem, we introduce some nota-
tion. Let κ1 and κ2 be the smallest eigenvalues of A1 and A2, respectively. Then, for
any z ∈ Rn,

κ1||z||2 ≤ zTA1z and κ2||z||2 ≤ zTA2z.

We also define η1 and η2 as the following bounds:

η1 := max
z∈Ω(E1)

‖A1z + b1‖ and η2 := max
z∈Ω(E2)

‖A2z + b2‖.

Notice that ηi is zero if and only if the corresponding ellipsoid is a singleton. We will
assume that both ellipsoids contain interior points and thus that both η’s are positive.
Now we give the key theorem below.

Theorem 3.3. Let both E1 and E2 have interior points. If x ∈ Ω(E1), y ∈ Ω(E2),
and x �= y, then for any u ∈ E1 and v ∈ E2

‖y − x‖+ κ1

2η1
‖u− x‖2 + κ2

2η2
‖v − y‖2 ≤ ‖u− v‖+ 2‖u− x‖ sin θ1

2
+ 2‖v − y‖ sin θ2

2
,

where θ1 = θ(y − x,A1x+ b1) and θ2 = θ(x− y,A2y + b2).
Proof. As before, we let q1(w) :=

1
2w

TA1w + bT1 w + α1. Because x ∈ Ω(E1) and
u ∈ E1, we have

0 ≥ q1(u)− q1(x)

= (u− x)T∇q1(x) + 1
2
(u− x)TA1(u− x)

≥ (u− x)T (A1x+ b1) +
κ1

2
‖u− x‖2.

Therefore, we have

(u− x)T (A1x+ b1) ≤ −κ1

2
‖u− x‖2.

We apply Lemma 3.2 to the above inequality with φ = −κ1

2 ‖u − x‖2, z = (u − x),
p = A1x+ b1, and h = y − x to get

(u− x)T (y − x) ≤ 2‖u− x‖‖y − x‖ sin θ1

2
− κ1‖y − x‖

2η1
‖u− x‖2.

Similarly, for the case of E2, we interchange the roles of x and y and replace u by v
to get

(v − y)T (x− y) ≤ 2‖v − y‖‖x− y‖ sin θ2

2
− κ2‖y − x‖

2η2
‖v − y‖2.

Adding the above two inequalities and rearranging terms, we have

‖y − x‖2 + κ1‖y − x‖
2η1

‖u− x‖2 + κ2‖y − x‖
2η2

‖v − y‖2

≤ (v − u)T (y − x) + 2‖u− x‖‖y − x‖ sin θ1

2
+ 2‖v − y‖‖x− y‖ sin θ2

2

≤ ‖u− v‖‖y − x‖+ 2‖u− x‖‖y − x‖ sin θ1

2
+ 2‖v − y‖‖x− y‖ sin θ2

2
.
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The desired result follows immediately when we divide the above inequality by
‖y − x‖.

Some useful results follow from the above theorem. First, we show that the angle
condition (3.1) is a necessary and sufficient condition for optimality.

Theorem 3.4. Let E1 and E2 have nonempty interiors and E1 ∩ E2 = ∅. The
pair (x∗, y∗) satisfies the angle condition (3.1) if and only if (x∗, y∗) is the optimal
solution of problem (1.1).

Proof. The necessary part has already been given in the paragraph prior to the
angle condition (3.1). Now we show the sufficient part. We apply the above theorem
to (x∗, y∗) and use the assumption that θ1 = θ2 = 0 to get the result that for any
u ∈ E1 and v ∈ E2, ‖x∗−y∗‖ ≤ ‖u−v‖. Therefore the pair (x∗, y∗) is optimal.

For our convergence analysis the following result is useful.
Theorem 3.5. Let E1 and E2 have nonempty interiors and E1 ∩ E2 = ∅, and

let (x∗, y∗) be the optimal solution of problem (1.1). Then, for any x ∈ Ω(E1) and
y ∈ Ω(E2),

κ1

η1
‖x− x∗‖2 + κ2

η2
‖y − y∗‖2 ≤ 4σ

(
sin

θ1

2
+ sin

θ2

2

)
,

where θ1 = θ(y − x,A1x+ b1), θ2 = θ(x− y,A2y + b2), and

σ := max{‖u− v‖ : u ∈ E1 and v ∈ E2}.(3.2)

Proof. This follows from Theorem 3.3 by letting u = x∗ and v = y∗ and using the
fact that ‖x− y‖ ≥ ‖x∗ − y∗‖.

The following corollary gives a justification for using θ1 = θ2 = 0 as the stopping
criterion of the algorithm.

Corollary 3.6. Let E1 and E2 have nonempty interiors. If x ∈ Ω(E1) and
y ∈ Ω(E2) such that x �= y and θ(y − x,A1x + b1) = θ(x − y,A2y + b2) = 0, then
E1 ∩ E2 = ∅ and the pair (x, y) is the unique optimal solution of problem (1.1).

Proof. Suppose that E1∩E2 �= ∅; then let z ∈ E1∩E2. We apply Theorem 3.3 to
the pair (x, y) with u = v = z. It follows from the inequality of Theorem 3.3 that at
least one of θ1 and θ2 is nonzero, which contradicts our assumption that θ1 = θ2 = 0.
Therefore, we have E1 ∩ E2 = ∅, and problem (1.1) has a unique optimal solution.
Then the optimality of the pair (x, y) follows immediately from Theorem 3.5.

4. Convergence analysis. The distance between any two balls B(c1, r1) and
B(c2, r2) is easy to find. Indeed, if we assume that r1 > 0, r2 > 0 and the two balls are
disjoint, then the closest two points on the boundaries Ω(B(c1, r1)) and Ω(B(c2, r2))
are given respectively by

x̂ = c1 +
r1

‖c1 − c2‖ (c2 − c1) and ŷ = c2 +
r2

‖c1 − c2‖ (c1 − c2).(4.1)

Our algorithm can be viewed as if the two ellipsoids were being iteratively approx-
imated locally by balls. Therefore, for our convergence analysis, we first analyze
how the distance between any two points on the boundaries of the two balls, say
x ∈ Ω(B(c1, r1)) and y ∈ Ω(B(c2, r2)), is related to the shortest distance ‖x̂ − ŷ‖ in
terms of the angles θ(y − x, x − c1) and θ(x − y, y − c2). This result is contained in
the following fundamental lemma, which is not only useful for our analysis but also
geometrically interesting in its own right. But the proof is long and provides little
insight into the algorithm; hence we include the proof in the appendix.
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Lemma 4.1. Let B(c1, r1) and B(c2, r2) be two disjoint balls with r1 > 0 and
r2 > 0, and let x̂ and ŷ be defined as in (4.1). For any two points x ∈ Ω(B(c1, r1))
and y ∈ Ω(B(c2, r2)),

‖x− y‖ − ‖x̂− ŷ‖ ≥ 4
η

(
r1d sin

2 θ1

2
+ r2d sin

2 θ2

2
+ r1r2 sin

2 (θ1 − θ2)

2

)
,

where d = ‖x− y‖, θ1 = θ(y − x, x− c1), θ1 = θ(x− y, y − c2), and η = r1 + r2 + d+
‖c1 − c2‖.

We now give our convergence theorem. It is noted here that if E1 ∩E2 �= ∅, then
any point in the intersection is considered a solution.

Theorem 4.2. If E1 and E2 have nonempty interiors, then either any sequence
generated by the algorithm terminates at, or any accumulation point of the sequence is
a solution of, problem (1.1). Furthermore, if E1∩E2 = ∅, then the sequence converges
to the unique solution of problem (1.1).

Proof. Suppose the algorithm terminates in a finite number of iterations. In this
case, as mentioned in the paragraph following the description of the algorithm, either
t1 ≥ t1 or t1 < t2, but θ1 = θ2 = 0. If t1 ≥ t2, then all the points c1 + t(c2 − c1) with
t ∈ [t2, t1] are in E1 ∩ E2. If t1 < t2 but θ1 = θ2 = 0, then it follows from Corollary
3.6 that E1∩E2 = ∅ and the new pair (x̄, ȳ) is the unique optimal solution of problem
(1.1).

We now consider the case in which the generated sequence is infinite. In this
case, we have t1 < t2 in each iteration, and the two balls B(c1, r1) and B(c2, r2)
are mutually disjoint and entirely contained in the ellipsoids E1 and E2, respectively.
Therefore, we have

‖c1 − c2‖ ≥ r1 + r2 + ‖x̄− ȳ‖.
On the other hand, by the triangle inequality, we also have

‖c1 − c2‖ = ‖c1 − x+ y − y + x− c2‖
≤ ‖c1 − x‖+ ‖x− y‖+ ‖y − c2‖
≤ r1 + r2 + ‖x− y‖.

Then, from the two inequalities above, we have the monotonicity property:

‖x− y‖ ≥ ‖x̄− ȳ‖.
Therefore, the sequence of distances {‖xk − yk‖} is monotone and hence converges,
say to d∗. Consider the two cases d∗ = 0 and d∗ �= 0.

For the case d∗ = 0, let (x∗, y∗) be an accumulation point of {(xk, yk)}. Then
there is a subsequence {(xkm , ykm)} converging to (x∗, y∗). Clearly x∗ = y∗ because

lim
km→∞

‖xkm − ykm‖ = d∗ = 0.

The fact x∗ ∈ E1 ∩ E2 follows from {(xkm)} ⊂ E1, {(ykm)} ⊂ E2, and that E1 and
E2 are two closed sets.

We now consider the case d∗ �= 0. Because the boundaries Ω(E1) and Ω(E2) are
compact and because the stepsizes γ’s are bounded away from zero, the radii r1 and
r2 remain bounded below from zero throughout the computation. More specifically,
there exists a positive number δ such that r1 ≥ δ and r2 ≥ δ in each iteration. Let
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σ = max{‖u− v‖ : u ∈ E1 and v ∈ E2} be defined as in (3.2). Clearly, σ is an upper
bound for all the generated quantities r1, r2, ‖c1−c2‖, and ‖x−y‖. In our algorithm,
we have x ∈ Ω(E1) and y ∈ Ω(E2). Then it follows from the previous lemma that

‖x− y‖ − ‖x̄− ȳ‖ ≥ ‖x− y‖ − ‖x̂− ŷ‖
≥ 1

σ

(
δd∗ sin2 θ1

2
+ δd∗ sin2 θ2

2
+ δ2 sin2 (θ1 − θ2)

2

)
.

From the convergence of {‖xk − yk‖}, we have that
lim
k→∞

(‖xk − yk‖ − ‖xk+1 − yk+1‖) = 0.

This result, combined with the above inequality, implies that

lim
k→∞

θ(yk − xk, A1x
k + b1) = 0 and lim

k→∞
θ(xk − yk, A2y

k + b2) = 0.

Then it follows immediately from Theorem 3.5 that {(xk, yk)} converges to the unique
optimal solution of problem (1.1).

5. Discussion. The algorithm proposed here is simple and easy to implement.
The major work in each iteration is merely the solution of two one-dimensional
quadratic equations and the computation of two angles. We implemented it in MAT-
LAB and did some preliminary testing. We found the algorithm to be very reliable
and to work very well generally. But the convergence may become a little slow when
the ellipsoids are small, thin, and far apart. This is mainly because the balls gener-
ated inside the ellipsoids become too tiny to produce substantial improvement in each
iteration. Though the requirement that the balls be completely inside the ellipsoids is
sufficient for convergence, it is not necessary. It is desirable to design an acceleration
technique that can avoid such restriction and allow more adequate improvements.

The algorithm is well suited for large sparse matrices, because the computation
involves only the matrices themselves and does not need factorization. Of course, for
this situation, we have to choose vectors other than the centers of the ellipsoids as
the initial points.

According to our convergence theorem, the algorithm will work when both ellip-
soids have interiors. Therefore, we can check this condition by evaluating the two
quadratic functions q1(x) and q2(x) at the centers A

−1
1 b1 and A−1

2 b2, respectively. We
apply the algorithm only when both values are strictly negative. If one is negative and
the other is zero, the problem is reduced to the projection of a point to an ellipsoid.
For this case, an algorithm such as the one proposed in [2, 3, 4, 6, 7, 8, 9] should
apply. Of course, when both values are nonnegative, this is just a trivial case and no
further computation is needed.

Appendix. The proof of Lemma 4.1. Here we give a proof for our main
lemma. For doing this, we define two parallel hyperplanes which pass through the
centers c1 and c2 of the two balls B(c1; r1) and B(c2; r2), respectively, and have a
common normal vector w = (x− y)/‖x− y‖:

H1 = {z : wT z = wT c1} and H2 = {z : wT z = wT c2}.
The orthogonal projectors onto these two hyperplanes H1 and H2 are

P1(z) = (wT c1)w + (I − wwT )z,
P2(z) = (wT c2)w + (I − wwT )z.
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We now give some useful lemmas.
Lemma A.1. Let B(c1, r1) and B(c2, r2) be disjoint and x ∈ Ω(B(c1, r1)), y ∈

Ω(B(c2, r2)), and d = ‖x − y‖. Let θ1 = θ(y − x, x − c1) and θ2 = θ(x − y, y − c2).
Then

(1) ‖P1(x)− c1‖ = r1 sin θ1 and ‖P2(y)− c2‖ = r2 sin θ2;
(2) P1(x)− P2(y) = wwT (c1 − c2) = (r1 cos θ1 + r2 cos θ2 + d)w.
Proof. We use the fact that the two vectors wwT (x− c1) and (I − wwT )(x− c1)

are orthogonal to get

r2
1 = ‖x− c1‖2
= ‖wwT (x− c1) + (I − wwT )(x− c1)‖2
= ‖wwT (x− c1)‖2 + ‖(I − wwT )(x− c1)‖2
= (‖x− c1‖ cos θ1)

2 + ‖wwT c1 + (I − wwT )x− c1‖2
= (r1 cos θ1)

2 + ‖P1(x)− c1‖2.

Therefore, it follows that ‖P1(x)− c1‖ = (r2
1 − r2

1 cos
2 θ1)

1
2 = r1 sin θ1.

The result ‖P2(y) − c2‖ = r2 sin θ2 can be proven similarly. To prove (2), we
notice that (I − wwT )(x− y) = 0, and we have

P1(x)− P2(y) = (w
T c1)w + (I − wwT )x− (wT c2)w − (I − wwT )y

= wwT (c1 − c2) + (I − wwT )(x− y)

= wwT (c1 − c2).

Then the above equality, in turn, implies that

P1(x)− P2(y) = wwT ((c1 − x) + (x− y) + (y − c2))

= wT (c1 − x)w + wT (x− y)w + wT (y − c2)w

= (r1 cos θ1 + ‖x− y‖+ r2 cos θ2)w.

Lemma A.2. Let the assumptions of the previous lemma hold; then

‖c1 − c2‖2 ≤ (r1 cos θ1 + r2 cos θ2 + d)2 + (r1 sin θ1 + r2 sin θ2)
2.

Proof. A direct calculation shows that the two vectors P1(x) − P2(y) and c1 −
P1(x)+P2(y)− c2 are orthogonal. Therefore, by the previous lemma and the triangle
inequality,

‖c1 − c2‖2 = ‖P1(x)− P2(y) + c1 − P1(x) + P2(y)− c2‖2
= ‖P1(x)− P2(y)‖2 + ‖c1 − P1(x) + P2(y)− c2‖2
≤ (r1 cos θ1 + r2 cos θ2 + d)2 + (‖c1 − P1(x)‖+ ‖P2(y)− c2‖)2
= (r1 cos θ1 + r2 cos θ2 + d)2 + (r1 sin θ1 + r2 sin θ2)

2.

We now give a proof of our main lemma.
Proof of Lemma 4.1. We use the fact that ‖c1 − c2‖ = r1 + r2 + ‖x̂− ŷ‖ to get

‖x− y‖ − ‖x̂− ŷ‖ = (d+ r1 + r2)− (r1 + r2 + ‖x̂− ŷ‖)
= (d+ r1 + r2)− ‖c1 − c2‖
=
1

η
((d+ r1 + r2)

2 − ‖c1 − c2‖2).
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Using Lemma A.2 and by expansion and simplification, we get

(d+ r1 + r2)
2 − ‖c1 − c2‖2

≥ (d+ r1 + r2)
2 − (r1 cos θ1 + r2 cos θ2 + d)2 − (r1 sin θ1 + r2 sin θ2)

2

= 4

(
r1d sin

2 θ1

2
+ r2d sin

2 θ2

2
+ r1r2 sin

2 (θ1 − θ2)

2

)
.

Incorporating the above inequality into the previous equality, we then get the desired
result.
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INSCRIBED ELLIPSOIDS∗

KURT M. ANSTREICHER†

SIAM J. OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 309–320

Abstract. Let P = {x |Ax ≤ b}, where A is an m × n matrix. We assume that P contains
a ball of radius one centered at the origin and is itself contained in a ball of radius R centered
at the origin. We consider the problem of approximating the maximum volume ellipsoid inscribed
in P. Such ellipsoids have a number of interesting applications, including the inscribed ellipsoid
method for convex optimization. We describe an optimization algorithm that obtains an ellipsoid
whose volume is at least a factor e−ε of the maximum possible in O(m3.5 ln(mR/ε)) operations. Our
result provides an alternative to a saddlepoint-based approach with the same complexity, developed
by Nemirovskii. We also show that a further reduction in complexity can be obtained by first
computing an approximation of the analytic center of P.

Key words. maximum volume inscribed ellipsoid, inscribed ellipsoid method

AMS subject classifications. 90C25, 90C22
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1. Introduction. Let P = {x |Ax ≤ b}, where A is an m × n matrix. We
assume that P is bounded with a nonempty interior. It is then known [6] that there
is a unique ellipsoid E∗ ⊂ P of maximum volume. We say that an ellipsoid E ⊂ P is
γ-maximal if Vol(E) ≥ γVol(E∗), where 0 < γ < 1 and Vol(·) denotes n-dimensional
volume. In this paper we consider the complexity of computing a γ-maximal inscribed
ellipsoid for P. For convenience in stating complexity results, we often write γ = e−ε

(as in [12, section 6.5]), where ε > 0.
There are a number of interesting applications of γ-maximal ellipsoids. For ex-

ample, the computation of a γ-maximal ellipsoid, with γ > 0.92, is required on each
iteration of the inscribed ellipsoid algorithm (IEM) for convex programming [14]. The
IEM minimizes a convex function over an n-dimensional cube to relative accuracy ν in
O(n ln(n/ν)) iterations, each requiring evaluation of the function and a subgradient.
The order of this complexity, also achieved by the volumetric cutting plane algorithm
[1, 15], is optimal (see [13]).

Another application of γ-maximal ellipsoids is to provide a “rounding” of P. It
is known that, for the maximum volume inscribed ellipsoid (MVIE) E∗,

E∗ ⊂ P ⊂ nE∗,

where, for an ellipsoid E and positive scalar τ , τE denotes the dilation of E about
its center by the factor τ . For a γ-maximal ellipsoid E it can be shown [14] that

E ⊂ P ⊂ n

(
1 + 3

√
1− γ

γ

)
E.

Roundings of this type are required in several contexts, including Lenstra’s algorithm
for integer programming in fixed dimension [10] and randomized algorithms for volume
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computation [7]. Alternative methodologies for obtaining O(n)-roundings of P include
the shallow cut ellipsoid algorithm [3, section 4.6] and the volumetric cutting plane
algorithm [2].

Assume that P contains a ball of radius one centered at the origin and is itself
contained in a ball of radius R centered at the origin. Using the ellipsoid algorithm,
an e−ε-maximal inscribed ellipsoid can be computed in O(n6(n2 +m) ln(nR/ε)) op-
erations [14]. For reasonable m this complexity was substantially improved to

O

(
m2.5(n2 +m) ln

(
mR

ε

))
(1)

operations by Nesterov and Nemirovskii [12], using an interior-point algorithm with
a specialized “rescaling” technique to lower the work required on each iteration. A
further reduction to

O

(
m3.5 ln

(
mR

ε

)
ln

(
n lnR

ε

))
(2)

operations was achieved by Khachiyan and Todd [9], who apply an interior-point
algorithm to a sequence of problems, each of which requires less work per iteration
than the original problem considered by [12]. Nemirovskii [11] lowers the complexity
of obtaining an e−ε-maximal inscribed ellipsoid to

O

(
m3.5 ln

(
mR

ε

))
(3)

operations. The approach taken in [11] uses Lagrangian duality to reformulate the
MVIE problem as a saddlepoint problem, and shows that the self-concordance theory
developed in [12] can be adapted to analyze an algorithm for computing an approxi-
mate saddlepoint. The advantage of [11] is that the theory developed for saddlepoint
problems is very general. However, the analysis required to develop this theory is
quite extensive.

In this paper we devise an optimization algorithm for which the complexity of
obtaining an e−ε-maximal inscribed ellipsoid is also (3). Our work can be viewed
as a further improvement of the previous optimization-based results of [12] and [9]
and provides an alternative to the saddlepoint-based approach of [11]. We also show
that, by first computing an approximation of the analytic center of P, we can further
reduce the effect of the parameter R, resulting in a total complexity of

O
(
(mn2 +m1.5n) ln(R) +m3.5 ln

(m
ε

))
(4)

operations. The difference between (3) and (4) is certainly of interest since, under
standard assumptions, bounds on R may be exponential in n [3, Lemma 3.1.25].

Several novel formulations of the MVIE problem are considered in [16]. Primal-
dual algorithms based on two of these formulations are analyzed in [17], and their
numerical performance is compared to original and modified versions of the algorithm
from [9] on instances up to size n = 500, m = 1200. The performance of one of the
primal-dual algorithms is found to be superior to the other three methods.

A problem related to that of computing an e−ε-maximal inscribed ellipsoid for P
is that of computing an eε-minimal circumscribing ellipsoid for the convex hull of m,
given points in �n. Khachiyan [8] shows that the latter problem can be solved in

O
(
m3.5 ln

(m
ε

))
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operations; note that this bound is independent of the parameter R.
Notation. If A and B are symmetric matrices, A  B denotes that B − A is

positive semidefinite, and A ≺ B denotes that B − A is positive definite. The trace
of a matrix A is denoted tr(A), A • B = tr(ABT ), and ‖A‖ denotes the Frobenius
norm, ‖A‖ = √A •A. We use ldetA to denote ln(detA)). The Kronecker product of
matrices A and B is denoted A⊗B. If A is an m×n matrix, vec(A) is the vector in
�mn formed by “stacking” the columns of A atop one another in the natural order.
We use B(x, r) to denote the closed ball of radius r centered at x ∈ �n.

2. Preliminaries. In this section we give definitions and basic results from [12]
that will be required in what follows.

Definition 2.1. Let G be a closed, convex set in �N , and let f(·) : Int(G)→ �
be a C3 convex function. Then f(·) is said to be strongly 1-self-concordant (hereafter
abbreviated strongly self-concordant) on Int(G) if f(xk)→∞ for any sequence {xk}
converging to a boundary point of G, and

|D3f(x)[h, h, h]| ≤ 2 (D2f(x)[h, h]
)3/2

for every x ∈ Int(G) and h ∈ �N .
Assume that f(·) is strongly self-concordant on Int(G), and that G is bounded.

It can then be shown that ∇2f(x) is nonsingular for every x ∈ Int(G). For x ∈ Int(G)
define the Newton direction for f(·) at x to be

p(x) = −[∇2f(x)]−1∇T f(x),

and the Newton decrement for f(·) at x to be

λ(x) =
(∇f(x)[∇2f(x)]−1∇T f(x))1/2 .

As shown in [12], for a strongly self-concordant function the Newton decrement
provides good information regarding the difference between f(x) and the minimum
of f(·) over G. Note that if G is compact, then fmin = min{f(x) |x ∈ G} is attained
at a unique interior point of G.

Lemma 2.2. Let G ⊂ �N be a compact convex set, and assume that f(·) is
strongly self-concordant on Int(G). Let x ∈ Int(G), λ = λ(x), p = p(x).

1. If λ ≤ 1/3, then f(x)− fmin ≤ λ2/(1− 5.0625λ2).
2. If x+ = x+[1/(1+λ)]p, then x+ ∈ Int(G), and f(x+) ≤ f(x)−[λ−ln(1+λ)].

Proof. Part 1 is proved in [4, Lemma 2.22]; a weaker estimate is given in [12,
Theorem 2.2.2]. Part 2 is proved in [12, Proposition 2.2.2] and [4, Lemma 2.24].

Definition 2.3. Let G ⊂ �N be a compact convex set, and F (·) : Int(G) → �.
Then F (·) is called a ϑ-self-concordant barrier for G if F (·) is strongly self-concordant
on Int(G) and λ2(x) ≤ ϑ for every x ∈ Int(G).

It is very well known that the complexity of linear and quadratic optimization
over G is characterized by the parameter ϑ. In particular, if f(·) is a convex quadratic
function and F (·) is a computable ϑ-self-concordant barrier forG, then given a suitable
initial interior point x0 ∈ G and lower bound z0 ≤ fmin, an interior-point algorithm
based on F (·) can be used to obtain an x having f(x) − fmin ≤ ε[f(x0) − z0] in
O(
√
ϑ| ln ε|) iterations, each requiring a Newton step for a linear combination of f(·)

and F (·).
To analyze the complexity of optimizing more general convex functions over G,

[12] uses the concept of β-compatibility between a convex objective f(·) and a barrier
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F (·) for G. The details are not important here, but we note that the complexity of
approximately minimizing f(·) over G involves the parameters β and ϑ as well as
characteristics of the initial point.

3. The MVIE problem. As described in [12], the problem of computing the
MVIE for a polyhedral set P can be cast as the convex programming problem

min − ldetY(5)

s.t. ‖Y ai‖ ≤ (bi − aTi y), i = 1, . . . ,m,

Y � 0,
where aTi denotes the ith row of A. A feasible solution to (5) with objective value
within ε of optimality provides an e−ε-maximal inscribed ellipsoid of the form {y +
Y z | ‖z‖ ≤ 1}. The complexity analysis in [12] uses the 2(m + n)-self-concordant
barrier

−2 ldetY −
m∑
i=1

ln((bi − aTi y)
2 − aTi Y

2ai)

and the fact that f(Y ) = − ldetY is 1-compatible with this barrier. The main diffi-
culty with this approach is that the resulting Newton equations are relatively expen-
sive to form and solve. In [12] a “speed-up” based on rescaling the matrix Y is used
to reduce this complexity to O(m2(n2+m)) operations per iteration, resulting in the
overall complexity (1).

Letting X = Y 2, (5) is equivalent to the optimization problem

min − ldetX(6)

s.t. aTi Xai ≤ (bi − aTi x)
2, i = 1, . . . ,m,

aTi x ≤ bi, i = 1, . . . ,m,

X � 0,
and a solution of (6) with objective within 2ε of optimality produces an e−ε-maximal
inscribed ellipsoid. Unfortunately the constraints of (6), while linear in X, are not
all convex in x. Note that although the linear constraints aTi x ≤ bi, i = 1, . . . ,m,
are needed to correctly formulate (6), these constraints are implicitly enforced if they
hold initially and strict inequality is maintained in the remaining constraints. The
approach taken in [9] is to approximately solve a sequence of problems of the form

P (y) : min − ldetX(7)

s.t. aTi Xai ≤ (bi − aTi y)(bi − aTi x), i = 1, . . . ,m,

X � 0,
where y is an interior point of P. The process is initialized using y0 = 0, and if
(xk, Xk) is the approximate solution of P (yk), then yk+1 = (1/2)(xk + yk). In [9] the
convergence of {yk} is shown to be very rapid. Moreover, the barrier

− ldetX −
m∑
i=1

ln((bi − aTi y)(bi − aTi x)− aTi Xai)(8)

for P (y) is (m + n)-self-concordant, f(X) = − ldetX is O(1)-compatible with this
barrier, and the Newton direction required on each iteration can be computed in only
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O(m3) operations. This reduces the complexity of finding an e−ε-maximal inscribed
ellipsoid for P to (2).

The approach we take here uses the family of barriers (8) as in [9] but avoids
solving the sequence of problems P (yk). In this way we reduce the computation
required for each Newton step to O(m3) operations but avoid the factor ln((n lnR)/ε)
in (2). We also show that “pre-rounding” P by first computing an approximation of
the analytic center of P can be used to further reduce the effect of the parameter R,
resulting in the complexity (4).

4. Main stage. Let G denote the feasible region of (6), and for y ∈ Int(P) let
G(y) denote the feasible region of P (y), from (7). For (x,X) ∈ Int(G(y)) and t ≥ 1
let

Ft(y;x,X) = −t ldetX −
m∑
i=1

ln
(
(bi − aTi y)(bi − aTi x)

)
(9)

−
m∑
i=1

ln
(
(bi − aTi y)(bi − aTi x)− aTi Xai

)
.

It is then straightforward to show that for any y ∈ Int(P ), Ft(y; ·, ·) is strongly self-
concordant on Int(G(y)). In working with Ft(y;x,X), we consider the components of y
to be fixed parameters, while those of (x,X) are variables. Let [pt(y;x,X), Pt(y;x,X)]
denote the Newton direction for Ft(y; ·, ·) at (x,X), and let λt(y;x,X) be the corre-
sponding Newton decrement. In this section we describe and analyze the “main stage”
of our barrier algorithm for obtaining an e−ε-maximal ellipsoid. The main stage is ini-
tialized with t0 = 1 and a point (x0, X0) such that x0 ∈ Int(P), (x0, X0) ∈ Int(G(x0)),
and λ1(x0;x0, X0) ≤ 0.15. The problem of obtaining such an initial point is consid-
ered in the next section. The main stage algorithm, described in pseudocode below, is
a variant of the standard barrier algorithm for convex optimization analyzed in [12].
The novelty of the algorithm here is that the Newton direction used on each inner
iteration is obtained from a barrier function Ft(x; ·, ·) that depends on the current x.

Algorithm 1 (Main stage for MVIE).
Given k = 0, x0, X0, t0 = 1, tmax, θ > 0.
Do until tk ≥ tmax (outer iteration)

t = tk+1 = (1 + θ)tk, x = xk, X = Xk.
Do until λt(x;x,X) ≤ 0.15 (inner iteration)

p = pt(x;x,X), P = Pt(x;x,X),
x = x+ (α/2)p, X = X + αP .

End
xk+1 = x,Xk+1 = X, k = k + 1.

End
The steplength α on each inner iteration can be taken to be any value that

produces at least the descent in Ft(·; ·, ·) obtained using α = 1/(1 + λt(x;x,X)); see
Lemma 4.3 below. The use of α/2 in the step for x may seem strange at first sight but
is a simple consequence of the use of the direction p = pt(x; ·, ·) based on Ft(x; ·, ·).
In particular, note that, for each i,

(bi − aTi x)(bi − aTi (x+ αp)) = (bi − aTi x)
2 − α(aTi p)(bi − aTi x),(

bi − aTi

(
x+

α

2
p
))2

= (bi − aTi x)
2 − α(aTi p)(bi − aTi x) + α2 (a

T
i p)

2

4
.
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As a result, using x+ = x + (α/2)p, X+ = X + αP in a step from (x;x,X) to
(x+;x+, X+) has the same first-order effect on Ft(·; ·, ·) as using x++ = x+αp and a
step to (x;x++, X+).

Our analysis of the main stage algorithm for MVIE is based on the well-known
analysis of the barrier algorithm from [12] (see also [4]). The following result facilitates
the use of directions based on the family of barrier functions Ft(y; ·, ·).

Lemma 4.1. Suppose that x and y are interior points of P, and let f(X) =
− ldetX, G(y, x) = {X � 0 | aTi Xai ≤ (bi − aTi y)(bi − aTi x), i = 1, . . . ,m}. Define
φ(y, x) = minX∈G(y,x) f(X) and φt(y, x) = minX∈G(y,x) Ft(y;x,X), t ≥ 1. Then

1. φ(y, x) ≤ 1
2 [φ(y, y) + φ(x, x)],

2. φt(y, x) ≤ 1
2 [φt(y, y) + φt(x, x)].

Proof. Part 1 is proved in [9, p. 144], and we use a similar argument to prove
part 2 here. Assume that X � 0 is the minimizer of Ft(x;x, ·) and that Y � 0
is the minimizer of Ft(y; y, ·). By a change of coordinates we may assume without
loss of generality that X and Y are diagonal. For each i = 1, . . . ,m the inequalities
aTi Xai ≤ (bi − aTi x)

2 and aTi Y ai ≤ (bi − aTi y)
2 together imply that

aTi (XY )1/2ai ≤ ‖X1/2ai‖ ‖Y 1/2ai‖(10)

= [(aTi Xai)(a
T
i Y ai)]

1/2

≤ (bi − aTi x)(bi − aTi y)

and ldet(XY )1/2 = (1/2)(ldetX + ldetY ). To prove that φt(y, x) ≤ 1
2 [φt(y, y) +

φt(x, x)], it then suffices to show that, for each i = 1, . . . ,m,

− ln ((bi − aTi x)(bi − aTi y)− aTi (XY )1/2ai
)

≤ −1
2
ln
(
(bi − aTi x)

2 − aTi Xai
)− 1

2
ln
(
(bi − aTi y)

2 − aTi Y ai
)
,

which is equivalent to(
(bi − aTi x)(bi − aTi y)− aTi (XY )1/2ai

)2
(11)

≥ ((bi − aTi x)
2 − aTi Xai

) (
(bi − aTi y)

2 − aTi Y ai
)
.

Using the first inequality in (10), to prove (11) it suffices to show that

(
(bi − aTi x)(bi − aTi y)− [(aTi Xai)(a

T
i Y ai)]

1/2
)2

≥ ((bi − aTi x)
2 − aTi Xai

) (
(bi − aTi y)

2 − aTi Y ai
)
,

which reduces to [(bi − aTi x)(a
T
i Y ai)

1/2 − (bi − aTi y)(a
T
i Xai)

1/2]2 ≥ 0.
We now use Lemma 4.1 and standard results on self-concordant functions to

bound the possible reduction in Ft(·; ·, ·) and f(·) when the Newton decrement is
sufficiently small.

Lemma 4.2. Suppose that t > 1, x ∈ Int(P), (x,X) ∈ Int(G(x)), and λt(x;x,X)
≤ λ ≤ 1/3. Let δ = δ(λ) = λ2/(1− 5.0625λ2). Then

1. Ft(y; y, Y ) ≥ Ft(x;x,X)− 2δ for all (y, Y ) ∈ G.
2. f(X) ≤ fmin + [12m+ 2δ]/(t− 1).

Proof. From part 1 of Lemma 2.2, we have

Ft(x; y, Y ) ≥ Ft(x;x,X)− δ(12)
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for any (y, Y ) ∈ G(x). Part 2 of Lemma 4.1 then implies that, for any y ∈ Int(P),
φt(y, y) ≥ 2φt(y, x)− φt(x, x)

≥ 2(Ft(x;x,X)− δ)− Ft(x;x,X)

= Ft(x;x,X)− 2δ,
which proves part 1. Next, note that Ft(x;x,X) = (t− 1)f(X) + F1(x;x,X), where
F1(x; ·, ·) is a (2m + n)-self-concordant barrier for G(x). From (12) and a standard
argument (see, for example, [12, p. 75]) we conclude that, for all (y, Y ) ∈ G(x),

f(Y ) ≥ f(X)− 2(2m+ n) + δ

t− 1 ,

and therefore φ(x, y) ≥ f(X)− (6m+ δ)/(t− 1) for all y ∈ Int(P), since m > n. Part
1 of Lemma 4.1 then implies

φ(y, y) ≥ 2φ(y, x)− φ(x, x)

≥ 2
(
f(X)− 6m+ δ

t− 1
)
− f(X)

= f(X)− 12m+ 2δ

t− 1 ,

which proves part 2.
The next lemma considers the effect of increasing t on the Newton decrement for

Ft(x;x,X), and the reduction in Ft(·; ·, ·) that can be assured if the Newton decrement
is not sufficiently small.

Lemma 4.3. For t ≥ 1 let λt(y;x,X) be the Newton decrement for Ft(y; ·, ·) at
(x,X).

1. Suppose that λt(x;x,X) ≤ .15, and let t+ = (1 + θ)t, θ ≥ 0. Then λt+(x;x,
X) ≤ .15(1 + θ) +

√
2mθ.

2. Suppose that λt(x;x,X) = λ > .15. Let α = 1/(1+λ), x+ = x+(α/2)pt(x;x,
X), X+ = X + αPt(x;x,X). Then (x+, X+) ∈ Int(G), and Ft(x

+;x+, X+) ≤
Ft(x;x,X)− 0.01.

Proof. Part 1 is proved in [4, Lemma 2.25]. Since Ft(x; ·, ·) is strongly self-
concordant for t ≥ 1, part 2 of Lemma 2.2 implies that if x++ = αpt(x;x,X), then
(x++, X+) ∈ Int(G(x)) and

Ft(x;x
++, X+) ≤ Ft(x;x,X)− (λ− ln(1 + λ)) ≤ Ft(x;x,X)− 0.01.(13)

It is also easy to see that, for any x and y in P, and i = 1, . . . ,m,

(bi − aTi x)(bi − aTi y) ≤
(
bi − aTi

(x+ y)

2

)2

,

and therefore if (y, Y ) ∈ G(x), then

Ft

(
x+ y

2
;
x+ y

2
, Y

)
≤ Ft(x; y, Y ).(14)

Part 2 is completed by combining (13) and (14), with (y, Y ) = (x++, X+).
We can now combine Lemmas 4.2 and 4.3 to obtain the final complexity result

for the main stage.
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Theorem 4.4. Let θ = 0.07/
√
m. Then the main stage algorithm (Algorithm

1) requires O(1) inner iterations per outer iteration. Moreover, for tmax = O(m/ε)
the algorithm terminates with an e−ε-maximal ellipsoid in O(m.5 ln(m/ε)) outer iter-
ations, requiring a total of O(m3.5 ln(m/ε)) operations.

Proof. From part 1 of Lemma 4.3, at the start of each sequence of inner iterations
we have

λtk+1
(xk;xk, Xk) ≤ .15

(
1 +

.07√
m

)
+ .1 < 0.26.

Part 1 of Lemma 4.2 then implies that, for any (x,X) ∈ G,
Ftk+1

(x;x,X) > Ftk+1
(xk;xk, Xk)− .21,

and from Part 2 of Lemma 4.3 there can be at most 20 inner iterations on each outer
iteration.

From part 2 of Lemma 4.2, to obtain an e−ε-maximal inscribed ellipsoid, it suffices
to terminate the algorithm using tmax = O(m/ε), which requires O(m.5 ln(m/ε)) outer
iterations using θ = .07/

√
m. Finally, it can be shown using a small modification of

the argument used in [9, section 6] that each inner iteration can be executed in O(m3)
operations.

To close this section we note two details regarding the definition of Ft(y;x,X),
from (9). First, it would be more “standard” to replace the term −t ldetX with
−(t + 1) ldetX, and to work with t ≥ 0 instead of t ≥ 1. However, in this case the
main stage algorithm must be initialized at a sufficiently large t0 > 0, which would
unnecessarily complicate the analysis of the preliminary stage in the next section.
Second, the analysis of this section does not require the term

−
m∑
i=1

ln
(
(bi − aTi y)(bi − aTi x)

)
(15)

in (9), and in fact this term slightly degrades the theoretical performance of the main
stage algorithm. However, (15) is very helpful for the analysis of the preliminary
stage.

5. Preliminary stage. In this section we consider the preliminary stage of our
barrier algorithm for the MVIE problem. The goal of the preliminary stage is to
produce the initial point (x0, X0) required by the main stage algorithm of the previous
section (Algorithm 1). Our preliminary stage is based on the general preliminary
stage described in [12, section 3.2.3], except that we work with directions based on
F1(y;x,X) so as to keep the work per iteration to O(m

3).
The preliminary stage is initialized at x0 = 0 and a suitable X0 to be described

below. Let

c = −∇xF1(0; 0, X0)
T = −

m∑
i=1

(
bi
∆i,0

+
1

bi

)
ai,(16a)

C = −∇XF1(0; 0, X0) = X−1
0 −

m∑
i=1

1

∆i,0
aia

T
i ,(16b)

where ∆i,0 = b2i − aTi X0ai. For t ≤ 1 define the preliminary stage barrier function
F 0
t (y;x,X) = t(cT (x+ y) + C •X) + F1(y;x,X).
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Let [p0
t (y;x,X), P

0
t (y;x,X)] denote the Newton direction for F

0
t (y; ·, ·) at (x,X),

and λ0
t (y;x,X) the corresponding Newton decrement. Note that, by construction,

λ0
1(0; 0, X0) = 0. The preliminary stage algorithm, given below, is very similar to the
main stage, except that the preliminary stage uses F 0

t (·; ·, ·), and t is decreased rather
than increased on each outer iteration.

Algorithm 2 (Preliminary stage for MVIE).
Given k = 0, x0 = 0, X0, t0 = 1, tmin, θ > 0.
Do until tk ≤ tmin (outer iteration)

t = tk+1 = (1− θ)tk, x = xk, X = Xk.
Do until λ0

t (x;x,X) ≤ 0.15 (inner iteration)
p = p0

t (x;x,X), P = P 0
t (x;x,X),

x = x+ (α/2)p, X = X + αP .
End
xk+1 = x,Xk+1 = X, k = k + 1

End
To analyze the preliminary stage, we require an extension of part 2 of Lemma 4.1

that applies to F 0
t (y;x,X). This turns out to be straightforward under the assumption

that C � 0.
Lemma 5.1. For interior points x and y of P, let φ0

t (y, x) = minX∈G(y,x) F
0
t (y;x,

X), 0 < t ≤ 1. Assume that C � 0. Then φ0
t (y, x) ≤ 1

2 [φ
0
t (y, y) + φ0

t (x, x)].
Proof. The proof is identical to the proof of part 2 of Lemma 4.1. Note that

the change of coordinates that simultaneously diagonalizes X and Y preserves the
semidefiniteness of C. After this change of coordinates, we have

C •X =

m∑
i=1

CiiXii, C • Y =
m∑
i=1

CiiYii, C • (XY )1/2 =

m∑
i=1

Cii
√
XiiYii,

where Cii ≥ 0, i = 1, . . . ,m. It immediately follows that C • (XY )1/2 ≤ (1/2)(C •
X + C • Y ).

For C � 0 and a given value of tmin, the analysis of the preliminary stage is
very similar to the analysis of the main stage given in the previous section, and it is
omitted here. The final complexity result has the following form.

Theorem 5.2. Assume that C � 0. Then for θ = η/
√
m, where η > 0 is an

appropriate positive constant, the preliminary stage requires O(m.5 ln(1/tmin)) outer
iterations, O(1) inner iterations per outer iteration, and a total of O(m3.5 ln(1/tmin))
operations.

To complete the analysis of the preliminary stage, we must show that X0 can
be chosen so that C � 0 and characterize the value tmin so that termination of the
preliminary stage produces a suitable initial point for the main stage.

Lemma 5.3. Assume that B(0, 1) ⊂ P, and let X0 =
1

m+1I. Then C � 0.
Proof. By the assumption that B(0, 1) ⊂ P, we must have bi ≥ ‖ai‖, i = 1, . . . ,m.

Then, for each i,

∆i,0 = b2i − aTi X0ai = b2i −
1

m+ 1
‖ai‖2 ≥ b2i

m

m+ 1
,(17)

and

C � (m+ 1)I − m+ 1

m

m∑
i=1

1

b2i
aia

T
i � (m+ 1)

(
I − 1

m

m∑
i=1

1

‖ai‖2 aia
T
i

)
� 0
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follows from (16b).
It remains to obtain a lower bound on the required value of tmin. To this end,

note that for any strongly self-concordant function F (·) defined on the interior of a
compact, convex set G ⊂ �N , the Newton decrement λ(x) at x ∈ Int(G) is equal to
the solution value in the optimization problem

max DF (x)[h]

s.t. D2F (x)[h, h] ≤ 1.
It follows from this characterization, and from the fact that F 0

t (y;x,X) = t(cTx +
cT y + C •X) + F1(y;x,X), that, for any (x,X) ∈ Int(G),

λ1(x;x,X) ≤ λ0
t (x;x,X) + tv(x,X),(18)

where

v(x,X) =max cTh+ C •H(19)

s.t. D2F1(x;x,X)[(h,H), (h,H)] ≤ 1.
Thus, to obtain a lower bound on the required value tmin, we require an upper bound
for v(·, ·).

Lemma 5.4. Assume that B(0, 1) ⊂ P ⊂ B(0, R), and let X0 =
1

m+1I. Then at

any (x,X) ∈ Int(G), v(x,X) ≤ (4 +√n)(m+ 1)R2.
Proof. It is straightforward to compute (see, for example, [9]) that

D2F1(x;x,X)[(h,H), (h,H)] = vec(H)T (X−1 ⊗X−1)vec(H) +

m∑
i=1

1

s2i
(aTi h)

2

+

m∑
i=1

1

∆2
i

(aTi Hai + sia
T
i h)

2,(20)

where si = bi − aTi x and ∆i = (bi − aTi x)
2 − aTi Xai. From the assumption that

P ⊂ B(0, R) and from the relationship between (5) and (6), we must have X  R2I,
and thus X−1 � (1/R2)I and X−1 ⊗X−1 � (1/R4)I (see [5, p. 252]). Therefore

vec(H)T (X−1 ⊗X−1)vec(H) ≥ (1/R4)‖H‖2

for any H. From (20), if (h,H) is feasible in (19), then we clearly have ‖H‖2 ≤ R4,
and thus

C •H ≤ ‖C‖‖H‖ ≤ (m+ 1)
√
nR2,(21)

since 0  C  X−1
0 . In addition, the fact that P ⊂ B(0, R) implies that for any

h �= 0 there is an index i = i(h) such that aTi h/‖h‖ ≥ bi/R, implying that bi ≤ R‖ai‖,
and aTi h ≥ bi‖h‖/R ≥ ‖ai‖ ‖h‖/R. For this same index it must also be that si =
bi− aTi x ≤ bi+R‖ai‖ ≤ 2R‖ai‖. Combining these facts, we conclude that, for any h,

m∑
i=1

1

s2i
(aTi h)

2 ≥
(

1

2R‖ai(h)‖
)2(‖ai(h)‖ ‖h‖

R

)2

=
‖h‖2
4R4

.

Therefore if (h,H) is feasible in (19), it must be that ‖h‖2 ≤ 4R4. Moreover, from
(17) we have

bi
∆i,0

+
1

bi
≤ 2m+ 1

mbi
<
2(m+ 1)

m‖ai‖
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for each i, implying that ‖c‖ ≤ 2(m + 1). We conclude that if (h,H) is feasible in
(19), then

cTh ≤ ‖c‖ ‖h‖ ≤ 4(m+ 1)R2.(22)

The proof is completed by combining (21) and (22).
Theorem 5.5. Assume that B(0, 1) ⊂ P ⊂ B(0, R), and let X0 =

1
m+1I. Then

for 1/tmin = O(
√
nmR2) the preliminary stage terminates with an (x,X) having

λ1(x;x,X) ≤ .26, using a total of O(m3.5 ln(mR)) operations.
Proof. This follows immediately from Theorem 5.2, (18), and Lemma 5.4.
Given (x,X) with λ1(x;x,X) ≤ .26, using at most 20 inner iterations of the

main stage algorithm (see the proof of Theorem 4.4), we can obtain (x,X) having
λ1(x;x,X) ≤ .15, as required to initialize the main stage.

Note that the second term on the right-hand side of (20) arises from the presence
of (15) in the definition of Ft(·; ·, ·), and this term is responsible for the bound (22)
used in the proof of Theorem 5.2. Without (15) we would be forced to rely on the
third term of (20) to bound cTh. Such an analysis may be possible but appears to
require that si be bounded away from zero for each i. It is interesting to note that a
similar issue appears in the analysis of [9]; see the proof of [9, Theorem 3].

Combining Theorems 4.4 and 5.5, we immediately obtain the overall complexity
bound (3). Note that the parameter R only appears in the complexity bound for
the preliminary stage. We next show that the effect of R can be reduced by first
computing an approximation of the ordinary analytic center of P.

The analytic center of P is the minimizer of the logarithmic barrier function

F (x) = −
m∑
i=1

ln(bi − aTi x).(23)

Let λ(x) be the Newton decrement for F (·) at x. It is then well known [12, section
3.2.3] that, under the assumption that B(0, 1) ⊂ P ⊂ B(0, R), a point x with λ(x) <
.2 can be computed using O(m.5 ln(mR)) damped Newton steps. Moreover, it is
straightforward to show (for example, using a small modification of the proof of [2,
Lemma 3.1]) that, for such an x,

E(x,∇2F (x), 1) ⊂ P ⊂ E(x,∇2F (x), 1.25m),

where for a positive definite matrix H, E(x,H, r) = {y | (y − x)TH(y − x) ≤ r2}.
Using a change of coordinates (that scales volume by a constant factor), we can then
move x to the origin and obtain R = 1.25m. Finally, by using “partial updating” of
the Newton equations required on each iteration, the total complexity of obtaining
the approximate analytic center x is

O((mn2 +m1.5n) ln(mR))

operations; this complexity is comprised of a total of O(m ln(mR)) updating steps,
each requiringO(n2) work, andO(mn) other operations per iteration (see [12, Chapter
8] or [4, Chapter 4]). It follows that, by first computing an approximation of the
analytic center of P, we reduce to (4) the overall complexity of computing an e−ε-
maximal ellipsoid. It is worth noting that the technique described here can also be
used to reduce the effect of R on the complexities of previous algorithms for the MVIE
problem; see, for example, the methods of [11, 12, 9]. Finally, in the application to
the inscribed ellipsoid method, R = O(n) holds without loss of generality [14].
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Abstract. An algorithm for efficient solution of optimal control problems with pointwise con-
straints is introduced. It is based on an active set strategy using primal as well as dual variables.
Under certain assumptions a decrease of an appropriately chosen merit function and convergence of
the algorithm are proved. Numerical examples for a parabolic optimal control problem demonstrate
the efficiency of the proposed method for control-constrained problems.
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1. Introduction. In this paper we discuss an active set strategy for the solution
of infinite dimensional quadratic optimal control problems with linear equality con-
straints and pointwise affine inequality constraints. The active set strategy simultane-
ously uses primal and dual variables and differs significantly from active set strategies
that involve primal variables only; see [17], for example. For control-constrained prob-
lems the practical behavior of this strategy is characterized by infeasible iterations.
Often only the last iteration is feasible. The algorithm stops at a feasible and optimal
point.

To specify the problem, let Y and U be Hilbert spaces corresponding to the state-
and control space of a controlled dynamical system, and assume that U has the form
U = L2(Σ), where Σ is a bounded set in R

n. We investigate the optimal control
problem involving control constraints:

min F (y, u) =
1

2
‖y − yd‖2Y +

µ

2
‖u‖2U(1.1)

subject to

y = Su+ f(1.2)

and

u ∈ Uad = {u ∈ U = L2(Σ) : a ≤ u(x) ≤ b a.e. in Σ},(1.3)

where f, yd ∈ Y , µ > 0, and −∞ ≤ a < b ≤ ∞ and at least a or b is finite.
Throughout, it is assumed that S : U → Y is a linear and compact operator.

The theory to be developed can easily be extended to more general quadratic
functionals and to box constraints that are functions. In [1] we considered a specific
case of problem (1.1)–(1.3), in which the mapping S arises from an elliptic optimal
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control problem with distributed control. In the present paper we extend the results
from [1] to the situation in which the relationship between controls and outputs is
described by (1.2). Moreover, the present analysis goes significantly beyond that of
[1] because strong convergence of the iterates is proved. In [1], sufficient conditions
for the strict decay of the costs were given, but convergence of the control could be
proved only for discretized finite dimensional problems.

While we hope that the results are interesting in their own right, one major
application is in the context of sequential quadratic programming (SQP-) techniques.
These methods are by now well established for solving general nonlinear optimal
control problems; see, for instance, Heinkenschloss and Tröltzsch [8], Kelley and Sachs
[10], Kunisch and Sachs [14], Tröltzsch [21], and the references therein. The SQP-
algorithm is sequential, and each of its iterations requires the solution of a quadratic
minimization problem subject to linearized constraints. If these auxiliary problems
contain inequality constraints with infinite dimensional image space, their efficient
algorithmic solution is still a significant challenge.

Let us briefly note some alternative approaches to the numerical treatment of con-
strained optimal control problems. Projected gradient and projected Newton methods
are treated in [18], [19] and [11], [12], respectively. In [22], affine scaling methods are
analyzed for optimal control problems with Lp-bounds. Trust region methods for
projected gradient and projected Newton methods are studied in [13].

Our primary focus, however, is different from that of most of the above-mentioned
papers. The algorithm that we propose is rather direct; its computational efficiency
and convergence proof do not rely on a globalization strategy. It is motivated by a
generalized Moreau–Yosida-type approximation of the constraints. For unilaterally
constrained problems the algorithm coincides with the dual active set strategy pro-
posed in [7]. For the latter, local quadratic convergence for semidiscretized optimal
control problems governed by ordinary differential equations is proved in [7].

The paper is organized as follows. In section 2 the optimality system for control-
constrained problems is given in a form that is suggestive for the proposed algorithm.
Section 3 contains the formulation of the algorithm and its basic properties. The
global convergence analysis is presented in section 4, and numerical results are given
in section 5.

2. Regularization and optimality system. In this section an optimality sys-
tem for (1.1)–(1.3) that will be suggestive for the proposed algorithm is derived. The
optimal control problem (1.1)–(1.3) can be equivalently expressed as

(P)

{
min F (y, u) + IUad(u),

u ∈ L2(Σ), y = Su+ f,

where IUad :L
2(Σ)→ R ∪ {∞} is the indicator function of Uad given by

IUad(u) =

{
0 if u ∈ Uad,

∞ otherwise.

In contrast to (1.1)–(1.3), problem (P) does not contain explicit inequality con-
straints. The cost functional, however, is not differentiable.

We next regularize (P) by smoothing IUad appropriately. Following [9], we define
for a proper, lower semicontinuous function ϕ : H 
→ R∪{∞} the generalized Moreau–
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Yosida approximation

ϕc(u, λ) = inf
v∈H

{
ϕ(u− v) + (λ, v)H +

c

2
‖v‖2H

}
.

Here H denotes a Hilbert space, (·, ·)H stands for the inner product in H, λ ∈ H, and
c > 0. It is known that the mapping u 
→ ϕc(u, λ) is differentiable, with Lipschitz
continuous derivative given by

ϕ′
c(u, λ) = A1/c

(
u+

1

c
λ

)
,

where the prime denotes the differentiation with respect to u. The operator Aγ ,
γ > 0, denotes the Yosida approximation to the subdifferential ∂ϕ = A given by
Aγ = 1

γ (I − Jγ), with Jγ = (I + γA)−1 (see [5]).

We apply this procedure for H = L2(Σ) and ϕ = IUad . To characterize the
derivative of IUad , we introduce the projection P : R 
→ R by

P (r) =




r if a ≤ r ≤ b,
a if r < a,
b if r > b.

Lemma 1. For every λ ∈ L2(Σ) and c > 0 the derivative of IUad,c is given by

I ′Uad,c(u, λ) = c

(
u+

1

c
λ− P

(
u+

1

c
λ

))
.

For a proof we refer to Bertsekas [3] or to [9], for instance.
To derive a first form of the optimality system, we formulate the regularized

problem with λ = 0 and c > 0:

(Pc)

{
min F (y, u) + IUad,c(u, 0),

u ∈ L2(Σ), y = Su+ f.

Clearly (Pc) has a unique solution (yc, uc) ∈ Y × U for every c > 0. Identifying
the dual space of Y with itself, we denote by S∗ : Y → U the adjoint of S. The
adjoint state p ∈ U is defined by

p = S∗(yd − y).(2.1)

Due to the differentiability of IUad,c, the optimality system for (Pc) is found to be

yc = Suc + f,
pc = S∗(yd − yc),
pc = µuc + c(uc − P (uc)).


(2.2)

Next we pass to the limit as c→∞. Since µ > 0, the set {‖uc‖U}c≥1 is bounded.
Consequently, {‖yc‖Y }c>0 and {‖pc‖U}c>0 are precompact in Y and U . Hence there
exist (y∗, p∗) ∈ Y × U such that

(yc, pc)→ (y∗, p∗) in Y × U(2.3)

on a subsequence with respect to c, which is again denoted by c.
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In the following lemma it is shown that {uc}c>0 is a Cauchy sequence in L2(Σ),
provided that {pc}c>0 is a Cauchy sequence in L2(Σ). This implies the existence of
u∗ ∈ L2(Σ) such that uc → u∗ in L2(Σ). For the statement and proof of the lemma
we assume that −∞ < a < b < ∞. The cases in which a = −∞ or b = ∞ can be
treated with minor modifications.

Lemma 2. Let 0 < c < d. Then

‖uc − ud‖L2(Σ) ≤ 1

µ
‖pc − pd‖L2(Σ) +

1

c+ µ
(‖pc‖L2(Σ) + µmax(|a|, |b|)).

Proof. Note that, as a consequence of (2.2),

uc(x) =




1
µpc(x) if a ≤ uc(x) ≤ b (µa ≤ pc(x) ≤ µb),
pc(x)+ca
µ+c if uc(x) < a (pc(x) < µa),

pc(x)+cb
µ+c if uc(x) > b (pc(x) > µb),

(2.4)

pointwise a.e. We define the real valued function

hc(z) =




z
µ if µa ≤ z ≤ µb,
z+ca
µ+c if z < µa,
z+cb
µ+c if z > µb

and observe that

|hd(z1)− hd(z2)| ≤ 1

µ
|z1 − z2|

for all z1, z2. Furthermore, we find

|hc(z1)− hd(z1)| ≤ d− c

(µ+ c)(µ+ d)
min(|z1 − µa|, |z1 − µb|).

These inequalities imply the estimate

|hc(z1)− hd(z2)| ≤ 1

µ
|z1 − z2|+ 1

µ+ c
min(|z1 − µa|, |z1 − µb|).

Using min(|z1 − µa|, |z1 − µb|) ≤ |z1|+ µmax(|a|, |b|), the assertion follows.
We next pass to the limit in (2.2) and obtain

y∗ = Su∗ + f,
p∗ = S∗(yd − y∗),
p∗ = µu∗ + λ∗,


(2.5)

where λ∗ is defined through c(uc − P (uc)) → λ∗ in L2(Σ) for c → ∞. An easy
investigation shows that the Lagrange multiplier λ∗ satisfies the following properties:

λ∗(t, x) = 0 if µa ≤ p∗(t, x) ≤ µb,
λ∗(t, x) < 0 if p∗(t, x) < µa,
λ∗(t, x) > 0 if p∗(t, x) > µb.

Similarly one verifies, utilizing (2.4), that

λ∗(x) = 0 if a < u∗(x) < b,
λ∗(x) ≤ 0 if u∗(x) = a,
λ∗(x) ≥ 0 if u∗(x) = b.


(2.6)
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Note that (2.6) can be expressed as λ∗ ∈ ∂IUad,c, where ∂ stands for the subdiffer-
ential. This differential inclusion is not a convenient starting point for the construction
of a numerical algorithm. By a general result of convex analysis (see, e.g., [9]), the
differential inclusion can equivalently be expressed as an equation for λ∗ given by

λ∗ = I ′Uad,c(u
∗, λ∗)

for each c > 0. In view of Lemma 1, this is equivalent to

λ∗ = c

(
u∗ +

1

c
λ∗ − P

(
u∗ +

1

c
λ∗
))

(2.7)

for each c > 0. Note that the equivalence between (2.6) and (2.7) can also be verified
by a direct computation. The optimality system for (P) can now be specified.

Proposition 1. A necessary and sufficient condition for the optimality of u∗

with associated state y∗ is the existence of (p∗, λ∗) ∈ U×U such that (2.5), (2.7) hold
for (u∗, y∗, p∗, λ∗).

Proof. Let us observe that

IUad,c(x, 0) =




c
2 (x− b)2 if x > b,

0 if a ≤ x ≤ b,
c
2 (x− a)2 if x < a.

(2.8)

Utilizing this fact, we argue that the limit u∗ of every convergent subsequence of
solutions {uc} to (Pc) is a solution of (P). In fact,

F (yc, uc) + IUad,c(uc) ≤ F (ȳ, ū)

for every c, where ū denotes the solution to (P) and ȳ = Sū + f . Consequently,
IUad,c(uc) is bounded, and by (2.8), therefore, u∗ ∈ Uad. Continuity of F implies that

F (y∗, u∗) ≤ lim inf
c→∞ F (yc, uc) + IUad,c(uc) ≤ F (ȳ, ū),

where y∗ = Su∗+f . It follows that u∗ is a solution to (P), and by uniqueness, ū = u∗

and ȳ = y∗. The fact that (2.5), (2.7) represents a necessary optimality condition
for (P) now follows from the arguments before the statement of Proposition 1. The
uniqueness of (u∗, y∗, p∗, λ∗) is due to the fact that the solution u∗ to (P) is unique
and from the optimality system itself. The sufficiency of (2.5), (2.7) follows from a
direct computation, which is left to the reader.

3. Presentation of the algorithm. In this section we present the primal-dual
active set algorithm and discuss some of its basic properties. For this purpose we
introduce the active and inactive sets for the solution to (P) and define

A∗
+ = {x ∈ Σ : u∗(x) = b}, A∗

− = {x ∈ Σ : u∗(x) = a},

and I∗ = {x ∈ Σ : a < u∗(x) < b}.
Here and below, the set theoretic definitions are understood in the almost everywhere
sense. The proposed strategy is based on the multiplier rule (2.7). Given (un−1, λn−1),
the active sets for the new iterate are chosen according to

A+
n =

{
x ∈ Σ : un−1(x) +

λn−1(x)

c
> b

}
,(3.1)

A−
n =

{
x ∈ Σ : un−1(x) +

λn−1(x)

c
< a

}
.(3.2)
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We recall that λ∗ ≥ 0 on A∗
+, and λ∗ ≤ 0 on A∗

−. The update strategies for A+
n

and A−
n are the key ingredients of the proposed algorithm. The complete algorithm

is specified next.
Algorithm.
1. Initialization: Choose u0 and λ0, and set n = 1.
2. Determine the active sets according to (3.1), (3.2), and set In = Σ\(A+

n ∪A−
n ).

3. If n ≥ 2, A+
n = A+

n−1, A
−
n = A−

n−1, and In = In−1, then STOP.
4. Else, find (yn, pn) ∈ Y × U such that

yn = Sun + f,

pn = S∗(yd − yn),

where

un(x) =




b if x ∈ A+
n ,

a if x ∈ A−
n ,

pn
µ if x ∈ In.

5. Set λn = pn − µun, update n := n+ 1, and goto 2.
Numerical experiments show that the number of iterations required by the al-

gorithm before it stops in step 3 is rather insensitive to the choice of u0. Among
other possibilities, we tested u0 = 0 or u0 = b, as well as u0 the solution to the
unconstrained problem. We point out that the iterates of the algorithm satisfy the
complementarity condition,

(un − a)(un − b)λn = 0 a.e. on Σ,

for every n ≥ 1 and, in the case of unilateral constraints, the active set strategy is
independent of c as soon as n ≥ 2.

Note that the system of step 4 constitutes the first order optimality condition for


min F (y, u),
u ∈ U, y = Su+ f,
u = b on A+

n , u = a on A−
n ,

and hence existence of a unique solution to the equations in 4 follows. The stopping
rule of step 3 is justified next.

Theorem 1. If there exists an index n ≥ 1 such that A+
n = A+

n+1, A−
n = A−

n+1,
and In = In+1, then the algorithm stops and the last iterate satisfies

yn = Sun + f,(3.3)

pn = S∗(yd − yn),(3.4)

un =




b if x ∈ A+
n ,

a if x ∈ A−
n ,

pn
µ if x ∈ In,

(3.5)

λn = pn − µun, un ∈ Uad,(3.6)

with

λn = 0 on In, λn > 0 on A+
n , and λn < 0 on A−

n .(3.7)

Therefore the last iterate (un, yn, pn, λn) is the solution of the original optimality
system (2.5)–(2.7).
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Proof. If the assumptions are fulfilled, then the algorithm stops due to step
3. Moreover, the last iterate satisfies (3.3)–(3.6) by construction except possibly for
un ∈ Uad. Thus we have to prove un ∈ Uad and (3.7). On In we have λn = 0 due to
step 5 of the algorithm. Moreover, a ≤ un + λn

c = un ≤ b, since In = In+1. On A+
n

we get un = b and un + λn
c > b since A+

n = A+
n+1. Therefore λn > 0 on A+

n .
Analogously one argues that λn < 0 on A−

n . It follows that un ∈ Uad and (3.7)
holds. Finally, (3.7) together with the definition of un yields (2.7), with (λ∗, u∗) re-
placed by (λn, un), and (un, yn, pn, λn) satisfies the optimality system (2.5),
(2.7).

Before demonstrating the extreme efficiency of the proposed algorithm, we analyze
its convergence in the following section. For a general purpose code the algorithm must
be completed with a stopping criterion. In all the numerical examples that we tested
for parabolic control problems, some of which we present in section 5, the algorithm
self-terminated in step 3. Section 4 contains a sufficient condition for an appropriately
chosen merit function. If the control space discretized as finite dimensional space, then
this can be utilized to argue that the algorithm stops in step 3.

4. Convergence analysis. In this section we show that an appropriately chosen
augmented Lagrangian functional acts as a merit function for the proposed algorithm.
For technical simplicity we restrict ourselves to the unilateral case and choose

Uad = {u ∈ L2(Σ) : u ≤ b}.

Consequently there is only one active set An = A+
n . For c > 0 we define the augmented

Lagrange functionals

Lc(y, u, λ) = F (y, u) + (λ, gc(u, λ))L2(Σ) +
c
2‖gc(u, λ)‖2L2(Σ),

L+
c (y, u, λ) = Lc(y, u, λ

+),

where λ+ = max(0, λ) and gc(u, λ) = max(g(u),−λc ), with g(u) = u − b. For conve-
nience we henceforth replace ‖ · ‖L2(Σ) by ‖ · ‖Σ.

The proof of the following technical lemma can be obtained by a straightforward
adaptation of the proof of Lemma 3.1 of [9], for example.

Lemma 3. For all pairs (u, y) fulfilling (1.2) we have

F (yn, un)− F (y, u) = −1

2
‖y − yn‖2Y −

µ

2
‖u− un‖2Σ + (λn, u− un)An .(4.1)

Let us define the sets

Sn−1 = {x ∈ An−1 : λn−1(x) ≤ 0} and Tn−1 = {x ∈ In−1 : un−1(x) > b}.

Sn−1 is that part of the currently active set which in the next iteration will be set
inactive according to the sign of the Lagrange multiplier. Similarly, Tn−1 is that part
of the inactive set which will be set active in the next step of the iteration. We note
that

Σ = (In−1 \ Tn−1) ∪ Tn−1 ∪ Sn−1 ∪ (An−1 \ Sn−1)(4.2)

defines a decomposition of Σ into mutually disjoint subsets, and, moreover, that

In = (In−1 \ Tn−1) ∪ Sn−1, An = Tn−1 ∪ (An−1 \ Sn−1).(4.3)
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Moreover, we define

I∗n = (In−1 \ Tn−1) ∪ {x ∈ Sn−1 : un(x) ≥ b}.

In the following theorem, a sufficient condition for the decay of L+
c is established.

Theorem 2. If

µ+ γ < c < µ− µ2

γ
+

µ2

‖S∗‖2(4.4)

for some γ > 0, then L+
c (yn, un, λn) < L+

c (yn−1, un−1, λn−1) or (yn, un) = (yn−1, un−1)
and the algorithm stops.

Proof. The proof of Theorem 2 requires only small modifications of Theorem 3.1
in [1].

Remark. For our further investigations we need two inequalities, which we cite
from [1]. Analogously to inequality (3.8) in [1], we obtain

‖un − un−1‖I∗n ≤
‖S∗‖
µ
‖yn − yn−1‖Y .(4.5)

Moreover, in the proof of Theorem 3.1 of [1] it is verified that

L+
c (yn, un, λn)− L+

c (yn−1, un−1, λn−1) ≤ −cY ‖yn−1 − yn‖2Y − cU‖un−1 − un‖2Tn−1

(4.6)
with certain positive constants cY and cU .

Note that, for the choice γ = µ, condition (4.4) is equivalent to

2µ < c <
µ2

‖S∗‖2 .

So far we have given a sufficient condition for L+
c to act as a merit function for

which the algorithm has a strict descent property. In particular, this eliminates the
possibility of chattering of the algorithm: It will not return to the same active set
a second time. Our next aim is to prove strong convergence of {un, yn, pn, λn} to
{u∗, y∗, p∗, λ∗}.

Corollary 1. If (4.4) holds, the sequences {un}, {pn}, {λn} are bounded in
L2(Σ), and {yn} is bounded in Y .

Proof. Let n ≥ 2. We first investigate the term gc(un−1, λ
+
n−1) = max(un−1 −

b,−λ+
n−1/c). Since (un−1 − b)λn−1 = 0 pointwise a.e., we have gc(un−1, λ

+
n−1) ≥ 0.

Clearly, gc(un−1, λ
+
n−1) > 0 if and only if un−1 > b, which is the case if and only

if x ∈ Tn−1. It follows that gc(un−1, λ
+
n−1) = un−1 − b = un−1 − un and

(λ+
n−1, gc(un−1, λ

+
n−1))Σ +

c

2
‖gc(un−1, λ

+
n−1)‖2Σ =

c

2
‖un−1 − un‖2Tn−1

.

As a consequence we obtain

L+
c (yn−1, un−1, λn−1) = F (yn−1, un−1) +

c

2
‖un−1 − un‖2Tn−1

≥ 0.

This inequality, the structure of F , and the decrease of the merit function imply the
boundedness of the sequence {un}. From this fact the assertion follows easily.
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Corollary 2. With (4.4) holding, the sequence ‖un − un−1‖Σ tends to 0 for
n→∞.

Proof. We decompose Σ according to

Σ = I∗n ∪ Tn−1 ∪ (An−1 \ Sn−1) ∪ S−
n−1,(4.7)

where S−
n−1 = {x ∈ Sn−1:un(x) < b}. Without loss of generality we assume that n ≥

3. On An−1 \Sn−1 we have un = un−1 = b, and therefore ‖un−un−1‖An−1\Sn−1
= 0.

To investigate the set S−
n−1, note that S−

n−1 ⊂ Sn−1 ⊂ An−1 and hence un−2 +
λn−2

c > b. If un−2 = b, this implies λn−2 = pn−2−µun−2 > 0, and therefore pn−2

µ > b.

Otherwise, we have λn−2 = 0 and un−2 = pn−2

µ > b. For this reason the inequality
pn−2

µ > b holds on S−
n−1. We continue the estimation on the set S−

n−1:

‖un − un−1‖S−
n−1

= ‖b− un‖S−
n−1
≤
∥∥∥∥pn−2

µ
− pn

µ

∥∥∥∥
S−
n−1

≤ ‖S
∗‖
µ
‖yn−2 − yn‖Y .

In the following estimate, we use (4.5) and (4.7):

‖un − un−1‖2Σ = ‖un − un−1‖2I∗n + ‖un − un−1‖2Tn−1

+‖un − un−1‖2An−1\Sn−1
+ ‖un − un−1‖2S−

n−1

≤ ‖S
∗‖2
µ2
‖yn − yn−1‖2Y + ‖un − un−1‖2Tn−1

+
‖S∗‖2
µ2
‖yn−2 − yn‖2Y .

From (4.6) we deduce the existence of a constant c1 such that

‖S∗‖2
µ2
‖yn − yn−1‖2Y + ‖un − un−1‖2Tn−1

≤ c1(L
+
c (yn−1, un−1, λn−1)− L+

c (yn, unλn))

for all n ≥ 2, and consequently

‖un − un−1‖2Σ ≤ c1(L
+
c (yn−1, un−1, λn−1)− L+

c (yn, un, λn)) +
‖S∗‖2
µ2
‖yn−2 − yn‖2Y .

Moreover, there also exists a positive c2 such that

‖S∗‖
µ
‖yn−2 − yn‖Y ≤ c2

√
L+
c (yn−2, un−2, λn−2)− L+

c (yn−1, un−1, λn−1)

+ c2

√
L+
c (yn−1, un−1, λn−1)− L+

c (yn, un, λn).

Inserting this estimate into the previous one, we obtain

‖un − un−1‖2Σ ≤ c1(L
+
c (yn−1, un−1, λn−1)− L+

c (yn, un, λn))

+ 2c22(L
+
c (yn−2, un−2, λn−2)− L+

c (yn, un, λn)).

The right-hand side of this inequality tends to zero as n→∞ since the merit function
decreases and is bounded below.

Corollary 3. If (4.4) is satisfied, then the sequence ‖un−1−P (un−1+
1
cλn−1)‖Σ

tends to 0 as n→∞.
Proof. We define on Σ the function q := λn−1 − c(un−1 + 1

cλn−1 − P (un−1 +
1
cλn−1)) = −c(un−1 − P (un−1 + 1

cλn−1)). On An−1 \ Sn−1 we have un−1 = b and
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λn−1 ≥ 0, and therefore q = 0. On In−1 \ Tn−1 we find un−1 ≤ b and λn−1 = 0, and
consequently q = 0. On Sn−1 we have un−1 = b and λn−1 < 0. We therefore obtain
P (un−1 +

1
cλn−1) = un−1 +

1
cλn−1, and therefore q = λn−1 = pn−1 − µun−1. Using

pn = µun, we find

‖q‖Sn−1 = ‖pn−1 − µun−1‖Sn−1

= ‖pn−1 − pn − µ(un−1 − un)‖Sn−1

≤ ‖pn−1 − pn‖Sn−1
+ µ‖(un−1 − un)‖Sn−1

≤ ‖S∗‖‖yn−1 − yn‖Y + µ‖(un−1 − un)‖Σ.
On the remaining set Tn−1 we have λn−1 = 0 and un−1 > b, and thus q = −c(un−1−
b) = −c(un−1 − un). Consequently, we obtain

‖q‖Tn−1 = c‖un−1 − un‖Tn−1 ≤ c‖(un−1 − un)‖Σ.
Summarizing these estimates, we find

‖q‖2Σ ≤ (‖S∗‖‖yn−1 − yn‖Y + µ‖(un−1 − un)‖Σ)2 + c2‖(un−1 − un)‖2Σ.
By Corollary 2, the right-hand side of this inequality tends to 0, and the assertion
follows.

Theorem 3. If (4.4) holds, then the sequence {un, yn, pn, λn} converges in
L2(Σ)× Y × L2(Σ)× L2(Σ) to the optimal solution (u∗, y∗, p∗, λ∗).

Proof. By Corollary 1, the sequence {un, yn, pn, λn} is bounded in L2(Σ) × Y ×
L2(Σ)×L2(Σ), and therefore there exists a subsequence, denoted by the same symbol,
that converges weakly to some element (ū, ȳ, p̄, λ̄) in L2(Σ)×Y ×L2(Σ)×L2(Σ). From
Corollary 3 we know that ‖un − P (un + 1

cλn)‖Σ → 0. We investigate the projection
term P (un + 1

cλn). If λn = 0, then un = pn
µ , and

un − P

(
un +

1

c
λn

)
= un − P

(
pn
µ

)
.(4.8)

Otherwise, we have un = b and λn = pn − µb. If pnµ ≥ b, then we get

un − P

(
un +

1

c
λn

)
= un − P

(
pn
µ

)
.(4.9)

It remains to investigate the case pn
µ < b. We find P (un + 1

cλn) = P (b + pn−µb
c ) =

b+ pn−µb
c . Inserting un = b, it follows that

un − P

(
un +

1

c
λn

)
=

µb− pn
c

=
µ

c

(
un − pn

µ

)
,

and consequently

un − P

(
un +

1

c
λn

)
=

µ

c

(
un − P

(
pn
µ

))
.(4.10)

Combining (4.8)–(4.10), we find∥∥∥∥
(
un − P

(
pn
µ

))∥∥∥∥
Σ

≤ '

∥∥∥∥un − P

(
un +

1

c
λn

)∥∥∥∥
Σ

,(4.11)
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where ' = max(1, cµ ). By Corollary 3, this implies ‖(un − P (pnµ ))‖Σ → 0. The
compactness of S and the weak convergence of un → ū imply the strong convergence
of pn → p̄. Consequently un → ū strongly, and in addition

ū = P

(
p̄

µ

)
.(4.12)

From the strong convergence of un and pn we easily deduce the strong convergence of
λn and yn in L2(Σ) and Y . The iterates (un, yn, pn, λn) satisfy (2.5). Passing to the
limit, these equations are also true for (ū, ȳ, p̄, λ̄). Using the strong convergence of
{un} and {λn}, and the fact that ‖un−P (un+

1
cλn)‖Σ → 0, we obtain ū = P (ū+ 1

c λ̄),
which is equivalent to

λ̄ = c

(
ū+

1

c
λ̄− P

(
ū+

1

c
λ̄

))
.(4.13)

For that reason, (ū, ȳ, p̄, λ̄) is the unique solution of the optimality system (2.5),
(2.7).

If the control space is discretized, then the descent property of Theorem 2 can be
used to argue convergence in a finite number of steps. We assume that the control
space is approximated by a system of functions that match to the control constraints,
in the sense that the pointwise bounds of Uad can be directly imposed on the coef-
ficients in the expansion of u as is the case, for instance, for piecewise constant or
piecewise linear functions. We only discretize with respect to the control u and denote
the resulting semidiscretized problems by (Pk).

Corollary 4. Assume that (4.4) holds and that the algorithm is discretized as
mentioned above. Then the solution of the semidiscretized problem (Pk) is obtained
in finitely many steps.

Proof. Because of the discretization of the control u, there are only a finite number
of possibilities for the sets An and In. Theorem 2 implies that the algorithm does not
return to the same set except in the case in which it stops in step 3 and the solution
is found. Since there are only finitely many configurations of active and inactive sets,
this situation must occur after finitely many steps.

5. Applications and numerical experiments. The general formulation (1.1)–
(1.3) is applicable to a diverse class of optimal control problems with pointwise con-
straints on the controls.

The assumption of compactness of the control-to-observation mapping is not re-
strictive and can be established for many specific cases [15]. The case of elliptic
optimal control problems was considered in [1]. Here we argue the applicability of
our results and demonstrate the efficiency of the algorithm for constrained parabolic
control problems of the type

min
1

2
‖y(T, ·)− yd‖2L2(Ω) +

µ

2
‖u‖2L2(Σ)(5.1)

subject to

yt = ∆xy in Q,
∂y
∂n = u on Σ,

y(0, .) = 0 in Ω,

a ≤ u ≤ b,


(5.2)
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where yd ∈ L2(Ω), Q = (0, T )× Ω, and Ω is a bounded domain in R
m with sufficient

smooth boundary ∂Ω. The general theory can be applied with Σ = (0, T ) × ∂Ω,
Y = L2(Ω), f = 0, and Su = y(T, ·), where, for given u ∈ L2(Σ), we denote by
y the unique solution to (5.2). The operator S is compact. Indeed, for every u ∈
L2(Σ), (5.2) admits a unique solution y ∈ L2(0, T ;H1(Ω)) ∩ C(0, T ;L2(Ω)) with
yt ∈ L2(0, T,H1(Ω)∗). Moreover, for every ε ∈ (0, 1

2 ) there exists a constant Kε such
that

‖y(T, ·)‖Hε(Ω) ≤ Kε‖u‖L2(Σ) for all u ∈ L2(Σ);

see [20], for instance. Since Hε(Ω) embeds compactly into L2(Ω) for ε > 0, the
compactness of the operator S follows. For the numerical tests, we consider the case
a = −1, b = 1, and Ω = (0, 1) ⊂ R, with boundary condition of the form

∂y

∂n
(t, 0) = 0,

∂y

∂n
(t, 1) = u on (0, T ).(5.3)

The implementation of the algorithm requires discretization of both the control-
and the state space variables. For the sake of studying the behavior of the algorithm,
we chose independent, uniform grids for the control- and state space variables. The
discretization itself was carried out by finite differences using the standard three-
point star approximation for the Laplacian and the implicit Euler method in time.
The number of degrees of freedom is denoted by nx for the spatial direction of y, and
by nu and nt for the temporal directions of u and y. There are many possibilities
for numerically realizing the system arising in step 4 of the algorithm. For testing,
we proceeded by precomputing a matrix M1, which describes the mapping of the
control coordinates ui to the solutions of the primal equation at time T , and a second
matrix M2, which assigns to all coordinates of possible right-hand sides in the adjoint
equation their solutions on the control boundary. Once M1 and M2 are available, it
is simple to solve the discretized form of the system arising in step 4 of the algorithm.

Example 1. Here yd is chosen to be a discontinuous function

yd =

{
1 on [0, 0.5),
0 on [0.5, 1].

Note that yd is not in the range of S. In Table 1 we give the number of iterations
(It.) before the algorithm stops in step 3 for various choices of nu, nt, nx, and µ. We
observe that consistently only very few iterations are required before the algorithm
stops in a mesh-independent number of iterations. Figure 1 contains the plot of the
optimal control for µ = 0.1 and µ = 0.01. Let us emphasize that termination of the
algorithm in step 3 implies that the exact solution of the discretized problem has been
obtained.

Example 2. The data for this example are those of Example 1, except that yd = 1.
The results can be found in Table 2 and Figure 2 for µ = 0.001.

Example 3. Here we consider

min
1

2
‖y(T, ·)− yd‖2L2(Ω) +

µ

2
‖u‖2L2(Σ)(5.4)

subject to
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Table 1

µ nu nt nx It.
0.1 50 150 100 3
0.1 100 300 100 3
0.1 100 300 200 3
0.01 50 150 100 4
0.01 100 300 100 4
0.01 100 300 200 4
0.001 50 150 100 4
0.001 100 300 100 3
0.001 100 300 200 3 -1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

“0.1”
“0.01”

Fig. 1

Table 2

µ nu nt nx It.
0.1 50 150 100 4
0.1 100 300 100 3
0.1 100 300 200 4
0.01 50 150 100 5
0.01 100 300 100 5
0.01 100 300 200 6
0.001 50 150 100 5
0.001 100 300 100 5
0.001 100 300 200 5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

“u”

Fig. 2

yt = ∆xy in Q,

∂y
∂n (t, 0) = 0 on [0, T ],

∂y
∂n (t, 1) = u− y(t, 1) on [0, T ],

y(0, x) = 0 in Ω,

−1 ≤ u ≤ 1,




(5.5)

where Ω = (0, 1) and yd = 1
2 (1 − x2). This example was first published in [16] and

then also studied in [6]. Table 3 summarizes some of the results that we obtained with
our algorithm. Again, convergence is achieved within very few iterations for a wide
range of values for µ, nu, nt, nx. Figure 3 contains the optimal control for µ = 0.001.

In [6], several algorithms were tested for their behavior when applied to Example
3. The projection method described by Bertsekas [4] turned out to be the most
efficient one with respect to the number of global iterations. Our algorithm never
required more iterations than the Bertsekas algorithm. There are many similarities
between the two algorithms; for a precise comparison, we refer to the discussion in
[2]. Convergence properties of the Bertsekas algorithm applied to infinite dimensional
problems are analyzed in [11], [12]. The convergence analysis in those papers is
completely different from that in the present one.

Acknowledgment. The authors would like to thank the referees for their many
helpful comments and criticism.
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Table 3

µ nu nt nx It.
0.01 100 200 200 4
0.001 50 150 100 4
0.001 50 150 200 5
0.001 100 200 200 5
0.001 100 300 200 5
0.0001 50 150 100 5
0.0001 50 150 200 6
0.0001 100 200 200 7
0.0001 100 300 200 8

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

“u”

Fig. 3
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Abstract. This paper attempts to provide a better understanding of the facial structure of
polyhedra previously investigated separately. It introduces the notion of transitive packing and the
transitive packing polytope. Polytopes that turn out to be special cases of the transitive packing
polytope include the node packing, acyclic subdigraph, bipartite subgraph, planar subgraph, clique
partitioning, partition, transitive acyclic subdigraph, interval order, and relatively transitive sub-
graph polytopes. We give cutting plane proofs for several rich classes of valid inequalities of the
transitive packing polytope, thereby introducing generalized cycle, generalized clique, generalized
antihole, generalized antiweb, and odd partition inequalities. On the one hand, these classes sub-
sume several known classes of valid inequalities for several special cases; on the other hand, they
yield many new inequalities for several other special cases. For some of the classes we also prove a
lower bound on their Gomory–Chvátal rank. Finally, we relate the concept of transitive packing to
generalized (set) packing and covering, as well as to balanced and ideal matrices.

Key words. combinatorial optimization, polyhedral combinatorics, 0/1-polytope, Gomory–
Chvátal cut, transitive packing, independence system
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1. Introduction. Various types of packing problems and related polyhedra play
a central role in combinatorial optimization. Due to both a large variety of practical
applications and their interesting structural properties, they have received consider-
able attention in the literature; see, e.g., [3, 43] for an overview. One of the classic
examples is the node packing problem in graphs and the associated node packing
polytope. (Alternative names are vertex packing, stable set, coclique, anticlique, or
independent set problem and polytope, respectively.) The node packing problem on
a finite, undirected, loopless graph G with node weights is the problem of finding a
subset of mutually nonadjacent nodes such that the total weight of the selected subset
is maximal. If we denote by A the edge-node incidence matrix of the graph G, it can
be formulated as

maximize cx

subject to Ax � 1l,(1.1)

xu ∈ {0, 1},
where c is an arbitrary vector of weights and 1l denotes (here and henceforth) the
all-one vector of compatible dimension. The node packing polytope is defined as the
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convex hull of feasible solutions to (1.1) and has been studied in, among other works,
[26, 37, 42, 52].

The node packing problem can be extended to hypergraphs, where it reads

maximize cx

subject to Ax � pA − 1l,(1.2)

xu ∈ {0, 1},

and A is now an arbitrary 0/1 matrix (the edge-node incidence matrix of the hyper-
graph), and the ith component of the vector pA gives the number of positive entries
in row i of the matrix A. If A does not contain a zero row, the undominated rows of A
can be interpreted as the incidence vectors of the circuits of an independence system.
Hence, problem (1.2) can be seen as the problem of finding an independent set of
maximal weight. The convex hull of incidence vectors of independent sets (solutions
to (1.2)) is known as the independence system polytope. Substantial work has been
done to find classes of valid inequalities for the independence system polytope, mainly
based on the study of special configurations of the family of circuits. Among these
are, to name a few, the acyclic subdigraph polytope [25, 29], the bipartite subgraph
polytope [4], and the planar subgraph polytope [30]. We refer the reader to [20, 32]
and [1, 2, 16, 39, 45] for the study of the facial structure of the independence system
polytope in general.

In section 2, we introduce an extension of the node packing problem in hyper-
graphs, called transitive packing, by taking transitive elements into account. The
problems we consider can be described as

maximize cx

subject to Ax � pA − 1l,(1.3)

xu ∈ {0, 1},

where A is now an arbitrary 0/±1 matrix, and the ith component of the vector pA
gives the number of positive entries in row i of the matrix A. Many combinatorial
optimization problems can be modeled as transitive packing problems. We do not
(and cannot) list all problems that fit with this novel framework, but we name a
few of them that we are going to revisit later. Indeed, besides those that can be
interpreted as finding an independent set of maximal weight, there are the clique
partitioning problem [27, 28, 41], the partition problem [10], the transitive acyclic
subdigraph problem [34], the interval graph completion problem [35, 49], and the
relatively transitive subgraph problem [31, 50, 51].

One of our main purposes is to derive broad classes of valid inequalities for the
transitive packing polytope, the convex hull of feasible solutions to (1.3). In section 4,
we present generalized cycle, generalized clique, generalized antihole, generalized anti-
web, and odd partition inequalities, which are valid for the transitive packing polytope.
These classes explain and classify many known inequalities for polytopes that fit with
this general framework. Thereby, we emphasize the relations between, and the com-
mon structure of (inequalities for), different polyhedra, formerly independently stud-
ied, and we provide new insights as well as new inequalities for some of the special
polytopes that arise from certain hypergraphs and choices of transitive elements. We
show how the knowledge of structural properties of the transitive packing polytope
makes it possible to derive results for these special problems.
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We derive most of the inequalities for the transitive packing polytope by integer
rounding. This provides cutting plane proofs for many of the known inequalities
for special polytopes that have not been observed before. It may also be seen as a
guide for using certain patterns of the (initial) constraint matrix A to obtain new
inequalities in a systematic way. The latter property might be of some importance
for solving general 0/1 integer programs. Moreover, the derivation of the inequalities
may be seen as a guideline for generalizing each valid inequality for the node packing
polytope whose cutting plane proof is known.

Section 5 is concerned with an interesting subclass of the transitive packing poly-
topes, formed by those whose corresponding hypergraph is actually a graph. In sec-
tion 6, we discuss the separation problem associated with the classes of inequalities
introduced before. Finally, in section 8 we recall the strong relation between set cov-
ering and independence system polytopes, point out its extension to generalized set
covering and transitive packing polytopes, translate our results into this context, and
briefly discuss the relation of our work to 0/±1 matrices that are balanced or ideal.

Subsequent to the original introduction of transitive packing [49, 36], Borndörfer
and Weismantel [7, 8] introduced another scheme that also helps to explain and classify
inequalities within the context of a packing polytope and to get cutting plane proofs.
We refer to [48] for a discussion of similarities and differences between this scheme
and transitive packing.

2. The transitive packing polytope. A hypergraph is an ordered pair (N,H),
where N is a finite ground set, the set of nodes, andH is a collection of distinct subsets
of N , the set of (hyper)edges. We only deal with hypergraphs without loops, i.e., we
always assume that |H| � 2 for all H ∈ H. We refer to [6] for a thorough introduction
to hypergraphs. Here, we are interested in hypergraphs with additional node subsets
associated with each edge.

Definition 2.1. Let (N,H) be a hypergraph, and let tr : H → 2N be a mapping
from the set of edges to the powerset of N , with the property that tr(H) ⊆ N \ H.
We call the ordered triple (N,H, tr) an extended hypergraph, and tr(H) the set of
transitive elements associated with the edge H.

In the special case that tr(H) = ∅ for all H ∈ H, we often simply write (N,H)
instead of (N,H, tr). We are interested in packing nodes of an extended hypergraph
whereby the restrictions imposed by the edges may be compensated by picking tran-
sitive elements. This is made precise by the following definition.

Definition 2.2. Let (N,H, tr) be an extended hypergraph. A subset S of the
nodes is a transitive packing (in (N,H, tr)) if, for every H ∈ H such that H ⊆ S,
there exists a node u ∈ S ∩ tr(H).

In other words, a transitive packing S is a set of nodes that contains an edge
only if S contains at least one node from the set of transitive elements associated
with that edge. Given, in addition to (N,H, tr), a weight function c : N → Q, the
(maximum weight) transitive packing problem consists of finding a transitive packing
S ⊆ N of maximal weight c(S). As indicated in the introduction, the maximum
weight transitive packing problem is equivalent to the integer linear programming
problem

maximize cx

subject to x(H)− x(tr(H)) � |H| − 1 for all H ∈ H,(2.1)

x � 1l,(2.2)

x � 0,(2.3)

x ∈ Z
N .(2.4)
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Note that the constraint matrix of the inequalities (2.1) is the edge-node incidence
matrix of the hypergraph (N,H), with additional −1’s for the transitive elements of
the edge represented by the particular row. We call the inequalities (2.1) transitivity
constraints.

In the following, we study the transitive packing polytope PTP(N,H, tr) of the
extended hypergraph (N,H, tr), which is defined as the convex hull of the incidence
vectors of transitive packings in (N,H, tr), i.e.,

PTP(N,H, tr) := conv{χS ∈ R
N : S transitive packing in (N,H, tr)}.

In other words, PTP(N,H, tr) is equal to the integer hull of the feasible solutions to
(2.1)–(2.3). At this point, it seems reasonable to introduce a few examples to illustrate
the applicability of the results to be presented. Of course, if tr(H) = ∅ and |H| = 2
for all edges H ∈ H, a transitive packing reduces to an ordinary node packing in the
graph (N,H). However, to motivate hypergraphs and transitive elements, we show
now that the acyclic subdigraph polytope as well as the clique partitioning polytope
and the partition polytope can be obtained by special choices of the hypergraph and
the transitive elements. Other examples will be discussed in section 7.

The acyclic subdigraph polytope. An instance of the acyclic subdigraph problem
consists of a directed graph D = (V,A) and a weight function c : A → Q. The
objective is to determine a set of arcs B ⊆ A such that the digraph (V,B) is acyclic,
i.e., does not contain a directed cycle, and such that c(B) is as large as possible.
The acyclic subdigraph polytope is the convex hull of incidence vectors of acyclic arc
subsets of A. It was studied by Grötschel, Jünger, and Reinelt (see [24, 25, 29]) and
Goemans and Hall [23]. If we choose the arc set A of the digraph D as the node set of
the hypergraph, if we declare the directed cycles in D as the edges of this hypergraph,
and if we let tr(H) = ∅ for all H ∈ H, the acyclic subdigraph polytope appears as a
special transitive packing polytope.

The clique partitioning polytope. An instance of the clique partitioning problem
consists of an undirected graph G = (V,E) and a weight function c : E → Q. A
set F ⊆ E of edges is called a clique partitioning of G if there is a partition of V
into nonempty, disjoint sets W1,W2, . . . ,Wk such that the subgraph induced by each
Wi is a clique and such that F =

⋃k
i=1{{u, v} : u, v ∈ Wi, u = v}. Equivalently, a

clique partitioning is a subrelation of the symmetric relation represented by G that
is an equivalence relation, i.e., in particular transitive. The weight of such a clique
partitioning F is c(F ). The task is to determine a clique partitioning of minimal
weight. (Of course, since we do not restrict the objective function, we could have
written that we want to find a clique partitioning of maximal weight as we always
do in the context of transitive packing. However, for historical reasons we chose this
variant.) The clique partitioning polytope is the convex hull of the incidence vectors
of all clique partitionings in G. It was introduced and studied by Grötschel and
Wakabayashi [27, 28] and has recently been further investigated by Oosten, Rutten,
and Spieksma [41]. To show that it is an instance of a transitive packing polytope,
it is sufficient to deal with a graph instead of a hypergraph. Indeed, we take as the
set N of nodes the edges of G, and two nodes are adjacent (form a hyperedge) if and
only if the associated edges are incident in the original graph G. That is, the extended
hypergraph we consider is precisely the line graph of G, and the transitive element
that we attach to a pair of incident edges {u, v}, {v, w} in G is the edge {u,w} if it
exists.
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The partition polytope. An instance of the graph partitioning problem consists of
an undirected, connected graph G = (V,E), a weight function c : E → Q, and an in-
teger r � |V |. An r-partition of the node set V is a set of node subsets N1, N2, . . . , Nr

such that Ni∩Nj = ∅ (for all i = j) and ∪ri=1Ni = V . Some of the subsets Ni may be
empty. The weight of an r-partition is the total weight of the edges with end points
in two different subsets. The goal is to determine an r-partition of minimal weight.
Chopra and Rao [10] have studied polytopes for several variations of this problem. We
consider one of them here. This case arises when r = |V |. For a complete graph G,
this problem is equivalent to the clique partitioning problem. For arbitrary graphs G,
Chopra and Rao define the partition polytope as the convex hull of the incidence vec-
tors of all sets of edges in G which are not cut by an r-partition. It follows from
[10, Lemma 2.2] that the partition polytope arises as a transitive packing polytope by
taking the edges of G as the set N and by letting every (|C|− 1)-cardinality subset of
edges of a cycle C in G be the edges of the hypergraph H. The transitive set related
to such a hyperedge contains exactly the missing edge from the cycle C.

Before studying the transitive packing polytope, we shall discuss an algorithmic
aspect of the concept of transitive packings. How is (N,H, tr) given? Having in mind
problems like the acyclic subdigraph problem, it does not seem to be satisfactory to
assume that it is given as a list of hyperedges and their transitive elements. Indeed,
the number of directed cycles in a digraph can be exponential in the number of nodes.
From the point of view of polyhedral combinatorics, it rather seems to be reasonable
to assume that the linear programming problem arising from (2.1)–(2.4) by dropping
the integrality constraint (2.4) is solvable in time polynomially bounded in |N | and
the input size of c. This means, given a point x ∈ Q

N contained in the unit hypercube,
we assume that the separation problem formed by x and the class of inequalities (2.1)
is solvable in polynomial time. In particular, this guarantees that the decision version
of the transitive packing problem belongs to the class NP. Since the node packing
problem on graphs is NP-hard, the same holds for the transitive packing problem.

Let us continue with the study of the transitive packing polytope. Since the empty
set as well as all singletons of N are transitive packings, we immediately obtain the
following result.

Proposition 2.3. Let (N,H, tr) be an extended hypergraph.

(i) The transitive packing polytope PTP(N,H, tr) ⊆ R
N is full dimensional, i.e.,

dim(PTP(N,H, tr)) = |N |.
(ii) The nonnegativity constraint xu � 0 defines a facet of PTP(N,H, tr) for

each node u ∈ N .

Because of the transitive elements, it is more difficult to characterize the facet
defining inequalities of type xu � 1 for u ∈ N . Clearly, all these inequalities are facet
defining if |H| � 3 for all edges H ∈ H. But as soon as {u, v} ∈ H and tr({u, v}) = ∅,
for instance, the face induced by xu � 1 is properly contained in the facet defined
by xv � 0. But even if tr({u, v}) = ∅, it may happen that whenever u is chosen, we
cannot choose another element. While it is possible to give a concise characterization
in the absence of transitive elements, we are content with a sufficient condition in the
general case.

Lemma 2.4. Let PTP(N,H, tr) be the transitive packing polytope associated with
the extended hypergraph (N,H, tr).

(i) If tr(H) is the empty set for all edges H ∈ H such that |H| = 2, then an
inequality xu � 1 with u ∈ N defines a facet of PTP(N,H, tr) if and only if |H| � 3
for all edges H ∈ H that contain u.



340 RUDOLF MÜLLER AND ANDREAS S. SCHULZ

(ii) Let u ∈ N . If there exists for all edges {u, v} ∈ H a node w ∈ tr({u, v})
such that neither {u,w} ∈ H, {v, w} ∈ H, nor {u, v, w} ∈ H, then the inequality
xu � 1 defines a facet of PTP(N,H, tr).

Proof. In case (i), the incidence vectors of the transitive packings {u} and {u, v}
for all v ∈ N \{u} provide the needed set of linearly independent vectors. In case (ii),
we proceed as follows. Besides {u}, we first choose a set {u,w} such that {u,w} /∈ H.
(Notice that our assumptions imply the existence of such a node w.) Then, by taking
{u, v, w}, we collect all nodes v ∈ N such that {u, v} ∈ H, w ∈ tr({u, v}), {v, w} /∈ H,
and {u, v, w} /∈ H. Now, we may forget these nodes v and the node w and continue
with the remaining nodes in the same manner. Since {u, v} ∈ H for the nodes v above,
they cannot occur in the role of w. Hence, the incidence vectors of the constructed
transitive packings are linearly independent.

We illuminate Lemma 2.4 by applying it to the node packing, the acyclic sub-
digraph, the clique partitioning, and the partition polytopes. For the node packing
polytope of a graph G, (i) says that an inequality xu � 1 is facet defining for a node
u if and only if u is isolated, i.e., if G does not contain an edge incident to u. This
is a special case of the well-known fact that a clique inequality defines a facet if and
only if the clique is maximal [42]. Given a digraph D = (V,A) and an arc (u, v) ∈ A,
Lemma 2.4(i) implies that xuv � 1 defines a facet of the acyclic subdigraph polytope
of D if and only if (v, u) /∈ A. This was shown before by Grötschel, Jünger, and
Reinelt [25]. If G is a graph without isolated edges, the assumption of Lemma 2.4(ii)
is never met by an edge of the clique partitioning polytope of G. Indeed, Grötschel
and Wakabayashi [28] proved that no upper bound constraint defines a facet of this
polytope. Finally, Lemma 2.4(ii) also tells us that xe � 1 defines a facet of the
partition polytope if the edge e does not belong to any cycle of length 3.

We conclude this first section on the transitive packing polytope by observing
that a transitivity constraint x(H ′) − x(tr(H ′)) � |H ′| − 1 is dominated by x(H) −
x(tr(H)) � |H| − 1 if H ⊆ H ′ and tr(H) ⊆ tr(H ′).

3. The independence system polytope. So far we have mentioned only in the
introduction that the transitive packing problem subsumes independent set problems.
This section is intended to recall the needed definitions and to explain the relation in
detail. An independence system is a pair (N, I), with ground set N and a family I
of subsets of N , that contains the empty set and is closed under set inclusion; i.e.,
for any set I ∈ I every subset I ′ ⊆ I belongs also to I. The elements of I are
called independent sets. A subset of N that does not belong to I is called dependent,
and the minimal dependent sets (with respect to set inclusion) are the circuits of the
independence system. The collection of circuits forms a clutter, i.e., a family of sets
such that no two of them are comparable with respect to set inclusion. Since a subset
of N is independent if and only if it does not contain a circuit, an independence system
is fully characterized by the family of its circuits. Conversely, every clutter C ⊆ 2N

determines a unique independence system with ground set N and {I ⊆ N : C ⊆ I for
all C ∈ C} as the family of its independent sets. The independence system polytope
is defined as the convex hull of all incidence vectors of independent sets. It coincides
with the transitive packing polytope PTP(N,H), where tr(H) = ∅ for all H ∈ H,
and H is the set of circuits. (To be accurate, this is only true when we make the
standard assumption that all singletons are independent. Remember that we have
defined the transitive packing polytope only for hypergraphs without loops.) In the
following we will sometimes speak of independent sets instead of transitive packings, of
circuits instead of edges, and of circuit constraints instead of transitivity (or packing)



TRANSITIVE PACKING 341

constraints when dealing with the special case formed by transitive packing problem
instances without transitive elements. As an example of an independence system, we
may consider the one defined by the acyclic arc subsets of a digraph. The dicycles
are one-to-one with the circuits, and the independence system polytope is the acyclic
subdigraph polytope.

Given a hypergraph (N,H), we define its upper closure H+ and its reduction H−

as H+ := {H ′ ⊆ N : there exists an H ∈ H such that H ⊆ H ′} and H− := {H ∈ H :
there exists no H ′ ∈ H such that H ′ ⊂ H}, respectively. Notice that PTP(N,H+) =
PTP(N,H) = PTP(N,H−). These notions prove useful for characterizing the facet
defining packing constraints. Observe that for clutters, for instance the circuits of
independence systems, we have H = H−.

Theorem 3.1. Let (N,H) be a hypergraph. For H ∈ H, the inequality x(H) �
|H| − 1 defines a facet of PTP(N,H) if and only if H ∈ H− and for all u ∈ N \ H
there exists an H ′ ⊂ H with |H ′| = |H| − 1 such that H ′ ∪ {u} /∈ H+.

Proof. Necessity of the stated condition is obvious; otherwise, the face under
consideration would be the intersection of some other faces. To show sufficiency we
take first the incidence vectors of all |H| subsets of H of size |H| − 1. According to
the assumption, for each node u ∈ N \H there exists a subset H ′ of H of size |H| − 1
such that H ′∪{u} is independent. Adding the corresponding incidence vectors to our
former set completes the proof.

Theorem 3.1 implies, in particular, that all dicycle inequalities of the acyclic
subdigraph polytope are facet defining. A direct proof of this result is given in [25].

Subclasses of the classes of valid inequalities that we introduce in the next section
for the transitive packing polytope have been presented earlier for the independence
system polytope; generalized cycle, generalized clique, and generalized antihole in-
equalities by Euler, Jünger, and Reinelt [20], and generalized antiweb inequalities by
Laurent [32]. It will turn out that our inequalities are more general, even if we restrict
ourselves to the independence system polytope. Nevertheless, in order to keep the
terminology simple, we will give the new inequalities the same names and point out
the restrictions that lead to the known inequalities, respectively. So far, no cutting
plane proofs have been presented for the formerly known inequalities.

4. Valid inequalities. Let P ⊆ R
N be a rational polyhedron, for instance

the initial relaxation of PTP(N,H, tr) defined by (2.1)–(2.3). One way to produce a
characterization of the integer hull PI of P by means of linear inequalities is integer
rounding. For a thorough discussion of this topic, its history, and its applications
to integer programming and combinatorial optimization, we refer the reader to the
textbooks of Cook, Cunningham, Pulleyblank, and Schrijver [15, Chapter 6.7] and of
Nemhauser and Wolsey [38, Chapter II.1] and to Schrijver [47, Chapter 23]. Here, we
briefly review the basic definitions that will be needed later on.

If we set

P ′ := {x ∈ P : ax � β for all a ∈ Z
N , β ∈ Z with max{ax : x ∈ P} < β + 1},

then P ′ can be seen as obtained from P by one step of rounding. In particular, if
P = {x ∈ R

N : Ax � b} for an integer matrix A and integer right-hand side b, then

P ′ = {x ∈ R
N : λAx � �λb� for all vectors λ � 0 with λA ∈ Z

N}.

Obviously, the integer hull PI of P , i.e., the convex hull of the integral points in P ,
is contained in P ′. Furthermore P ′ = P if and only if P = PI. If we define P (0) := P
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and, recursively, P (t+1) := (P (t))′ for all nonnegative integers t, then PI ⊆ P (t) for all
nonnegative integers t. Schrijver [46] showed that P ′ is again a polyhedron and that
there is a nonnegative integer t such that P (t) = PI. The (Gomory–Chvátal) rank of
P is the smallest t such that P (t) = PI. Let ax � β be a valid inequality for PI. Its
depth relative to P is the smallest d such that ax � β is valid for P (d). Therefore the
rank of P equals the maximal depth, relative to P , of an inequality valid for PI.

Let Ax � b be a system of linear inequalities, and let cx � δ be an inequality.
Moreover, let c1x � δ1, c2x � δ2, . . . , cmx � δm be a sequence of linear inequalities
such that each vector ci, i = 1, . . . ,m, is integral, cm = c, δm = δ, and for i = 1, . . . ,m
the inequality cix � δ′i is a nonnegative linear combination of the inequalities Ax � b,
c1x � δ1, . . . , ci−1x � δi−1 for some δ′i with �δ′i� � δi. Such a sequence is called a
cutting plane proof of cx � δ from Ax � b, and m is the length of this proof. The
depth of the final inequality cx � δ is the depth of the proof. Every integer solution
of Ax � b satisfies cx � δ. Let P = {x : Ax � b}. Since P (t) = PI for some t, the
converse is true as soon as PI is nonempty. That is, every inequality cx � δ with c
integral and valid for PI has a cutting plane proof from Ax � b. Clearly, the length
of a cutting plane proof of a valid inequality for PI is at least its depth; however, the
length can be significantly bigger (see, e.g., [12]).

The idea of deriving cutting planes by rounding based on the exploitation of prob-
lem structure can, in particular, be used to obtain valid inequalities for the transitive
packing polytope. Thereby, we also show that many inequalities valid for the poly-
topes which arise from PTP(N,H, tr) by certain choices of (N,H, tr) have short and
insightful cutting plane proofs from the initial relaxation (2.1)–(2.3).

4.1. Generalized cycle inequalities. We first use cycles of the hypergraph
(N,H) to obtain a class of valid inequalities for the transitive packing polytope, each
of which has a cutting plane proof from (2.1)–(2.3) of length 1. Recall that a cycle in
a hypergraph is a sequence of vertices and of edges of the form (u1, H1, u2, H2, . . . , uk,
Hk, uk+1) such that the vertices u1, . . . , uk are distinct, uk+1 = u1, the edges H1, . . . ,
Hk are distinct, and for i = 1, . . . , k both ui and ui+1 are contained in Hi. We start,
however, with a few more assumptions.

Definition 4.1. Let (N,H) be a hypergraph, and let q, s, and r be positive
integers such that q � 2 and 1 � r � q − 1. For convenience, we set k := sq + r. Let
N1, . . . , Nk be a sequence of pairwise disjoint nonempty subsets of N . For i = 1, . . . , k,
let Hi ∈ H be an edge such that

⋃i+q−1
j=i Nj ⊆ Hi. (Indices greater than k are taken

modulo k + 1 and shifted by +1.) We denote by C the union of all these edges Hi,

C :=
⋃k

i=1 Hi, and by m(u) the multiplicity of a node u ∈ C in this edge collection,
i.e., m(u) := |{i ∈ {1, . . . , k} : u ∈ Hi}|. We assume that m(u) � q for all nodes
u ∈ C. Then we call the hypergraph (C, {Hi : i = 1, 2, . . . , k}) a generalized (k, q)-
cycle (contained in (N,H)).

To illuminate this definition, Figures 4.1 and 4.2 show a generalized (10, 4)-cycle
and two generalized (5, 2)-cycles, respectively. Observe that every generalized cycle is
a cycle of the hypergraph, but not vice versa. In fact, the name is a concession to the
literature, where already a substructure of the generalized cycles just introduced got
this name; see [20]. We now develop an inequality supported by a generalized cycle
and its set of transitive elements. So let (C, {Hi : i = 1, 2, . . . , k}) be a generalized

(k, q)-cycle in (N,H, tr), and assume that the set tr(C) :=
⋃k

i=1 tr(Hi) of transitive
elements does not interact with C itself, i.e., tr(Hi) ∩ C = ∅ for i = 1, . . . , k. To
simplify the notation, we denote by n(u) := |{i ∈ {1, . . . , k} : u ∈ tr(Hi)}| the
multiplicity of a node u ∈ N \C with respect to the transitive sets of the edges of the
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Fig. 4.1. A generalized (10, 4)-cycle with C =
⋃k

i=1 Ni.
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Fig. 4.2. Two generalized (5, 2)-cycles. The second one illustrates the case C ⊃ ⋃k
i=1 Ni.

cycle. Furthermore, we let �α�q be the smallest integer that is bigger than or equal
to the scalar α as well as divisible by q.

Adding the transitivity constraints associated with the edges of the generalized
(k, q)-cycle, ∑

u∈Hi
xu −

∑
u∈tr(Hi)

xu � |Hi| − 1 for i = 1, . . . , k,

an appropriate multiple of upper bound constraints,

(q −m(u))xu � q −m(u) for u ∈ C \
k⋃

i=1

Ni,

as well as an appropriate multiple of nonnegativity constraints,

−(�n(u)�q − n(u))xu � 0 for u ∈ tr(C) with n(u) ≡ 0 mod q,

and dividing the result by q, we obtain∑
u∈C

xu −
∑

u∈tr(C)

�n(u)�q
q

xu � q|C| − k

q
.
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Rounding down the right-hand side completes the proof of the following result.
Theorem 4.2. Let (N,H, tr) be an extended hypergraph, and let, for k > q,

k ≡ 0 mod q, the hypergraph (C, {Hi : i = 1, 2, . . . , k}) be a generalized (k, q)-cycle in
(N,H) such that tr(Hi) ∩ C = ∅ for i = 1, . . . , k. Then, the generalized (k, q)-cycle
inequality

∑
u∈C

xu −
∑

u∈tr(C)

�n(u)�q
q

xu � |C| −
⌈
k

q

⌉
(4.1)

is valid for the transitive packing polytope PTP(N,H, tr).
We now relate this first class of inequalities for the transitive packing polytope

PTP(N,H, tr) to the four selected examples. For the node packing polytope, we obtain
exactly the odd cycle inequalities introduced by Padberg [42]. This is true because
all edges of the (hyper)graph have size 2, and hence all sets Ni have to be singletons.
If C is the set of nodes of an odd cycle in a graph G, then the associated odd cycle
inequality reads

x(C) � |C| − 1

2
.

The Möbius ladder inequalities form a quite prominent class of facet defining in-
equalities for the acyclic subdigraph polytope. The support of any of these inequalities
is defined as follows.

Definition 4.3 (see [25]). Let C1, C2, . . . , Ck be a sequence of different dicycles
in a digraph D = (V,A) such that the following hold:

(1) k � 3 and k odd.
(2) Ci and Ci+1, i ∈ {1, 2, . . . , k − 1}, have a directed path Pi in common; C1

and Ck have a directed path Pk in common.
(3) Given any dicycle Cj, j ∈ {1, 2, . . . , k}, set Ij := {1, 2, . . . , k} ∩ ({j − 2, j −

4, j−6, . . . }∪{j +1, j +3, j +5, . . . }). (Indices greater than k are taken modulo k+1
and shifted by +1; indices less than 0 are first shifted by −1 and then taken modulo
k + 1.) Then every set (

⋃k
i=1 Ci) \ {ai : i ∈ Ij} contains exactly one dicycle (namely,

Cj), where ai, i ∈ Ij, is any arc contained in the dipath Pi.

(4) The largest acyclic arc set in
⋃k

i=1 Ci has cardinality |
⋃k

i=1 Ci| − k+1
2 .

Then the arc set M :=
⋃k

i=1 Ci is called a (k-)Möbius ladder.
From Definition 4.3(4) it follows that for any k-Möbius ladder M contained in a

digraph D the Möbius ladder inequality

x(M) � |M | − k + 1

2
(4.2)

is valid for the acyclic subdigraph polytope of D. Definition 4.3(3)–(4) seem to be
rather unhandy. There exists a large subclass, however, where these conditions are
naturally satisfied. Let C1, C2, . . . , Ck, k � 5, be a sequence of directed cycles satis-
fying (1) and (2). If no two different dicycles Ci and Cj , with j = i − 1, i + 1, share
a node, Grötschel, Jünger, and Reinelt [25] observed that the union of these dicycles
forms a Möbius ladder. Such a situation is depicted in Figure 4.3. We now prove
that this subclass is contained in the class of generalized cycle inequalities, as has
essentially been shown in the context of the independence system polytope by Euler,
Jünger, and Reinelt [20].
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Fig. 4.3. A 9-Möbius ladder.

Theorem 4.4. Let D be a digraph, and let, for k � 5, C1, C2, . . . , Ck be a
sequence of different dicycles in D satisfying Definition 4.3(1)–(2). If no two different
dicycles Ci and Cj, with j = i − 1, i + 1, have a node in common (i, j = 1, 2, . . . , k),
the Möbius ladder inequality (4.2) is contained in the class of generalized (k, 2)-cycle
inequalities for the acyclic subdigraph polytope of D.

Proof. We make use of the notation introduced in the discussion of the generalized
cycle inequalities. We choose q = 2 and let k be the number of dicycles. The sets Ni,
i = 1, 2, . . . , k, are defined by the arcs forming the dipaths Pi, respectively. For
i = 1, 2, . . . , k, the arc sets Ni and Ni+1 are contained in the hyperedge given by the

dicycle Ci+1. Observe that no arc in M =
⋃k

i=1 Ci occurs in more than two dicycles.
The claim now follows from Theorem 4.2.

Theorem 4.4 throws some light on the Möbius ladder inequalities. The way we
derived the generalized cycle inequalities explains, in particular, why the sequence of
dicycles should be odd, as was already observed by Grötschel, Jünger, and Reinelt:
“For even k, the construction does not give anything interesting” [25, p. 34]. Notice
that Theorem 4.4 remains true for those Möbius ladders where each triple of the
dicycles C1, C2, . . . , Ck does not have a common arc.

In the case of the clique partitioning polytope, we are obviously restricted to
generalized (k, 2)-cycles, as the underlying hypergraph is actually a graph, the line
graph of the given graph G = (V,E). Nevertheless, this class contains two known
classes of valid inequalities. Both are facet defining if G is a complete graph. The
first class is formed by the 2-chorded odd cycle inequalities introduced by Grötschel
and Wakabayashi [28]. Let C = {e1, e2, . . . , ek} be the set of edges of an odd cycle
in G, say ei = {ui, ui+1}, and let tr(C) = {{ui, ui+2} ∈ E : i = 1, 2, . . . , k} be its set
of 2-chords (transitive elements). (As before, indices greater than k are taken modulo
k+1 and shifted by +1.) By observing that C∩tr(C) = ∅, we may apply Theorem 4.2
and obtain the 2-chorded odd cycle inequality

k∑
i=1

x{ui,ui+1} −
k∑

i=1{ui, ui+2}∈E

x{ui,ui+2} � k − 1

2
.

However, even structures that are not cycles in G lead to generalized (k, 2)-cycle
inequalities. For k � 3 odd, assume that G contains the star formed by the sequence
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Fig. 4.4. Generalized (5, 2)-cycles for the clique partitioning polytope. The first is a 2-chorded
odd cycle, the second is an odd wheel. The third is neither a 2-chorded odd cycle nor an odd wheel.
The dotted edges indicate existing transitive edges (i.e., coefficient −1 in the associated inequalities).

{v, ui}, i = 1, 2, . . . , k, of incident edges. Let tr(C) denote the associated set of 2-
chords, i.e., tr(C) = {{ui, ui+1} ∈ E : i = 1, 2, . . . , k}. Again we have tr(C) ∩ C = ∅,
and Theorem 4.2 implies that the odd wheel inequality

k∑
i=1

x{v,ui} −
k∑

i=1{ui, ui+1}∈E

x{ui,ui+1} � k − 1

2

is valid for the clique partitioning polytope. It was introduced and shown to be facet
defining if G is complete by Chopra and Rao [10].

There are other structures that may form generalized (k, 2)-cycles in the line
graph of G; see, for instance, Figure 4.4. We can summarize our observations as
follows.

Theorem 4.5. The class of generalized (k, 2)-cycle inequalities for the clique par-
titioning polytope properly contains all 2-chorded odd cycle inequalities and all odd
wheel inequalities.

The odd wheel inequalities remain valid and facet defining for the partition poly-
tope [10], where they also form a subclass of the generalized (k, 2)-cycle inequalities.
In fact, it is immediate that they can be generalized such that the spokes of the wheel
are paths instead of single edges. Moreover, from the class of generalized cycle in-
equalities we get what we may call q-chorded cycle inequalities, a generalization of
the 2-chorded odd cycle inequalities of the clique partitioning polytope. Consider a
cycle of length k in G, with nodes 1, . . . , k. Assume that G also contains the edges
{i, i + q}, i = 1, . . . , k. Then we define the q-chorded cycle inequality as

k∑
i=1

x{i,i+1} −
k∑

i=1

x{i,i+q} � k −
⌈
k

q

⌉
.

Again, the edges {i, i + 1} may be replaced by paths.
We return to the study of the transitive packing polytope in general. Under

different types of weak assumptions it is possible to show that the generalized cycle
inequality (4.1) has depth 1 relative to (2.1)–(2.3). We present one condition that
turns out to be widely applicable. We still use the notation introduced during the
definition of a generalized cycle.

Lemma 4.6. Let (N,H, tr) be an extended hypergraph; let k > q, k ≡ 0 mod q;
and let H1, . . . , Hk be the sequence of edges of a generalized (k, q)-cycle with node set
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C in (N,H). Assume that tr(Hi) ∩ C = ∅ for i = 1, 2, . . . , k. If one of the following
two conditions is satisfied, then the depth of the generalized (k, q)-cycle inequality (4.1)
relative to (2.1)–(2.3) is 1.

(i) Every edge H ∈ H \ {H1, . . . , Hk} with H ⊆ C satisfies |tr(H) ∩ C| � 2.

(ii) The generalized cycle satisfies C =
⋃k

i=1 Ni and |Ni| = 1 for i = 1, 2, . . . , k,
and every edge H ∈ H \ {H1, . . . , Hk} with H ⊆ C satisfies |H| = q.

Proof. The same proof works for both cases. For i = 1, . . . , k we let ui be an
arbitrary representative of the node subset Ni, i.e., ui ∈ Ni. We define the point
x ∈ R

N as follows:

xu :=




(q − 1)/q if u ∈ {u1, . . . , uk},
1 if u ∈ C \ {u1, . . . , uk},
0 otherwise.

Whereas x belongs to the initial linear relaxation of PTP(N,H, tr), i.e., satisfies the
inequalities (2.1)–(2.3), it violates inequality (4.1). Hence this inequality is not implied
by the initial system.

Notice that Lemma 4.6(ii) is satisfied in the case of the node packing and the
clique partitioning polytopes.

Euler, Jünger, and Reinelt [20] introduced generalized cycle inequalities for the
independence system polytope and showed that they are facet defining for the inde-
pendence system induced by the edges of the generalized cycle. The generalized cycles
presented here, restricted to independence systems, extend theirs, since they assumed
that the nodes of C \ ⋃k

i=1 Ni are arranged in a certain sequence corresponding to
that of the sets Ni.

Finally, we introduce a class of inequalities also supported by generalized cycles,
which are in general weaker than the generalized cycle inequalities. This class arises
from the class of generalized cycle inequalities when we pay no attention to repetitions
of transitive elements. We call this class of valid inequalities weak generalized cycle
inequalities. For ease of referencing, we state this as a lemma.

Lemma 4.7. Let (N,H, tr) be an extended hypergraph, and let, for k > q, k ≡
0 mod q, the hypergraph (C, {Hi : i = 1, 2, . . . , k}) be a generalized (k, q)-cycle in
(N,H) such that tr(Hi) ∩ C = ∅ for i = 1, . . . , k. Then, the weak generalized (k, q)-
cycle inequality

∑
u∈C

xu −
∑

u∈tr(C)

n(u)xu � |C| −
⌈
k

q

⌉

is valid for the transitive packing polytope PTP(N,H, tr).
Clearly, in the case n(u) � 1 for all nodes u ∈ N , a generalized (k, q)-cycle

inequality and its weak version coincide.

4.2. Generalized clique inequalities. A second well-known class of valid in-
equalities for the node packing polytope are clique inequalities; see, e.g., [42]. Such
an inequality is supported by a clique C in the given graph and is of the form

x(C) � 1.

It defines a facet if and only if the clique is maximal (with respect to set inclusion).
We now describe how the clique inequalities can be extended to the transitive packing
polytope.
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N3

N2N1

N4

Fig. 4.5. A (4, 2)-clique. The points indicate other nodes of the clique.

Definition 4.8. Let (N,H) be a hypergraph, and let N1, . . . , Nk, for integers
k � q � 2, be a collection of mutually disjoint nonempty subsets of the node set N .
For each q-element subset {i1, . . . , iq} ⊆ {1, . . . , k} of indices, we let Hi1,...,iq ∈ H be
an edge such that

⋃q
j=1 Nij ⊆ Hi1,...,iq . We assume that the edges in any collection

of intersecting edges all have one common index. Let C be the union of these edges,
C :=

⋃
1�i1<i2<···<iq�k Hi1,...,iq . Then, we call the hypergraph

(C, {Hi1,...,iq : 1 � i1 < i2 < · · · < iq � k})

a generalized (k, q)-clique (contained in (N,H)).

Figure 4.5 depicts a generalized (4, 2)-clique. Observe that the class of generalized
(3, 2)-cliques coincides with that of generalized (3, 2)-cycles. Whenever we deal with
generalized cliques in the context of extended hypergraphs, we assume that C and
its set tr(C) :=

⋃
1�i1<i2<···<iq�k tr(Hi1,...,iq ) of transitive elements are disjoint, i.e.,

tr(Hi1,...,iq ) ∩ C = ∅ for all 1 � i1 < i2 < · · · < iq � k. We denote by mtr(C) the
multiset that arises from the union of the transitive elements tr(Hi1,...,iq ). In other
words, the multiplicity of a node u ∈ mtr(C) is precisely the number of edges Hi1,...,iq

of which u is a transitive element.

Theorem 4.9. Let (N,H, tr) be an extended hypergraph, and let, for k � q � 2,
the hypergraph (C, {Hi1,...,iq : 1 � i1 < i2 < · · · < iq � k}) be a generalized (k, q)-
clique in (N,H) such that tr(Hi1,...,iq ) ∩ C = ∅ for 1 � i1 < i2 < · · · < iq � k. Then
the generalized (k, q)-clique inequality

x(C)− x(mtr(C)) � |C| − k + q − 1(4.3)

is valid for PTP(N,H, tr).

Proof. The proof is by induction on the size k of the generalized clique. Observe
that for k = q inequality (4.3) coincides with a transitivity constraint. In order to
show its validity for k > q, we consider all

(
k
�

)
generalized (-, q)-cliques that are

induced by the --element subsets of {N1, . . . , Nk} for - := �k(q − 1)/q� + 1. If we
take the sum of their corresponding generalized (-, q)-clique inequalities, we obtain an
inequality whose support coincides with C ∪ tr(C). Due to the assumptions on the
relation of edges, a node u ∈ Ni for some i ∈ {1, . . . , k} has coefficient

(
k−1
�−1

)
. The

coefficient of a node u ∈ C \⋃k
i=1 Ni is less than or equal to

(
k−1
�−1

)
. The coefficient of

each element in the multiset mtr(C) is
(
k−q
�−q

)
. In order to bring these coefficients into

a line, we add suitable multiples of the upper bound inequalities xu � 1 for nodes
u ∈ C \ ⋃k

i=1 Ni, and of the nonnegativity constraints xu � 0 for u ∈ mtr(C). The
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resulting inequality then becomes(
k − 1

-− 1

)(
x(C)− x(mtr(C))

)
�
(
k − 1

-− 1

)
|C|+

(
k

-

)
(q − -− 1).

Dividing this new inequality by
(
k−1
�−1

)
results in

x(C)− x(mtr(C)) � |C| − k + q − 1 +
k − -

-
(q − 1),

and by the choice of - we can truncate the last term of the right-hand side to 0.
Observe that in the case q = 2, the size - of the generalized cliques to be considered

in the proof of Theorem 4.9 is - =
⌈
k+1
2

⌉
. This implies that the depth of the presented

cutting plane proof is at most �log(k − 1)�. After drawing some conclusions from
Theorem 4.9 for the acyclic subdigraph polytope and the clique partitioning polytope,
we show that this bound is almost the best possible.

Again, if we consider the case of independence systems, the definition of gener-
alized cliques given above is slightly more general than that of Euler, Jünger, and
Reinelt [20]. They assumed that a node u ∈ C \⋃k

i=1 Ni cannot be contained in more

than
(
k−1
q−1

) − 1 edges (with common subindex) of the generalized (k, q)-clique. They
showed that the corresponding generalized clique inequalities are facet inducing for
the independence system with ground set C and circuits Hi1,...,iq .

Euler, Jünger, and Reinelt also observed that in the case of the acyclic subdigraph
polytope the simple k-fence inequalities are contained in the class of generalized clique
inequalities. We now show that even the k-fence inequalities (not necessarily simple)
are contained in the class of generalized (k, 2)-clique inequalities.

A simple k-fence (k � 3) is a digraph that is isomorphic to the digraph F =
(U,B1 ∪B2) on 2k nodes U = {u1, u2, . . . , u2k}, where

B1 = {(ui, uk+i) : i = 1, . . . , k} ,

B2 =

k⋃
i=1

{(uk+i, v) : v ∈ {u1, . . . , uk} \ {ui}} .

Adopting the notation of [25], we call the arcs in B1 pales and the arcs in B2 pickets.
A k-fence is a digraph that arises from a simple k-fence by repeated subdivision of
arcs; i.e., an arc (u, v) may be replaced by (u,w) and (w, v), where w is a new node,
and so on. To keep the notation simple, we assume that F = (U,B1∪B2) is a k-fence
and call the arcs on the directed paths from ui to uk+i pales and those on the directed
paths from uk+i to v, v = ui, pickets as well. If D is a digraph that contains the
k-fence F , the k-fence inequality

x(B1 ∪B2) � |B1 ∪B2| − k + 1(4.4)

defines a facet of the acyclic subdigraph polytope of D; see [25].
Theorem 4.10. Let D be a digraph, and let F = (U,B1 ∪B2) be a k-fence con-

tained in D. Then the k-fence inequality (4.4) is contained in the class of generalized
(k, 2)-clique inequalities for the acyclic subdigraph polytope of D.

Proof. We continue to use the notation introduced when we defined generalized
cliques. We set Ni to be the set of pales on the path from ui to uk+i for i = 1, 2, . . . , k.
Furthermore, for 1 � i < j � k, we define Hij to be the dicycle in F formed by the
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set of pales on the paths from ui to uk+i and from uj to uk+j as well as the pickets on
the paths from uk+i to uj and uk+j to ui. Thus the k-fence F defines a generalized
(k, 2)-clique, and its k-fence inequality coincides with the corresponding generalized
(k, 2)-clique inequality.

Whereas the class of generalized (k, q)-clique inequalities for the acyclic subdi-
graph polytope is richer than the class of k-fence inequalities, the class of generalized
(k, 2)-clique inequalities turns out to be precisely the class of (1, k)-2-partition in-
equalities for the clique partitioning polytope of a graph G = (V,E). (Here, q > 2 is
not possible.) The latter inequalities are due to Grötschel and Wakabayashi [28] and
are of the following form. Let v, u1, u2, . . . , uk ∈ V be a set of k + 1 vertices such that
{ui, v} ∈ E for i = 1, 2, . . . , k. Then the inequality

k∑
i=1

x{ui,v} −
∑

1� i<j�k
{ui, uj}∈E

x{ui,uj} � 1(4.5)

is valid for the clique partitioning polytope. It is facet defining if G is complete;
see [28].

Theorem 4.11. The class of generalized (k, 2)-clique inequalities for the clique
partitioning polytope of a graph G coincides with the class of (1, k)-2-partition inequal-
ities.

Proof. Let us first consider a (1, k)-2-partition inequality (4.5). Since the edges
{ui, v} and {uj , v} for i, j = 1, 2, . . . , k, i = j, form a hyperedge and since the
transitive edges of these hyperedges are distinct from the edges {ui, v} ∈ E for
i = 1, 2, . . . , k, this inequality is a generalized (k, 2)-clique inequality. On the other
hand, a generalized (k, 2)-clique of the line graph of G always leads to the support
of a (1, k)-2-partition inequality: since all participating edges in G have to be pair-
wise incident, either they share one common node or we have k = 3. In the former
case they form the support of a (1, k)-2-partition inequality. The latter case contra-
dicts the assumption that the generalized clique and its transitive elements do not
intersect.

For the partition polytope, there can exist generalized (k, q)-clique inequalities
for any q.

We are now about to show that the depth of the generalized (k, 2)-clique inequal-
ities tends to infinity with k.

Theorem 4.12. Let (C, {Hij : 1 � i < j � k}) be a generalized (k, 2)-clique of
the extended hypergraph (N,H, tr). Assume that Ni =

(⋂
i<j�k Hij

)⋂ (⋂
1�j<i Hji

)
,

for i = 1, 2, . . . , k, and that each edge H ∈ H such that H ⊆ C satisfies Ni ∪Nj ⊆ H
for some i, j ∈ {1, 2, . . . , k}, i = j. Then the depth of the generalized (k, 2)-clique
inequality (4.3) relative to (2.1)–(2.3) is at least log k − 1.

In order to prove this theorem we make use of the following lemma of Chvátal,
Cook, and Hartmann [12].

Lemma 4.13 (see [12]). Let P be a rational polyhedron in R
N . Let y and z

be points in R
N , and let µ1, µ2, . . . , µd be positive numbers. Furthermore, for t =

0, 1, . . . , d set

x(t) := y −
t∑

i=1

1

µi
z.

If y ∈ P and if, for all t = 1, . . . , d, every inequality ax � β valid for P ∩ Z
N with

a ∈ Z
N and az < µt satisfies ax(t) � β, then x(t) ∈ P (t) for all t = 0, 1, . . . , d.
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Proof of Theorem 4.12. For i = 1, . . . , k let ui be an arbitrary representative of the
node subset Ni, i.e., ui ∈ Ni. Let C1 be the union of these nodes ui, C1 :=

⋃k
i=1{ui}.

Moreover, denote by C2 the rest of the generalized (k, 2)-clique C, that is, C2 := C\C1.
For a nonnegative integer t we define

x(t) := χC2 + 2−(t+1)χC1 .

If t < log k − 1, then

x(t)(C)−x(t)(mtr(C)) = χC2χC2 + 2−(t+1)χC1χC1 = |C|−k + 2−(t+1)k > |C|−k + 1,

and so x(t) fails to satisfy the generalized (k, 2)-clique inequality (4.3). It remains to
show that x(t) ∈ P (t) for all t. For this we use Lemma 4.13 with y := χC2 + 1

2χ
C1 ,

z := χC1 , and µt := 2t+1. Observe that y is a solution to (2.1)–(2.3). Now consider
an arbitrary inequality ax � β, valid for PTP(N,H, tr) and such that a ∈ Z

N and
aχC1 < µt. We need to verify that ax(t) � β. Whereas this is obvious if aχC1 � 0, in
the case aχC1 > 0 we have

ax(t) = aχC2 +
1

µt
aχC1 < aχC2 + 1 � a(χC2 + χ{ui}) � β

for a representative ui such that aui � 1. The last inequality follows from χC2+χ{ui} ∈
PTP(N,H, tr).

Theorem 4.12 was proved before for the special instances formed by the clique
inequalities of the node packing polytope [11] and by the simple k-fence inequalities
of the acyclic subdigraph polytope [12]. Notice that the assumption of Theorem 4.12
is also satisfied by the k-fence inequalities since each dicycle contained in a fence uses
pales between at least two different pairs of nodes. Moreover, Theorem 4.12 also
applies to the (1, k)-2-partition inequalities of the clique partitioning polytope.

4.3. Generalized antihole inequalities. Another class of valid inequalities
for the node packing polytope is supported by odd antiholes. An odd antihole in
a graph is the complement of an odd cycle of length at least five without a chord.
Let O denote the set of vertices of an odd antihole. Then the odd antihole inequality
associated with O is

x(O) � 2.

Again, it turns out that these inequalities form a special case of a more general
principle.

Definition 4.14. Let (N,H) be a hypergraph, and let q and s be integers such
that s � q � 2. For convenience, we set k := qs + 1. Let N1, N2, . . . , Nk be a
sequence of mutually disjoint nonempty subsets of the node set N . Moreover, for
each - ∈ {1, 2, . . . , k} and for every q-element set of indices {i1, i2, . . . , iq} ⊆ {-, - +
1, . . . , - + s− 1} (where indices greater than k are taken modulo k + 1 and shifted by
+1) we let the set H�

i1,i2,...,iq
be an edge such that

⋃q
j=1 Nij ⊆ H�

i1,i2,...,iq
. In addition,

we assume, for each - ∈ {1, 2, . . . , k}, that the edges in any collection of intersecting
edges of type H�

i1,i2,...,iq
all have one common (sub)index. We denote by O� the union

of these edges, O� :=
⋃

��i1<i2<···<iq��+s−1 H�
i1,i2,...,iq

, and by O the union of all these

edges, O :=
⋃k

�=1 O�. Moreover, let m̃(u) := |{- ∈ {1, 2, . . . , k} : u ∈ O�}| for a node
u ∈ O. We assume that m̃(u) � s for all nodes u ∈ O. Then the hypergraph

(O, {H�
i1,i2,...,iq : - � i1 < i2 < · · · < iq � - + s− 1 for some - ∈ {1, 2, . . . , k}})



352 RUDOLF MÜLLER AND ANDREAS S. SCHULZ

N6

N1 N5

N4

N7

N2

N3

Fig. 4.6. A generalized (3, 2)-antihole (with O =
⋃7

i=1 Ni).

is called a generalized (s, q)-antihole (contained in (N,H)).
Figure 4.6 depicts a generalized (3, 2)-antihole. Notice that it may happen that

the same edge wears different names. For instance, if O =
⋃k

i=1 Ni and q < s, then

H�
�+s−q,...,�+s−1 = H�+1

�+s−q,...,�+s−1. Given a generalized antihole that is contained
in a given extended hypergraph, we define ñ(u) to be the multiplicity of a node u
contained in the transitive sets associated with that generalized antihole, i.e., ñ(u) :=
|{H�

i1,i2,...,iq
: u ∈ tr(H�

i1,i2,...,iq
) for some - ∈ {1, 2, . . . , k}, - � i1 < i2 < · · · < iq �

-+ s− 1}|. Thus, if the same edge occurs more often under different names, we count

the number of names. We set tr(O) :=
⋃k

�=1(
⋃

��i1<i2<···<iq��+s−1 tr(H�
i1,i2,...,iq

)).

Theorem 4.15. Let (N,H, tr) be an extended hypergraph, and let the hypergraph
(O, {H�

i1,i2,...,iq
: - � i1 < i2 < · · · < iq � - + s − 1 for some - ∈ {1, 2, . . . , k}}) be a

generalized (s, q)-antihole in (N,H) such that tr(O) ∩ O = ∅. Then, the generalized
(s, q)-antihole inequality

∑
u∈O

xu −
∑

u∈tr(O)

�ñ(u)�s
s

xu � |O| − q(s− q + 1)− 1(4.6)

is valid for PTP(N,H, tr). It has a cutting plane proof from (2.1)–(2.3) of depth at
most �log(s− 1)�+ 1.

Proof. Let N1, N2, . . . , Nk be the sequence of nodes underlying the generalized
(s, q)-antihole. Notice that for every - ∈ {1, 2, . . . , k} the edges {H�

i1,i2,...,iq
: - �

i1 < i2 < · · · < iq � - + s − 1} induce a generalized (s, q)-clique. Each set Ni is
contained in precisely s of these k cliques. By adding up the k associated (s, q)-
clique inequalities, the appropriate number of upper bound constraints xu � 1 for
u ∈ O \ ⋃k

i=1 Ni (namely, s − m̃(u) many), as well as the appropriate number of
nonnegativity constraints for each element u ∈ tr(O) (namely, �ñ(u)�s − ñ(u)), we
obtain that

s
∑
u∈O

xu −
∑

u∈tr(O)

�ñ(u)�sxu � s|O| − k(s− q + 1)
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Fig. 4.7. From left to right: a generalized cycle, a generalized antihole, and a generalized clique
with associated transitive elements in the case of the clique partitioning problem.

is valid for PTP(N,H, tr). Division by s and taking the floor of the right-hand side
gives the desired inequality. The bound on the depth of its cutting plane proof follows
immediately from that for the generalized clique inequalities.

To see that we indeed derive from Theorem 4.15 the usual odd antihole inequalities
for the node packing polytope of a graph G, we proceed as follows. Let O be the node
set of an odd antihole in G, O = {u1, u2, . . . , uk}, and assume that u� and u�+s as
well as u� and u�+s+1 are not adjacent, for - = 1, 2, . . . , k. We now relate this to
a generalized antihole. Clearly, q = 2, and hence |O| = k = 2s + 1. It remains to
identify the edges. For - ∈ {1, 2, . . . , k} we take as edges H�

ij the edges of the clique
induced by the nodes u�, u�+1, . . . , u�+s−1. Notice that several edges in G are taken
more than once but under different names. Finally, observe that the right-hand side
of (4.6) simplifies to 2.

Since line graphs do not contain odd antiholes (with more than five nodes), there
do not exist generalized antihole inequalities for the clique partitioning polytope when
we assume that s � 3 and that u� and u�+s as well as u� and u�+s+1 are not linked
by a hyperedge, for each - = 1, 2, . . . , k. Others may well exist; see, for instance,
Figure 4.7. We record this as a lemma.

Lemma 4.16. Let G = (V,E) be a graph, and let v, u1, u2, . . . , uk ∈ V , be distinct
nodes such that {v, ui} ∈ E, for i = 1, 2, . . . , k, for k = 2s + 1, and s � 2. Define
the set T := {{ui, uj} ∈ E : - � i < j � - + s − 1 for some - ∈ {1, 2, . . . , k}}. The
inequality

k∑
i=1

x{v,ui} −
∑

{ui,uj}∈T
x{ui,uj} � 2

is valid for the clique partitioning polytope of G. (Again, indices greater than k are
taken modulo k + 1 and shifted by +1.)

We note that generalized (2, 2)-antihole inequalities of the transitive packing poly-
tope coincide with generalized (5, 2)-cycle inequalities. So far, antihole inequalities
have not been exploited for the acyclic subdigraph polytope or the partition polytope.

4.4. Generalized antiweb inequalities. The main idea in the derivation of
the generalized antihole inequalities was to combine generalized clique inequalities in a
manner oriented on the cutting plane proof of generalized cycle inequalities. This can
be generalized and leads for the node packing polytope to the antiweb inequalities [52].
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For integers 1 � s � k, a (k, s)-antiweb is a graph with node set W = {u1, u2, . . . , uk}
such that each node ui is adjacent to all other nodes but not to the max{0, k−2s+1}
nodes ui+s, ui+s+1, . . . , ui+k−s. (Again, indices greater than k are taken modulo k+1
and shifted by +1.) The associated antiweb inequality is

x(W ) �
⌊
k

s

⌋
.

We proceed by introducing special hypergraphs that we call generalized antiwebs.
Definition 4.17. Let (N,H) be a hypergraph, and let k, s, and q be integers such

that k � s � q � 2. Let N1, N2, . . . , Nk be a sequence of mutually disjoint nonempty
subsets of the node set N . For each - ∈ {1, 2, . . . , k} and each q-element set of indices
{i1, i2, . . . , iq} ⊆ {-, -+1, . . . , -+s−1} (where indices are taken modulo k+1 and shifted
by +1), we let H�

i1,i2,...,iq
∈ H be an edge such that ⋃q

j=1 Nij ⊆ H�
i1,i2,...,iq

. In addition,

we assume, for each - ∈ {1, 2, . . . , k}, that the edges in any collection of intersecting
edges of type H�

i1,i2,...,iq
all have one common (sub)index. For each -, we denote by W �

the union of the associated edges, W � :=
⋃

��i1<i2<···<iq��+s−1 H�
i1,i2,...,iq

. Moreover,

we let W denote the union of all these edges, W :=
⋃k

�=1 W �. Again, for u ∈ W we
let m̃(u) be the multiplicity of u with respect to its occurrence in W �, - = 1, 2, . . . , k,
i.e., m̃(u) := |{- ∈ {1, 2, . . . , k} : u ∈ W �}|. If m̃(u) � s for all u ∈ W , then we call
the hypergraph

(W, {H�
i1,i2,...,iq : - � i1 < i2 < · · · < iq � - + s− 1 for some - ∈ {1, 2, . . . , k}})

a generalized (k, s, q)-antiweb (contained in (N,H)).
Theorem 4.18. Let (N,H, tr) be an extended hypergraph, and let the hypergraph

(W, {H�
i1,i2,...,iq

: - � i1 < i2 < · · · < iq � - + s − 1 for some - ∈ {1, 2, . . . , k}}) be a
generalized (k, s, q)-antiweb in (N,H) such that tr(W )∩W = ∅. Then, the generalized
(k, s, q)-antiweb inequality

∑
u∈W

xu −
∑

u∈tr(W )

�ñ(u)�s
s

xu �
⌊
s|W | − k(s− q + 1)

s

⌋
(4.7)

is valid for PTP(N,H, tr). It has a cutting plane proof from (2.1)–(2.3) of depth at

most �log(s−1)�+ 1. Here, tr(W ) :=
⋃k

�=1(
⋃

��i1<i2<···<iq��+s−1 tr(H�
i1,i2,...,iq

)) and

ñ(u) := |{H�
i1,i2,...,iq

: u ∈ tr(H�
i1,i2,...,iq

) for some - ∈ {1, 2, . . . , k}, - � i1 < i2 <

· · · < iq � - + s− 1}|.
Proof. The cutting plane proof goes along the line of the proof of the validity of

generalized antihole inequalities (Theorem 4.15) and is therefore omitted.
It follows from their construction that generalized (k, s, q)-antiweb inequalities

subsume all the former classes of inequalities for the transitive packing polytope
PTP(N,H, tr). In fact,

• if q = s and if s does not divide k, we obtain the class of generalized (k, q)-
cycle inequalities;
• if s = k, the class of generalized antiweb inequalities contains the class of

generalized (k, q)-clique inequalities;
• if k = qs + 1, we have the class of generalized (s, q)-antihole inequalities.

Laurent [32] previously extended antiwebs to the independence system polytope;
however, the inequalities (4.7) restricted to this setting are more general. Laurent
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used one-element sets Ni and edges that are precisely the union of q of these. She
showed that such an inequality is facet defining for the polytope associated with the
independence system defined by the circuits of her antiweb.

4.5. Odd partition inequalities. In this section, we introduce another new
class of inequalities for the transitive packing polytope. It is an extension of a class of
inequalities recently proposed by Caprara and Fischetti [9] for the acyclic subdigraph
polytope.

Assume that we are given an extended hypergraph (N,H, tr). Let H1, . . . , Hk be
a collection of distinct edges of H, and let m(u) and n(u) denote the multiplicity of a
node u ∈ N in this collection and the associated set of transitive elements, respectively.
That is, m(u) := |{i ∈ {1, . . . , k} : u ∈ Hi}| and n(u) := |{i ∈ {1, . . . , k} : u ∈
tr(Hi)}|. We denote the difference of these two numbers by d(u), d(u) := m(u)−n(u).

Let W be the union of all the nodes involved, W :=
⋃k

i=1(Hi ∪ tr(Hi)), and let W odd

be the set of those nodes that occur either in an odd number of edges Hi or in an
odd number of transitive sets tr(Hi) but not both, W odd := {u ∈ W : d(u) odd}.
Furthermore, let (W odd

1 ,W odd
2 ) be a partition of W odd such that

∑k
i=1|Hi|+|W odd

1 |−k
is odd. (W odd

1 = ∅ or W odd
2 = ∅ is possible.)

Taking the sum of the constraints∑
u∈Hi

xu −
∑

u∈tr(Hi)

xu � |Hi| − 1 for i = 1, . . . , k,

xu � 1 for u ∈W odd
1 ,

−xu � 0 for u ∈W odd
2 ,

and dividing the result by 2, we obtain∑
u∈W\W odd

d(u)

2
xu +

∑
u∈W odd

1

d(u) + 1

2
xu

+
∑

u∈W odd
2

d(u)− 1

2
xu �

∑k
i=1|Hi|+ |W odd

1 | − k

2
.

(4.8)

Rounding down the right-hand side gives the following inequality that is valid for the
transitive packing polytope PTP(N,H, tr),

∑
u∈W\W odd

d(u)

2
xu +

∑
u∈W odd

1

d(u) + 1

2
xu

+
∑

u∈W odd
2

d(u)− 1

2
xu �

∑k
i=1|Hi|+ |W odd

1 | − k − 1

2
.

(4.9)

We call inequalities of type (4.9) odd partition inequalities. We continue by pointing
out some special cases in which inequality (4.9) is dominated by other inequalities, as
well as some other cases in which it has depth 1 relative to (2.1)–(2.3) and is therefore
interesting.

Lemma 4.19. Let (N,H, tr) be a hypergraph with associated transitive elements,

and let H1, . . . , Hk be a collection of distinct edges of H. If (Hk∪tr(Hk))∩⋃k−1
i=1 (Hi∪

tr(Hi)) = ∅, then the odd partition inequality (4.9) for H1, . . . , Hk is implied by the
initial inequalities (2.1)–(2.3) and inequality (4.9) for H1, . . . , Hk−1.



356 RUDOLF MÜLLER AND ANDREAS S. SCHULZ

Proof. Observe first that Hk ∪ tr(Hk) ⊆ W odd. Thus the left-hand side of in-
equality (4.9) can be expressed as follows:

∑
u∈W\W odd

d(u)

2
xu +

∑
u∈W odd

1 \(Hk∪tr(Hk))

d(u) + 1

2
xu

+
∑

u∈W odd
2 \(Hk∪tr(Hk))

d(u)− 1

2
xu +

∑
u∈Hk∩W odd

1

xu −
∑

u∈tr(Hk)∩W odd
2

xu.

Notice that the first three terms precisely form the left-hand side of inequal-
ity (4.8) for H1, . . . , Hk−1 (where we use the natural restriction of W odd

1 and W odd
2 ).

We continue by distinguishing three cases, namely,
(i) |(Hk ∩W odd

2 ) ∪ (tr(Hk) ∩W odd
1 )| � 2,

(ii) |(Hk ∩W odd
2 ) ∪ (tr(Hk) ∩W odd

1 )| = 1, and finally,
(iii) |(Hk ∩W odd

2 ) ∪ (tr(Hk) ∩W odd
1 )| = 0.

In case (i), we add to inequality (4.8) for H1, . . . , Hk−1 the inequalities

xu � 1 for u ∈ Hk ∩W odd
1 and − xu � 0 for u ∈ tr(Hk) ∩W odd

2 .

Then the left-hand side of the resulting inequality coincides with that of inequal-
ity (4.9). The numerator of the right-hand side is

k−1∑
i=1

|Hi|+ |W odd
1 \ (Hk ∪ tr(Hk))| − k + 1 + 2|Hk ∩W odd

1 |

=

k∑
i=1

|Hi|+ |W odd
1 | − k + 1− (|Hk ∩W odd

2 |+ |tr(Hk) ∩W odd
1 |),

which is, because of assumption (i), less than or equal to

k∑
i=1

|Hi|+ |W odd
1 | − k − 1,

which is the numerator of the right-hand side of inequality (4.9) for H1, . . . , Hk. Hence
in this case inequality (4.9) has depth 0 relative to (2.1)–(2.3).

Since we assumed
∑k

i=1|Hi| + |W odd
1 | − k to be odd in order to derive inequal-

ity (4.9), the assumption in case (ii) guarantees that the numerator of the right-hand
side of inequality (4.8) for H1, . . . , Hk−1 will be odd, too. Hence, the following in-
equality is valid for PTP(N,H, tr), which is inequality (4.9) for H1, . . . , Hk−1:

∑
u∈W\W odd

d(u)

2
xu +

∑
u∈W odd

1 \(Hk∪tr(Hk))

d(u) + 1

2
xu

+
∑

u∈W odd
2 \(Hk∪tr(Hk))

d(u)− 1

2
xu �

∑k−1
i=1 |Hi|+ |W odd

1 \ (Hk ∪ tr(Hk))| − k

2
.

By adding to this inequality the inequalities

xu � 1 for u ∈ Hk ∩W odd
1 and − xu � 0 for u ∈ tr(Hk) ∩W odd

2 ,
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we obtain inequality (4.9), which is therefore implied by (4.9) for H1, . . . , Hk−1 and
the bound constraints (2.2) and (2.3).

In case (iii), we simply add the transitivity constraint (2.1) for Hk to inequal-
ity (4.8) for H1, . . . , Hk−1. It follows that inequality (4.9) again has depth 0 relative
to system (2.1)–(2.3).

Lemma 4.19 reflects, in particular, the trivial fact that we cannot hope to obtain
a stronger inequality by adding inequalities with mutually disjoint support. We now
present a condition that is sufficient to ensure that inequality (4.9) has depth 1, which
leads us back to cycles in the hypergraph (N,H).

Lemma 4.20. Let (N,H, tr) be an extended hypergraph, and let H1, . . . , Hk be
a collection of distinct edges in H, k � 2. Let the sets W odd, W odd

1 , and W odd
2 be

defined as before. Assume that tr(Hj) ∩
⋃k

i=1 Hi = ∅ for j = 1, . . . , k. If
• there exist k distinct nodes u1, . . . , uk ∈ N such that ui ∈ Hi ∩ Hi+1 but

ui /∈ Hj for j = i, i + 1,
• the transitive set tr(H) of an edge H = Hi (i = 1, . . . , k) that satisfies

H ⊆ ⋃k
i=1 Hi intersects

⋃k
i=1 Hi either in at least one node different from

u1, . . . , uk or in at least two nodes from u1, . . . , uk, and
• W odd

1 ⊆ (⋃k
i=1 Hi

) \ {u1, u2, . . . , uk},
then the depth of the odd partition inequality (4.9) relative to (2.1)–(2.3) is 1.

Proof. Define the point x ∈ R
N as follows:

xu :=




1/2 if u ∈ {u1, . . . , uk},
1 if u ∈ (⋃k

i=1 Hi

) \ {u1, . . . , uk},
0 otherwise.

Whereas x belongs to the initial linear relaxation of PTP(N,H, tr), i.e., satisfies in-
equalities (2.1)–(2.3), it violates inequality (4.9). Hence this inequality is not implied
by the initial system.

As mentioned before, Caprara and Fischetti [9] introduced the odd partition
inequalities for the acyclic subdigraph polytope in order to show that a subclass
of the Möbius ladder inequalities can be derived from the initial relaxation by a
cutting plane proof of length 1, where all coefficients used are either 0 or 1

2 . In-
deed, if (C, {Hi : i = 1, 2, . . . , k}) is a generalized (k, 2)-cycle, we obtain the as-
sociated generalized (k, 2)-cycle inequality as an odd partition inequality by setting
W odd

1 := {u ∈ C : m(u) odd} and W odd
2 := {u ∈ tr(C) : n(u) odd}. In section 4.1,

we showed that the subclass of Möbius ladder inequalities where each triple of par-
ticipating dicycles has an empty intersection is contained in the class of generalized
(k, 2)-cycle inequalities for the acyclic subdigraph polytope. This implies Caprara
and Fischetti’s result.

5. Transitive packing in graphs. An important subproblem of the transitive
packing problem is formed by the instances where the given hypergraph is actually
a graph. This section is devoted to discussing the polytopes associated with these
instances in more detail. To avoid confusion, we still use the notation (N,H, tr)
but assume throughout this section that |H| = 2 for all H ∈ H. We call the triple
(N,H, tr) an extended graph. The transitive packing polytope is then given as

PTP(N,H, tr) = conv


x ∈ {0, 1}N : xu + xv −

∑
w∈tr({u,v})

xw � 1 for {u, v} ∈ H

 .
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Recall that both the node packing polytope and the clique partitioning polytope
are of this flavor. For the node packing polytope, it is known that all facet defining
inequalities with right-hand side 1 are clique inequalities; see [42]. This remains true
for the transitive packing polytope of the following extended graphs.

Theorem 5.1. Let (N,H, tr) be an extended graph such that for every clique C
in (N,H) the following condition is satisfied:

Each node u ∈ tr(C) belongs to tr({v, w}) for a unique edge {v, w} induced
by C and satisfies either
– {u, v}, {u,w} /∈ H, or
– {u, v} /∈ H, {u,w} ∈ H, and v ∈ tr({u,w}), or
– {u,w} /∈ H, {u, v} ∈ H, and w ∈ tr({u, v}), or
– {u, v}, {u,w} ∈ H, and v ∈ tr({u,w}) and w ∈ tr({u, v}).

Then, any facet defining inequality cx � 1 (with c integral) of the transitive packing
polytope PTP(N,H, tr) either is of the form xu � 1 or is a generalized (k, 2)-clique
inequality.

Proof. Since every singleton is a transitive packing, the coefficients of the vector c
have value at most 1. If c has exactly one coefficient with value 1, indexed by, say,
u ∈ N , then c = χ{u}. Otherwise, cx � 1 would be dominated by xu � 1. So we may
assume from now on that the number of coefficients of c with value 1 is at least two.
Let C be the set of nodes u such that cu = 1. Since cx � 1 is valid, the nodes in C
have to be pairwise adjacent, i.e., they induce a clique in (N,H). From this validity
it also follows that tr(C) ∩ C = ∅. It remains to be observed that the coefficient cu
of a transitive element u ∈ tr(C) is not zero. This follows from the assumptions with
respect to transitive elements and the validity of cx � 1 for PTP(N,H, tr). We just
need to observe that the node set formed by u and the pair of nodes v, w ∈ C such
that u ∈ tr({v, w}) is a transitive packing in (N,H, tr).

The assumptions made in Theorem 5.1 are satisfied, for instance, by the extended
graphs corresponding to instances of the clique partitioning problem. Hence, if a
graph G has no isolated edges, (1, k)-2-partition inequalities are the only facet defining
inequalities with right-hand side 1 of the clique partitioning polytope of G. The latter
observation was independently made in [41].

Notice that the assumptions of Theorem 4.12 are always satisfied for transitive
packing problems in graphs. Consequently, the generalized (k, 2)-clique inequalities
have depth at least log k − 1, relative to (2.1)–(2.3).

If the transitive elements of a clique C do not interact with C itself, the clique
and its transitive elements form the support of valid inequalities, where the nodes of
the cliques have coefficients greater than one.

Theorem 5.2. Let (N,H, tr) be an extended graph, and let C be the node set of
a generalized (k, 2)-clique in (N,H) such that tr(C) ∩ C = ∅. Moreover, let t � 1 be
an integer. Then, the t-reinforced generalized (k, 2)-clique inequality

tx(C)− x(mtr(C)) � t(t + 1)

2
(5.1)

is valid for the transitive packing polytope PTP(N,H, tr).
Proof. Let x be the incidence vector of a transitive packing in (N,H, tr), and

assume that x(C) = µ. Consequently, x(mtr(C)) � µ(µ − 1)/2. Thus the left-hand
side of inequality (5.1) is less than or equal to tµ− µ(µ− 1)/2. Since

tµ =
µ(µ− 1)

2
+

t(t + 1)

2
− (t− µ)(t− µ + 1)

2
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and the last term is nonnegative, x satisfies inequality (5.1).

The proof of Theorem 5.2 implies immediately that the faces of two nonempty face
defining t-reinforced generalized (k, 2)-clique inequalities with the same support but
different values of t in general contain different sets of incidence vectors of transitive
packings. The proof also implies a range on t in order to ensure that the intersec-
tion of the transitive packing polytope and the hyperplane defined by a t-reinforced
generalized (k, 2)-clique inequality is nonempty.

Corollary 5.3. Let (N,H, tr) be an extended graph, and let C be the node set of
a generalized (k, 2)-clique in (N,H) such that tr(C)∩C = ∅. Let t � 1 be an integer.
If the t-reinforced generalized (k, 2)-clique inequality (5.1) defines a nonempty face of
the transitive packing polytope PTP(N,H, tr), then t � |C|.

The bound on t can be strengthened if we assume that the t-reinforced generalized
(k, 2)-clique inequality is facet defining.

Lemma 5.4. Let (N,H, tr) be an extended graph, and let C be the node set of a
generalized (k, 2)-clique in (N,H) such that tr(C) ∩ C = ∅. Let t � 1 be an inte-
ger. If the t-reinforced generalized (k, 2)-clique inequality (5.1) induces a facet of the
transitive packing polytope PTP(N,H, tr), then t � |C| − 2.

Proof. The proof is by contradiction. Because of Corollary 5.3, we are left with
the cases t = |C| and t = |C| − 1. In the former case each point x contained in
the facet under consideration would satisfy x(C) = |C|. Hence this facet would be
contained in all faces induced by the upper bound constraints xu � 1 for u ∈ C,
a contradiction. In the latter case the (|C| − 1)-reinforced generalized (k, 2)-clique
inequality (5.1) turns out to be the sum of all the transitivity constraints induced by
pairs of nodes of the clique C, again a contradiction.

One might ask whether there exist transitive packing polytopes of extended graphs
such that the t-reinforced generalized (k, 2)-clique inequalities are facet defining. This
is indeed the case. Oosten, Rutten, and Spieksma [41] showed that the t-reinforced
generalized (k, 2)-clique inequalities define facets of the clique partitioning polytope
of a complete graph, for t � k − 2 of course.

One appealing aspect of our suggestion to treat suitable problems in the transitive
packing context is the opportunity to use knowledge that is available, not only for the
transitive packing polytope itself but also for some of its special cases. We ellucidate
this by considering a simple example. Let us assume that the underlying graph G of
a clique partitioning problem is bipartite. This implies for the associated extended
graph (N,H, tr) that tr(H) = ∅ for all edges H ∈ H. In other words, the transitive
packing (clique partitioning) polytope of G coincides with the node packing polytope
of its line graph (N,H). Since node packings in line graphs correspond one-to-one
with matchings in the original graphs, we obtain the following result.

Lemma 5.5. Let G = (V,E) be a bipartite graph. The clique partitioning polytope
of G is completely characterized by the following linear inequalities:

xe � 0 for all edges e ∈ E,

x(C) � 1 for all sets C ⊆ E of pairwise incident edges.

It also follows that the clique partitioning problem on bipartite graphs reduces to
a matching problem and can hence be solved in polynomial time. This example is,
as already indicated, an instance of a more general point of view. Whenever we can
interpret a given problem as a transitive packing problem, and whenever the extended
graph (or even hypergraph) of an instance of this problem does not have transitive
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elements but does have a structure such that the corresponding node packing (inde-
pendence system) polytope can explicitly be described by linear inequalities, the same
holds for the polytope associated with the original problem.

6. Separation. After introducing several classes of valid inequalities for the
transitive packing polytope, one question that arises is whether we can use these
inequalities efficiently in cutting plane algorithms for attacking the transitive packing
problem. This topic is discussed in this section. We concentrate on generalized cycle
and odd partition inequalities.

Given an integer polyhedron PI = conv{x ∈ Z
n : Ax � b}, where A ∈ Z

m×n

and b ∈ Z
m, a {0, 1

2}-Gomory–Chvátal cut is a valid inequality for PI of the form
λAx � �λb�, with λ ∈ {0, 1

2}m and λA ∈ Z
n. In other words, a {0, 1

2}-Gomory–
Chvátal cut has a cutting plane proof of length 1 from Ax � b, and the coefficients in
the corresponding linear combination belong to {0, 1

2} only. Caprara and Fischetti [9]
showed that the separation problem for any point y ∈ Q

n and the class of {0, 1
2}-

Gomory–Chvátal cuts is solvable in time polynomially bounded in the input size
of A, b, and y, assuming that A has, at most, two odd coefficients in each row.
For 0/1 polytopes PI this remains true for a relaxation {x ∈ R

n : A′x � b′} of
{x ∈ R

n : Ax � b}, where A′x � b′ is obtained from Ax � b by adding systematically
lower bound constraints xu � 0 and upper bound constraints xu � 1 such that A′

has, at most, two odd coefficients in each row. More precisely, we may replace each
inequality

∑
u aiuxu � bi with more than three odd coefficients by

aivxv + aiwxw +
∑

u:aiu even

aiuxu +
∑
u∈Li

(aiu − 1)xu +
∑
u∈Ui

(aiu + 1)xu � bi + |Ui|

for all elements v, w with odd coefficients and for all (including trivial) partitions
(Li, Ui) of {u ∈ {1, 2, . . . , n}\{v, w} : aiu odd} for i = 1, 2, . . . ,m. Although this leads
in general to an exponential number of rows, the separation problem associated with
the {0, 1

2}-Gomory–Chvátal cuts of this relaxation can still be solved in polynomial
time; see [9]. Observe that a weak generalized (k, 2)-cycle inequality can be derived
as a {0, 1

2}-Gomory–Chvátal cut of such a relaxation when |Hi| = 2 for all edges Hi

of the supporting cycle (C, {Hi : i = 1, 2, . . . , k}). (Indeed, we do not need the upper
bound constraints here.)

Theorem 6.1. There exists a polynomial time algorithm that, for any extended
hypergraph (N,H, tr) and for any point y ∈ Q

N , either asserts that y satisfies all
weak generalized (k, 2)-cycle inequalities supported by cycles (C, {Hi : i = 1, 2, . . . , k})
such that |Hi| = 2, i = 1, 2, . . . , k, or finds an inequality violated by y from a class
of valid inequalities for PTP(N,H, tr) that contains all weak generalized (k, 2)-cycle
inequalities supported by cycles (C, {Hi : i = 1, 2, . . . , k}) such that |Hi| = 2, i =
1, 2, . . . , k.

Notice that this captures, in particular, all transitive packing problems in graphs.
It covers, for instance, the 2-chorded odd cycle inequalities and the odd wheel inequal-
ities for the clique partitioning and the partition polytope. The separation problem
for the former class has previously been solved in [9, 33], the latter one in [17].

For the odd partition inequalities, we make use of both lower and upper bound
constraints. Let us assume that H1, H2, . . . , Hk is the underlying collection of edges
and that d(u) odd implies that either m(u) = 1 and n(u) = 0 or m(u) = 0 and
n(u) = 1 for all nodes u ∈ N . For a given partition (W odd

1 ,W odd
2 ) of W odd the

corresponding odd partition inequality can be obtained as a {0, 1
2}-Gomory–Chvátal
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cut from the relaxed system∑
u∈Hi

xu −
∑

u∈tr(Hi)

xu +
∑

u∈(Hi∪tr(Hi))∩W odd
1

xu −
∑

u∈(Hi∪tr(Hi))∩W odd
2

xu

� |Hi|+ |(Hi ∪ tr(Hi)) ∩W odd
1 | − 1

for i = 1, 2, . . . , k. For fixed κ, we denote by Cκ the class of odd partition inequalities
such that |Hi| � κ, such that d(u) odd implies that either m(u) = 1 and n(u) = 0 or
m(u) = 0 and n(u) = 1 for all nodes u ∈ N , and such that |(Hi ∪ tr(Hi)) \W odd| � 2
for i = 1, 2, . . . , k. The next observation follows again from Caprara and Fischetti’s
result.

Theorem 6.2. There exists a polynomial time algorithm that, for any extended
hypergraph (N,H, tr), for any fixed constant κ, and for any point y ∈ Q

N , either
asserts that y satisfies all odd partition inequalities in Cκ or finds an inequality violated
by y from a class of valid inequalities for PTP(N,H, tr) that contains the class Cκ of
certain odd partition inequalities.

7. Special polytopes. In this section, we discuss two more polytopes that arise
from the transitive packing polytope by special choices of hypergraphs and transitive
elements. The detailed discussion of a third one, the interval order polytope, which
inspired the introduction and the study of the transitive packing polytope, is the
subject of another paper; see [49, Chapter 5]. The insights obtained for the acyclic
subdigraph polytope as well as for the clique partitioning and the partition polytope
have been stated during the treatment above. We will not repeat them here. We
also do not review special independence system polytopes since this model has been
known for years. Instead we concentrate on two recently introduced polytopes that
deal with transitive elements.

7.1. The transitive acyclic subdigraph polytope. An instance of the tran-
sitive acyclic subdigraph problem (or poset problem) consists of a directed graph
D = (V,A) and a weight function c : A → Q. The goal is to determine a set of
arcs B ⊆ A such that the digraph (V,B) is acyclic and transitively closed, i.e., such
that it represents a partially ordered set and such that c(B) is as large as possible. The
transitive acyclic subdigraph polytope (or partial order polytope) of D is the convex
hull of 0/1 incidence vectors of all transitive and acyclic arc sets of D. Equivalently,
it is the integer hull of the polytope defined by

xuv � 0 for all arcs (u, v) ∈ A,(7.1)

xuv � 1 for all arcs (u, v) ∈ A,(7.2)

xuv + xvu � 1 for all pairs (u, v), (v, u) ∈ A,(7.3)

xuv + xvw � 1 for all (u, v), (v, w) ∈ A such that (u,w) /∈ A,(7.4)

xuv + xvw − xuw � 1 for (u, v), (v, w), (u,w) ∈ A.(7.5)

The transitive acyclic subdigraph polytope was introduced by Müller [33]. It arises as
a transitive packing polytope of an extended graph (N,H, tr) defined as follows: the
arc set A of the digraph D forms the node set N , and two nodes (u1, v1), (u2, v2) ∈ A
are said to be adjacent if v1 = u2 or u1 = v2 (or both). The transitive element that
we associate with a pair of adjacent arcs (u, v), (v, w) ∈ A is the arc (u,w), if it exists.

It has already been shown in [33] that the transitive acyclic subdigraph polytope
is full dimensional, that the nonnegativity constraints (7.1) are facet defining, and
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Fig. 7.1. Two digraphs which are generalized (7, 2)-cycles in the extended graphs corresponding
to the transitive acyclic subdigraph problem. The numbers indicate the chosen sequence, respectively.

that an upper bound constraint xuv � 1 defines a facet if and only if for all w ∈ V
with (w, u) ∈ A (or (v, w) ∈ A) also (w, v) ∈ A (respectively, (u,w) ∈ A). The
latter condition is precisely the translation of the assumption made in Lemma 2.4(ii).
The only known nontrivial class of facet defining inequalities is associated with odd
dicycles in D [33]. If (u1, u2), (u2, u3), . . . , (uk−1, uk), (uk, u1) forms an odd dicycle in
D, its cycle inequality is

k∑
i=1

xuiui+1 −
k∑

i=1
(ui, ui+2)∈A

xuiui+2 � k − 1

2
.

These cycle inequalities obviously belong to the class of generalized (k, 2)-cycle in-
equalities. However, there is no reason to restrict ourselves to cycles in the digraph
D. Figure 7.1 shows an arc configuration that defines a generalized cycle in the ex-
tended graph defined above but is no dicycle in D. Hence, we can present a much
larger class of valid inequalities for the transitive acyclic subdigraph polytope.

Lemma 7.1. Let D = (V,A) be a digraph. For k � 3 odd, let a1, a2, . . . , ak be a
sequence of arcs in A such that ai, ai+1 are adjacent, i = 1, 2, . . . , k. The inequalities

k∑
i=1

xai−
∑

a∈tr({ai, ai+1})
for some i

�n(a)�2
2

xa � k − 1

2
and

k∑
i=1

xai−
k∑

i=1

xtr({ai,ai+1}) � k − 1

2

are valid for the transitive acyclic subdigraph polytope of D. Here, n(a) = |{i ∈
{1, 2, . . . , k} : a ∈ tr({ai, ai+1})|. The latter class of inequalities is contained in a
class of valid inequalities for the transitive acyclic subdigraph polytope of D for which
the corresponding separation problem is solvable in polynomial time.

We note that there do not exist generalized (k, 2)-cliques in the case of the tran-
sitive acyclic subdigraph polytope for k � 4. We close this section on the transitive
acyclic subdigraph polytope with the observation that the transitive acyclic subdi-
graph polytope of a digraph D whose underlying graph is bipartite is completely
described by (7.1)–(7.4). We may argue as follows. First observe that there do not
exist transitive arcs. Let black and white be the two color classes of the underlying bi-
partite graph. The extended graph induced by D is also bipartite. Its color classes are
the arcs directed from black to white and the arcs from white to black, respectively.
Since it is known that the node packing polytope of a bipartite graph is completely
described by the nonnegativity, the upper bound, and the edge constraints, our claim
follows.
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7.2. The relatively transitive subdigraph polytope. A digraph D = (V,A)
is said to be transitively closed, or just transitive, whenever the presence of two
arcs (u, v), (v, w) ∈ A implies the presence of the arc (u,w) in A. A subdigraph
(V,B) of a digraph D = (V,A) is called relatively transitive if for every dipath from
u to v in (V,B) either (u, v) ∈ B or (u, v) is not in A. We define the relatively
transitive subdigraph polytope of D as the convex hull of the incidence vectors of
all relatively transitive subdigraphs of D or, equivalently, as the integer hull of the
polytope defined by

xuv � 0 for all arcs (u, v) ∈ A,(7.6)

xuv � 1 for all arcs (u, v) ∈ A,(7.7) ∑
a∈p

xa − xuv � |p| − 1 for all (u, v) ∈ A and for all dipaths p ∈ PD
uv,(7.8)

where PD
uv is the set of dipaths from u to v in D. The size |p| of such a dipath p is the

number of its arcs. Shallcross and Bland [51] (see also [50]) studied the convex hull
of 0/1 points x whose complements x = 1l− x satisfy (7.6)–(7.8). If D is transitively
closed, these points represent the independent sets of the transitivity antimatroid
of D. Shallcross and Bland were motivated by a question raised by Korte and Lovász
[31] of whether the convex hull of these incidence vectors has a (computationally)
nice description. Shallcross and Bland present some conditions on D such that their
polytope, and therefore the relatively transitive subdigraph polytope, is completely
described by (7.6)–(7.8). They also point out that maximizing a linear function over
the relatively transitive subdigraph polytope is NP-hard in general, thereby answering
Korte and Lovász’s question to the negative.

The way we introduced the relatively transitive subdigraph polytope makes it
likely to be a certain transitive packing polytope. To be precise, let the arc set A of the
given digraph D = (V,A) be the node set N of the extended hypergraph to be defined.
The hyperedges are formed by the arcs of dipaths from node u to node v for all u, v ∈ V
such that (u, v) ∈ A. Finally, the transitive element associated with such a hyperedge
is clearly the arc (u, v). Now, we may translate all the inequalities presented for the
transitive packing polytope into this context, thus answering a question of Shallcross
and Bland for other valid inequalities for the (complement of the) relatively transitive
subdigraph polytope.

8. Concluding remarks. Notice that the inequalities presented above remain
valid when we allow for hypergraphs with loops. Then, we cover, for instance, the cut
polytope (see, e.g., [5, 18]) and the Boolean quadric polytope (e.g., [44]) as well.

It is well known (see [19]) that every set packing problem

maximize cx

subject to Ax � 1l,(8.1)

xu ∈ {0, 1},
where A is a matrix of zeros and ones, can be transformed into an equivalent node
packing problem on the intersection graph of A. Every column becomes a node, and
two nodes u and v are joined by an edge if and only if the matrix A contains a row
with entry 1 in columns u and v. In other words, the convex hull of feasible solutions
to (8.1) (the set packing polytope of A) is identical to the node packing polytope of
the intersection graph of A. Hence transitive packing covers set packing as well since
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it subsumes node packing. However, generalized set packing polytopes [13] do not
immediately occur as special instances of transitive packing polytopes. In fact, given
a 0/±1 matrix A and the vector nA whose components count the number of negative
entries in the corresponding rows of A, Conforti and Cornuéjols defined (the integer
hull of) {x : Ax � 1l− nA, 0 � x � 1l} as a generalized set packing polytope.

On the other hand, as already pointed out, the transitive packing polytope of
an extended hypergraph with no transitive elements reduces to an independence sys-
tem polytope. There is a close relation between independence system polytopes and
set covering polytopes (see, e.g., [32, 39]). A set covering polytope is of the form
conv{y ∈ {0, 1}n : Ay � 1l}, where A is a 0/1 matrix. The points y in the set cov-
ering polytope and the points x in the independence system polytope of the circuit
system defined by the undominated rows of A are related by the affine transforma-
tion x = 1l − y. Explicitly, x ∈ conv{x ∈ {0, 1}n : Ax � pA − 1l} if and only if
1l − x ∈ conv{y ∈ {0, 1}n : Ay � 1l}. Consequently, set covering polytopes and in-
dependence system polytopes are equivalent, modulo the above transformation. An
implication of this is that any result stated for the independence system polytope
can be translated to the set covering polytope and vice versa. Thus the work of
Balas and Ng [1, 2], Cornuéjols and Sassano [16], Euler and Mahjoub [21], Nobili and
Sassano [39], and Sassano [45] as well as others on the set covering polytope can be
seen as contributions to the knowledge concerning the independence system polytope.
For instance, the inequalities for the set covering polytope associated with complete
(q, s)-roses of order k [45] turn out to be equivalent to the generalized (k, s, q)-antiweb
inequalities of Laurent [32]. This implies especially that our extension of the class of
antiweb inequalities for the independence system polytope extends the known rose
inequalities for the set covering polytope, too.

If we apply the complementing of variables to the transitive packing polytope
PTP(N,H, tr) = conv{x ∈ {0, 1}N : Ax � pA − 1l}, where the 0/±1 matrix A is the
extended edge-node incidence matrix of the extended hypergraph (N,H, tr), it turns
out to be equivalent (modulo this affine transformation) to the polytope Q(A) :=
conv{x ∈ {0, 1}N : Ax � 1l − nA}. The natural linear relaxation of the polytope
Q(A) has been introduced by Conforti and Cornuéjols [13] in the context of balanced
0/±1 matrices as the (fractional) generalized set covering polytope. Conforti and
Cornuéjols [13] as well as Nobili and Sassano [40] characterize when the fractional
generalized set covering polytope is integral, i.e., when it coincides with the generalized
set covering polytope. Our work can be seen as a contribution to the study of the
generalized set covering polytope when it is properly contained in the corresponding
fractional one. Recall that a 0/±1 matrix is balanced if, in every submatrix with
exactly two nonzero entries per row and per column, the sum of the entries is a
multiple of four [53]. We refer to Conforti, Cornuéjols, Kapoor, Vuskǒvić, and Rao [14]
for a survey of balanced matrices and related concepts. Conforti and Cornuéjols [13]
showed that a 0/±1 matrix A is balanced if and only if the fractional generalized
set covering (or packing) polytope is integral for each submatrix of A. An extension
of the concept of balanced 0/±1 matrices is ideal matrices. A 0/±1 matrix A is
ideal if its fractional generalized set covering polytope is integral or, equivalently, if
its fractional transitive packing polytope is integral. It would be very interesting, for
problems that can be interpreted as transitive packing problems, to characterize when
the extended edge-node incidence matrices of their associated extended hypergraphs
are ideal. Little is known so far about ideal 0/±1 matrices; see [14, 40].

The way we introduced the transitive packing model and the name we gave to
it reflect how we discovered it [49, Chapter 4] but may hide its full generality. To
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highlight and to slightly extend the generality of our model, we finally provide another
presentation. A directed hypergraph is a pair (N,H) consisting of a finite set N of
nodes and of a set of directed hyperedges (hyperarcs). A hyperarc (H+, H−) ∈ H
consists of two (possibly empty) disjoint subsets of N . For a survey of directed
hypergraphs the reader is referred to [22]. Now, consider for x ∈ {0, 1}N the following
“directed hypergraph covering” constraints:

x(H+) + x(H−) � 1 for all hyperarcs (H+, H−) ∈ H,

where x = 1l−x is the complement of the 0/1 vector x. Observe that this is equivalent
to the transitivity constraints (2.1), with H+ = H and H− = tr(H). In particular,
this form emphasizes the symmetry of the role of hyperedges and their associated
transitive sets. For example, reversing the direction of the hyperarcs simply amounts
to exchanging x and x.

Acknowledgment. The authors are grateful to Maurice Queyranne for suggest-
ing the interpretation of transitive packing in terms of directed hypergraphs.
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[13] M. Conforti and G. Cornuéjols, Balanced 0,±1-matrices, bicoloring and total dual inte-

grality, Math. Programming, 71 (1995), pp. 249–258.
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Abstract. We exhibit certain second-order regularity properties of parametric complementarity
constraints, which are notorious for being irregular in the classical sense. Our approach leads to a
constraint qualification in terms of 2-regularity of the mapping corresponding to the subset of con-
straints which must be satisfied as equalities around the given feasible point, while no qualification
is required for the rest of the constraints. Under this 2-regularity assumption, we derive constructive
sufficient conditions for tangent directions to feasible sets defined by complementarity constraints.
A special form of primal-dual optimality conditions is also obtained. We further show that our
2-regularity condition always holds under the piecewise Mangasarian–Fromovitz constraint qualifica-
tion, but not vice versa. Relations with other constraint qualifications and optimality conditions are
also discussed. It is shown that our approach can be useful when alternative ones are not applicable.
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1. Introduction. This paper is devoted to the analysis of local structure of a
set defined by parametric complementarity constraints, such as

D := {(x, y) ∈ �n ×�m | g(x, y) ≥ 0, y ≥ 0, 〈g(x, y), y〉 = 0},(1.1)

where g : �n × �m → �m, and 〈·, ·〉 denotes the usual inner product in an appro-
priate space. The geometry of sets having this (or similar) structure is important in
connection with mathematical programs with complementarity constraints, where D
appears as the feasible region:

minimize f(x, y)
subject to (x, y) ∈ D.(1.2)

Mathematical programs with equilibrium constraints (MPEC), of which (1.2) is a
special case, are a relatively new active field of research. We refer the reader to
the monograph [10] for further references. It is known [4], and not difficult to see,
that for D given by (1.1) the classical Mangasarian–Fromovitz constraint qualification
(MFCQ) [13] does not hold at any feasible point (x, y) ∈ D. Arguably, this is the
single most important reason that makes treatment of this problem considerably more
difficult when compared to regular (i.e., satisfying some standard constraint qualifi-
cations) nonlinear programs. Specifically, the nonsatisfaction of classical constraint
qualifications makes a simple constructive description of the tangent cone to the set
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D (and its dual) difficult. This rules out standard stationarity/optimality conditions.
The latter, in turn, makes it problematic to come up with reliable computational
algorithms for solving MPEC.

To deal with these issues, a number of approaches have been proposed, among
which are [11, 10, 18, 15, 14, 20]. In this paper, we study complementarity constraints
from the point of view of the theory of 2-regularity of twice differentiable mappings,
which has not been used in this context previously. Our analysis clarifies the role that
2-regularity can play for MPEC, as well as provides an alternative view of some issues
related to MPEC constraint qualifications and optimality conditions. We also exhibit
some situations when other approaches do not apply but our results appear useful to
characterize optimality.

Given any (x∗, y∗) ∈ D, define the three index sets

I0 := {i | y∗i = 0 = gi(x
∗, y∗)},

Ig := {i | y∗i > 0 = gi(x
∗, y∗)},

Iy := {i | y∗i = 0 < gi(x
∗, y∗)},

with I0 being the degenerate set. Note that these index sets depend on the point under
consideration. Since this point will be fixed throughout our analysis, we shall omit this
dependency in our notation. Note also that locally, the constraints gi(x, y) ≥ 0, i ∈ Iy,
are never active, and we can further deal with constraints yi = 0, i ∈ Iy, explicitly by
eliminating the variables. Thus, to simplify the notation, we can assume that

Iy = ∅.

It is further easy to see that there exists a neighborhood V of (x∗, y∗) ∈ D such that
D ∩ V = D∗ ∩ V, where

D∗ :=

{
(x, y)

∣∣∣∣ yi ≥ 0, gi(x, y) ≥ 0, yigi(x, y) = 0, i ∈ I0
gi(x, y) = 0, i ∈ Ig

}
.(1.3)

The sets D and D∗ are therefore locally equivalent, and we can work with the rep-
resentation given by (1.3). Let us define the mapping F : �n × �m → �|I0|+|Ig|

associated with equality constraints in D∗:

Fi(x, y) :=

{
yigi(x, y), i ∈ I0,
gi(x, y), i ∈ Ig.

In what follows, we show that certain (second-order) regularity properties of this
mapping F are sufficient to completely characterize tangent directions to the set D
and to derive corresponding optimality conditions for MPEC.

The rest of the paper is organized as follows. In section 2 we review the theory of 2-
regularity (for smooth equality constraints) and show, by means of a simple example,
that it is relevant in the context of MPEC. Section 3 contains our necessary and
sufficient conditions for tangency and a demonstration that this description is always
valid under the piecewise MFCQ and can also be useful when the latter condition does
not hold. A special form of primal-dual necessary optimality conditions is derived in
section 4. This section also contains a comparison with some alternative approaches
to MPEC constraint qualifications and optimality conditions.

We next briefly describe our notation. All vectors will be column-vectors. When
writing a pair (x, y), we mean a column-vector composed of two vectors x and y.
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For a vector v of arbitrary (finite) dimension, vi will denote its ith component, and
for a matrix M , Mi will denote its ith row. By MT we shall denote the transposed
matrix of M . For a differentiable scalar function ϕ : �n×�m → �, ∇ϕ(z) stands for
the row-vector of its partial derivatives at z = (x, y) ∈ �n × �m with respect to all
the variables, while ∇xϕ(z) will denote the vector of partial derivatives with respect
to x ∈ �n (similarly for y). If ϕ is twice differentiable, ∇2ϕ(z) denotes its Hessian
matrix, and ∇2

xϕ(z) its Hessian matrix with respect to x. For a differentiable vector-
function F : �l → �k, F ′(z) will denote its Jacobian, i.e., the k × l matrix whose ith
row is ∇Fi(z). If F is twice differentiable, then F ′′(z)[h] denotes the k × l matrix
whose ith row is ∇2Fi(z)h, i = 1, . . . , k. Furthermore, F ′′(z)[h, p] := (F ′′(z)[h])p, and
F ′′(z)[h]2 := F ′′(z)[h, h]. For a linear operator A : S1 → S2, KerA = {w ∈ S1 |
Aw = 0} is its null space, and ImA = {v ∈ S2 | v = Aw for some w ∈ S1} is its
image space. Given a subspace S of an arbitrary space, we shall denote its orthogonal
complement in this space by S⊥. If K is a cone, then K∗ = {p | 〈p, h〉 ≥ 0 ∀h ∈ K}
is the (positive) dual cone of K. For a set K, clK will stand for its closure. Finally,
for a (finite) index set I its cardinality will be denoted by |I|.

2. Elements of the theory of 2-regularity. In this section, we describe some
results from the theory of 2-regularity for smooth nonlinear mappings [12, 19, 1, 9, 5,
6, 7]. Our emphasis will be on only those constructions that will be used later in the
paper. We therefore shall limit our presentation to equality constraints only, to the
finite-dimensional setting, and to the case of mappings differentiable at least twice.
After introducing the necessary objects, we provide an example which illustrates cer-
tain 2-regularity properties of MPEC.

Let F : �l → �k be differentiable at a point z∗ ∈ C, where

C := {z ∈ �l | F (z) = 0}.
We are interested in the tangent cone to the set C at the point z∗ ∈ C, denoted TC(z

∗),
which is the set of all vectors h ∈ �l for which there exists a mapping r : �+ → �l
such that

z∗ + th+ r(t) ∈ C ∀ t ∈ �+, ‖r(t)‖ = o(t).

We note that in the context of constructive constraint qualifications there is no dis-
tinction between this definition of the tangent cone and the more general Bouligand
tangent cone. In the following, we shall use the given definition, as it is more conve-
nient for our development (and leads to the same results as when using the Bouligand
cone anyway). It is well known that

TC(z
∗) ⊂ H1 := KerF ′(z∗),

which is the (first-order) necessary condition of tangency. A sufficient condition is
given by the classical Lyusternik theorem: the equality

TC(z
∗) = H1

holds if F is (first-order) regular , i.e.,

ImF ′(z∗) = �k.
In the irregular case when ImF ′(z∗) �= �k, cone TC(z∗) can be smaller than H1. In
that case, a more accurate representation is needed.
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Suppose now that F is twice differentiable at z∗. Then it can be verified that

TC(z
∗) ⊂ H2 := H1 ∩ {h | F ′′(z∗)[h]2 ∈ ImF ′(z∗)},

which is the second-order necessary condition of tangency. Let P be the orthogonal
projector onto (ImF ′(z∗))⊥ in �k. With this notation, we can equivalently write

H2 = KerF ′(z∗) ∩ {h | PF ′′(z∗)[h]2 = 0}.(2.1)

Definition 2.1. Under the assumptions above, the mapping F is called 2-regular
at the point z∗ with respect to an element h ∈ �l if

Im (F ′(z∗) + PF ′′(z∗)[h]) = �k.

Obviously, if F is (first-order) regular in the classical sense, i.e., ImF ′(z∗) = �k,
then it is 2-regular with respect to every h. The following generalization of the classical
Lyusternik theorem can be found in [12, 19, 1, 9, 5], and more general results under
weaker smoothness assumptions, with applications, in [6, 7].

Theorem 2.2. Let F : �l → �k be twice differentiable at a point z∗ ∈ �l such
that F (z∗) = 0. Assume further that F is 2-regular at z∗ with respect to an element
h ∈ H2. Then there exists a mapping r : �+ → �l such that

F (z∗ + th+ r(t)) = 0 ∀ t ∈ �+, where ‖r(t)‖ = o(t).

In other words, 2-regularity of F on some h satisfying the second-order necessary
conditions of tangency (h ∈ H2) guarantees that this h is indeed a tangent direction.
In particular, if F is 2-regular with respect to every h ∈ H2 \ {0}, then

TC(z
∗) = H2.

In fact, due to the closedness of the tangent cone, for the above equality to hold it is
enough to require that F be 2-regular with respect to every h in some dense subset
of H2 (i.e., h ∈ K such that clK = H2).

Note that this representation of the tangent cone subsumes the classical regular
case. Indeed, in that case ImF ′(z∗) = �k; hence (ImF ′(z∗))⊥ = {0}, P = 0, and thus
{h | PF ′′(z∗)[h]2 = 0} = �l, and so we have that TC(z

∗) = KerF ′(z∗) = H1 = H2.
Of course, the description of tangent directions via constructions of 2-regularity is
useful precisely in the absence of classical regularity. It is therefore natural to see
what, if anything, the approach of 2-regularity has to offer in the context of MPEC.
To quickly convince the reader that 2-regularity is relevant here, we next consider a
simple one-dimensional problem and show that sufficient conditions for tangency can
be interpreted as 2-regularity of a certain subset of constraints.

Example 2.1. Let n = m = 1 and consider the set D given by

y ≥ 0, g(x, y) ≥ 0, 0 = F (x, y) := yg(x, y).(2.2)

Obviously, the cause of difficulties in MPEC is the degenerate set I0, so the case of
interest is when I0 �= ∅. Here, this means that I0 = {1} while the other index sets
introduced in section 1 are empty. Therefore we shall consider a point (x∗, y∗) ∈ �2

such that

y∗ = 0, g(x∗, y∗) = 0.
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As is easy to see, in this case

F ′(x∗, y∗) = (0, 0).

Hence, the last constraint in (2.2) is not regular (even by itself, separately from the
other constraints defining D!). Note further that

F ′′(x∗, y∗) =
(

0 ∇xg(x∗, y∗)
∇xg(x∗, y∗) 2∇yg(x∗, y∗)

)
.

As is easy to see, the necessary conditions for some (u, v) ∈ � × � to be a tangent
direction to D at (x∗, y∗) are the following:

v ≥ 0, ∇xg(x∗, y∗)u+∇yg(x∗, y∗)v ≥ 0,
v(∇xg(x∗, y∗)u+∇yg(x∗, y∗)v) = 0.

(2.3)

When are these conditions sufficient? Consider the two possible cases.
Case 1: v = 0. It is clear that the point (x∗ + tu, y∗ + tv) = (x∗ + tu, 0) satisfies

the first and third constraints in (2.2) for any t > 0. Suppose that ∇xg(x∗, y∗) �= 0.
Then, by (2.3), if u �= 0, it holds that ∇xg(x∗, y∗)u > 0. By differentiability of g, we
then obtain for all t > 0 small enough that

g(x∗ + tu, 0) = t∇xg(x∗, y∗)u+ o(t) ≥ 0.

Hence, (x∗+ tu, 0) ∈ D ∀ t > 0 small, which means that h = (u, 0) ∈ TD(z∗). Observe
now that

F ′(x∗, y∗) + PF ′′(x∗, y∗)[h] = (0,∇xg(x∗, y∗)u),

and condition ∇xg(x∗, y∗) �= 0 means precisely 2-regularity of F with respect to
h = (u, 0), where u �= 0.

Case 2: v > 0. By (2.3), 〈∇g(x∗, y∗), (u, v)〉 = 0. Suppose that ∇g(x∗, y∗) �= 0.
Then g is regular in the classical sense, and the standard Lyusternik theorem implies
that h = (u, v) is a tangent direction to the set {(x, y) | g(x, y) = 0}: there exists
some mapping r(·) = (r1(·), r2(·)) such that

g(z∗ + th+ r(t)) = 0, ‖r(t)‖ = o(t).

Furthermore, for any t > 0 sufficiently small

y∗ + tv + r1(t) = tv + o(t) ≥ 0.

Hence, the point z∗+ th+r(t) satisfies all constraints in (2.2). Therefore, h ∈ TD(z∗).
Again observe that

F ′(x∗, y∗) + PF ′′(x∗, y∗)[h] = (∇xg(x∗, y∗)v,∇xg(x∗, y∗)u+ 2∇yg(x∗, y∗)v)
= (∇xg(x∗, y∗)v,∇yg(x∗, y∗)v).

As is now easy to see, condition ∇g(x∗, y∗) �= 0 is precisely 2-regularity of F with
respect to h = (u, v), where v �= 0. (Note that if ∇xg(x∗, y∗) = 0, then necessarily
∇yg(x∗, y∗) = 0 (by (2.3), because v > 0). Hence, under our assumption, case v > 0
can occur only if ∇xg(x∗, y∗) �= 0.)



COMPLEMENTARITY CONSTRAINT QUALIFICATION 373

We have demonstrated that in both cases the assumption which makes necessary
conditions of tangency for some direction h to be sufficient can be interpreted as
2-regularity of the mapping F with respect to this h.

In the next section we show that the intuition derived from this simple one-
dimensional case is essentially valid in general. Specifically, 2-regularity of constraints
that have to be satisfied as equalities (in a neighborhood of the point being considered)
yields a precise description of the tangent cone to complementarity constraints at this
point.

3. 2-regularity for MPEC. We start with recalling some useful objects from
the MPEC theory [11, 10, 18, 15]. The standard necessary condition of tangency in
MPEC is

TD(z
∗) ⊂ L,(3.1)

where L is the “linearized cone”:

L :=


(u, v) ∈ �n ×�m

∣∣∣∣∣∣
〈∇gi(z∗), (u, v)〉 ≥ 0, vi ≥ 0, i ∈ I0,
vi〈∇gi(z∗), (u, v)〉 = 0, i ∈ I0,
〈∇gi(z∗), (u, v)〉 = 0, i ∈ Ig


 .(3.2)

Linearization here is understood differently from the usual notion in nonlinear pro-
gramming. Indeed, L is not a polyhedral cone, except when the degenerate set I0 is
empty. Instead, L consists of a finite union of polyhedral cones. It is known [11] that
(3.1) holds as equality when g(·, ·) is an affine function or when z∗ ∈ D is (strongly)
regular in the sense of [17].

It is also clear that TD(z
∗) = L under some piecewise constraint qualification. Let

(R,Q) be the family of partitions of the degenerate set I0, i.e., R∪Q = I0, R∩Q = ∅.
Associated with each partition (R,Q), define the branch of the feasible set

DRQ :=

{
(x, y)

∣∣∣∣ gi(x, y) ≥ 0, yi = 0, i ∈ R,
gi(x, y) = 0, yi ≥ 0, i ∈ Q ∪ Ig

}
.(3.3)

It is easy to see that⋃
(R,Q)

(DRQ ∩ V) = D ∩ V, TD(z
∗) =

⋃
(R,Q)

TDRQ(z
∗),(3.4)

where V is a neighborhood of z∗. If one assumes that, say, the MFCQ is satisfied at
z∗ for constraints defining each of the sets DRQ, then the corresponding branch of L
given by

LRQ :=


(u, v)

∣∣∣∣∣∣
vi = 0, 〈∇gi(z∗), (u, v)〉 ≥ 0, i ∈ R,
〈∇gi(z∗), (u, v)〉 = 0, i ∈ Q ∪ Ig,
vi ≥ 0, i ∈ Q,


(3.5)

will represent necessary and sufficient conditions of tangency for this DRQ. Putting
together all the pieces, one then obtains that TD(z

∗) = L.

In general, however, (3.1) does not hold as equality, and so further analysis is
needed to obtain a precise description of the tangent directions. We next show how
this can be done with the help of 2-regularity outlined in section 2.
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Recall the mapping F : �n×�m → �|I0|+|Ig| associated with equality constraints
in D∗ (which is locally equivalent to D):

Fi(x, y) :=

{
yigi(x, y), i ∈ I0,
gi(x, y), i ∈ Ig.(3.6)

With this notation,

D∗ :=

{
(x, y)

∣∣∣∣ yi ≥ 0, gi(x, y) ≥ 0, i ∈ I0,
F (x, y) = 0

}
.

Note that the ith row of F ′(x∗, y∗) is

F ′(x∗, y∗)i = ∇Fi(x∗, y∗) =
{

0, i ∈ I0,
∇gi(x∗, y∗), i ∈ Ig.

Observe that F cannot be regular unless the degenerate set I0 is empty. On the
other hand, it is quite natural to study F from the point of view of 2-regularity.
Note, however, that F represents only part of the constraints. Indeed, application
of 2-regularity (and arguably, of any general regularity concept) to MPEC cannot be
straightforward. This can already be seen from the one-dimensional example consid-
ered in section 2. The current general theory for irregular problems does not permit
mixed equality and inequality constraints, except in some very special cases. Within
the general theory available, if one is to insist on mixed constraints, then all irreg-
ularity has to be induced by equalities with inequalities being regular [2, 9], or vice
versa [8]. Yet it can be verified that for MPEC even these two extreme cases cannot
be applied. Fortunately, and thanks to the special complementarity structure of D, it
appears possible to develop a special approach for MPEC, different from the general
theory. We next show that whenever tangent directions can be characterized via 2-
regularity for the subset of constraints in D∗ corresponding to F (x, y) = 0, then these
directions are automatically tangent for the complete set of constraints, without any
further assumptions involving these constraints.

We start by computing some objects described in section 2. Let Ag be the |Ig| ×
(n+m) matrix with rows ∇gi(z∗), i ∈ Ig. With this notation,

KerF ′(z∗) = KerAg.

Furthermore,

ImF ′(z∗) = {(0, w) ∈ �|I0| ×�|Ig| | w ∈ ImAg},

(ImF ′(z∗))⊥ = {(p, q) ∈ �|I0| ×�|Ig| | q ∈ (ImAg)
⊥}.

Now, let P be the orthogonal projector onto (ImF ′(z∗))⊥. Then

P (x, y) = (x, Pgy),

where Pg is the orthogonal projector onto (ImAg)
⊥. Differentiating F twice, it can

be verified that for any (u, v) ∈ �n ×�m,

F ′′(z∗)[(u, v)] =
(

B0[(u, v)]
Bg[(u, v)]

)
,
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where B0[(u, v)] is the |I0| × (n+m) matrix with rows

B0[(u, v)]i = vi∇gi(z∗) + 〈∇gi(z∗), (u, v)〉ei, i ∈ I0,(3.7)

with ei ∈ �n+m being the vector of zeros except for the (n+ i)th component, which
is equal to one; and Bg[(u, v)] is the |Ig| × (n+m) matrix with rows

Bg[(u, v)]i = ∇2gi(z
∗)(u, v), i ∈ Ig.(3.8)

Observe further that

(B0[(u, v)]
2)i = 2vi〈∇gi(z∗), (u, v)〉.(3.9)

Taking into account this information, we have that

PF ′′(z∗)[(u, v)]2 = 0 ⇔ B0[(u, v)]
2 = 0, PgBg[(u, v)]

2 = 0,

which in turn is equivalent to

vi〈∇gi(z∗), (u, v)〉 = 0, i ∈ I0, PgBg[(u, v)]
2 = 0.

We can now state necessary conditions for tangent directions to equality constraints
in D∗, in terms of cone H2 defined by (2.1):

〈∇gi(z∗), (u, v)〉 = 0, i ∈ Ig,
vi〈∇gi(z∗), (u, v)〉 = 0, i ∈ I0,
PgBg[(u, v)]

2 = 0.

Putting these together with standard necessary conditions for inequality constraints
in D∗, we obtain

TD(z
∗) ⊂ H,

where

H :=


(u, v)

∣∣∣∣∣∣∣∣
〈∇gi(z∗), (u, v)〉 ≥ 0, vi ≥ 0, i ∈ I0,
vi〈∇gi(z∗), (u, v)〉 = 0, i ∈ I0,
〈∇gi(z∗), (u, v)〉 = 0, i ∈ Ig,
PgBg[(u, v)]

2 = 0


 .(3.10)

Note that the above is not a standard set of necessary conditions: we have a mix
of second-order conditions for equality constraints with first-order conditions for in-
equality constraints. In general, H is not piecewise polyhedral, although it can be
such under some natural assumptions discussed below. But perhaps more interesting
is the difficult case when H is not piecewise polyhedral. Even in that case, as we shall
see, (3.10) gives a precise (i.e., TD(z

∗) = H) constructive description of tangency
whenever the mapping F is 2-regular. This can further be used for deriving a special
form of primal-dual optimality conditions in the situation where other techniques are
not applicable.

We are now ready to state our description of the tangent cone to complementarity
constraints.

Theorem 3.1. Let g be twice differentiable at z∗ ∈ D, where D is given by (1.1).
Then the following statements hold.
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1. If h ∈ TD(z∗), then h ∈ H.
2. If F defined by (3.6) is 2-regular at z∗ with respect to h ∈ H, then h ∈ TD(z∗).
Proof. In view of the preceding discussion, the first assertion of the theorem

requires no further justification.
Suppose now that F is 2-regular with respect to some h = (u, v) ∈ H. By

Theorem 2.2, it then follows that h is tangent to the set {z | F (z) = 0}:
F (z∗ + th+ r(t)) = 0, ‖r(t)‖ = o(t),

where r(·) = (r1(·), r2(·)) is the mapping from Theorem 2.2. By the definition of F ,
this is equivalent to

(y∗i + tvi + r2i (t))gi(x
∗ + tu+ r1(t), y∗ + tv + r2(t)) = 0, i ∈ I0,(3.11)

gi(x
∗ + tv + r1(t), y∗ + tv + r2(t)) = 0, i ∈ Ig.

To prove that h ∈ TD(z∗), it remains to show that z∗+th+r(t) satisfies the remaining
inequality constraints (for t > 0 sufficiently small). According to prior calculations,

F ′(z∗) + PF ′′(z∗)[(u, v)] =
(

B0[(u, v)]
Ag + PgBg[(u, v)]

)
,

and the assumption of 2-regularity means that the matrix on the right-hand side has
full row rank. In particular, B0[(u, v)] must have full row rank. Hence (see (3.7)),

vi∇gi(z∗) + 〈∇gi(z∗), (u, v)〉ei, i ∈ I0, are linearly independent.(3.12)

Define

I0
0 := {i ∈ I0 | vi = 0}, I1

0 := I0 \ I0
0 = {i ∈ I0 | vi > 0}.

It immediately follows from (3.10) that

〈∇gi(z∗), (u, v)〉 = 0, i ∈ I1
0 .

Note that the linear independence of vectors in (3.12) corresponding to i ∈ I0
0

means that 〈∇gi(z∗), (u, v)〉 �= 0, i ∈ I0
0 . Further, taking into account (3.10), this

is equivalent to

〈∇gi(z∗), (u, v)〉 > 0, i ∈ I0
0 .(3.13)

Using (3.13), differentiability of g implies that for all t > 0 sufficiently small

gi(x
∗ + tv + r1(t), y∗ + tv + r2(t)) = t〈∇gi(z∗), (u, v)〉+ o(t) > 0, i ∈ I0

0 .

The latter relation, together with (3.11), yields

y∗i + tvi + r2i (t) = r2i (t) = 0, i ∈ I0
0 .

Similarly, for all t > 0 small enough,

y∗i + tvi + r2i (t) = tvi + r2i (t) > 0, i ∈ I1
0 ,

and so (3.11) implies that

gi(x
∗ + tv + r1(t), y∗ + tv + r2(t)) = 0, i ∈ I1

0 .

In particular, we have established that for all t > 0 sufficiently small, (x, y) = z∗ +
th+r(t) satisfies the inequality constraints yi ≥ 0, gi(x, y) ≥ 0, i ∈ I0 = I0

0 ∪I1
0 , which

completes the proof that h ∈ TD(z∗).
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Corollary 3.2. The following statements hold.
1. If there exists some set K ⊂ H such that F is 2-regular with respect to every

h ∈ K and clK = H, then TD(z
∗) = H.

2. If

∇gi(z∗), i ∈ Ig, are linearly independent,(3.14)

then H = L. In particular, under the assumption of the previous item,
TD(z

∗) = L.
Proof. The first assertion follows from Theorem 3.1 and closedness of the tangent

cone. For the second assertion, just notice that (3.14) implies that (ImAg)
⊥ = {0},

and so Pg = 0. Hence, H = L.
Therefore, whenever there exists a dense subset of H with respect to which F

is 2-regular, H gives a precise description of the tangent cone. If (3.14) also holds,
necessary conditions for tangency take a simpler piecewise polyhedral form.

We next show that the piecewise MFCQ is a sufficient condition for 2-regularity
of F on a certain dense subset of H, as well as for (3.14). A branch DRQ, defined by
(3.3), satisfies MFCQ if

∇gi(z∗), i ∈ Q ∪ Ig, ei, i ∈ R, are linearly independent, and
∃ (u, v) ∈ �n ×�m such that
vi = 0, 〈∇gi(z∗), (u, v)〉 > 0, i ∈ R,
〈∇gi(z∗), (u, v)〉 = 0, i ∈ Q ∪ Ig,
vi > 0, i ∈ Q,

(3.15)

where ei = (0, 0, . . . , 1, . . . , 0) ∈ �n+m with one in the (n + i)th position. Under the
piecewise MFCQ, for each branch DRQ the (classical) linearized cone LRQ, defined
by (3.5), represents all the tangent directions. Note that, as discussed above, the
fact that a piecewise constraint qualification implies the equality TD(z

∗) = L is fairly
obvious. The significance of the following result lies not in establishing this equality
but in providing a new interpretation for piecewise MFCQ in terms of 2-regularity
of a subset of constraints of the original nondecomposed problem. Since piecewise
MFCQ is arguably the most natural condition guaranteeing that TD(z

∗) = L, this
goes to show that the introduced 2-regularity condition is also natural for MPEC.
Furthermore, piecewise MFCQ is merely a sufficient condition for 2-regularity, as
would be demonstrated by an example.

Theorem 3.3. Suppose that piecewise MFCQ holds at z∗ ∈ D. Then F is 2-
regular with respect to every h = (u, v) ∈ �n × �m satisfying (3.15) for some pair
(R,Q), and it holds that TD(z

∗) = H = L.
Proof. Consider an arbitrary branch DRQ of the feasible set D, and an arbitrary

h = (u, v) satisfying (3.15). We have to show that the rows of matrix

F ′(z∗) + PF ′′(z∗)[(u, v)] =
(

B0[(u, v)]
Ag + PgBg[(u, v)]

)
=

(
B0[(u, v)]

Ag

)
are linearly independent. By (3.7) and (3.15), we have that

B0[(u, v)]i =

{ 〈∇gi(z∗), (u, v)〉ei, i ∈ R,
vi∇gi(z∗), i ∈ Q.

By (3.15), it further holds that

〈∇gi(z∗), (u, v)〉 > 0, i ∈ R,
vi > 0, i ∈ Q.
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The linear independence condition in (3.15) now implies the desired linear indepen-
dence of the rows of F ′(z∗) + PF ′′(z∗)[(u, v)].

Taking into account that MFCQ subsumes (3.14), the last assertion follows im-
mediately from Corollary 3.2.

The following example demonstrates that 2-regularity of F is a weaker condition
than piecewise MFCQ, i.e., the former may be satisfied when the latter is not. Fur-
thermore, it shows that our results can yield a relatively simple description of the
tangent cone even in the difficult situation when piecewise constraint qualifications
fail.

Example 3.1. Let n = 1, m = 2, and consider the set D given by (1.1), where

g1(x, y) = x+ y1, g2(x, y) = x2 − (y2 − a)2,
with a > 0 being any given number. Consider the point z∗ = (x∗, y∗) with x∗ = 0,
y∗1 = 0, y∗2 = a. We have that z∗ ∈ D and I0 = {1}, Ig = {2},

H =


(u, v)

∣∣∣∣∣∣
v1 ≥ 0, u+ v1 ≥ 0,
v1(u+ v1) = 0,
u2 − v2

2 = 0


 .

Since ∇g2(z∗) = 0, it is clear from (3.15) that the piecewise MFCQ does not hold at
z∗. By direct computations, we have that

F ′(z∗) + PF ′′(z∗)[(u, v)] =
(

v1 u+ 2v1 0
2u 0 2v2

)
.

It can be easily seen that F is 2-regular with respect to any element in H \ {0}, and
hence, TD(z

∗) = H.
It is further interesting to note that even though H �= L, the structure of H is no

more complex than that of L. Indeed, observe that u2−v2
2 = 0 ⇔ u = v2 or u = −v2.

Hence, cone H is piecewise polyhedral, just like L. However, H = TD(z
∗) �= L. This

shows that 2-regularity can give a constructive description of the tangent cone when
TD(z

∗) �= L, even without going beyond the situation where the tangent cone is
piecewise polyhedral.

We conclude this example by noting that it remains valid if we perturb g by
any function δ such that δ(z) = o(‖z − z∗‖2). In particular, this would not affect
2-regularity properties of F or constraints defining cone H (this is because the first
and second derivatives at z∗ would not change). After such a perturbation, it would
still hold that H = TD(z

∗) �= L.

4. Optimality conditions. In this section we show that 2-regularity can be
used to derive optimality conditions, including a special form of primal-dual condi-
tions, in situations when alternative approaches may not be applicable. Our results
are meant as a complement to (rather than a substitute for) other types of optimality
conditions for MPEC, some of which we shall discuss below.

We start with the primal form of optimality conditions, which can be derived in
a standard way using the relations

clK ⊂ TD(x
∗) ⊂ H,

where

K := {h ∈ H | F is 2-regular with respect to h}.
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Theorem 4.1. Let f be once differentiable and g be twice differentiable at a point
z∗ ∈ D.

If z∗ is a local solution of (1.2), then

〈∇f(z∗), h〉 ≥ 0 ∀h ∈ clK.(4.1)

If it holds that

〈∇f(z∗), h〉 > 0 ∀h ∈ H \ {0},(4.2)

then z∗ is an isolated local solution of (1.2).
Note that when clK = H = L (e.g., under the assumptions of Corollary 3.2),

we recover B-stationarity as defined in [18], which is generally considered one of the
natural primal stationarity concepts for MPEC (see also Example 4.1).

To obtain a primal-dual form of optimality conditions, one way is to compute the
dual cone of K. In general, this is a difficult problem, as this cone need not be even
piecewise polyhedral. However, we are able to derive special primal-dual optimality
conditions using a different technique. This is possible under the assumption that
there exists some h̄ ∈ K for which inequality in (4.1) holds as equality (a “critical”
direction). This assumption is justifiable in this context, and it is quite common in
the literature, e.g., [3, 16]. If 〈∇f(z∗), h̄〉 > 0 for a given h̄ ∈ K, then it is clear that
the same property holds for all h in some neighborhood U of h̄. Hence, on U there
is no contradiction with necessary optimality conditions, and z∗ is still a candidate
for being a solution. There is no more local information to be extracted using this h̄.
On the other hand, if 〈∇f(z∗), h̄〉 = 0, a further investigation is needed, and indeed
more local information relevant to optimality of z∗ can be obtained. Note that in
the following result, 2-regularity of F is assumed with respect to this h̄ only, and in
particular, the knowledge of the entire tangent cone is not necessary. We first state
our optimality conditions using the same objects as in 2-regularity constructions in
section 3, which allows a more compact form. After the proof, we shall rewrite them
in terms of the original problem data and give comparisons with some other results
in the literature.

Theorem 4.2. Let f be once and g be twice differentiable at a point z∗ ∈ D,
which is a local minimizer for problem (1.2). Assume further that

∃ h̄ ∈ K such that 〈∇f(z∗), h̄〉 = 0.(4.3)

Then there exist unique λ̄ ∈ �|I0| and µ̄1, µ̄2 ∈ �|Ig| (all depending on h̄) such that

∇f(z∗) + (B0[h̄])
T λ̄+ATg µ̄

1 + (Bg[h̄])
T µ̄2 = 0,(4.4)

µ̄1 ∈ ImAg, µ̄2 ∈ (ImAg)
⊥,(4.5)

where the index sets I0 and Ig are as defined earlier.
Moreover, the multiplier µ̄2 satisfies the following additional condition: for every

h such that

h ∈ KerAg, B0[h̄, h] = 0, Bg[h̄, h] ∈ ImAg,(4.6)

it holds that

〈µ̄2, Bg[h]
2〉 ≥ 0.(4.7)
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Proof. It can be easily seen from Definition 2.1 that if 2-regularity of F holds for
some h̄ = (ū, v̄) ∈ H, then it holds for all h sufficiently close to h̄. In other words,
there exists a neighborhood U of h̄ in �n ×�m such that

H ∩ U ⊂ K.

Hence, by Theorem 4.1, we have that

〈∇f(z∗), h〉 ≥ 0 ∀h ∈ H ∩ U .
Observe that the latter relation and (4.3) imply that h̄ is a local solution of the
optimization problem

min
h∈H
〈∇f(z∗), h〉.(4.8)

The feasible set H of problem (4.8), given by (3.10), can be equivalently written in
the following form (recalling definitions of B0 and Ag):

H =


h = (u, v)

∣∣∣∣∣∣
vi ≥ 0, 〈∇gi(z∗), h〉 ≥ 0, i ∈ I0,
1
2B0[h]

2 = 0,
Agh+ 1

2PgBg[h]
2 = 0


 .(4.9)

Here we have also taken into account the following obvious observation: for any h
the elements Agh and 1

2PgBg[h]
2 belong to orthogonal subspaces in �|Ig|, and hence,

they both are equal to zero if and only if their sum is equal to zero.
Next we show that in a neighborhood of h̄ the set H is completely defined by

equality constraints only, so in our local considerations we can omit the inequality
constraints in (4.9). Indeed, recall that since F is 2-regular with respect to h̄, we have
by (3.13) that

〈∇gi(z∗), h̄〉 > 0, i ∈ I0
0 ,(4.10)

where

I0
0 = {i ∈ I0 | v̄i = 0}.(4.11)

Let h satisfy the equality B0[h]
2 = 0. By (3.9), we then obtain that

vi〈∇gi(z∗), h〉 = 0, i ∈ I0.
This relation and (4.10) imply that if h = (u, v) is sufficiently close to h̄, then it must
hold that

vi = 0, 〈∇gi(z∗), h〉 > 0, i ∈ I0
0 ,

vi > 0, 〈∇gi(z∗), h〉 = 0, i ∈ I1
0 ,

(4.12)

where

I1
0 = I0 \ I0

0 = {i ∈ I0 | v̄i > 0}.(4.13)

We have therefore established that there exists a neighborhood V of h̄ such that
whenever h ∈ V satisfies the equality constraints in (4.9), it also satisfies the inequal-
ity constraints (by (4.12)). In other words, H is completely defined by its equality
constraints (locally, in V). Writing these equality constraints as Φ(h) = 0, where

Φ(h) =

(
1
2B0[h]

2

Agh+ 1
2PgBg[h]

2

)
,
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we conclude that problem (4.8) is locally equivalent to

min
Φ(h)=0

〈∇f(z∗), h〉.(4.14)

Furthermore,

Φ′(h̄) =
(

B0[h̄]
Ag + PgBg[h̄]

)
,(4.15)

and, as we have verified in the proof of Theorem 3.1, the assumption of 2-regularity
of F with respect to h̄ means that the matrix on the right-hand side has full row
rank. Thus Φ is regular at h̄ in the classical sense. This means that classical first-
and second-order optimality conditions for regular equality-constrained problems are
applicable for problem (4.14) at its local solution h̄. To this end, define the standard
Lagrangian for (4.14):

L(h, λ, µ) = 〈∇f(z∗), h〉+ 〈(λ, µ), Φ(h)〉
= 〈∇f(z∗), h〉+ 〈λ, 1

2B0[h]
2〉+ 〈µ, Agh+ 1

2PgBg[h]
2〉.

Representing µ as µ = µ1+µ2, where µ1 ∈ ImAg and µ
2 ∈ (ImAg)

⊥, the Lagrangian
can be further rewritten as

L(h, λ, µ) = 〈∇f(z∗), h〉+ 1

2
〈λ, B0[h]

2〉+ 〈µ1, Agh〉+ 1

2
〈µ2, Bg[h]

2〉.(4.16)

Now, by the classical first-order necessary optimality conditions, there exists a (unique,
by necessity) pair (λ̄, µ̄) ∈ �|I0| ×�|Ig| such that

∇hL(h̄, λ̄, µ̄) = 0,

and, by the second-order necessary optimality conditions, it further holds that

〈∇2
hL(h̄, λ̄, µ̄)h, h〉 ≥ 0 ∀h ∈ KerΦ′(h̄).

Computing all the derivatives involved (by taking into account (4.15) and (4.16)), we
obtain the asserted results.

Using the definition of Ag, (3.7), (3.8), and (4.12) (for h = h̄), we can rewrite our
optimality conditions explicitly in terms of the problem data. Specifically, for (4.4)
and the second relation in (4.5), we obtain

∇f(z∗) +
∑
i∈I00

λ̃ie
i +

∑
i∈I10

λ̃i∇gi(z∗) +
∑
i∈Ig

(µ̄1
i∇gi(z∗) + µ̄2

i∇2gi(z
∗)h̄) = 0(4.17)

and ∑
i∈Ig

µ̄2
i∇gi(z∗) = 0,

where ei is as defined earlier, the index sets I0
0 and I1

0 are defined in (4.11) and (4.13),
respectively, and

λ̃i =

{
λ̄i〈∇gi(z∗), h̄〉, i ∈ I0

0 ,
λ̄iv̄i, i ∈ I1

0 .
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Similarly, we can rewrite the first two conditions on h = (u, v) in (4.6) as follows:

〈∇gi(z∗), h〉 = 0, i ∈ Ig,

and

vi = 0, i ∈ I0
0 , 〈∇gi(z∗), h〉 = 0, i ∈ I1

0 ,

respectively. Finally, taking into account (3.9), condition (4.7) takes the form∑
i∈Ig

µ̄2
i 〈∇2gi(z

∗)h, h〉 ≥ 0.

Note that if the linear independence condition (3.14) is satisfied, then necessarily
µ̄2 = 0, and our optimality conditions take a simpler form. We next comment on some
other approaches to constraint qualifications and optimality conditions for MPEC.

First, note that Theorem 4.2 subsumes optimality conditions for the nondegen-
erate case of I0 = ∅, but in a way different from conditions based on disjunctive
programming [11, 10]. Observe that if I0 = ∅, then F is composed of components
gi, i ∈ Ig. Further, if ∇gi(z∗), i ∈ Ig, are linearly independent (condition (3.14)), then
F is regular at z∗ in the classical sense and, hence, 2-regular with respect to every h.
We can then choose h̄ = 0 in (4.3). With this choice, the primal-dual characterization
of optimality given by Theorem 4.2 reduces to ∇f(z∗) =

∑
i∈Ig µ̄

1
i∇gi(z∗), which

is precisely the Karush–Kuhn–Tucker conditions in the situation where I0 = ∅ and
Iy = ∅. (Recall that we set Iy = ∅ merely to simplify notation; if Iy �= ∅, then the
gradients of yi = 0, i ∈ Iy, enter into play in the obvious way.)

In [15], some conditions are obtained which ensure that the tangent cone and/or
its dual can be computed as corresponding cones of certain standard nonlinear pro-
grams associated with MPEC. In particular, these cones are therefore polyhedral.
Since this need not be the case in our development, it is clear that the two approaches
are principally different. The motivation of [15] is to identify situations where MPEC
optimality can be characterized without an excessive combinatorial burden of disjunc-
tive programming. Note that our constraint qualification does not require decompo-
sition of the feasible region for its verification. In this sense, it also contributes to the
same goal.

We next comment on some results in [18] and, in particular, show that our ap-
proach can be useful to verify optimality when [18] may not be applicable, and vice
versa. We start with some general comments and then give a number of examples.

For the feasible set D given by (1.1), all constraint qualifications considered in [18]
are equivalent to the following linear independence constraint qualification (LICQ):

∇gi(z∗), i ∈ I0 ∪ Ig, ei, i ∈ I0, are linearly independent.(4.18)

Under this assumption, the following primal-dual necessary conditions hold:

∇f(z∗) =
∑

i∈I0∪Ig
λ̄i∇gi(z∗) +

∑
i∈I0

µ̄ie
i,(4.19)

λ̄i ≥ 0, µ̄i ≥ 0, i ∈ I0.

To compare this result with ours, first note that LICQ (4.18) implies piecewise MFCQ,
which is stronger than 2-regularity (recall Example 3.1). On the other hand, for our
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primal-dual conditions we need a tangent direction h̄ which is critical (condition (4.3)).
It is therefore clear that the two constraint qualifications are not directly comparable.
In other words, one can be satisfied when the other is not, and vice versa. Secondly,
note that primal-dual conditions (4.17) and (4.19) are also essentially different. If
(3.14) holds (which is certainly implied by LICQ), as discussed above, we have that
µ̄2 = 0. Observe now that, since I0

0 ∪ I1
0 = I0, the right-hand side of (4.17) involves

twice fewer gradients of constraints from the index set I0 than (4.19). That is, in
(4.17) the multipliers corresponding to half of the constraints in I0 are claimed to be
zero. In this respect, (4.17) is sharper than (4.19). On the other hand, (4.19) contains
additional conditions on the signs of the multipliers in I0. Hence, the two optimality
conditions are essentially different, neither one of them being stronger than the other.

We next give some examples. Note that in the first example below, LICQ (4.18)
holds, which is a much stronger condition than is needed to apply our results. Thus
this example is certainly not the most suitable for showing the utility of our ap-
proach. We include it mainly because it is extensively used in the literature, e.g., [18].
Examples 4.2 and 4.3 better illustrate the differences and our contribution.

Example 4.1. Let n = m = 1 and

f(x, y) = αx+ βy, g(x, y) = x,

where α, β ∈ � are parameters. In the terminology of [18], the point z∗ = (x∗, y∗) = 0
is a B-stationary point (equivalent here to strongly stationary) if and only if α ≥ 0,
β ≥ 0. This is a primal stationarity condition. Concerning primal-dual stationarity,
z∗ is a weak stationary point for any α and β; it is a C-stationary point if and only
if either α ≥ 0, β ≥ 0 or α ≤ 0, β ≤ 0; and it is an M -stationary point if and only if
α ≥ 0, β ≥ 0 or αβ = 0.

As is easy to see, I0 = {1}, F ′(z∗) = 0, H = {(u, v) | u ≥ 0, v ≥ 0, uv = 0}, and F
is 2-regular at z∗ with respect to all (u, v) ∈ H\{0} because F ′(z∗)+PF ′′(z∗)[(u, v)] =
(v, u).

We start by illustrating our primal optimality conditions. If α > 0, β > 0,
then (4.2) holds, and the second assertion of Theorem 4.1 guarantees that z∗ is an
isolated local minimizer. The first assertion of Theorem 4.1 shows that z∗ cannot be
a minimizer unless α ≥ 0, β ≥ 0. The latter is consistent with B-stationarity because
in this example (3.14) holds, and TD(z

∗) = clK = H = L (recall the comment after
Theorem 4.1). Example 4.2 below shows that Theorem 4.1 is in fact useful beyond
B-stationarity in the sense of [18].

Consider now primal-dual conditions.
Let α = 0 and β > 0, in which case z∗ is a minimizer. Note that h̄ = (ū, v̄) = (1, 0)

satisfies (4.3). We have that I0
0 = {1}, I1

0 = ∅, λ̃1 = λ̄1〈∇g(z∗), h̄〉 = λ̄1, and (4.17)
holds with λ̃1 = −β. All the stationarity conditions from [18] are also satisfied here.

Let α = 1 and β = −1, in which case z∗ is not a minimizer. In (4.3) we can
take h̄ = (ū, v̄) = (1, 1), so that I1

0 = {1}, I0
0 = ∅, and λ̃1 = λ̄1v̄1 = λ̄1. There exists

no λ̃1 such that (1,−1) + λ̃1(1, 0) = 0, and so (4.17) does not hold. Therefore this
nonoptimal z∗ is not stationary in our sense. Note that it is weakly stationary but
not C- or M -stationary.

In the case α = 0 and β < 0, the point z∗ is not a minimizer. But all the
stationarity concepts of [18] hold, and it can be seen that Theorem 4.2 also applies.
In this case, none of those stationarity concepts is able to detect nonoptimality of z∗.

The following examples are intended to show that the presented optimality condi-
tions can be useful in situations where other approaches (e.g., [15, 18, 6]) do not apply.
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Example 4.2. Let g, x∗, and y∗ be as defined in Example 3.1 and the objective
function be given by f(x, y) = αx + β1y1 + β2y2 + o(‖(x, y)‖), where α, β1, β2 are
parameters. Recall that not only (4.18) but even the much weaker condition (3.14)
does not hold in this example. In particular, the constraint qualifications used in
[15, 18] do not hold, and the corresponding results do not apply.

According to Example 3.1, the cone H consists of four rays spanned by (1, 0, 1),
(1, 0, −1), (−1, 1, 1), and (−1, 1, −1), and the mapping F is 2-regular at z∗ with
respect to every element in H \ {0}. From the primal necessary optimality conditions
stated in Theorem 4.1, it can be derived that z∗ cannot be a local minimizer unless

0 ≤ α ≤ β1, |β2| ≤ min{a, |β1 − a|}.

Sufficient condition (4.2) is satisfied if and only if both of these inequalities hold
strictly.

Next, for h̄ = (1, 0, ±1), equality in (4.3) takes place if and only if α±β2 = 0, and
(4.4), (4.5) hold with λ̄ = −β1, µ̄

1 = 0, µ̄2 = ±β2/2. For h̄ = (−1, 1, ±1), equality in
(4.3) takes place if and only if −α+ β1 ± β2 = 0, and (4.4), (4.5) hold with the same
multipliers.

“Second-order” condition (4.7) does not provide any additional information in this
example, as for every h̄ ∈ H \ {0}, the subspace comprised by elements h satisfying
(4.6) coincides with span{h̄}, and hence Bg[h]

2 = 0 for such h.
We next demonstrate the utility of the “second-order” condition (4.7). Note

that this example also highlights the differences of the present paper as compared to
optimality conditions in [6], where a general theory of 2-regularity is developed for
C1,1 mappings, and optimality conditions for MPEC are obtained after reformulating
the constraints as C1,1 equations.

Example 4.3. Let n = m = 2,

f(x, y) = x1 + y1 − y2, g1(x, y) = x1 + y1, g2(x, y) = x2
1 + x2

2 − (y2 − a)2,

where a > 0 is a parameter. Consider the point z∗ = (x∗, y∗) ∈ D with x∗ = 0,
y∗1 = 0, y∗2 = a. It can be verified that this z∗ is not a minimizer, but the stationarity
conditions given in [6, section 6] hold. Results from [15, 18] are not applicable (because
∇g2(z∗) = 0 and thus constraint qualifications do not hold). We next show that
Theorem 4.2 correctly classifies z∗ as nonoptimal.

We have that I0 = {1}, Ig = {2},

H =


(u, v)

∣∣∣∣∣∣
v1 ≥ 0, u1 + v1 ≥ 0,
v1(u1 + v1) = 0,
u2

1 + u2
2 − v2

2 = 0


 .

It is easy to see that F is 2-regular with respect to all elements h = (u, v) ∈ H
satisfying u1 �= 0.

Take, e.g., h̄ = (1, 0, 0, 1) ∈ H. Then equality in (4.3) is satisfied, and (4.4),
(4.5) hold with λ̄ = −1, µ̄1 = 0, µ̄2 = −1. Hence, z∗ is still a candidate for being
optimal. A different analysis based on [6] leads to the same conclusion up to this
point, and no further analysis is possible based on that reference.

However, using Theorem 4.2, we see that linear equalities (4.6) hold for elements
h = (u, v) such that v1 = 0, u1 − v2 = 0. For such h, it holds that

µ̄2Bg[h]
2 = −u2

2 < 0
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for any u2 �= 0. Hence, condition (4.7) is violated here, and z∗ cannot be a local
minimizer.
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Abstract. We propose a new algorithm for solving smooth nonlinear equations in the case where
their solutions can be singular. Compared to other techniques for computing singular solutions, a
distinctive feature of our approach is that we do not employ second derivatives of the equation map-
ping in the algorithm and we do not assume their existence in the convergence analysis. Important
examples of once but not twice differentiable equations whose solutions are inherently singular are
smooth equation-based reformulations of the nonlinear complementarity problems. Reformulations
of complementarity problems serve both as illustration of and motivation for our approach, and one of
them we consider in detail. We show that the proposed method possesses local superlinear/quadratic
convergence under reasonable assumptions. We further demonstrate that these assumptions are in
general not weaker and not stronger than regularity conditions employed in the context of other
superlinearly convergent Newton-type algorithms for solving complementarity problems, which are
typically based on nonsmooth reformulations. Therefore our approach appears to be an interesting
complement to the existing ones.
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perlinear convergence
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1. Introduction. In this paper, we are interested in solving nonlinear equations
in the case where their solutions can be singular and smoothness requirements are
weaker than those usually assumed in this context. Our development is partially
motivated by the nonlinear complementarity problem, which we consider in detail,
and for which our method takes a particularly simple and readily implementable
form.

Let F : V → Rn be a given mapping, where V is a neighborhood of a point x̄ in
Rn, with x̄ being a solution of the system of equations

F (x) = 0.(1.1)

In the following, F is assumed to be once (but not necessarily twice) differentiable on
V . In this setting, x̄ is referred to as singular solution if the linear operator F ′(x̄) is
singular, i.e.,

detF ′(x̄) = 0,

or, equivalently,

corankF ′(x̄) = dimkerF ′(x̄) > 0.
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In other cases, x̄ is referred to as a regular solution.
Singularity gives rise to numerous difficulties. It is well known that for Newton-

type methods, at best one can guarantee linear convergence rate to a singular solution
[6, 7, 9]. Moreover, it is not sufficient to choose a starting point only close enough
to a solution (usually the set of appropriate starting points does not contain a full
neighborhood of the solution, although this set is normally rather “dense” [18]). We
refer the reader to the survey [19] and references therein. Another difficulty typical
in this context is related to possible instability of a singular solution with respect
to perturbations of F [27]. Certain special approaches to overcome those difficulties
have been developed in the last two decades, but they employ second derivatives of
F . Concerning methods for computing singular solutions, we cite [8, 20, 19, 43, 14, 1]
and the more recent proposals in [26, 22, 21, 2, 27, 4] (of course, this list does not
mention all contributions in this field).

One of the motivations for our new approach to solving singular equations lies in
applications to the classical nonlinear complementarity problem (NCP) [37, 12, 13],
which is to find an x ∈ Rn such that

g(x) ≥ 0, x ≥ 0, 〈g(x), x〉 = 0,(1.2)

where g : Rn → Rn is smooth. One of the most useful approaches to numerical and
theoretical treatment of the NCP consists of reformulating it as a system of smooth
or nonsmooth equations [35, 29, 46]. One possible choice of a smooth reformulation
is given by the following function (for other choices, see section 5.1):

F : Rn → Rn, Fi(x) = 2gi(x)xi − (min{0, gi(x) + xi})2, i = 1, . . . , n.(1.3)

It is easy to check that for this mapping the solution set of the system of equations
(1.1) coincides with the solution set of the NCP (1.2) [29, 47]. If x̄ is a solution of the
NCP, by direct computations (see section 3), we obtain that

F ′
i (x̄) = 2




0 if i ∈ I0,
x̄ig

′
i(x̄) if i ∈ I1,

gi(x̄)e
i if i ∈ I2,

(1.4)

where e1, . . . , en denotes the standard basis in Rn and the index sets I0, I1, and I2
are defined by

I0 := {i = 1, . . . , n | gi(x̄) = 0, x̄i = 0},
I1 := {i = 1, . . . , n | gi(x̄) = 0, x̄i > 0},
I2 := {i = 1, . . . , n | gi(x̄) > 0, x̄i = 0}.

It is immediately clear that F ′(x̄) cannot be nonsingular, unless the index set I0 is
empty. The latter strict complementarity assumption is regarded as rather restric-
tive. Therefore, smooth NCP reformulation provided by (1.3) gives rise to inherently
singular solutions of the corresponding system of equations. In fact, it is known that
any other smooth NCP reformulation has the same singularity properties [31] (see
also section 5.1). Furthermore, it is clear that F is once differentiable with Lipschitz-
continuous derivative (if g is twice continuously differentiable), but F is not twice
differentiable when I0 
= ∅. This is also a common property shared by all useful
smooth reformulations; e.g., see the collection [16]. Thus NCP reformulations pro-
vide an interesting example of once differentiable nonlinear equations whose solutions
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are inherently singular. As discussed above, application of standard numerical tech-
niques (e.g., Newton methods) in this context is prone to difficulties (and even failure)
because of singularity. On the other hand, known special approaches to computing
singular solutions are inapplicable, since these require second derivatives of F . This is
the apparent reason why superlinearly convergent Newton-type algorithms for solving
the NCP are typically based on nonsmooth equation reformulations and nonsmooth
Newton methods (see [13] for a discussion and some references). In this paper, we
show that it is, in fact, possible to devise superlinearly convergent algorithms based
on the smooth NCP reformulations. Specifically, we propose an alternative approach
based on computing singular solutions of the smooth reformulation stated above, and
show that conditions needed for convergence of our method are principally different
from those required for convergence of known nonsmooth algorithms. Thus the two
can be considered as a complement to each other.

We complete this section with some notation, which is fairly standard. We denote
by Ln the space of linear operators from Rn to Rn. For A ∈ Ln, let kerA = {x ∈
Rn | Ax = 0} stand for its kernel (null space), and imA = {Ax | x ∈ Rn} stand for
its image (range space). For a bilinear mapping B : Rn ×Rn → Rn and an element
p ∈ Rn, we define the linear operator B[p] ∈ Ln by B[p]ξ = B[p, ξ]. Recall that
symmetric bilinear mappings and linear operators of the form p → B[p] : Rn → Ln
are in isometrically isomorphic correspondence to each other, i.e., the correspondence
is one-to-one, linear, and it preserves the norm. Therefore, in what follows we shall
not be making a formal distinction between those objects. Given a set S in a vector
space, we denote by convS its convex hull and by spanS its linear hull. Finally, by
E we denote the identity operator in Rn.

2. A general approach to solving singular equations. We start with de-
scribing an approach to computing singular solutions of twice differentiable nonlinear
equations, which was developed in [26, 22, 27]. We then extend it to the setting of
once differentiable mappings, and in the next section show how it applies to solving
complementarity problems.

A solution x̄ of (1.1) being regular is equivalent to saying that imF ′(x̄) = Rn,
while singularity means that imF ′(x̄) 
= Rn. In this situation, one possibility for
“regularizing” a singular solution x̄ is to add to the left-hand side of (1.1) another
term, which vanishes at x̄ (so that x̄ remains a solution), and such that its Jacobian
at x̄ “compensates” for the singularity of F ′(x̄) (so as to complement imF ′(x̄) in Rn).
It is natural to base this extra term on the information about the first derivative of
F .

To this end, define the mappings P : V → Ln, h : V → Rn, and

Φ : V → Rn, Φ(x) = F (x) + P (x)F ′(x)h(x),(2.1)

and consider the equation

Φ(x) = 0.(2.2)

Suppose that P (·) is defined in such a way that for P̄ = P (x̄) it holds that

imF ′(x̄) ⊂ ker P̄ .(2.3)

Then, by the structure of Φ, solution x̄ of (1.1) is also a solution for (2.2). Fur-
thermore, if F is sufficiently smooth (at least twice differentiable at x̄), then under
appropriate assumptions on the first two derivatives of F at x̄, and on P (·) and h(·),
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it is possible to ensure that Φ is differentiable at x̄, and x̄ is a regular solution of (2.2).
As these assumptions will not be used in this paper, we omit the details, referring the
reader to [26, 27]. The regular solution x̄ of (2.2) can be computed by means of effec-
tive special methods [26, 22, 27], or by conventional numerical techniques (the latter
would typically require stronger assumptions, in order to ensure differentiability of Φ
not only at x̄ but also in its neighborhood). There exist certain general techniques
to define P (·) and h(·) with necessary properties (see [26, 27]). However, when one
has additional information about the structure of singularity of F at x̄ (e.g., recall
(1.4) for the NCP reformulation), it can often be used to choose P (·) and h(·) in a
particularly simple and constructive way. One such application is precisely the NCP,
where the subspace imF ′(x̄) can be identified (locally, but without knowing x̄), and
so the two mappings can be chosen constant (see section 3).

In this paper, we shall focus exclusively on the case where it is possible to choose
P (·) ≡ P̄ on V , with some P̄ ∈ Ln satisfying (2.3). We emphasize that, of course,
P̄ should be determined without knowing the exact solution x̄. The simplest case
when this is possible is when we know that corankF ′(x̄) = n (i.e., F ′(x̄) = 0), or
when we are interested in determining a solution specifically with this particular type
of singularity. In that case, it is natural to take P̄ = E. In section 3, we show how
an appropriate P̄ for the NCP reformulation can be determined using information
available at any point close enough to a solution (but without knowing the solution
itself). In general, if P (·) is defined as a constant P̄ satisfying (2.3), one can also
usually take h(·) ≡ p, with p ∈ Rn \ {0} being an arbitrary element. Indeed, with
those choices the function defined by (2.1) takes the form

Φ(x) = Φp(x) := F (x) + P̄F ′(x)p, x ∈ V,(2.4)

and x̄ is still a solution of (2.2), due to (2.3). If F is twice differentiable at x̄, then it
is clear that Φ is differentiable at this point, and

Φ′(x̄) = F ′(x̄) + P̄F ′′(x̄)[p].(2.5)

Therefore, x̄ is a regular solution of (2.2) if the linear operator in the right-hand side
of (2.5) is nonsingular. This is possible under appropriate assumptions. Since the
case of twice differentiable F is not the subject of this paper, we shall not discuss
technical details. We only note that nonsingularity of (2.5) subsumes the condition

imF ′(x̄) + im P̄ = Rn.

Observe that the latter relation implies that (2.3) must hold as equality. Summarizing,
we obtain the following assumptions on the choice of P̄ :

ker P̄ = imF ′(x̄), Rn = imF ′(x̄)⊕ im P̄ .(2.6)

These assumptions clearly hold if, for example, P̄ is the projector onto some comple-
ment of imF ′(x̄) in Rn parallel to imF ′(x̄). With this choice, nonsingularity of (2.5)
formally coincides with the notion of 2-regularity of Φ at x̄ with respect to p ∈ Rn,
in the sense of [23, 3, 27]. We note, however, that this connection does not seem
conceptually important, and in fact, appears to be in some sense a coincidence. In-
deed, in the case of once differentiable mappings considered below, the nonsingularity
condition that would be required no longer has any direct relation to 2-regularity for
mappings with Lipschitzian derivatives, as defined in [24, 25].
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As a final note, we remark that it can be shown (by a simple argument; see
[26, 27]) that if there exists at least one element p ∈ Rn such that the operator (2.5)
is nonsingular, then it will be so for almost every p ∈ Rn.

We conclude the discussion of the twice differentiable case by the following ex-
ample, which is very simple but serves to illustrate the basic idea.

Example 2.1. Let n = 1 and F : V → R be twice continuously differentiable on
V , where V is a neighborhood of x̄ ∈ R which is a singular solution of (1.1). The
latter means here that F (x̄) = F ′(x̄) = 0. Taking P̄ = E and any p ∈ R \ {0}, we
obtain the following regularized equation: Φ(x) = F (x) + F ′(x)p = 0. Obviously,
Φ(x̄) = 0 and Φ′(x̄) = F ′′(x̄)p, which is distinct from zero for any p ∈ R \ {0},
provided F ′′(x̄) 
= 0. This shows that in this example, if F ′′(x̄) 
= 0, singularity can
be easily dealt with by using the second-order information.

In the approach outlined above, F is assumed to be twice differentiable. Suppose
now that F is once (but not twice) differentiable, and its first derivative is Lipschitz-
continuous on V . Then Φ defined by (2.4) is also Lipschitz-continuous on V , and it
is natural to try to apply to the corresponding equation (2.2) the generalized (non-
smooth) Newton method [32, 33, 41, 42, 40, 28]. We emphasize that we shall use
the nonsmooth Newton method to solve a (nonsmooth) regularization of a smooth
equation. In the context of NCP, this should be compared to the more traditional
approach of solving an inherently nonsmooth reformulation by the nonsmooth New-
ton method. As we shall show in section 4, the two different approaches lead to two
different regularity conditions, neither of which is weaker or stronger than the other.

Let ∂Φ(x) denote the Clarke’s generalized Jacobian [5] of Φ at x ∈ V . That is,

∂Φ(x) = conv ∂BΦ(x),

where ∂BΦ(x) stands for the B-subdifferential [45] of Φ at x, which is the set

∂BΦ(x) = {H ∈ Ln | ∃{xk} ⊂ DΦ : xk → x and Φ′(xk)→ H},
with DΦ ⊂ V being the set of points at which Φ is differentiable. With this notation,
the nonsmooth Newton method is the following iterative procedure:

xk+1 = xk − (H(xk))−1Φ(xk), H(xk) ∈ ∂Φ(xk), k = 0, 1, . . . .(2.7)

It is well known [42, 40, 28] that if
(i) Φ is semismooth [36] at x̄, and
(ii) all the linear operators comprising ∂Φ(x̄) are nonsingular,

then the process (2.7) is locally well defined and superlinearly convergent to x̄. More-
over, if Φ is strongly semismooth [36], then the rate of convergence is quadratic.
The regularity condition (ii) can be relaxed if a more specific rule of determining
H(xk) ∈ ∂Φ(xk) is employed. For example, if one chooses H(xk) ∈ ∂BΦ(xk), then it
is enough to assume BD-regularity, i.e., that all elements in ∂BΦ(x̄) are nonsingular
[41].

In applications, Φ usually has some special (tractable) structure, and at each
iterate xk we are interested in obtaining just one, preferably easily computable,
H(xk) ∈ ∂Φ(xk). This would be precisely the case here. The choice of an element
in ∂Φ(x) that we suggest to use in the nonsmooth Newton method for solving (2.2),
with Φ given by (2.4), is the following:

H(x) = Hp(x) := F ′(x) + (P̄F ′)′(x; p), x ∈ V,(2.8)
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where (P̄F ′)′(x; p) denotes the usual directional derivative of the mapping P̄F ′(·)
at x ∈ V with respect to a direction p ∈ Rn. In section 3, we show that this
H(x) is explicitly and easily computable for the NCP reformulations. The validity
of the choice suggested in (2.8) for an element of ∂Φ(x) is actually not so obvious.
The possibility of choosing the directional derivative (P̄F ′)′(x; p) as an element in the
generalized Jacobian of P̄F ′(x)p is based on the following fact. At a point x ∈ V where
P̄F ′(·) is differentiable, its derivative is in fact the second derivative of P̄F (·). Due to
this, (P̄F ′)′(x) can be considered as a symmetric bilinear mapping. This symmetry
will be essential in the proof of Lemma 2.1 below. For a mapping x→ Q(x)p, where
p ∈ Rn and x→ Q(x) : Rn → Ln is an arbitrary Lipschitzian mapping, the inclusion
Q′(x; p) ∈ ∂(Q(x)p) can be in general invalid.

Lemma 2.1. Suppose that F : V → Rn has a Lipschitzian derivative on V , where
V is an open set in Rn. Assume that for some P̄ ∈ Ln the mapping P̄F ′ : V → Ln
is directionally differentiable at a point x ∈ V with respect to a direction p ∈ Rn.

Then H(x) ∈ ∂Φ(x), where H and Φ are defined in (2.8) and (2.4), respectively.
Proof. Since P̄F ′(·) is clearly Lipschitz-continuous, using further the assumption

that P̄F ′ is directionally differentiable at x with respect to p, it follows that there
exists a linear operator B ∈ ∂(P̄F ′)(x) (B : Rn → Ln) such that

(P̄F ′)′(x; p) = Bp.(2.9)

The above conclusion can be deduced from [42, Lemma 2.2(ii)] after identifying the
space Ln with the equivalent space Rm, m = n2, and using the equivalence of the
norms in finite-dimensional spaces.

By the definition of the generalized Jacobian, B ∈ ∂(P̄F ′)(x) means that there
exist an integer m, sequences {xi,k} ⊂ V , and numbers λi, i = 1, . . . ,m, with the
following properties: λi ≥ 0 ,

∑m
i=1 λi = 1, P̄F ′(·) is differentiable at each xi,k, and

x = lim
k→∞

xi,k, B =

m∑
i=1

λi lim
k→∞

(P̄F ′)′(xi,k),(2.10)

where the limits in the right-hand side of the second equality exist for each i =
1, . . . ,m.

Note that differentiability of P̄F ′(·) at each xi,k means that the mapping P̄F :
V → Rn is twice differentiable at these points. Taking into account the symmetry of
the bilinear mapping representing the second derivative, we conclude that

Φ′(xi,k) = F ′(xi,k) + (P̄F ′)′(xi,k)p.

Therefore,

m∑
i=1

λi lim
k→∞

Φ′(xi,k) = F ′(x) +

m∑
i=1

λi lim
k→∞

(P̄F ′)′(xi,k)p

= F ′(x) +Bp

= F ′(x) + (P̄F ′)′(x; p)
= H(x),

where the second equality follows from (2.10), and the third from (2.9). Using the
definition of the generalized Jacobian, we conclude that H(x) ∈ ∂Φ(x).
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Remark 2.1. There exists another way to construct the regularized equation
Φ(x) = 0, which can have advantages in certain situations over the one described
above. Specifically, the mapping Φ defined by (2.4) can be modified as follows:

Φ(x) := (E − P̄ )F (x) + P̄F ′(x)p, x ∈ V.(2.11)

It is clear that, with this definition, x̄ is still a solution of Φ(x) = 0. Modifying H
accordingly, we have

H(x) := (E − P̄ )F ′(x) + (P̄F ′)′(x; p), x ∈ V.(2.12)

Furthermore, it is clear that Lemma 2.1 is still valid with Φ and H defined by (2.11)
and (2.12). Finally, it is easy to see that since P̄F ′(x̄) = 0, the possible limits of H(x)
as x→ x̄ are the same, whether H is defined by (2.8) or (2.12). Hence, the regularity
condition at x̄ that would be needed for the superlinear convergence of our method
is again the same, whether the method is applied to one regularized equation or the
other.

The possible advantage of the modified equation is the following. If the singularity
of F ′(x̄) has a certain structure, then not all the components of F may need to be
computed in (2.11). Furthermore, (2.12) can also take a simpler form in that case.
For example, suppose that F ′(x̄) is such that P̄ satisfying (2.3) can be chosen as
the orthogonal projector onto the subspace span {ei , i ∈ I}, where e1, . . . , en is the
standard basis in Rn and I ⊂ {1, . . . , n}. Then E − P̄ is the orthogonal projector
onto span {ei , i ∈ {1, . . . , n} \ I}. It is easy to see that, in this case, (2.11) would not
require computing the function values Fi(x), i ∈ I. Furthermore, the derivatives of
Fi, i ∈ I, would not appear in (2.12), and so this part would also be simplified. This
feature would be further illustrated in the context of NCP in section 3.

Next, we shall also consider the following modification of the Newton algorithm
(2.7), which will be useful for solving the NCP reformulation in section 3:

xk+1 = xk − (H̃(xk))−1Φ(xk), ‖H̃(xk)−H(xk)‖ = O(‖xk − x̄‖), H(xk) ∈ ∂Φ(xk),

k = 0, 1, . . . .

(2.13)

This modification is essentially motivated by the idea of “truncating” elements of the
(generalized) Jacobian by omitting the terms which vanish at the solution x̄. These
terms typically involve some higher-order derivatives of the problem data (in the
context of NCP (1.2), the second derivatives of g), and so it can be advantageous not
to compute them, if possible.

Note that the regularity condition which is typically employed in nonsmooth
Newton methods consists of saying that every element in the generalized Jacobian
∂Φ(x̄) (or the B-subdifferential ∂BΦ(x̄)) is nonsingular (recall condition (ii) stated
above). This seems to be unnecessarily restrictive, because in most implementable
algorithms some specific rule to choose H(xk) ∈ ∂Φ(xk) is used. We shall therefore
replace the traditional condition by a weaker one. Specifically, we shall assume that
all the possible limits of H(xk) as xk → x̄ are nonsingular, where H(xk) is precisely
the element given by (2.8) (or by (2.12)). To this end, we shall define the set

∆Φp(x̄) := {H̄ ∈ Ln | ∃{xk} ⊂ V : xk → x̄, Hp(x
k)→ H̄}.

Our regularity assumption would be that elements in ∆Φp(x̄) are nonsingular. We
remind the reader that this set is the same for both choices of H, i.e., (2.8) and
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(2.12). We point out that, unlike in the twice differentiable case, this regularity
condition cannot be related to the notion of 2-regularity [24, 25] of Φ at x̄.

With Lemma 2.1 in hand, convergence of algorithms (2.7) and (2.13), with the
data defined in (2.4) and (2.8) or (2.11) and (2.12), can be established similarly to
[41], but taking into account the modified nonsingularity assumption.

Theorem 2.2. Suppose F : V → Rn has a Lipschitz-continuous derivative on
V , where V is a neighborhood of a solution x̄ of (1.1). Let P̄ ∈ Ln satisfy (2.3).
Assume further that the mapping P̄F ′ : V → Ln is directionally differentiable with
respect to a direction p ∈ Rn at any point in V , and the mapping P̄F ′(·)p : V → Rn

is semismooth at x̄. Let Φ and H be defined by (2.4) and (2.8), or (2.11) and (2.12).
Assume further that all linear operators comprising ∆Φp(x̄) are nonsingular.

Then the iterates given by (2.7) or (2.13) are locally well defined and converge
to x̄ superlinearly. If, in addition, the mapping P̄F ′(·)p is strongly semismooth at x̄,
then the rate of convergence is quadratic.

Proof. It is easy to see that under our regularity assumption, (H(·))−1 is lo-
cally uniformly bounded. Indeed, assume the contrary, i.e., that there exists a se-
quence {xk} ⊂ V such that xk → x̄, and the sequence {(H(xk))−1} is unbounded
(this subsumes the possibility that some elements of the latter sequence are not even
well defined). Recall that the generalized Jacobian is locally bounded [5]. Since,
by Lemma 2.1, H(xk) ∈ ∂Φ(xk) for every k, it follows that the sequence {H(xk)} is
bounded. Hence, we can assume that {H(xk)} converges to some H̄ ∈ ∆Φp(x̄), where
the inclusion is by the very definition of the set ∆Φp(x̄). But then H̄ is nonsingular,
which is in contradiction with the earlier assumption that {(H(xk))−1} is unbounded.

Consider first algorithm (2.7), and suppose that the iterates are well defined up
to some index k ≥ 0. We have that

‖xk+1 − x̄‖ = ‖(H(xk))−1(Φ(xk)− Φ(x̄)−H(xk)(xk − x̄))‖
≤M‖Φ(xk)− Φ(x̄)−H(xk)(xk − x̄)‖,

where M > 0. Note that when P̄F ′(·)p is (strongly) semismooth, so is Φ(·). It is
known [40, Proposition 1] that semismoothness of Φ at x̄ implies that

sup
H∈∂Φ(x̄+ξ)

‖Φ(x̄+ ξ)− Φ(x̄)−Hξ‖ = o(‖ξ‖)

(the latter property was introduced in the context of the nonsmooth Newton methods
in [33]). Using Lemma 2.1 and combining the last two relations, well-definedness of
the whole sequence {xk} and its superlinear convergence to x̄ follow by a standard
argument.

In the strongly semismooth case, one has that

sup
H∈∂Φ(x̄+ξ)

‖Φ(x̄+ ξ)− Φ(x̄)−Hξ‖ = O(‖ξ‖2),

and so convergence is quadratic.
Consider now the iterates {xk} generated by (2.13). By our regularity assumption

and the classical results of linear analysis, the condition

‖H̃(xk)−H(xk)‖ = O(‖xk − x̄‖)
implies that

‖(H̃(xk))−1 − (H(xk))−1‖ = O(‖xk − x̄‖).
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Hence,

‖(H̃(xk))−1Φ(xk)− (H(xk))−1Φ(xk)‖ ≤ ‖(H̃(xk))−1 − (H(xk))−1‖‖Φ(xk)− Φ(x̄)‖
= O(‖xk − x̄‖2),

where the Lipschitz-continuity of Φ was also used. It follows that the difference be-
tween the original and modified steps is of the second order. By the obvious argument,
it can now be easily seen that the modified algorithm has the same convergence rate
as the original one.

Note that, in principle, our regularity condition depends not only on the structure
of the singularity of F at x̄, but also on the choice of p. Implementation of this
approach presumes that there exists at least one p ∈ Rn for which this condition
is satisfied. Furthermore, a way to choose such p should be available. Fortunately,
a typical situation is the following. The existence of one suitable p can usually be
established under some reasonable regularity assumption. Then, given the existence
of one such p, it can further be proven that the set of appropriate elements is, in
fact, open and dense in the whole space. Hence, p can be chosen arbitrary, with the
understanding that almost any is suitable. We shall come back to this issue in section
4, where regularity conditions for NCP are discussed. In the computational experience
of [22, 26], where conceptually related methods for smooth operator equations are
considered, a random choice of p does the job. Even though this choice certainly
affects the rate and range of convergence, the differences between different choices are
usually not dramatic.

Finally, we remark that the development presented above can be extended to the
case when P (·) is not necessarily constant, but it is a Lipschitzian mapping satisfying
(2.6) with P̄ = P (x̄). In that case, we would have to provide a technique to define
such P (·) in the general setting. Such techniques are possible, but they go beyond the
scope of the present paper. Here we are mainly concerned with a specific application
of our approach to the NCP, which we consider next.

3. Algorithm for the NCP. Consider the NCP (1.2), and its reformulation as
a system of smooth equations (1.1), given by (1.3). For convenience, we restate the
associated function F , which is

F : Rn → Rn, Fi(x) = 2gi(x)xi − (min{0, gi(x) + xi})2, i = 1, . . . , n.

We choose a specific reformulation for the clarity of presentation. In section 5.1, we
show that our analysis is intrinsic and extends to other smooth reformulations.

Let x̄ ∈ Rn be a solution of NCP. Suppose that g is twice continuously differ-
entiable in some neighborhood V of x̄ in Rn. Then it is easy to see that F has a
Lipschitz-continuous derivative on V , which is given by

F ′
i (x) = 2(xig

′
i(x) + gi(x)e

i −min{0, gi(x) + xi}(g′i(x) + ei)),(3.1)

i = 1, . . . , n, x ∈ V,

where e1, . . . en is the standard basis in Rn. Recalling the three index sets

I0 := {i = 1, . . . , n | gi(x̄) = 0, x̄i = 0},
I1 := {i = 1, . . . , n | gi(x̄) = 0, x̄i > 0},
I2 := {i = 1, . . . , n | gi(x̄) > 0, x̄i = 0},
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from (3.1) we immediately obtain that

F ′
i (x̄) = 2




0 if i ∈ I0,
x̄ig

′
i(x̄) if i ∈ I1,

gi(x̄)e
i if i ∈ I2.

(3.2)

As already discussed in section 1, the Jacobian F ′(x̄) is necessarily singular whenever
I0 
= ∅, the latter being the usual situation for complementarity problems of interest.
Furthermore, F is not twice differentiable. Hence, smooth NCP reformulations fall
precisely within the framework of section 2. Such equations cannot be effectively
solved by previously available methods, and so our approach comes into play. We
next show that in the setting of NCP, the general algorithm introduced in section 2
takes a simple implementable form.

Given the structure of F ′(x̄), we have that

imF ′(x̄) ⊂ span {ei , i ∈ I1 ∪ I2}.

Then the natural choice of P̄ satisfying imF ′(x̄) ⊂ ker P̄ (recall condition (2.3)) is
the operator with the matrix representation consisting of rows

P̄i =

{
ei if i ∈ I0,
0 if i ∈ I1 ∪ I2.(3.3)

At the end of this section, we shall show how to define P̄ without knowing the solu-
tion x̄ (clearly, this task reduces to identifying the index set I0). This is possible by
means of error bound analysis. A sufficient condition for our error bound is weaker
than b-regularity [39], which is currently the weakest assumption under which Newton
methods for nonsmooth NCP reformulations are known to be (superlinearly) conver-
gent [30, 34].

Once P̄ is defined according to (3.3), we fix p ∈ Rn \ {0} arbitrarily. Then the
function Φ defined by (2.4) takes the form

Φi(x) =

{
Fi(x) + 〈F ′

i (x), p〉 if i ∈ I0,
Fi(x) if i ∈ I1 ∪ I2, x ∈ V.(3.4)

According to section 2, x̄ is a solution of Φ(x) = 0, which is our “regularized” equation.
We proceed to derive explicit forms for iterations of algorithms (2.7) and (2.13), and
the regularity condition needed for their convergence.

First, by (2.8) and (3.3), the matrix representation of H(x), which is the element
of ∂Φ(x) employed in algorithm (2.7), consists of rows

Hi(x) =

{
F ′
i (x) + (F ′

i )
′(x; p) if i ∈ I0,

F ′
i (x) if i ∈ I1 ∪ I2, x ∈ V.(3.5)

Furthermore, the directional derivatives employed in (3.5) exist and can be obtained
explicitly from (3.1):

(F ′
i )

′(x; p) = 2(xig
′′
i (x)p+ pig

′
i(x) + 〈g′i(x), p〉ei

−min{0, gi(x) + xi}g′′i (x)p− γi(x, p)(g′i(x) + ei)),(3.6)

i = 1, . . . , n, x ∈ V,



396 A. F. IZMAILOV AND M. V. SOLODOV

where

γi(x, p) =



〈g′i(x), p〉+ pi if gi(x) + xi < 0,
min{0, 〈g′i(x), p〉+ pi} if gi(x) + xi = 0,
0 if gi(x) + xi > 0,

(3.7)

i = 1, . . . , n, x ∈ V.
Note that, according to (3.5), one has to compute (F ′

i )
′(·; p) only for i ∈ I0. Another

useful observation which would suggest truncation of the Jacobian to be discussed
later is that for i ∈ I0 all the terms in (3.6) involving the second derivatives of g
vanish at x̄.

Furthermore, taking into account (3.5), (3.2), (3.6), and (3.7), we conclude that
the matrix representation of an arbitrary limit point H̄ of H(x) as x→ x̄ consists of
rows

H̄i = 2



−〈g′i(x̄), p〉g′i(x̄)− piei or pig

′
i(x̄) + 〈g′i(x̄), p〉ei if i ∈ I0,

x̄ig
′
i(x̄) if i ∈ I1,

gi(x̄)e
i if i ∈ I2.

Hence, we can state the following sufficient condition for nonsingularity of every linear
operator in ∆Φp(x̄). Denote by J the collection of pairs of index sets (J1, J2) such
that J1 ∪ J2 = I0, J1 ∩ J2 = ∅. Our regularity condition consists of saying that, for
every pair of index sets (J1, J2) ∈ J , it holds that

〈g′i(x̄), p〉g′i(x̄) + pie
i, i ∈ J1

pig
′
i(x̄) + 〈g′i(x̄), p〉ei, i ∈ J2

g′i(x̄), i ∈ I1
ei, i ∈ I2


 are linearly independent in Rn.(3.8)

In section 4, we shall discuss the relation between this condition and other regularity
conditions for the NCP, as well as compare convergence results of our algorithm with
convergence results of other locally superlinearly convergent equation-based methods
for solving NCP.

Under our assumptions, semismoothness of P̄F ′(·)p follows readily from (3.1)
and standard calculus of semismooth mappings [36, Theorem 5]. Moreover, under
the additional assumption of Lipschitz-continuity of g′′(·) on V , P̄F ′(·)p is strongly
semismooth, which follows from results on the superposition of strongly semismooth
mappings [15, Theorem 19]. Hence, Φ(·) is (strongly) semismooth.

Note that all the elements involved in the iteration scheme (2.7) are computed in
this section by explicit formulas. In principle, computing H via (3.5)–(3.7) involves
second derivatives of g. However, as already noted above, the terms containing second
derivatives of g tend to zero as x→ x̄. This suggests the idea of modifying the process
by omitting these terms, which leads to the method represented by (2.13). We shall
also take into account the structure of P̄ and make use of Remark 2.1.

Note that for P̄ given by (3.3) we have that (E − P̄ ) is the orthogonal projector
onto span {ei , i ∈ I1 ∪ I2}. According to (2.11), we can therefore redefine

Φi(x) =

{ 〈F ′
i (x), p〉 if i ∈ I0,

Fi(x) if i ∈ I1 ∪ I2, x ∈ V.(3.9)

Taking into account (2.12) and omitting further the terms that vanish at x̄, we can
take
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H̃i(x) =

{
2(pig

′
i(x) + 〈g′i(x), p〉ei − γi(x, p)(g′i(x) + ei)) if i ∈ I0,

F ′
i (x) if i ∈ I1 ∪ I2, x ∈ V.

(3.10)

Comparing expressions (3.9) and (3.10) with (3.4) and (3.5), one can easily observe
that the former are simpler and require fewer computations.

Furthermore, under our smoothness assumptions, it is easy to see that

‖H̃(x)−H(x)‖ = O(‖x− x̄‖),
and so the modified Newton method given by (2.13) is applicable.

We next give a formal statement of the convergence result for our methods applied
to NCP, which is a corollary of Theorem 2.2.

Theorem 3.1. Let g : V → Rn be a twice continuously differentiable mapping on
V , V being a neighborhood of a solution x̄ of the NCP (1.2). Assume that for some
p ∈ Rn condition (3.8) is satisfied for every pair of index sets (J1, J2) ∈ J .

Then the iterates given by (2.7) or (2.13) (with all the objects as defined in this
section) converge to x̄ locally superlinearly. If, in addition, the second derivative of g
is Lipschitz-continuous on V , then the rate of convergence is quadratic.

We next show how to construct P̄ without knowing the solution x̄. Given the
structure of P̄ (see (3.3)), it is clear that this task reduces to correct identification of
the degenerate set I0. This can be done with the help of error bounds, as described
next (our approach is in the spirit of the technique developed in [10] for identification
of active constraints in nonlinear programming). To our knowledge, the weakest
condition under which a local error bound for NCP is currently available is the 2-
regularity of F given by (1.3) at the NCP solution x̄ [25]. Specifically, if F is 2-regular
at x̄, then there exist a neighborhood U of x̄ in Rn and a constant M1 > 0 such that

‖x− x̄‖ ≤M1‖F (x)‖1/2 ∀x ∈ U.(3.11)

We shall not introduce the notion of 2-regularity formally here, as this would require
an extensive discussion. We emphasize only that the bound (3.11) may hold when
the so-called natural residual min{x, g(x)} does not provide an error bound, and
always holds when it does (see [25], and in particular [25, Example 1]). Hence, the
2-regularity of F is a weaker assumption than the R0-type property or semistability,
which in the case of NCP are both equivalent to an error bound in terms of the natural
residual [38]. And it is further weaker than b-regularity; see [25].

We note that in Lemma 3.2 below we could also use other error bounds for
identifying I0. However, they would require either stronger local assumptions or
global assumptions.

Lemma 3.2. Suppose that x̄ is a solution of NCP, g is Lipschitz-continuous on
V , where V is a neighborhood of x̄. Suppose finally that the local error bound (3.11)
holds. Then for any α ∈ (0, 1) there exists a neighborhood U of x̄ such that

{i ∈ {1, . . . , n} | |max{gi(x), xi}| ≤ ‖F (x)‖α/2} = I0 ∀x ∈ U.(3.12)

Proof. It is easy to observe that there exist some M2 > 0 and some neighborhood
U of x̄ such that

for i ∈ I0, |max{gi(x), xi}| = |max{gi(x), xi} −max{gi(x̄), x̄i}| ≤M2‖x− x̄‖ ∀x ∈ U,
where the inequality follows from the Lipschitz-continuity of the functions involved.
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Therefore, by (3.11) (possibly adjusting the neighborhood U), for an arbitrary fixed
α ∈ (0, 1) we have that

for i ∈ I0, |max{gi(x), xi}| ≤M1M2‖F (x)‖1/2 ≤ ‖F (x)‖α/2 ∀x ∈ U.
In particular, the quantity in the left-hand side of the inequality above tends to zero
as x tends to x̄. On the other hand, it is clear that there exists ε > 0 such that

for i ∈ I1 ∪ I2, |max{gi(x), xi}| ≥ ε > 0 ∀x ∈ U
(U should be adjusted again, if necessary). Combining those facts, we obtain (3.12)
for U sufficiently small.

By Lemma 3.2, the index set I0, and hence the mapping P̄ , are correctly identified
by (3.12), provided one has a point close enough to the solution. We note that this
requirement of closeness to solution is completely consistent with the setting of the
paper, since the subjects under consideration are superlinearly convergent Newton-like
methods, which are local by nature.

Finally, we mention other considerations that can also be useful for identifying
I0. Sometimes the cardinality r of I0 may be known from a priori analysis of the
problem, or one can be interested in finding an NCP solution with a given cardinality
of I0. Then for any x ∈ Rn sufficiently close to x̄, the set I0 coincides with the set
of indices corresponding to the r smallest values of |max{gi(x), xi}|. In this case, no
error bound is needed to identify I0. We note that, in the present setting, cardinality
of I0 is closely related to corank of singularity. In the literature on numerical methods
for solving singular equations, the assumption that corank of singularity is known is
absolutely standard [20, 19, 43, 14, 1, 2]. In the complementarity literature, on the
other hand, assumptions about cardinality of I0 are not common, except possibly for
I0 = ∅.

4. Regularity conditions. In this section we compare our approach with other
Newton-type methods that solve one linear system at each iteration. The weakest
condition under which there exists a locally superlinearly convergent Newton-type
algorithm for solving a (nonsmooth) equation reformulation of the NCP is the b-
regularity assumption, which can be stated as follows: for every pair of index sets
(J1, J2) ∈ J , it holds that

g′i(x̄), i ∈ J1 ∪ I1
ei, i ∈ J2 ∪ I2

}
are linearly independent in Rn.

Under this assumption, the natural residual mapping x→ min{x, g(x)} : Rn → Rn,
is BD-regular at x̄. Furthermore, it is also (strongly) semismooth under standard
assumptions on g. Hence, the nonsmooth Newton method (2.7) based on it con-
verges locally superlinearly [30, 34]. Note that Newton methods applied to another
popular reformulation based on the Fischer–Burmeister function [17, 11] require for
convergence the stronger R-regularity [44] assumption; see [34].

In what follows, we compare our regularity condition (3.8) with b-regularity and
show that they are essentially different. In general, neither is weaker or stronger than
the other. This implies that our approach based on the smooth NCP reformulation
is a complement to nonsmooth reformulations, and vice versa, as each approach can
be successful in situations when the other is not.

The next result is important to obtaining an insight into the nature of our regu-
larity condition (3.8). We start with the following definition.
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Definition 4.1. A solution x̄ of the NCP (1.2) is referred to as quasi-regular if
for every pair of index sets (J1, J2) ∈ J there exists an element p = p(J1, J2) ∈ Rn

such that (3.8) is satisfied.
Proposition 4.2. Suppose that the solution x̄ of the NCP (1.2) is quasi-regular.

Then there exists a universal p ∈ Rn which satisfies (3.8) for every pair (J1, J2) ∈ J .
Moreover, the set of such p is open and dense in Rn.

Proof. Fix a pair (J1, J2) ∈ J , and consider the determinant of the system
of vectors in (3.8) as a function of p. This function is a polynomial on Rn, and this
polynomial is not everywhere zero, since it is not zero at p(J1, J2) (see Definition 4.1).
But then the set where the polynomial is not zero is obviously open and dense in Rn.
Moreover, the intersection of such sets corresponding to pairs (J1, J2) ∈ J is also
open and dense, since it is a finite intersection of open and dense sets.

It follows that if x̄ is a quasi-regular solution of NCP in the sense of Definition 4.1,
then even picking a random p ∈ Rn, one is extremely unlikely to pick a “wrong” p (as
the set of wrong elements is “thin”). Hence, under the assumption of quasiregularity,
for the implementation of the algorithm described in section 3 we can choose p ∈ Rn \
{0} arbitrarily, with the understanding that almost every p ∈ Rn is appropriate. In
particular, for all practical purposes, we can think of quasiregularity as the regularity
condition needed for superlinear convergence of our algorithm. We next investigate
the relationship between quasiregularity and b-regularity.

First, we show that if the cardinality of I0 is equal to one, then quasiregularity is
in fact weaker than b-regularity.

Proposition 4.3. Suppose that x̄ is a b-regular solution of the NCP, and the
cardinality of I0 is equal to one. Then x̄ is quasi-regular.

Proof. Let I0 = {i0} and denote L = span{g′i(x̄), i ∈ I1, ei, i ∈ I2}. In this
setting, b-regularity clearly means that

g′i0(x̄) 
∈ L, ei0 
∈ L,
corresponding to the two possible choices of (J1, J2) ∈ J . It follows that

∀ q ∈ L⊥ \ {0}, 〈g′i0(x̄), q〉 
= 0, qi0 
= 0.(4.1)

Assume for a contradiction that x̄ is not quasi-regular. Then by Definition 4.1, there
exists a pair (J1, J2) ∈ J such that for every p ∈ Rn condition (3.8) is violated. This
means that either

〈g′i0(x̄), p〉g′i0(x̄) + pi0e
i0 ∈ L

or

pi0g
′
i0(x̄) + 〈g′i0(x̄), p〉ei0 ∈ L.

Taking any q ∈ L⊥ \ {0}, we deduce that for every p ∈ Rn either

〈g′i0(x̄), q〉〈g′i0(x̄), p〉+ qi0pi0 = 0

or

〈g′i0(x̄), q〉pi0 + qi0〈g′i0(x̄), p〉 = 0.

Setting p = q, we then obtain that either

〈g′i0(x̄), q〉2 + q2i0 = 0
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or

〈g′i0(x̄), q〉qi0 = 0,

which contradicts b-regularity, because of (4.1).
It is easy to see that in the setting of Proposition 4.3, the quasiregularity condition

can be satisfied without b-regularity. For example, let g′i0(x̄) ∈ L, but ei0 
∈ L. Then
b-regularity is violated. On the other hand, quasiregularity here is equivalent to saying
that there exist elements p1, p2 ∈ Rn (corresponding to the two possible choices of
(J1, J2) ∈ J ) such that

p1i0 
= 0, 〈g′i0(x̄), p2〉 
= 0,

which is satisfied for almost any p1 and p2, provided g′i0(x̄) 
= 0. It is also quite clear
that just choosing p1 and p2 randomly should do the job.

In general, i.e., in the cases of higher cardinality of I0, b-regularity and quasireg-
ularity become different, not directly related conditions. In particular, neither is
stronger or weaker than the other, as illustrated by the following examples.

Example 4.1. Let n = 2, I0 = {1, 2}, and

g′1(x̄) = (1,
√

2), g′2(x̄) = (
√

2, 1).

Then b-regularity is obvious, but

〈g′i(x̄), p〉g′i(x̄) + pie
i = (2p1 +

√
2p2,

√
2p1 + 2p2) ∀ i = 1, 2, ∀ p ∈ R2.

This means that for J1 = I0, J2 = ∅, (3.8) does not hold for any p, and so the
quasiregularity condition is not satisfied.

Example 4.2. Let n = 2, I0 = {1, 2}, and

g′1(x̄) = e2, g′2(x̄) 
∈ span{e1}.
Then b-regularity does not hold (the linear independence condition is violated for J1 =
{1}, J2 = {2}), but quasiregularity is satisfied, which can be shown by straightforward
computations. We omit the details, as they do not provide any further insight.

We complete our discussion with a sufficient condition for quasiregularity of x̄,
which is meaningful when the cardinality of I0 is not greater than n/2, half dimen-
sionality of the space. Specifically, suppose that

g′i(x̄), e
i, i ∈ I0, are linearly independent in Rn(4.2)

and

∃ (J̄1, J̄2) ∈ J s.t.
g′i(x̄), i ∈ J̄1 ∪ I1
ei, i ∈ J̄2 ∪ I2

}
are linearly independent in Rn.(4.3)

It is clear that (4.3) is subsumed by b-regularity (where it must hold for all partitions
of I0). It is also not difficult to see that (4.3) is necessary for quasiregularity of x̄.
Hence, this assumption does not introduce any additional restrictions with respect
to the regularity conditions under consideration. Furthermore, for nonpathological
problems the cardinality of I0 should not be too large compared to the dimensionality
of the space, and so condition (4.2) should not be difficult to satisfy. Therefore, (4.2)
and (4.3) appear to be not restrictive.
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Proposition 4.4. Suppose that (4.2) and (4.3) hold. Then x̄ is a quasi-regular
solution of NCP.

Proof. Take any pair of index sets (J1, J2) ∈ J , and consider the system of (twice
the cardinality of I0) linear equations


〈g′i(x̄), p〉 = 1, pi = 0, i ∈ J1 ∩ J̄1,
〈g′i(x̄), p〉 = 0, pi = 1, i ∈ J1 ∩ J̄2,
〈g′i(x̄), p〉 = 0, pi = 1, i ∈ J2 ∩ J̄1,
〈g′i(x̄), p〉 = 1, pi = 0, i ∈ J2 ∩ J̄2

in the variable p ∈ Rn. Under the assumption (4.2), this system has a solution
p = p(J1, J2). Observe further that substituting this p into (3.8) reduces the system
of vectors appearing in (3.8) precisely to the system of vectors appearing in (4.3),
which is linearly independent by the hypothesis.

Again, it is easy to see that the latter sufficient condition for quasiregularity of
x̄ can hold without b-regularity. On the other hand, in general it is not implied by
b-regularity. In particular, b-regularity need not imply (4.2).

Summarizing the preceding discussion, we conclude that the regularity assump-
tion required for the algorithm proposed in section 3 for solving the NCP is differ-
ent from b-regularity, which is the typical assumption in the context of nonsmooth
Newton-type methods for solving nonsmooth NCP reformulations. In fact, the two
assumptions are of a rather distinct nature. This is not surprising, considering that
they result from approaches which are also quite different.

5. Some further applications. The general approach presented in section 2
can also be useful in other problems where complementarity is present. Below we
outline applications to another class of smooth reformulations of NCP (different from
(1.3)) and to the mixed complementarity problems. We limit this discussion to ex-
hibiting the structure of singularity associated with the smooth equation reformula-
tions of those problems. Deriving the resulting regularity conditions and comparing
them to known ones requires too much space. Without going into detail, we claim
that regularity assumptions needed for our approach would again be different from
assumptions of Newton methods for nonsmooth equations.

5.1. Other NCP reformulations. The analysis presented in sections 3 and 4
for NCP is intrinsic in the sense that it is also applicable to smooth reformulations
other than the one given by (1.3). Indeed, following [35], consider the family of
functions

F : Rn → Rn, Fi(x) = θ(gi(x)) + θ(xi)− θ(|gi(x)− xi|) , i = 1, . . . , n,

where θ : R → R is any strictly increasing function such that θ(0) = 0. It can be
checked that the NCP solution set coincides with zeros of F . As an aside, note that
reformulation (1.3) cannot be written in the form stated above, so the two are really
different.

Suppose further that θ is differentiable on R with θ′(0) = 0 and θ′(t) > 0 for
t > 0. For example, we could take

θ(t) = t|t| .

Let x̄ be some solution of NCP, and V be its neighborhood. If g is twice continuously
differentiable on V and θ′ is Lipschitz-continuous, then the derivative of F is Lipschitz-
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continuous near x̄, and it is given by

F ′
i (x) = θ′(gi(x))g′i(x) + θ′(xi)ei − sign(gi(x)− xi)θ′(|gi(x)− xi|)(g′i(x)− ei),

i = 1, . . . , n, x ∈ V.

As is easy to see,

F ′
i (x̄) =




0 if i ∈ I0,
θ′(x̄i)g′i(x̄) if i ∈ I1,
θ′(gi(x̄))ei if i ∈ I2.

Since θ′(t) > 0 for any t > 0, we conclude that the structure of singularity here is
absolutely identical to that for F given by (1.3) (recall (1.4)). In particular,

imF ′(x̄) ⊂ span {ei , i ∈ I1 ∪ I2},

and all the objects and the analysis in sections 3 and 4 can be derived in a similar
fashion.

5.2. Mixed complementarity problems. The mixed complementarity prob-
lem (MCP) is a variational inequality on a (generalized) box B = {x ∈ Rn | l ≤ x ≤
u}, where li ∈ [−∞,+∞) and ui ∈ (−∞,+∞] are such that li < ui, i = 1, . . . , n.
Specifically, the problem is to find

x ∈ B such that 〈g(x), y − x〉 ≥ 0 ∀y ∈ B,

where g : Rn → Rn. It can be seen that this is equivalent to x ∈ Rn satisfying the
following conditions: for every i = 1, . . . , n,

if gi(x) > 0, then xi = li;
if gi(x) < 0, then xi = ui;
if gi(x) = 0, then li ≤ xi ≤ ui.

NCP is a special case of MCP corresponding to li = 0, ui = +∞, i = 1, . . . , n. Define

ψ : R2 → R, ψ(a, b) = 2ab− (min{0, a+ b})2.

We claim that solutions of MCP coincide with zeros of the function F : Rn → Rn

whose components are given by

Fi(x) =



ψ(gi(x), xi − li), i ∈ Il := {i | li > −∞, ui = +∞},
ψ(−gi(x), ui − xi), i ∈ Iu := {i | li = −∞, ui < +∞},
gi(x), i ∈ Ig := {i | li = −∞, ui = +∞},
ψ(−ψ(−gi(x), ui − xi), xi − li), i ∈ Ilu := {i | li > −∞, ui < +∞}.

We omit the proof, which can be carried out by direct verification. Let x̄ be some
solution of MCP, and V be its neighborhood. If g is twice continuously differentiable
on V , then the derivative of F is Lipschitz-continuous near x̄. Defining

I0 := {i = 1, . . . , n | gi(x̄) = 0} ∩ {i = 1, . . . , n | x̄i = li or x̄i = ui},
I1 := {i = 1, . . . , n | gi(x̄) = 0} \ I0,
I2 := {i = 1, . . . , n | gi(x̄) 
= 0},
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it can be verified that

F ′
i (x̄) =




0 if i ∈ I0,
ρig

′
i(x̄) if i ∈ I1,

νie
i if i ∈ I2,

where

ρi =




2(x̄i − li), i ∈ {i ∈ Il | gi(x̄) = 0, x̄i > li},
−2(ui − x̄i), i ∈ {i ∈ Iu | gi(x̄) = 0, x̄i < ui},
1, i ∈ Ig,
4(x̄i − li)(ui − x̄i), i ∈ {i ∈ Ilu | gi(x̄) = 0, li < x̄i < ui},

νi =



gi(x̄), i ∈ {i ∈ Il ∪ Iu | gi(x̄) 
= 0},
−4gi(x̄)(ui − li), i ∈ {i ∈ Ilu | gi(x̄) < 0, x̄i = ui},
4gi(x̄)(ui − li) + 2(min{0, ui − li − gi(x̄)})2, i ∈ {i ∈ Ilu | gi(x̄) > 0, x̄i = li}.

In particular, ρi 
= 0, i ∈ I1, and νi 
= 0, i ∈ I2. Observing the structure of F ′(x̄),
further analysis can now follow the ideas of sections 3 and 4.

6. Concluding remarks. We have presented a new approach to solving smooth
singular equations. Unlike previously available algorithms, our method is applicable
when the equation mapping is not necessarily twice differentiable. Important examples
of once differentiable singular equations are reformulations of the NCPs, which we
have studied in detail. In particular, we have demonstrated that in the case of NCP
our method takes a readily implementable simple form. Furthermore, the structure
of singularity can be completely identified by means of local error bound analysis,
without knowing the solution itself. It was further shown that the regularity condition
required for the superlinear convergence of the presented algorithm is different from
conditions needed for the nonsmooth Newton methods applied to nonsmooth NCP
reformulations. Thus the two approaches should be regarded as complementing each
other. Finally, it was demonstrated that the main ideas of this paper should also be
applicable to other problems where complementarity structures are present.
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nonlinear equations, ZAMM Z. Angew. Math. Mech., 79 (1999), pp. 219–231.

[3] A.V. Arutyunov, Optimality Conditions: Abnormal and Degenerate Problems, Kluwer Aca-
demic Publishers, Dordrecht, the Netherlands, 2000.

[4] O.A. Brezhneva, A.F. Izmailov, A.A. Tretyakov, and A. Khmura, An approach to finding
singular solutions to a general system of nonlinear equations, Comput. Math. Math. Phys.,
40 (2000), pp. 347–358.

[5] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.
[6] D.W. Decker and C.T. Kelley, Newton’s method at singular points. I, SIAM J. Numer.

Anal., 17 (1980), pp. 66–70.
[7] D.W. Decker and C.T. Kelley, Newton’s method at singular points. II, SIAM J. Numer.

Anal., 17 (1980), pp. 465–471.
[8] D.W. Decker and C.T. Kelley, Convergence acceleration for Newton’s method at singular

points, SIAM J. Numer. Anal., 19 (1982), pp. 219–229.
[9] D.W. Decker, H.B. Keller, and C.T. Kelley, Convergence rates for Newton’s method at

singular points, SIAM J. Numer. Anal., 20 (1983), pp. 296–314.



404 A. F. IZMAILOV AND M. V. SOLODOV

[10] F. Facchinei, A. Fischer, and C. Kanzow, On the accurate identification of active con-
straints, SIAM J. Optim., 9 (1999), pp. 14–32.

[11] F. Facchinei and J. Soares, A new merit function for nonlinear complementarity problems
and a related algorithm, SIAM J. Optim., 7 (1997), pp. 225–247.

[12] M.C. Ferris and J.-S. Pang, eds., Complementarity and Variational Problems: State of the
Art, SIAM, Philadelphia, 1997.

[13] M.C. Ferris and C. Kanzow, Complementarity and related problems, in Handbook of Applied
Optimization, P.M. Pardalos and M.G.C. Resende, eds., Oxford University Press, New
York, 2002, pp. 514–530.

[14] J.P. Fink and W.C. Rheinboldt, A geometric framework for the numerical study of singular
points, SIAM J. Numer. Anal., 24 (1987), pp. 618–633.

[15] A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian func-
tions, Math. Program., 76 (1997), pp. 513–532.

[16] M. Fukushima and L. Qi, eds., Reformulation—Nonsmooth, Piecewise Smooth, Semismooth
and Smoothing Methods, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1999.

[17] C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems, Com-
put. Optim. Appl., 5 (1996), pp. 155–173.

[18] A.O. Griewank, Starlike domains of convergence for Newton’s method at singularities, Numer.
Math., 35 (1980), pp. 95–111.

[19] A.O. Griewank, On solving nonlinear equations with simple singularities or nearly singular
solutions, SIAM Rev., 27 (1985), pp. 537–563.

[20] A. Griewank and G.W. Reddien, Characterization and computation of generalized turning
points, SIAM J. Numer. Anal., 21 (1984), pp. 176–185.

[21] M. Hermann, P. Kunkel, and W. Middelman, Augmented systems for computation of sin-
gular points in Banach space problems, ZAMM Z. Angew. Math. Mech., 78 (1998), pp.
39–50.

[22] A.F. Izmailov, Stable methods for finding 2-regular solutions of nonlinear operator equations,
Comput. Math. Math. Phys., 36 (1996), pp. 1183–1192.

[23] A.F. Izmailov, On certain generalizations of Morse’s lemma, Proc. Steklov Inst. Math., 220
(1998), pp. 138–153.

[24] A.F. Izmailov and M.V. Solodov, The theory of 2-regularity for mappings with Lipschitzian
derivatives and its applications to optimality conditions, Math. Oper. Res., to appear.

[25] A.F. Izmailov and M.V. Solodov, Error bounds for 2-regular mappings with Lipschitzian
derivatives and their applications, Math. Program., 89 (2001), pp. 413–435.

[26] A.F. Izmailov and A.A. Tretyakov, Local regularization of certain classes of nonlinear
operator equations, Comput. Math. Math. Phys., 36 (1996), pp. 835–846.

[27] A.F. Izmailov and A.A. Tretyakov, 2-Regular Solutions of Nonlinear Problems. Theory and
Numerical Methods, Fizmatlit, Moscow, 1999, (in Russian).

[28] H. Jiang, L. Qi, X. Chen, and D. Sun, Semismoothness and superlinear convergence in nons-
mooth optimization and nonsmooth equations, in Nonlinear Optimization and Applications,
G. Di Pillo and F. Giannessi, eds., Plenum Press, New York, 1996, pp. 197–212.

[29] C. Kanzow, Some equation-based methods for the nonlinear complementarity problem, Optim.
Methods Soft., 3 (1994), pp. 327–340.

[30] C. Kanzow and M. Fukushima, Solving box constrained variational inequality problems by
using the natural residual with D-gap function globalization, Oper. Res. Lett., 23 (1998),
pp. 45–51.

[31] C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for non-
linear complementarity problems, Comput. Optim. Appl., 11 (1998), pp. 227–251.

[32] B. Kummer, Newton’s method for nondifferentiable functions, in Advances in Mathemati-
cal Optimization, J. Guddat, B. Bank, H. Hollatz, P. Kall, D. Klatte, B. Kummer, K.
Lommatzsch, K. Tammer, M. Vlach, and K. Zimmermann, eds., Math. Res. 45, Akademie-
Verlag, Berlin, 1988, pp. 114–125.

[33] B. Kummer, Newton’s method based on generalized derivatives for nonsmooth functions, in
Advances in Optimization, W. Oettli and D. Pallaschke, eds., Springer-Verlag, Berlin,
1992, pp. 171–194.

[34] T. De Luca, F. Facchinei, and C. Kanzow, A theoretical and numerical comparison of some
semismooth algorithms for complementarity problems, Comput. Optim. Appl., 16 (2000),
pp. 173–205.

[35] O.L. Mangasarian, Equivalence of the complementarity problem to a system of nonlinear
equations, SIAM J. Appl. Math., 31 (1976), pp. 89–92.

[36] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Con-
trol Optim., 15 (1977), pp. 959–972.



ALGORITHMS FOR SINGULAR EQUATIONS AND COMPLEMENTARITY 405

[37] J.-S. Pang, Complementarity problems, in Handbook of Global Optimization, R. Horst and
P. Pardalos, eds., Kluwer Academic Publishers, Boston, MA, 1995, pp. 271–338.

[38] J.-S. Pang, private communication, January 2001.
[39] J.-S. Pang and S.A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complementarity

problem, Math. Program., 60 (1993), pp. 295–337.
[40] J.-S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3

(1993), pp. 443–465.
[41] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.

Res., 18 (1993), pp. 227–244.
[42] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Program., 58 (1993), pp.

353–367.
[43] P.J. Rabier and G.W. Reddien, Characterization and computation of singular points with

maximum rank deficiency, SIAM J. Numer. Anal., 23 (1986), pp. 1040–1051.
[44] S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43–62.
[45] S.M. Robinson, Local structure of feasible sets in nonlinear programming. Part III: Stability

and sensitivity, Math. Programming Stud., 30 (1987), pp. 45–66.
[46] D. Sun and L. Qi, On NCP-functions, Comput. Optim. Appl., 13 (1999), pp. 201–220.
[47] P. Tseng, Growth behavior of a class of merit functions for the nonlinear complementarity

problem, J. Optim. Theory Appl., 89 (1996), pp. 17–37.



SECOND-ORDER NECESSARY AND SUFFICIENT OPTIMALITY
CONDITIONS FOR OPTIMIZATION PROBLEMS AND

APPLICATIONS TO CONTROL THEORY∗

EDUARDO CASAS† AND FREDI TRÖLTZSCH‡

SIAM J. OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 406–431

Abstract. This paper deals with a class of nonlinear optimization problems in a function space,
where the solution is restricted by pointwise upper and lower bounds and by finitely many equality
and inequality constraints of functional type. Second-order necessary and sufficient optimality con-
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control problems for ordinary and partial differential equations.
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1. Introduction. Let (X,S, µ) be a measure space with µ(X) < +∞. In this
paper we will study the following optimization problem:

(P)



minimize J(u),
ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ X,
Gj(u) = 0, 1 ≤ j ≤ m1,
Gj(u) ≤ 0, m1 + 1 ≤ j ≤ m,

where ua, ub ∈ L∞(X) and J,Gj : L∞(X) −→ R are given functions with differen-
tiability properties to be fixed later. We will state necessary and sufficient optimality
conditions for a local minimum of (P). Our main goal is to reduce the classical gap
between the necessary and sufficient conditions for optimization problems in Banach
spaces. We shall prove some optimality conditions very close to the ones for finite
dimensional optimization problems. In the case of finite dimensions, strongly active
inequality constraints (i.e., with strictly positive Lagrange multipliers) are considered
in the critical cone by associated linearized equality constraints. Roughly speaking,
this is what we are able to extend to infinite dimensions. Due to the lack of compact-
ness, the classical proof of the sufficiency theorem known for finite dimensions cannot
be transferred to the case of general Banach spaces. Our direct method of proof is
able to overcome this difficulty. To our best knowledge, this result has not yet been
presented in the literature. Of course, the bound constraints ua(x) ≤ u(x) ≤ ub(x)
introduce some additional difficulties in the study because they constitute an infinite
number of constraints. In section 2 we introduce a slightly stronger regularity as-
sumption than that considered in the Kuhn–Tucker theorem, which allows us to deal
with the bound constraints.
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In section 4 we discuss the application of our general results to different types of
optimal control problems. We consider the control of ODEs as well as that of partial
differential equations of elliptic and parabolic type.

2. Necessary optimality conditions. In this section we will assume that ū is
a local solution of (P), which means that there exists a real number r > 0 such that
for every feasible point of (P), with ‖u− ū‖L∞(X) < r, we have that J(ū) ≤ J(u).

For every ε > 0, we denote the set of points at which the bound constraints are
ε-inactive by

Xε = {x ∈ X : ua(x) + ε ≤ ū(x) ≤ ub(x)− ε}.
We make the following regularity assumption:{∃εū > 0 and {hj}j∈I0 ⊂ L∞(X), with supp hj ⊂ Xεū ,

such that G′
i(ū)hj = δij , i, j ∈ I0,(2.1)

where

I0 = {j ≤ m|Gj(ū) = 0}.
I0 is the set of indices corresponding to active constraints. We also denote the set of
nonactive constraints by I−

I− = {j ≤ m|Gj(ū) < 0}.
Obviously (2.1) is equivalent to the independence of the derivatives {G′

j(ū)}j∈I0
in L∞(Xεū). Under this assumption we can derive the first-order necessary conditions
for optimality satisfied by ū. For the proof, the reader is referred to Bonnans and
Casas [3] or Clarke [10].
Theorem 2.1. Let us assume that (2.1) holds and that J and {Gj}mj=1 are of

class C1 in a neighborhood of ū. Then there exist real numbers {λ̄j}mj=1 ⊂ R such that

λ̄j ≥ 0, m1 + 1 ≤ j ≤ m, λ̄j = 0 if j ∈ I−,(2.2) 〈
J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū), u− ū

〉
≥ 0 ∀ua ≤ u ≤ ub.(2.3)

Since we want to establish some optimality conditions useful for the study of
control problems, we need to take into account the two-norm discrepancy; for this
question, see, for instance, Ioffe [17] and Maurer [19]. Then we have to impose some
additional assumptions on the functions J and Gj .

(A1) There exist functions f, gj ∈ L2(X), 1 ≤ j ≤ m, such that for every h ∈
L∞(X)

J ′(ū)h =

∫
X

f(x)h(x)dµ(x) and G′
j(ū)h =

∫
X

gj(x)h(x)dµ(x), 1 ≤ j ≤ m.(2.4)

(A2) If {hk}∞k=1 ⊂ L∞(X) is bounded, h ∈ L∞(X), and hk(x) → h(x) a.e. in
X, then 

J ′′(ū) +
m∑
j=1

λ̄jG
′′
j (ū)


h2

k →

J ′′(ū) +

m∑
j=1

λ̄jG
′′
j (ū)


h2.(2.5)
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If we define

L(u, λ) = J(u) +

m∑
j=1

λjGj(u) and d(x) = f(x) +

m∑
j=1

λ̄jgj(x),(2.6)

then

∂L

∂u
(ū, λ̄)h =


J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū)


h =

∫
X

d(x)h(x)dµ(x) ∀h ∈ L∞(X).(2.7)

From (2.3) we deduce that

d(x) =




0 for almost every x ∈ X, where ua(x) < ū(x) < ub(x),
≥ 0 for almost every x ∈ X, where ū(x) = ua(x),
≤ 0 for almost every x ∈ X, where ū(x) = ub(x).

(2.8)

Associated with d, we set

X0 = {x ∈ X : |d(x)| > 0}.(2.9)

Given {λ̄j}mj=1 by Theorem 2.1, we define the cone of critical directions

C0
ū = {h ∈ L∞(X) satisfying (2.11) and h(x) = 0 for almost every x ∈ X0},

(2.10)
with 



G′
j(ū)h = 0 if (j ≤ m1) or (j > m1, Gj(ū) = 0, and λ̄j > 0),

G′
j(ū)h ≤ 0 if j > m1, Gj(ū) = 0, and λ̄j = 0,

h(x) =

{≥ 0 if ū(x) = ua(x),
≤ 0 if ū(x) = ub(x).

(2.11)

In the following theorem we state the necessary second-order optimality condi-
tions.
Theorem 2.2. Assume that (2.1), (A1), and (A2) hold; {λ̄j}mj=1 are the La-

grange multipliers satisfying (2.2) and (2.3); and J and {Gj}mj=1 are of class C2 in a
neighborhood of ū. Then the following inequality is satisfied:

∂2L

∂u2
(ū, λ̄)h2 ≥ 0 ∀h ∈ C0

ū.(2.12)

To prove this theorem we will make use of the following lemma.
Lemma 2.3. Let us assume that (2.1) holds and that J and {Gj}mj=1 are of class

C2 in a neighborhood of ū. Let h ∈ L∞(X) satisfy G′
j(ū)h = 0 for every j ∈ I, where

I is an arbitrary subset of I0. Then there exist a number εh > 0 and C2-functions
γj : (−εh,+εh) −→ R, j ∈ I, such that{

Gj(ut) = 0, j ∈ I, and Gj(ut) < 0, j /∈ I0, ∀|t| ≤ εh;
γj(0) = γ′j(0) = 0, j ∈ I,(2.13)

with ut = ū+ th+
∑
j∈I γj(t)hj, {hj}j∈I given by (2.1).
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Proof. Let k be the cardinal number of I and let us define ω : R× R
k −→ R

k by

ω(t, ρ) =

(
Gj

(
ū+ th+

∑
i∈I

ρihi

))
j∈I

.

Then ω is of class C2 in a neighborhood of (0, 0),

∂ω

∂t
(0, 0) = (G′

j(ū)h)j∈I = 0 and
∂ω

∂ρ
(0, 0) = (G′

j(ū)hi)i,j∈I = identity.

Therefore we can apply the implicit function theorem and deduce the existence of
ε > 0 and functions γj : (−ε,+ε) −→ R of class C2, j ∈ I, such that

ω(t, γ(t)) = ω(0, 0) = 0 ∀t ∈ (−ε,+ε) and γ(0) = 0,

where γ(t) = (γj(t))j∈I . Furthermore, by differentiation in the previous identity we
get

∂ω

∂t
(0, 0) +

∂ω

∂ρ
(0, 0)γ′(0) = 0 =⇒ γ′(0) = 0.

Taking into account the continuity of γ and Gj and that γ(0) = 0, we deduce the
existence of εh ≤ ε such that (2.13) holds for every t ∈ (−εh,+εh).

Proof of Theorem 2.2. Let us take h ∈ C0
ū satisfying

h(x) = 0 if ua(x) < ū(x) < ua(x) + ε or ub(x)− ε < ū(x) < ub(x)(2.14)

for some ε ∈ (0, εū]. We introduce

I = {1, . . . ,m1} ∪ {j : m1 + 1 ≤ j ≤ m, Gj(ū) = 0, and G′
j(ū)h = 0}.(2.15)

I includes all equality constraints, all strongly active inequality constraints (i.e., λ̄j >
0), and, depending on h, possibly some of the weakly active inequality constraints
(i.e., λ̄j = 0). Then we are under the assumptions of Lemma 2.3. Let us set

ut = ū+ th+
∑
j∈I

γj(t)hj , t ∈ (−εh, εh).

From Lemma 2.3 we know that Gj(ut) = 0 if j ∈ I, and Gj(ut) < 0 if j /∈ I0, provided
that t ∈ (−εh,+εh). From (2.11) we deduce that Gj(ū) = 0 and G′

j(ū)h < 0 for
j ∈ I0 \ I. Therefore we have that Gj(ut) < 0 for every j /∈ I and t ∈ (0, ε0), for some
ε0 > 0 small. On the other hand, the assumptions on h, along with the additional
condition (2.14) and the fact that supphj ⊂ Xεū , imply that ua(x) ≤ ut(x) ≤ ub(x)
for t ≥ 0 small enough. Consequently, by taking ε0 > 0 sufficiently small, we get that
ut is a feasible control for (P) for every t ∈ [0, ε0). Now we know Gj(ut) = 0 for j ∈ I
and λ̄j = 0 for j /∈ I0 (cf. (2.2)). According to (2.11) we require G′

j(ū)h = 0 for active

inequalities with λ̄j > 0; hence if i belongs to I0 \ I, then λ̄j = 0 must hold. This
leads to

m∑
j=1

λ̄jGj(ut) = 0 ∀t ∈ [0, ε0).
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Therefore the function φ : [0,+ε0) −→ R given by

φ(t) = J(ut) +

m∑
j=1

λ̄jGj(ut)

has a local minimum at 0 and, taking into account that γ′j(0) = 0,

φ′(0) =


J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū)




h+

∑
j∈I

γ′j(0)hj




=


J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū)


h =

∫
X

d(x)h(x)dµ(x) = 0.

The last identity follows from the fact that h vanishes on X0. Since the first derivative
of φ is zero, the following second-order necessary optimality condition must hold:

0 ≤ φ′′(0) =


J ′′(ū) +

m∑
j=1

λ̄jG
′′
j (ū)


h2 +


J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū)


(∑

i∈I
γ′′i (0)hi

)

=


J ′′(ū) +

m∑
j=1

λ̄jG
′′
j (ū)


h2 +

∑
i∈I

γ′′i (0)
∫
X

d(x)hi(x)dµ(x)

=


J ′′(ū) +

m∑
j=1

λ̄jG
′′
j (ū)


h2 =

∂2L

∂u2
(ū, λ̄)h2.

Here we have used (A1). Now let us consider h ∈ L∞(X) satisfying (2.11) but
not (2.14), i.e., h is any critical direction. The main idea in this case is to approach h
by functions hε, which belong to the critical cone C0

ū and satisfy (2.14) as well. Then
for every ε > 0, we define Aε = Xε ∪ {x ∈ X : ū(x) = ua(x) or ū(x) = ub(x)}. This
is the complement of the set of points x satisfying (2.14). Set

hε = hχAε +
∑
i∈I

[∫
X\Aε

gi(x)h(x)dµ(x)

]
hi = hχAε + ĥ,

where χAε is the characteristic function of Aε and I is given by (2.15). We verify that
hε belongs to C

0
ū, while hχAε is possibly not contained in this cone.

Thus for every j ∈ I, using (2.1) and taking 0 < ε < εū, we have

G′
j(ū)hε =

∫
X

gj(x)(hχAε)(x)dµ(x) +

∫
X

gj(x)ĥ(x)dµ(x)

=

∫
Aε

gj(x)h(x)dµ(x)

+
∑
i∈I

[∫
X\Aε

gi(x)h(x)dµ(x)

]∫
X

gj(x)hi(x)dµ(x)

=

∫
Aε

gj(x)h(x)dµ(x) +
∑
i∈I

[∫
X\Aε

gi(x)h(x)dµ(x)

]
δji

=

∫
X

gj(x)h(x)dµ(x) = G′
j(ū)h = 0.
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In the case of j ∈ I0 \ I, we have G′
j(ū)h < 0. Then it is enough to take ε sufficiently

small to get G′
j(ū)hε < 0.

Thus, recalling that supphj ⊂ Xεū , we infer that hε satisfies the conditions (2.11)
and (2.14); therefore (2.12) holds for each hε, ε > 0 small enough.

Finally, it is clear that hε(x) → h(x) a.e. in X as ε → 0. Therefore, assumption
(A2) allows us to pass to the limit in the second-order optimality conditions satisfied
for every hε and to conclude (2.12).

3. Sufficient optimality conditions. Whenever nonlinear optimal control prob-
lems are solved, second-order sufficient conditions play an essential role in the numer-
ical analysis. For instance, they ensure local convergence of Lagrange–Newton–SQP
methods; see Alt and Malanowski [2], Dontchev et al. [11], Ito and Kunisch [18], or
Schulz [23], and the references cited therein. Such conditions are important for error
estimates as well. We refer, for instance, to Arada, Casas, and Tröltzsch [1] and Hager
[15]. Finally, we mention that second-order conditions should be checked numerically
to verify local optimality of computed solutions; see Mittelmann [21].

In this section, ū is a given feasible element for the problem (P). Motivated again
by the considerations on the two-norm discrepancy, we have to make some assumptions
involving the L∞(X) and L2(X) norms, as follows.

(A3) There exists a positive number r > 0 such that J and {Gj}mj=1 are of class

C2 in the L∞(X)-ball Br(ū), and for every η > 0 there exists ε ∈ (0, r) such that for
each u ∈ Br(ū), ‖v − ū‖L∞(X) < ε, h, h1, h2 ∈ L∞(X), and 1 ≤ j ≤ m we have



∣∣∣∣
[
∂2L

∂u2
(v, λ̄)− ∂2L

∂u2
(ū, λ̄)

]
h2

∣∣∣∣ ≤ η‖h‖2L2(X),

|J ′(u)h| ≤M0,1‖h‖L2(X), |G′
j(u)h| ≤Mj,1‖h‖L2(X),

|J ′′(u)h1h2| ≤M0,2‖h1‖L2(X)‖h2‖L2(X),

|G′′
j (u)h1h2| ≤Mj,2‖h1‖L2(X)‖h2‖L2(X).

(3.1)

Analogously to (2.9) and (2.10), we define for every τ > 0

Xτ = {x ∈ X : |d(x)| > τ},(3.2)

Cτū = {h ∈ L∞(X) satisfying (2.11) and h(x) = 0 a.e. x ∈ Xτ}.(3.3)

The next theorem provides the second-order sufficient optimality conditions of
(P). Although they seem to be different from the classical ones, we will prove later
that they are equivalent; see Theorem 3.2 and Corollary 3.3.
Theorem 3.1. Let ū be a feasible point for problem (P) verifying the first-order

necessary conditions (2.2) and (2.3), and let us suppose that assumptions (2.1), (A1),
and (A3) hold. Let us also assume that for every h ∈ L∞(X) satisfying (2.11)

∂2L

∂u2
(ū, λ̄)h2 ≥ δ1‖h‖2L2(X\Xτ ) − δ2‖h‖2L2(Xτ )(3.4)

holds for some δ1 > 0, δ2 ≥ 0, and τ > 0. Then there exist ε > 0 and δ > 0 such that
J(ū)+δ‖u−ū‖2L2(X) ≤ J(u) for every feasible point u for (P), with ‖u−ū‖L∞(X) < ε.

Proof. (i) Condition (3.4) is stable w.r.t. perturbations of ū. Without loss of
generality, we will assume that δ2 > 0. From (A3) we deduce the existence of r0 ∈
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(0, r) such that for all h ∈ L∞(X) and ‖v − ū‖L∞(X) < r0∣∣∣∣
[
∂2L

∂u2
(v, λ̄)− ∂2L

∂u2
(ū, λ̄)

]
h2

∣∣∣∣ ≤ min

{
δ1
2
, δ2

}
‖h‖2L2(X).

From this inequality and (3.4) it follows easily that

∂2L

∂u2
(v, λ̄)h2 ≥ δ1

2
‖h‖2L2(X\Xτ ) − 2δ2‖h‖2L2(Xτ )(3.5)

for every h satisfying (2.11) and ‖v − ū‖L∞(X) < r0.
(ii) Some technical definitions. Let us set

M = M0,2 +

m∑
j=1

|λ̄j |Mj,2 and ρ = min

{
1,

δ1
16M

}
,(3.6)

C1 = max

{
δ1
4
, 2δ2

}
+

3M

2
+

4M2

δ1
, C2 =

C1

2
max
j∈I0
‖hj‖2L2(X)


 m∑
j=1

Mj,2


2

,(3.7)

C3 = 2C1mµ(X)1/2 max
j∈I0
‖hj‖2L2(X) max

1≤j≤m
Mj,1.(3.8)

Finally, we take

ε = min

{
r0,

√
δ1

64C2µ(X)
,

8τ

δ1 + 16δ2
,
ρ

C3
min

j∈I+,j>m1

λ̄j

}
,(3.9)

where

I+ = {1, . . . ,m1} ∪ {j > m1 : Gj(ū) = 0 and λ̄j > 0}.
(iii) Approximation of u− ū by elements of the critical cone. Let u be a feasible

point for problem (P), with ‖u− ū‖L∞(X) < ε. Then u− ū will not, in general, belong
to the critical cone. Therefore, we use the representation u− ū = h+ h0, where h is
in the critical cone and h0 is some small correction.

Let us introduce the set of indices

Iu = {j ∈ I0 : G′
j(ū)(u− ū) > 0 or [G′

j(ū)(u− ū) < 0 and j ∈ I+]}.
This is the set of indices for which we need to correct G′

j(ū)(u−ū), since the conditions
of the critical cone are not met. We need to carry out this correction for equality
constraints if G′

j(ū)(u − ū) �= 0. We also need to apply this correction for an active
inequality constraint satisfying G′

j(ū)(u − ū) > 0 or for a strongly active inequality
constraint if G′

j(ū)(u− ū) < 0 holds. We define for all j ∈ Iu

αj = G′
j(ū)(u− ū), h0 =

∑
j∈Iu

αjhj , and h = u− ū− h0,(3.10)

where the elements hj are introduced in assumption (2.1). Then h satisfies (2.11).
This is seen as follows:

G′
j(ū)h0 =

∑
i∈Iu

αiG
′
j(ū)hi =

∑
i∈Iu

αiδji.
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If j /∈ Iu, then δji = 0 for all i ∈ Iu; hence

G′
j(ū)h = G′

j(ū)(u− ū)−G′
j(ū)h0 = G′

j(ū)(u− ū)

{
= 0 if j ≤ m1,
≤ 0 if j > m1

(the last inequality follows from j /∈ Iu). Thus G′
j(ū)h fulfills the conditions of the

critical cone. If j ∈ Iu, then

G′
j(ū)h = G′

j(ū)(u− ū)− αjδjj = αj − αj = 0,

and G′
j(ū)h also fulfills the conditions of the critical cone.

Let us now estimate h0 in L2(X). For every j ∈ Iu there exists vj = ū+θj(u− ū),
with 0 < θj < 1, such that

0 ≥ Gj(u) = Gj(ū)+G
′
j(ū)(u−ū)+

1

2
G′′
j (vj)(u−ū)2 = αj+

1

2
G′′
j (vj)(u−ū)2.(3.11)

If αj ≥ 0, we deduce from (3.11) and (3.1) that

|αj | = αj ≤ 1

2
|G′′
j (vj)(u− ū)2| ≤ 1

2
Mj,2‖u− ū‖2L2(X).(3.12)

If αj < 0 and Gj(u) = 0, we get

|αj | = −αj = 1

2
G′′
j (vj)(u− ū)2 ≤ 1

2
Mj,2‖u− ū‖2L2(X).(3.13)

Let us define

I−u = {j ∈ Iu : Gj(u) < 0 and αj < 0}.

This is the set of all indices, where we do not obtain an estimate of αj having the
order ‖u − ū‖2L2(x). We should notice at this point that λ̄j > 0 holds for all j ∈ I−u .
(Since u must be feasible, j stands for an inequality constraint. Therefore, 0 > αj =
G′
j(ū)(u− ū), and j ∈ Iu implies j ∈ I+.) Then we have

‖h0‖L2(X) ≤ max
j∈I0
‖hj‖L2(X)


1
2


 m∑
j=1

Mj,2


 ‖u− ū‖2L2(X) +

∑
j∈I−u

|αj |

 .(3.14)

(iv) Estimation of J(u) − J(ū). Using (2.6), (2.7), (3.6), (3.10), and (3.11), for
some v = ū+ θ(u− ū), 0 < θ < 1,

J(u) = J(u) +

m1∑
j=1

λ̄jGj(u) +

m∑
j=m1+1

λ̄jGj(u)−
m∑

j=m1+1

λ̄jGj(u)

= L(u, λ̄)−
m∑

j=m1+1

λ̄jGj(u)

≥ L(u, λ̄)−
∑
j∈I−u

λ̄jGj(u) ≥ L(u, λ̄)− ρ
∑
j∈I−u

λ̄jGj(u)
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holds, since ρ < 1. Therefore,

J(u) ≥ L(u, λ̄)− ρ
∑
j∈I−u

λ̄jGj(u) = L(ū, λ̄) +
∂L

∂u
(ū, λ̄)(u− ū) +

1

2

∂2L

∂u2
(v, λ̄)(u− ū)2

− ρ
∑
j∈I−u

λ̄jαj − ρ

2

∑
j∈I−u

λ̄jG
′′
j (vj)(u− ū)2

= J(ū) +

∫
X

d(x)(u(x)− ū(x))dµ(x) +
1

2

∂2L

∂u2
(v, λ̄)h2

+
∂2L

∂u2
(v, λ̄)hh0 +

1

2

∂2L

∂u2
(v, λ̄)h2

0 + ρ
∑
j∈I−u

λ̄j |αj | − ρ

2

∑
j∈I−u

λ̄jG
′′
j (vj)(u− ū)2.

Now from (2.8), (2.11), (3.1), (3.5), and (3.6) it follows that

J(u) ≥ J(ū) + τ

∫
Xτ
|u(x)− ū(x)|dµ(x) + δ1

4
‖h‖2L2(X\Xτ ) − δ2‖h‖2L2(Xτ )

−M‖h0‖L2(X)‖h‖L2(X) − M

2
‖h0‖2L2(X) + ρ

∑
j∈I−u

λ̄j |αj |

− ρ

2


∑
j∈I−u

λ̄jMj,2


 ‖u− ū‖2L2(X)

≥ J(ū) +
τ

ε
‖u− ū‖2L2(Xτ ) +

δ1
8
‖u− ū‖2L2(X\Xτ ) −

δ1
4
‖h0‖2L2(X\Xτ )

− 2δ2‖u− ū‖2L2(Xτ ) − 2δ2‖h0‖2L2(Xτ )

−M‖h0‖L2(X)

(‖u− ū‖L2(X) + ‖h0‖L2(X)

)− M

2
‖h0‖2L2(X)

+ ρ
∑
j∈I−u

λ̄j |αj | − ρ

2
M‖u− ū‖2L2(X).(3.15)

Using the definition of ε from (3.9), we have

τ

ε
− 2δ2 ≥ δ1

8
.(3.16)

On the other hand,

M‖h0‖L2(X)‖u− ū‖L2(X) = 2

[√
δ1
4
‖u− ū‖L2(X)

] [
2M√
δ1
‖h0‖L2(X)

]

≤ δ1
16
‖u− ū‖2L2(X) +

4M2

δ1
‖h0‖2L2(X).(3.17)

From the definitions of C1 and ρ given in (3.7) and (3.6) along with (3.15), (3.16),
and (3.17), we get

J(u) ≥ J(ū) +
δ1
8
‖u− ū‖2L2(X) − C1‖h0‖2L2(X)

− δ1
16
‖u− ū‖2L2(X) + ρ

∑
j∈I−u

λ̄j |αj | − δ1
32
‖u− ū‖2L2(X)

= J(ū) +
δ1
32
‖u− ū‖2L2(X) − C1‖h0‖2L2(X) + ρ min

j∈I+,j>m1

λ̄j
∑
j∈I−u

|αj |.(3.18)
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(v) Two auxiliary estimates and final result . From (3.7), (3.9), and (3.14) we get,
on using (a+ b)2 ≤ 2 (a2 + b2),

C1‖h0‖2L2(X) ≤ C1 max
j∈I0
‖hj‖2L2(X)


1
2


 m∑
j=1

Mj,2


2

‖u− ū‖4L2(X) + 2


∑
j∈I−u

|αj |

2



= C2‖u− ū‖4L2(X) + 2C1 max
j∈I0
‖hj‖2L2(X)


∑
j∈I−u

|αj |

2

≤ C2ε
2µ(X)‖u− ū‖2L2(X) + 2C1 max

j∈I0
‖hj‖2L2(X)


∑
j∈I−u

|αj |

2

≤ δ1
64
‖u− ū‖2L2(X) + 2C1 max

j∈I0
‖hj‖2L2(X)


∑
j∈I−u

|αj |

2

.(3.19)

The definition of αj given by (3.10) along with assumption (3.1) imply

|αj | ≤Mj,1‖u− ū‖L2(X) ≤Mj,1ε
√
µ(X).(3.20)

From (3.8) and the above inequality, we deduce

2C1 max
j∈I0
‖hj‖2L2(X)


∑
j∈I−u

|αj |

 ≤ C3ε.(3.21)

Definition (3.9) and (3.21) lead to

ρ min
j∈I+,j>m1

λ̄j − 2C1 max
j∈I0
‖hj‖2L2(X)


∑
j∈I−u

|αj |

 ≥ 0.(3.22)

Finally, combining (3.18), (3.19), and (3.22), we conclude the desired result:

J(u) ≥ J(ū) +
δ1
64
‖u− ū‖2L2(X).

Now we prove the equivalence between the sufficient optimality conditions stated
in Theorem 3.1 and the classical ones.
Theorem 3.2. Let ū be a feasible point of (P) satisfying (2.2) and (2.3). Let Cū

be the set of elements h ∈ L∞(X) satisfying (2.11), and Cτū be given by (3.3). Let us
suppose that assumptions (2.1), (A1), and (A3) hold. Let τ > 0 be given. Then the
following statements are equivalent:

∃δ > 0 :
∂2L

∂u2
(ū, λ̄)h2 ≥ δ‖h‖2L2(X) ∀h ∈ Cτū ,(3.23)

∃δ1 > 0, δ2 ≥ 0 :
∂2L

∂u2
(ū, λ̄)h2 ≥ δ1‖h‖2L2(X\Xτ ) − δ2‖h‖2L2(Xτ ) ∀h ∈ Cū.(3.24)

Proof. It is obvious that (3.24) implies (3.23), since h = 0 in Xτ if h ∈ Cτū .
Therefore, it is enough to take δ = δ1. Let us prove the opposite implication. Let
h ∈ Cū. We set hτ = hχXτ , where χXτ is the characteristic function of Xτ and

Ih = {j ∈ I0 : G′
j(ū)(h− hτ ) > 0 or [G′

j(ū)(h− hτ ) < 0 and G′
j(ū)h = 0]}.
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We define

αj = G′
j(ū)(h− hτ ) ∀j ∈ Ih, ĥ =

∑
j∈Ih

αjhj , and h0 = h− hτ − ĥ,

where the functions hj are given by (2.1).
Let us see that h0 ∈ Cτū . Since supphj ⊂ Xεū and h − hτ = h(1 − χXτ ), we

have that h0(x) = 0 for x ∈ Xτ . Now we distinguish between the cases j ∈ Ih and
j ∈ I0 \ Ih.

If j ∈ Ih, then

G′
j(ū)h0 = G′

j(ū)(h− hτ )−
∑
i∈Ih

αiG
′
j(ū)hi = G′

j(ū)(h− hτ )− αj = 0.

If j ∈ I0 \ Ih, then from the definition of Ih we obtain that G′
j(ū)h0 = G′

j(ū)(h−
hτ ) ≤ 0.

If this inequality reduces to an equalityG′
j(ū)(h−hτ ) = 0, then h0 verifies that the

condition is in Cτū . In the remaining case in which j ∈ I0 \ Ih but G′
j(ū)(h− hτ ) < 0,

using again the definition of Ih, we deduce that G′
j(ū)h < 0. (G′

j(ū)h = 0 and
G′
j(ū)(h − hτ ) < 0 would give j ∈ Ih.) Consequently, since h ∈ Cū, we have that

j > m1 and λ̄j = 0 (otherwise, h ∈ Cτū and λ̄j > 0 would imply G′
j(ū)h = 0). Then

the inequality G′
j(ū)h0 < 0 also means that h0 shows the condition to be in Cτū .

We now prove that

‖ĥ‖L2(X) ≤ C0‖hτ‖L2(X),(3.25)

where

C0 =
∑
j∈I0
‖gj‖L2(X)‖hj‖L2(X),

gj being given in (2.4). Indeed, if αj > 0, then

|αj | = αj = G′
j(ū)(h− hτ ) = G′

j(ū)h−G′
j(ū)hτ ≤ −G′

j(ū)hτ ≤ ‖gj‖L2(X)‖hτ‖L2(X).

If αj < 0, then from the definition of Ih we have that G′
j(ū)h = 0; therefore

|αj | = −αj = −G′
j(ū)(h− hτ ) = G′

j(ū)hτ ≤ ‖gj‖L2(X)‖hτ‖L2(X).

Combining the previous two inequalities and the definition of ĥ, we get (3.25).
Finally, taking M as in (3.6), we obtain from (3.23) and (3.25)

∂2L

∂u2
(ū, λ̄)h2 =

∂2L

∂u2
(ū, λ̄)h2

0 +
∂2L

∂u2
(ū, λ̄)(hτ + ĥ)2 + 2

∂2L

∂u2
(ū, λ̄)h0(hτ + ĥ)

≥ δ‖h0‖2L2(X) −M‖hτ + ĥ‖2L2(X) − 2M‖h0‖L2(X)‖hτ + ĥ‖L2(X)

≥ δ

2
‖h− hτ‖2L2(X) − δ‖ĥ‖2L2(X) − 2M(‖hτ‖2L2(X) + ‖ĥ‖2L2(X))

− 2M(‖h− hτ‖L2(X) + ‖ĥ‖L2(X))(‖hτ‖L2(X) + ‖ĥ‖L2(X))

≥ δ

2
‖h− hτ‖2L2(X) − C2

0δ‖hτ‖2L2(X) − 2M(C2
0 + 1)‖hτ‖2L2(X)

− 2M(C0 + 1)(‖h− hτ‖L2(X) + C0‖hτ‖L2(X))‖hτ‖L2(X)
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≥ δ

4
‖h− hτ‖2L2(X)

−
{
C2

0δ + 2M(C2
0 + 1) +

4M2(C0 + 1)2

δ
+ 2M(C0 + 1)C0

}
‖hτ‖2L2(X)

= δ1‖h‖2L2(X\Xτ ) − δ2‖h‖2L2(Xτ ),

where obviously δ1 > 0 and δ2 ≥ 0 are independent of h ∈ Cū.
The following corollary is an immediate consequence of Theorems 3.1 and 3.2.
Corollary 3.3. Let ū be a feasible point for problem (P) satisfying (2.2) and

(2.3), and suppose that assumptions (2.1), (A1), and (A3) hold. Assume also that

∂2L

∂u2
(ū, λ̄)h2 ≥ δ‖h‖2L2(X) ∀h ∈ Cτū(3.26)

for some δ > 0 and τ > 0 given. Then there exist ε > 0 and α > 0 such that
J(ū)+α‖u−ū‖2L2(X) ≤ J(u) for every feasible point u for (P), with ‖u−ū‖L∞(X) < ε.

Remark 3.4. Comparing the sufficient optimality condition (3.4) with the neces-
sary condition (2.12), we notice the existence of a gap between the two, arising from
two facts. First, the constant δ1 is strictly positive in (3.4), and it can be zero in
(2.12), which is the classical situation even in finite dimensions. Second, we cannot
substitute, in general, Cτū , with τ > 0, for C0

ū in (3.26), as is done in (2.12), because
of the presence of an infinite number of constraints. Quite similar strategies are em-
ployed by Maurer and Zowe [20], Maurer [19], Donchev et al. [11], and Dunn [12].
The following example, due to Dunn [13], demonstrates the impossibility of taking
τ = 0 in (3.26). Let us consider X = [0, 1], S the σ-algebra of Lebesgue-measurable
sets of [0, 1], µ the Lebesgue measure in [0, 1], and a(x) = 1 − 2x. The optimization
problem is 

minimize J(u) =

∫ 1

0

[2a(x)u(x)− sign(a(x))u(x)2]dx,

u ∈ L∞([0, 1]), u(x) ≥ 0 a.e. x ∈ [0, 1].

Let us set ū(x) = max{0,−a(x)}. Then we have that

J ′(ū)h =

∫ 1

0

2[a(x)− sign(a(x))ū(x)]h(x)dx =

∫ 1/2

0

2a(x)h(x)dx ≥ 0

holds for all h ∈ L2([0, 1]), with h(x) ≥ 0. If we assume that h(x) = 0 for x ∈ X0,

J ′′(ū)h2 = −
∫ 1

0

2 sign(a(x))h2(x)dx = 2

∫ 1

1/2

h2(x)dx− 2

∫ 1/2

0

h2(x)dx = 2‖h‖2L2(X)

holds, where, following the notation introduced in (2.9),

X0 = {x ∈ [0, 1] : |d(x)| > 0} =
[
0,

1

2

)
.

Thus (3.26) holds with δ = 2 and τ = 0. However, ū is not a local minimum in
L∞([0, 1]). Indeed, let us take for 0 < ε < 1

2

uε(x) =

{
ū(x) + 3ε if x ∈ [ 1

2 − ε, 1
2

]
,

ū(x) otherwise.
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Then we have J(uε) − J(ū) = −3ε3 < 0. The reader can easily check that the only
points u satisfying the first-order optimality conditions are given by the formula

u(x) =

{
0 if x ∈ Z,

sign(a(x))a(x) otherwise,

where Z is any measurable subset of [0, 1] satisfying that a(x) ≥ 0 for every x ∈ Z.
None of these points is a local minimum of the optimization problem. Moreover, if
we define uk(x) = k ·max {0, a(x)}, then J(uk) = k(2− k)/6→ −∞ when k → +∞.

4. Application to some optimal control problems.

4.1. An abstract control problem. Let, in addition to the measure space
(X,S, µ), Y and Z be real Banach spaces; let A : Y → Z be a linear continuous
operator; and let B : Y × L∞(X) → Z be an operator of class C2. Moreover,
F, Fj : Y × L∞(X) → R are functionals of class C2, j = 1, . . . ,m. Consider the
optimal control problem

(OC)




minimize F (y, u),
Ay +B(y, u) = 0,
ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ X,
Fj(y, u) = 0, 1 ≤ j ≤ m1,
Fj(y, u) ≤ 0, m1 + 1 ≤ j ≤ m,

where the control u is taken from L∞(X). We assume that for all u ∈ L∞(X) the
equation Ay + B(y, u) = 0 admits a unique solution y ∈ Y , so that a control-state
mapping G : u �→ y is defined. Moreover, the inverse operator (A + ∂B

∂y (y, u))
−1 :

Z → Y is assumed to exist for all (y, u) ∈ Y ×L∞(X) as a linear continuous operator.
Then the implicit function theorem yields that G is of class C2 from L∞(X) to Y .
The first- and second-order derivatives G′(u) and G′′(u) are given as follows: Define
y = G(u), zh = G′(u)h, and zh1h2

:= G′′(u)[h1, h2] := (G′′(u)h1)h2. Then zh is the
unique solution of

Az +
∂B

∂y
(y, u)z +

∂B

∂u
(y, u)h = 0,(4.1)

while zh1h2 is uniquely determined by



Az +

∂B

∂y
(y, u)z = −

{
∂2B

∂y2
(y, u)[zh1 , zh2 ] +

∂2B

∂y∂u
(y, u)[zh1 , h2]

+
∂2B

∂u∂y
(y, u)[h1, zh2 ] +

∂2B

∂u2
(y, u)[h1, h2]

}
.

(4.2)

We omit the proof, which can easily be transferred from that of Theorem 2.3 in [7].
The abstract control problem (OC) fits in the optimization problem (P) by

J(u) := F (G(u), u), Gj(u) := Fj(G(u), u).

In this way, we obtain necessary and/or sufficient conditions for local solutions (ȳ, ū)
of (OC) by application of Theorems 2.1, 2.2, and 3.1 and Corollary 3.3, provided that
the corresponding assumptions (2.1) and (A1)–(A3) are satisfied. We tacitly assume
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this in what follows and formulate these results in a way that is convenient for optimal
control problems. A Lagrange function L = L(y, u, ϕ, λ) is associated with (OC) by

L(y, u, ϕ, λ) = F (y, u)− 〈ϕ,Ay +B(y, u)〉+
m∑
j=1

λjFj(y, u),(4.3)

where ϕ ∈ Z∗, and 〈·, ·〉 denotes the duality between Z and Z∗. Notice that we must
distinguish between L for (P) and L for (OC). We have

J ′(ū)h =
∂F

∂y
(ȳ, ū)G′(ū)h+

∂F

∂u
(ȳ, ū)h

and obtain similar expressions for Gj(ū)h. Therefore, (2.6) yields


∂L

∂u
(ū, λ̄)h =


∂F
∂y

(ȳ, ū) +
m∑
j=1

λ̄j
∂Fj
∂y

(ȳ, ū)


G′(ū)h

+


∂F
∂u

(ȳ, ū) +

m∑
j=1

λ̄j
∂Fj
∂u

(ȳ, ū)


h.

(4.4)

Define an adjoint state ϕ ∈ Z∗ by
∂F
∂y

(ȳ, ū) +
m∑
j=1

λ̄j
∂Fj
∂y

(ȳ, ū)


 y =

〈
ϕ̄, Ay +

∂B

∂y
(ȳ, ū)y

〉
∀y ∈ Y.(4.5)

We assume that ϕ̄ is well defined by (4.5), which is true in our applications. Notice that
(4.5) is equivalent to ∂L/∂y(ȳ, ū, ϕ̄, λ̄)y = 0 for all y ∈ Y ; that is, ∂L/∂y(ȳ, ū, ϕ̄, λ̄) =
0 in the sense of Y ∗. Insert y = zh = G′(ū)h into (4.5); then y solves (4.1), and the
right-hand side of (4.5) is equal to −〈ϕ̄, ∂B/∂u(ȳ, ū)h〉. Substituting this for the first
item in (4.4), we find that

∂L

∂u
(ū, λ̄)h =

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h(4.6)

for all h ∈ L∞(X). If (A1) is satisfied, then we deduce from (2.7) that d(x) expresses
the derivative ∂L/∂u, i.e.,

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h =

∫
X

d(x)h(x)dµ(x).(4.7)

Corollary 4.1. Define J and Gj, j = 1, . . . ,m, as above, and let ū with
associated state ȳ be a local solution of (OC). If the regularity assumption (2.1) is
fulfilled, then there are Lagrange multipliers λ̄j, j = 1, . . . ,m, such that (2.2), (2.3)
are satisfied. Assume further that ϕ̄ ∈ Z∗ is uniquely determined by (4.5). Then (2.3)
is equivalent, with

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)(u− ū) ≥ 0 ∀ua ≤ u ≤ ub.(4.8)

If additionally (A1) is satisfied, then ∂L
∂u (ȳ, ū, ϕ̄, λ̄) can be identified with a real function

d = d(x), and (4.8) admits the form∫
X

d(x)(u(x)− ū(x)) ≥ 0 ∀ua ≤ u ≤ ub.(4.9)
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Proof. The statement follows from Theorem 2.1: The variational inequality (4.8)
is obtained from (2.3) by (2.6) and (4.6). If (A1) is satisfied, then (4.8) and (4.7)
imply (4.9).

Let us now apply the second-order conditions to the control system. We have to
express ∂2L/∂u2 in terms of L. From

L(u, λ) = F (G(u), u) +

m∑
j=1

λjFj(G(u), u)

we get, after some straightforward computations,


∂2L

∂u2
(ū, λ̄)[h1, h2] =


F ′′(ȳ, ū) +

m∑
j=1

λ̄jF
′′
j (ȳ, ū)


 [(y1, h1), (y2, h2)]

+


∂F
∂y

(ȳ, ū) +

m∑
j=1

λ̄j
∂Fj
∂y

(ȳ, ū)


G′′(ū)[h1, h2],

(4.10)

where yi = G′(ū)hi = zhi , i = 1, 2. We know that G′′(ū)[h1, h2] = zh1h2 , where
z = zh1h2 is the solution of (4.2); hence this term can be reduced to zh1 and zh2 . By
definition of ϕ̄, (4.2), and (4.5),



∂F
∂y

+
m∑
j=1

λ̄j
∂Fj
∂y


 zh1h2

=

〈
ϕ̄, Azh1h2 +

∂B

∂y
zh1h2

〉
= −〈ϕ̄, B′′(ȳ, ū)[(zh1 , h1), (zh2 , h2)]〉

is obtained. Insert this into (4.10); then yi = zhi and zh1h2 = G′′(ū)[h1, h2] give


∂2L

∂u2
(ū, λ̄)[h1, h2] =


F ′′(ȳ, ū) +

m∑
j=1

λ̄jF
′′
j (ȳ, ū)


 [(y1, h1), (y2, h2)]

− 〈ϕ̄, B′′(ȳ, ū)[(y1, h1), (y2, h2)]〉
= L′′

(y,u)(ȳ, ū, ϕ̄, λ̄)[(y1, h1), (y2, h2)].

(4.11)

Notice that in (4.11) the increments (yi, hi) cannot be chosen independently, since yi
and hi are coupled through yi = G′(ū)hi = zhi . Hence the definition of zhi shows
that the pairs (y, h) = (yi, hi) have to solve the linearized equation

Ay +
∂B

∂y
(ȳ, ū)y +

∂B

∂u
(ȳ, ū)h = 0.(4.12)

Corollary 4.2. Assume that (2.1), (A1), and (A2) are satisfied and that ϕ̄ ∈ Z∗

is uniquely defined by (4.5). Then

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)(y, h)

2 ≥ 0(4.13)

holds for all (y, h) ∈ Y × L∞(X) that satisfy the linearized equation (4.12) and the
relations 



∂Fj
∂y

(ȳ, ū)y +
∂Fj
∂u

(ȳ, ū)h = 0 if (j ≤ m1)

or (j > m1, Fj(ȳ, ū) = 0, and λ̄j > 0),

∂Fj
∂y

(ȳ, ū)y +
∂Fj
∂u

(ȳ, ū)h ≤ 0 if j > m1, Fj(ȳ, ū) = 0, and λ̄j = 0,

(4.14)
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h(x) =

{≥ 0 if ū(x) = ua(x),
≤ 0 if ū(x) = ub(x),

(4.15)

h(x) = 0 if x ∈ X0.(4.16)

The second-order sufficient optimality conditions are given by the following.
Corollary 4.3. Let (ȳ, ū) fulfill all constraints of (OC) and, together with ϕ̄

and λ̄j, j = 1, . . . ,m, the first-order optimality conditions stated in Corollary 4.1.
Assume that (2.1), (A1), and (A3) hold true. If there exist τ > 0, δ1 > 0, and δ2 > 0
such that

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)(y, h)

2 ≥ δ1‖h‖2L2(X\Xτ ) − δ2‖h‖2L2(Xτ )(4.17)

holds for all (y, h) ∈ Y × L∞(X) that satisfy the linearized equation (4.12) and the
relations (4.14), (4.15), then the conclusions of Theorem 3.1 hold true; hence ū is a
local solution of (OC). Here, the set Xτ is defined by (3.2). The same conclusion is
true if the condition

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)(y, h)

2 ≥ δ‖h‖2L2(X)(4.18)

holds instead of (4.17) with some δ > 0, where h(x) = 0 for all x ∈ Xτ for some
τ > 0, and (y, h) are subject to (4.12), (4.14), and (4.15).

4.2. Optimal control of ODEs. In this section we discuss an optimal control
problem governed by an ODE. We concentrate on a very simplified setting to give the
reader an easy insight into the application of the theory. For further problems, we
refer to the book by Hestenes [16]. Define

F (y, u) = ψ(y(T )) +

∫ T

0

f0(t, y(t), u(t))dt,

Fj(y, u) =

∫ T

0

fj(t, y(t), u(t))dt,

j = 1, . . . ,m, and consider the optimal control problem

(ODE)




minimize F (y, u),
y′(t) + b(t, y(t), u(t)) = 0 a.e. t ∈ (0, T ),
y(0) = 0,
ua(t) ≤ u(t) ≤ ub(t) a.e. t ∈ (0, T ),
Fj(y, u) = 0, 1 ≤ j ≤ m1,
Fj(y, u) ≤ 0, m1 + 1 ≤ j ≤ m.

Here, T is a fixed time. To reduce the number of technicalities, let us discuss only
real-valued functions y and u. The vector-valued case can be handled analogously.
For the same reason, we assume that the functions ψ, fj , and b are of class C2 on
R and [0, T ]×R× [minua,maxub], respectively, although weaker Carathéodory-type
conditions would suffice. We introduce the state space Y = {y ∈ W 1,∞(0, T )|y(0) =
0} and set

(Ay)(t) = y′(t), (B(y, u))(t) = b(t, y(t), u(t)).

A is continuous from Y to Z = L∞(0, T ), and B is of class C2 from Y ×L∞(0, T ) to
Z. In this way, (ODE) is related to (OC) as a particular case, where X = [0, T ], and µ
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is the Lebesgue measure, dµ = dt. For convenience, the variable t ∈ X is substituted
for the variable x, which was used in the former sections.

Let (ȳ, ū) ∈ Y × L∞(0, T ) be our reference solution, a given candidate for opti-
mality. For (ODE), the Lagrange function

L(y, u, ϕ, λ) = F (y, u)−
∫ T

0

ϕ(y′ + b(t, y, u))dt+

m∑
j=1

λjFj(y, u)(4.19)

is introduced, where ϕ ∈ W 1,∞(0, T ) will be defined by the adjoint equation below.
In an obvious way this ϕ generates a linear functional belonging to Z∗, but it has
more regularity than arbitrary functionals of this space.

Remark 4.4. Given the inhomogeneous initial condition y(0) = y0, we have to
work with the space Y = W 1,∞(0, T ) and must include the initial condition in the
definition of A. Then the additional term ϕ0(y(0)− y0) would appear in (4.19). This
requires some more notational effort. However, the optimality conditions are not
changed. Therefore, without loss of generality we confine ourselves to a homogeneous
initial condition.

Having in mind the particular form of ϕ, we see that here (4.5) is nothing more
than the definition of the adjoint equation


−ϕ′ +

∂b

∂y
(t, ȳ, ū)ϕ =

∂f0

∂y
(t, ȳ, ū) +

m∑
j=1

λ̄j
∂fj
∂y

(t, ȳ, ū),

ϕ(T ) = ψ′(y(T )).

(4.20)

It is obvious that (4.20) admits a unique solution ϕ̄ ∈ W 1,∞(0, T ). In section 5 we
show that (A1) is satisfied for (ODE). We obtain the following derivatives of the
Lagrange function:

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h =

∫ T

0


∂f0

∂u
− ϕ̄

∂b

∂u
+

m∑
j=1

λ̄j
∂fj
∂u

h


 dt(4.21)

(all derivatives taken at (ȳ, ū)); hence ∂L/∂u can be identified with d ∈ L∞(0, T ),

d(t) =


∂f0

∂u
− ϕ̄

∂b

∂u
+

m∑
j=1

λ̄j
∂fj
∂u


 (t).(4.22)

The second derivative of L is

L′′

(y,u)(ȳ, ū, ϕ̄, λ̄)[(y1, h1), (y2, h2)] = ψ′′(ȳ(T ))y1(T )y2(T )

+

∫ T

0


(y1, h1)


f ′′

0 (ȳ, ū)− ϕ̄b′′(ȳ, ū) +
m∑
j=1

λ̄jf
′′
j (ȳ, ū)


 (y2, h2)





 dt,

(4.23)
where f ′′

0 , b
′′, f ′′

j stand for 2× 2 Hessian matrices taken at (t, ȳ(t), ū(t)). It is easy to
verify that (A2) is satisfied.

The first-order necessary optimality conditions are stated in Corollary 4.1. In
particular, the following variational inequality has to be satisfied:∫

X

d(t)(u(t)− ū(t))dt ≥ 0(4.24)
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for all ua ≤ u(t) ≤ ub; hence ū(t) = ua, where d(t) > 0, and ū(t) = ub, where d(t) < 0.
(These points form the set X0.) No information is obtained where d is zero. Roughly
speaking, this is the set for which higher-order conditions are needed.

The second-order necessary conditions are formulated in Corollary 4.2. We have
to specify the linearized equation (4.12) and the form of the derivatives in the relations
(4.14). The linearized equation is

 y′ +
∂b

∂y
(t, ȳ, ū)y +

∂b

∂u
(t, ȳ, ū)h = 0,

y(0) = 0,
(4.25)

while

∂Fj
∂y

(ȳ, ū)y +
∂Fj
∂u

(ȳ, ū)h =

∫
X

{
∂fj
∂y

(t, ȳ, ū)y +
∂fj
∂u

(t, ȳ, ū)h

}
dt.(4.26)

4.3. Optimal boundary control of an elliptic equation. As a further ap-
plication, we consider an elliptic control problem. For convenience, we discuss a
simplified version and refer for further reading to [9].

Let Ω ⊂ R
N be a bounded domain with boundary Γ of class C0,1. Let ν denote

the outward unit normal vector at Γ, and ∂ν be the associated normal derivative.
Define

F (y, u) =

∫
Ω

γ0(x, y(x))dx+

∫
Ω

ψ0(x, y(x))dµ0(x) +

∫
Γ

f0(x, y(x), u(x))dS(x),

Fj(y, u) =

∫
Ω

γj(x, y(x))dx+

∫
Ω

ψj(x, y(x))dµj(x) +

∫
Γ

fj(x, y(x), u(x))dS(x),

j = 1, . . . ,m. We assume that the functions γj = γj(x, y), ψj = ψj(x, y), and
fj = fj(x, y, u) are of class C2 on Ω̄ × R and Ω̄ × R

2, respectively. Moreover, real
Borel measures µj are given on Ω. Here, µ is the Lebesgue surface measure induced
on Γ, dµ = dS. The appearance of the measures µj in the functionals will heavily
influence the verification of assumptions (A1)–(A3). Therefore, the easier case ψj = 0,
j = 1, . . . ,m, is of interest as well.

Consider the optimal control problem

(ELL)




minimize F (y, u),
−∆y + y = 0 in Ω,
∂νy + b(x, y, u) = 0 on Γ,
ua(x) ≤ u(x) ≤ ub(x) a.e. on Γ,
Fj(y, u) = 0, 1 ≤ j ≤ m1,
Fj(y, u) ≤ 0, m1 + 1 ≤ j ≤ m.

In this setting, the boundary control u is looked upon in the space L∞(Γ), hence
X = Γ, while the state y belongs to Y = {y ∈ H1(Ω)| − ∆y + y ∈ Lq(Ω), ∂νy ∈
Lp(Γ)}. (Here q > N/2 and p > N − 1 are given fixed.) Endowing Y with the graph
norm, it is known that Y ⊂ C(Ω̄), the embedding being continuous. Assume that
b = b(x, y, u) satisfies the same conditions as the fj . Additionally, we require that
(∂b/∂y)(x, y, u) ≥ 0 on Γ× R× [minua,maxub]. Define

A : Y → Lq(Ω)× Lp(Γ) and B : Y × L∞(Γ)→ Lq(Ω)× Lp(Γ)
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by

(Ay) =

(−∆y + y
∂νy

)
and B(y, u)(x) =

(
0

b(x, y(x), u(x))

)
.

The equation Ay + B(y, u) = 0, which is equivalent to our elliptic boundary value
problem, admits for each u ∈ L∞(Γ) exactly one solution y ∈ Y . The mapping u �→ y
is of class C2 from L∞(Γ) to Y . Now we proceed in the same way as in the preceding
section. The Lagrange function is

L(y, u, ϕ, λ) = F (y, u)−
∫

Ω

(−∆y + y)ϕdx

−
∫

Γ

(∂νy + b(x, y, u))ϕdS +

m∑
j=1

λjFj(y, u),

where ϕ ∈W 1,s(Ω) for all s < N
N−1 is the adjoint state. The adjoint state ϕ together

with its trace ϕ|Γ forms a Lagrange multiplier of Z∗ = Lq
′
(Ω)×Lp′(Γ) having higher

regularity. Here (4.5) reduces to the adjoint equation

−∆ϕ+ ϕ =

∂γ0

∂y
+
∂ψ0

∂y
µ0|Ω +

m∑
j=1

λ̄j

(
∂γj
∂y

+
∂ψj
∂y

µj |Ω
)
,

∂νϕ+
∂b

∂y
ϕ =

∂f0

∂y
+

m∑
j=1

λ̄j
∂fj
∂y

+
∂ψ0

∂y
µ0|Γ +

m∑
j=1

λ̄j
∂ψj
∂y

µj |Γ

(all partial derivatives taken at (x, ȳ(x), ū(x))). This equation has a unique solution
ϕ̄ ∈ W 1,s(Ω) associated with (ȳ, ū, λ̄). Notice that for N = 2 the Sobolev imbedding
theorem yields ϕ ∈ Lσ(Ω) for all σ < ∞, but not in general ϕ ∈ L∞(Ω). For N ≥ 3
the regularity of ϕ is even lower. This indicates that we have to discuss assumptions
(A1)–(A3) with more care. We shall do this in the last section.

The situation is easier in the case ψj = 0, j = 0, . . . ,m. Then all data given in the
adjoint equation are bounded and measurable, and the regularity theory of elliptic
equations yields ϕ̄ ∈ C(Ω̄) (see [5]).

Let us establish the first- and second-order derivatives of L. We get

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h =

∫
Γ


∂f0

∂u
(x, ȳ, ū) +

m∑
j=1

λ̄j
∂fj
∂u

(x, ȳ, ū)− ϕ̄
∂b

∂u
(x, ȳ, ū)


hdS

and

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)[(y1, h1), (y2, h2)]

=

∫
Γ

(y1, h1)


f ′′

0 (x, ȳ, ū) +

m∑
j=1

λ̄jf
′′
j (x, ȳ, ū)− ϕ̄b′′(x, ȳ, ū)


 (y2, h2)


dS

+

∫
Ω


∂2γ0

∂y2
(x, ȳ) +

m∑
j=1

λ̄j
∂2γj
∂y2

(x, ȳ)


 y1y2dx

+

∫
Ω

∂2ψ0

∂y2
(x, ȳ)y1y2dµ0 +

m∑
j=1

λ̄j
∂2ψj
∂y2

(x, ȳ)y1y2dµj .



SECOND-ORDER OPTIMALITY CONDITIONS 425

We observe that, due to our notation, there is almost no difference in the expressions
derived for the case of (ODE) in (4.21), (4.23). The first- and second-order conditions
for our elliptic problem (ELL) admit the following form: Set

d(x) =
∂f0

∂u
(x, ȳ(x), ū(x)) +

m∑
j=1

λ̄j
∂fj
∂u

(x, ȳ(x), ū(x))− ϕ̄
∂b

∂u
(x, ȳ(x), ū(x)).

Then d has the same form as in (4.22). The first- and second-order optimality con-
ditions are given by Corollaries 4.1–4.3. There we set X = Γ to obtain all first- and
second-order conditions for (ELL). Now the directions (y, h) are coupled through the
linearized boundary value problem



−∆y + y = 0,

∂νy +
∂b

∂y
(x, ȳ, ū)y +

∂b

∂u
(x, ȳ, ū)h = 0.

(4.27)

The derivatives in (4.14), (4.15) admit the form



∂Fj
∂y

(ȳ, ū)y +
∂Fj
∂u

(ȳ, ū)h =

∫
Ω

∂γj
∂y

(t, ȳ)ydx+

∫
Ω

∂ψj
∂y

(t, ȳ)ydµj

+

∫
Γ

{
∂fj
∂y

(t, ȳ, ū)y +
∂fj
∂u

(t, ȳ, ū)h

}
dS.

(4.28)

In this way, we have obtained the second-order sufficient condition for a simplified
elliptic control problem. For the discussion of more general problems, we refer to [7],
[9]. We should underline again that so far we have stated the optimality condition in a
formal way. It remains to verify (A1)–(A3) to make our theory work. Low regularity
of the adjoint state ϕ can be an essential obstacle for this. We refer to section 5.

4.4. Optimal distributed control of a parabolic equation. We confine
ourselves to a distributed parabolic control problem. A more general class, including
boundary control and boundary observation, is considered in a separate paper by
Raymond and Tröltzsch [22]. Let Ω be defined as in the last section, and set Q =
Ω× (0, T ), Σ = Γ× (0, T ). Define

F (y, u) =

∫
Ω

γ0(x, y(x, T ))dx+

∫
Ω

ψ0(x, y(x, T ))dµ0(x)

+

∫
Q

f0(x, t, y(x, t), u(x, t))dxdt,

Fj(y, u) =

∫
Q

ψj(x, t, y(x, t))dµj(x, t) +

∫
Q

fj(x, t, y(x, t), u(x, t))dxdt,

j = 1, . . . ,m. We assume again that the functions ψj , fj , and γj are of class C2 on
Q̄× R and Q̄× R

2, respectively. Moreover, real Borel measures µj , j = 0, . . . ,m, are
given on Ω and Q, respectively. Now µ is the Lebesgue measure on Q, dµ = dxdt.
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Consider the optimal control problem

(PAR)




minimize F (y, u),
∂y

∂t
−∆y + b(x, t, y, u) = 0 in Q,

∂νy = 0 on Σ,
y(x, 0) = 0 in Ω,
ua(x, t) ≤ u(x, t) ≤ ub(x, t) a.e. on Q,
Fj(y, u) = 0, 1 ≤ j ≤ m1,
Fj(y, u) ≤ 0, m1 + 1 ≤ j ≤ m.

In this setting, the distributed control u is looked upon in the space L∞(Q); hence
we set X = Q. The state y belongs to Y = {y ∈ W (0, T )|y(0) = 0, yt − ∆y ∈
Lq(Q), ∂νy ∈ Lp(Σ)}, where q > N/2 + 1 and p > N + 1 are given fixed. It is known
that Y ⊂ C(Q̄), the embedding being continuous for the graph norm. Assume that
b = b(x, t, y, u) satisfies the same conditions as the fj . Additionally, we require that
∂b/∂y(x, t, y, u) ≥ 0 on Q× R× [minua,maxub]. Define

A : Y → Lq(Q)× Lp(Σ) and B : Y × L∞(Q)→ Lq(Q)× Lp(Σ)

by

Ay =

(
∂y

∂t
−∆y

∂νy

)
and B(y, u)(x, t) =

(
b(x, t, y(x, t), u(x, t))

0

)
.

The equation Ay+B(y, u) = 0, which is equivalent to our parabolic initial-boundary
value problem, admits for each u ∈ L∞(Q) exactly one solution y ∈ Y . We refer
to [5]. The mapping u �→ y is of class C2 from L∞(Q) to Y . Here, the Lagrange
function is

L(y, u, ϕ, λ) = F (y, u)−
∫
Q

(yt −∆y − b(x, t, y, u))ϕdxdt

−
∫

Σ

∂νyϕdSdt+

m∑
j=1

λjFj(y, u),

where ϕ is the adjoint state and dS again denotes the Lebesgue surface measure
induced on Γ. Equation (4.5) turns out to be the adjoint equation




−∂ϕ
∂t
−∆ϕ+

∂b

∂y
ϕ =

∂f0

∂y
+

m∑
j=1

λ̄j

(
∂fj
∂y

+
∂ψj
∂y

µj

)
in Q,

∂νϕ = 0 in Σ,

ϕ(x, T ) =
∂γ0

∂y
(x, ȳ(x, T )) +

∂ψ0

∂y
(x, ȳ(x, T ))µ0 in Ω

(all partial derivatives taken at (x, ȳ, ū)). This equation has a unique solution ϕ̄ ∈
W 1,s(Ω) associated with (ȳ, ū, ϕ̄, λ̄). If, however, ψj = 0, j = 1, . . . ,m, then ϕ̄ is more
regular, ϕ̄ ∈W (0, T ) ∩ C(Q̄).
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The relevant derivatives of L are

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h

=

∫
Q


∂f0

∂u
(x, ȳ, ū) +

m∑
j=1

λ̄j
∂fj
∂u

(x, ȳ, ū)− ϕ̄
∂b

∂u
(x, ȳ, ū)


hdxdt

=

∫
Q

d(x, t)h(x, t)dxdt,

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)[(y1, h1), (y2, h2)]

=

∫
Q

(y1, h1)


f ′′

0 (x, ȳ, ū) +

m∑
j=1

λ̄jf
′′
j (x, ȳ, ū)− ϕ̄b′′(x, ȳ, ū)


 (y2, h2)


dxdt

+

∫
Ω

∂2ψ0

∂y2
(x, ȳ(T ))y1(T )y2(T )dµ0 +

∫
Q

m∑
j=1

λ̄j
∂2ψj
∂y2

(x, ȳ)y1y2dµj

+

∫
Ω

∂2γ0

∂y2
(x, ȳ(T ))y1(T )y2(T )dx.

The first- and second-order conditions for the parabolic case are covered by Corollaries
4.1–4.3. We have to substitute Q for X there and replace the variable x by (x, t).
Moreover, in the second-order conditions, y and h are coupled through the linearized
initial-boundary value problem


yt −∆y +

∂b

∂y
(x, t, ȳ, ū)y +

∂b

∂u
(x, t, ȳ, ū)h = 0,

∂νy = 0,

y(x, 0) = 0.

(4.29)

We leave the calculations of the derivatives in (4.14) to the reader; they are obtained
by an obvious modification of (4.28). We should mention again that these optimality
conditions are meaningful only if the assumptions (A1)–(A3) are satisfied.

5. Verification of the assumptions. Our theory relies on the general assump-
tions (A1)–(A3). We shall see that (A1)–(A3) are naturally satisfied for the prob-
lem (ODE), while the situation is more complicated in the case of the elliptic or
parabolic PDE.

(i) Problem (ODE). (A1). It is obviously sufficient to look at one of the functionals
Gj(u) = Fj(G(u), u) to assess the situation. We have

G′
j(ū)h =

∫ T

0

∂fj
∂y

(t, ȳ, ū)ydt+

∫ T

0

∂fj
∂u

(t, ȳ, ū)hdt,(5.1)

where y = G′(ū)h. Here, ∂fj/∂y, ∂fj/∂u are bounded and measurable functions.
Moreover, the estimate

‖y‖C[0,T ] = ‖G′(ū)h‖C[0,T ] ≤ c‖h‖L2(0,T )(5.2)

holds, since ‖y‖C[0,T ] ≤ c‖y‖H1(0,T ) ≤ c‖h‖L2(0,T ). Thus the mapping h �→ G′
j(ū)h

defines a linear and continuous functional on L2(0, T ). By the Riesz representation
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theorem,

G′
j(ū)h =

∫ T

0

gj(t)h(t)dt(5.3)

must hold with some gj ∈ L2(0, T ); hence (A1) is fulfilled.
(A2). Here, the derivative

G′′
j (ū)[h1, h2] =

∫ T

0

(y1, h1)f
′′
j (t, ȳ, ū)(y2, h2)


dt

is characteristic for the discussion. All entries of f ′′
j are bounded and measurable. If

hki → hi in L2(0, T ), k →∞, i = 1, 2, then yki → yi in C[0, T ]; hence G′′
j (ū)[h

k
1 , h

k
2 ]→

G′′
j (ū)[h1, h2]. This shows (A2).

(A3). First, we must estimate differences of the type G′′
j (ũ) − G′′

j (ū) for ũ in a
L∞-neighborhood of ū. We get

|(G′′
j (ũ)−G′′

j (ū))h
2| ≤

∫ T

0

|f ′′
j (t, ỹ, ũ)− f ′′

j (t, ȳ, ū)||(y, h)|2dt,

where ỹ = G(ũ), ȳ = G(ū), y = G′(ū)h. Due to our assumptions, we find that

|[G′′
j (ũ)−G′′

j (ū)]h
2| ≤ δ(‖y‖2C[0,T ] + ‖h‖2L2(0,T )) ≤ cδ‖h‖2L2(0,T ),(5.4)

where δ → 0 as ‖ũ − ū‖L∞ → 0. Another characteristic part in ∂2L/∂u2 is the
coupling of the nonlinearity b with ϕ̄. It is the essential advantage of our simplified
case (ODE) that ϕ̄ ∈ L∞(0, T ). Therefore, we are justified to estimate∣∣∣∣∣

∫ T

0

(y, h)b′′(t, ȳ, ū)(y, h)
ϕ̄dt

∣∣∣∣∣ ≤ c‖ϕ̄‖L∞(0,T )(‖y‖2C[0,T ] + ‖h‖2L2(0,T ))

≤ c‖h‖2L2(0,T ).

(5.5)

Discussing all second-order terms in this way, we easily verify that (A3) is also satis-
fied.

(ii) Elliptic problem (ELL). We repeat the discussion of (A1)–(A3) along the lines
of (i) but concentrating on the essential differences with the case of (ODE). Here, it
holds that

G′
j(ū)h =

∫
Ω

∂γj
∂y

(x, ȳ)ydx+

∫
Ω

∂ψj
∂y

(x, ȳ)ydµj

+

∫
Γ

∂fj
∂y

(x, ȳ, ū)ydS +

∫
Γ

∂fj
∂u

(x, ȳ, ū)hdS,

where y = G′(ū)h. In contrast to (5.2), now the mapping G′(ū) is not in general
continuous from L2(Γ) to C(Ω̄). This property only holds for N = dim Ω = 2 (see [9]).
For N > 2 we assume that Ωj , the support of µj , satisfies Ω̄j ⊂ Ω. Then the mapping
h �→ G′(ū)h is continuous from L2(Γ) to C(Ω̄j); hence h �→ G′

j(ū)h is a linear and

continuous functional on L2(Γ). The Riesz theorem yields a representation analogous
to (5.3). Hence (A1) is shown under additional assumptions on the subdomains Ωj .
(A2) then holds true in the same way. Notice that the restriction to Ωj is not needed
if all ψj vanish.
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To verify (A3) we need even more restrictions on the data. The situation is easy
if ψj = 0, j = 1, . . . ,m. Then all given data in the adjoint equation are bounded and
measurable, and the regularity theory of elliptic equations yields ϕ̄ ∈ C(Ω̄). In this
case, (A3) is obviously satisfied.

Let us now assume that at least one of the ψj is not zero. Then the best regularity
of the trace ϕ̄|Γ is ϕ̄|Γ ∈ Lr(Γ) for all r < (N − 1)/(N − 2). For instance, ϕ ∈ Lr(Γ)
for all r < ∞ is obtained in the case N = 2. We therefore cannot assume that
ϕ̄ ∈ L∞(Ω). Regard the elliptic counterpart to (5.5),∣∣∣∣

∫
Γ

(y, h)b′′(x, ȳ, ū)(y, h)
ϕ̄dS
∣∣∣∣ =

∣∣∣∣
∫

Γ

ϕ̄

(
∂2b

∂y2
y2 + 2

∂2b

∂y∂u
yh+

∂2b

∂u2
h2

)
dS

∣∣∣∣
≤ c

∫
Γ

(|ϕ̄|y2 + |ϕ̄|yh+ |ϕ̄|h2)dS.

(5.6)

This expression has to be estimated for h ∈ L2(Γ). If ϕ̄|Γ /∈ L∞(Γ), which is the
normal case, then we must exclude the third term from (5.6). This means that
∂2b/∂u2 has to disappear—u must appear linearly. Next we consider the second term,
where ‖ϕ̄|Γy‖L2(Γ) is estimated against ‖h‖L2(Γ). The mapping h �→ y is continuous
from L2(Γ) to C(Γ) (N = 2), to Lr(Γ) for all r < ∞ (N = 3), and to Lr(Γ) for
all r < 2(N − 1)/(N − 3) (N > 3). Therefore, the second term can be estimated iff
N = 2, while it must be cancelled for N > 2. The latter means ∂2b/∂u∂y = 0—here
b = b1(x, y) + b2(x)u must hold. In the same way we arrive at the surprising fact
that for N > 3 the first term in (5.6) must vanish, too. In other words, in the case
of elliptic boundary control with pointwise functionals Fj , we cannot admit nonlinear
equations for N > 3.

Remark 5.1. We should underline again that these restrictions are not needed if
the functionals Fj are sufficiently regular (ψj = 0, j = 1, . . . ,m). Moreover, the case of
distributed controls permits us to slightly relax the restrictions on the dimension N .

(iii) Parabolic problem (PAR). Once again, (A1)–(A3) are satisfied if ψj = 0,
j = 1, . . . ,m. This is due to the high regularity ϕ̄ ∈W (0, T ) ∩ C(Q̄) in this case.

In the opposite case, the problem of regularity is even more delicate than in the
elliptic problem. We cannot discuss the general case in detail and refer to the recent
paper [22]. Instead of this, let us explain the point for a very particular constraint:
Suppose that only one (pointwise) state constraint of the form

g1(y, u) =

∫ T

0

y(x1, t)dt = 0

is given, where x1 ∈ Ω is a fixed position of observation. To make the theory work,
we need some strong restrictions: We assume N = dim Ω = 1, i.e., Ω = (a, b),
and require that ∂2b/∂u2 = 0 (the control appears linearly). Then the mapping
h �→ y = G′(ū)h is continuous from L2(Q) to C(Q̄), and the functional h �→ g1(y, h)
is continuous on L2(Q). We know that ϕ̄ ∈ Ls(Q) for all s < 3. (This follows from
Theorem 4.3 in [22] for N = 1 and α = α̃.) Hence ϕ̄ /∈ L∞(Q), and that is the reason
why we cannot admit a control appearing nonlinearly. The estimate of the parabolic
counterpart of (5.6) is∣∣∣∣

∫
Q

(
∂2b

∂y2
ϕ̄y2 + 2

∂2b

∂y∂u
ϕ̄yh

)
dxdt

∣∣∣∣
≤ c‖ϕ̄‖L1(Q)‖y‖2L∞(Q) + c‖ϕ̄‖L2(Q)‖y‖L∞(Q)‖h‖L2(Q) ≤ c‖h‖2L2(Q).
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Discussions of this type reveal that (A1)–(A3) are satisfied. However, we needed
very strong assumptions, in particular N = 1. The case N = 2 can be handled
under additional restrictions concerning the appearance of control and observations
(“control and observations have disjoint supports”; see [22]).

If there are no pointwise state constraints, the situation is easier, as the reader
can check.

Remark 5.2. The second-order conditions established in the previous sections
allow us to study L∞-local solutions. This causes specific difficulties if the optimal
control exhibits jumps. Therefore, Lp-optimality conditions can be more interesting.
An associated extension to Lp is possible, provided that the control-state mapping
u �→ y and the objective functional are differentiable from Lp to L∞. Under associated
restrictions (for instance, that the control appear linearly in the state equation and
the cost functional be quadratic with respect to the control), this extension to Lp is
possible for sufficiently large p < ∞. For some associated results we refer the reader
to Casas, Tröltzsch, and Unger [8] and Dunn [14].

Remark 5.3. For some optimal control problems, the second-order condition

∂2L

∂u2
(ū, λ̄)h2 > 0 ∀h ∈ C0

ū \ {0},

along with a certain positivity of the second derivative with respect to the control of
the Hamiltonian, provide sufficient optimality conditions. The reader is referred to
Casas and Mateos [6], where these conditions are proved to be sufficient and equivalent
to (3.26); see also Bonnans and Zidani [4]. In particular, if the control appears linearly
in the state equation and the cost functional is quadratic and positive with respect
to the control, then the above condition is sufficient for optimality.
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1. Introduction. We consider the nonlinear program with inequality constraints:

minimize f(x)
subject to g(x) = [g1(x) · · · gm(x)]T ≤ 0,

(1.1)

where f and g1, . . . , gm (m ≥ 0) are real-valued and twice continuously differentiable
functions defined on �n. We define ∇g = [∇g1 · · · ∇gm], where ∇gi denotes the
gradient of gi. For simplicity, we consider only inequality constraints for now. Exten-
sions to incorporate equality constraints and to treat semidefinite nonlinear programs
are discussed in sections 8 and 9, respectively.

Define the Lagrangian function

l(x, λ) := f(x) + g(x)Tλ.

We say that an x ∈ �n is a first-order stationary point of (1.1) if it satisfies, to-
gether with some λ ∈ �m (Lagrange multipliers), the first-order necessary optimality
condition for (1.1)

g(x) ≤ 0, λ ≥ 0, g(x)Tλ = 0, ∇xl(x, λ) = 0,(1.2)

and x is a second-order stationary point if, in addition, it satisfies, together with λ,
the weak second-order necessary optimality condition (see, e.g., [3, 18, 26])

dT∇xxl(x, λ)d ≥ 0 ∀d, with ∇gi(x)T d = 0 ∀i ∈ I(x),(1.3)

where I(x) := {i ∈ {1, . . . ,m} : gi(x) = 0}.
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A well-known approach to solving (1.1) entails introducing the slack variables
s := −g(x) and a logarithmic barrier for the nonnegativity constraints on s to obtain
the log-barrier problem:

minimize fµ(x, s) := f(x)− µ

m∑
i=1

ln(si)

subject to g(x) + s = 0, s > 0,

(1.4)

where µ > 0 is the barrier parameter. By eliminating s, this may also be written
in terms of x only. Then, for a given µ > 0, we solve problem (1.4) inexactly,
and then µ is decreased, and we repeat, etc. The asymptotic property of the exact
local optimal solution of (1.4) as µ → 0 has been studied by Fiacco and McCormick
in their well-known book [19]. Auslender [3] showed that, for penalty approaches
in general, a second-order stationary point of the penalized problem approaches in
the limit a second-order stationary point of the original problem. Since the work
of Karmarkar, interest in the log-barrier approach has been renewed, and extensive
studies are made in the cases of linear/quadratic/convex programs and monotone
complementarity problems (see, e.g., [34, 41] and references therein).

Recently, there has been considerable interest in extending the above barrier/interior-
point approach to the nonconvex case. One such extension, giving rise to the (infeasi-
ble) primal-dual methods, entails taking one or two damped Newton steps on a refor-
mulation of the first-order optimality condition for (1.4), and then decreasing µ, and
so on. These methods and their global/local convergence were studied by El-Bakry
et al. [17], Yamashita [42], Yamashita and Yabe [43], and Akrotirianakis and Rustem
[1] (see also [37] for a feasible method). Forsgren and Gill [22] and Gay, Overton, and
Wright [23] also studied implementation issues for these methods, including properties
of the Newton direction, modified Newton directions (based on adding a suitable pos-
itive semidefinite matrix to ∇xxl(x, λ)), techniques for calculating the directions, and
merit functions for stepsize selection. Vanderbei and Shanno [39] considered a modi-
fied Newton direction based on adding a nonnegative multiple of the identity matrix
to ∇xxl(x, λ) (see also (2.23)). Promising numerical results with these methods were
reported in [23, 39, 42]. Numerical comparison of a primal-dual method, a primal-dual
trust-region method, and a primal method on sparse problems was given by Lasdon,
Plummer, and Yu [29]. For some methods, local superlinear convergence can also be
shown under suitable assumptions. However, as Newton directions may not be de-
fined everywhere, global convergence of methods using Newton directions is difficult
to obtain and requires fairly strong assumptions such as positive definiteness or, at
least, nonsingularity of ∇xxl(x, λ) and linear independence of ∇gi(x), i ∈ I(x), glob-
ally [1, 17, 37]. In addition, only convergence to a first-order stationary point of (1.1)
was shown in these references. In [42], only convergence to a first-order stationary
point of (1.4) was shown (see also [44] for related results using an �2 log-barrier func-
tion). Conn, Gould, and Toint [13] studied an infeasible primal-dual method for the
case of linear constraints. Their method uses modified Newton directions, and global
convergence to first-order stationary point was shown under reasonable assumptions.
Numerical results on quadratic programs from the CUTE test set were also reported.
In a series of papers [6, 7, 8], Byrd, Nocedal, and coworkers proposed methods that
combine interior-point approaches, trust-region strategies, and sequential quadratic
programming (SQP) techniques. Global convergence to first-order stationary points
and local superlinear convergence were studied in, respectively, [6] and [8]. Yamashita,
Yabe, and Tanabe [45] proposed a primal-dual interior-point trust-region method and,
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under certain assumptions, showed global convergence and local superlinear conver-
gence to a first-order stationary point of (1.1). However, their assumptions seem to be
difficult to verify. Implementation issues were studied in [7, 45], with promising nu-
merical results reported. Jarre [28] considered a trust-region strategy for computing
a first-order stationary point of (1.4), which involves a line search on the trust-region
multiplier at each iteration and requires a strictly feasible starting point. Partial
results on convergence to a first-order stationary point of (1.1) as µ → 0 are also
obtained. Additional references on related work are given in [7].

Motivated by the aforementioned work, in this paper we study an infeasible
interior-point method, based on the log-barrier approach, for solving (1.1). (By
“solving,” we mean computing a second-order stationary point.) In our method,
the barrier problem (1.4) is solved inexactly using a (new) trust-region strategy. The
trust-region strategy maintains and iteratively updates an (x, s, λ) ∈ �n × �2m

++ and
a trust-region radius δ > 0. It proceeds in three phases, with the aim of achieving,
respectively, approximate feasibility, centrality, and first- and second-order stationar-
ity for (1.4). At each iteration, a quadratic subproblem with an �2-ball trust region
is solved (inexactly), and second-order correction is used to construct a trial point
(xTR, sTR, λTR)—see (2.1), (2.3), (2.6). A novel feature of the subproblem is the scal-
ing of the infeasibility term by δβ , with β set to either below 1 or above 1, according to
whether we are aiming to achieve feasibility or second-order stationarity for (1.4). We
use a merit function to test the trial point for acceptance and adjust the trust-region
radius δ accordingly. In phase 3, the merit function is fµ(x, s). In phase 1, fµ(x, s)
is augmented by an �p-penalty on the infeasibility term g(x) + s, and thus the merit
function is

fµ,τ (x, s) := fµ(x, s) + τ‖g(x) + s‖p,(1.5)

with τ > 0 and 1 ≤ p ≤ ∞. In phase 2, fµ(x, s) is augmented by an �∞-penalty on
the centrality term Sλ− µe, and so the merit function is

f̄µ,τ̄ (x, s, λ) := fµ(x, s) + τ̄‖Sλ− µe‖∞,(1.6)

with τ̄ > 0. (Here, S and Λ denote the m×m diagonal matrices with diagonal entries
s1, . . . , sm and λ1, . . . , λm, respectively; e denotes the vector of 1’s.) The function
fµ,τ has been used with p = 1 by Yamashita [42] and Yamashita, Yabe, and Tanabe
[45] in their interior-point/trust-region methods, with p = 2 by Byrd and Omojokun
in their SQP methods (see [6, p. 153]), and with p = 2 by Byrd and coworkers [6, 7]
in their interior-point/trust-region/SQP methods.

Our trust-region strategy is a primal-dual strategy. We can also consider a primal
strategy, in which we set λTR := µ(STR)−1e in the trial point. Our global convergence
results still hold for this primal method—see Note 1. Also, as we shall see in section
9, a primal method can be readily extended to semidefinite nonlinear programming.
The method analyzed in [6] is a primal method, though it is remarked that much of
its analysis can be extended to a primal-dual method. The result in [29] suggests
that the two types of methods may be comparable in practice, unless high solution
accuracy is desired. Despite this, primal-dual methods are generally considered to
be superior, due partly to their superlinear convergence properties. On the other
hand, a primal method can be efficient for certain classes of semidefinite programs,
such as semidefinite linear programs in dual standard form arising from combinatorial
optimization problems [4].
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Under reasonable assumptions on the problem, our method is well defined and
generates second-order stationary points. More specifically, define for each ζ ≥ 0 the
set

Xζ := {x ∈ �n : ‖g(x) + s‖p ≤ ζ for some s ∈ �m+},
and Iζ(x) := {i ∈ {1, . . . ,m} : |gi(x)| ≤ ζ}. Thus, X0 is the feasible set for (1.1) and
I0(x) = I(x). We show that if Xζ is bounded and a relaxed Mangasarian–Fromovitz
constraint qualification (MFCQ) holds at each x ∈ Xζ (see (4.24)), where ζ is a
constant depending on the initial infeasibility, then every sequence {xt} generated by
our method remains in Xζ , and every cluster point x̄ and its corresponding Lagrange
multiplier vector λ̄ ∈ �m satisfy the first-order optimality condition (1.2). If, in
addition, f is thrice differentiable at x̄, then for any subsequence of the generated
iterates {(xt, λt)}t∈T ′ converging to some (x̄, λ̄) and any subsequence of unit directions
{dt}t∈T ′ satisfying [∇gi(xt)T dt]i∈I(x̄) = 0 for all t ∈ T ′, we have

lim inf
t→∞,
t∈T ′

(dt)T∇xxl(xt, λt)dt ≥ 0.(1.7)

It follows that if g is affine (i.e., each gi is affine) or if ∇gi(x̄), i ∈ I(x̄), are linearly
independent, then (x̄, λ̄) also satisfies (1.3)—see Corollary 6.2.

Thus, in the case of affine g and thrice differentiable f , the boundedness of Xζ
and a relaxed MFCQ are the only assumptions needed to ensure that a cluster point x̄
exists and is a second-order stationary point of (1.1). If the initial (x, s) is also feasible,
i.e., satisfies g(x) + s = 0, then our method maintains feasibility at all iterations,
and ζ can be taken to be zero in the above assumptions, i.e., it suffices that the
feasible set X0 be bounded and that MFCQ hold at each x ∈ X0 (see the discussion
after Corollary 6.2). The latter is weaker than the common regularity assumption
of linear independence of ∇gi(x), i ∈ I(x). The feasible active-set Newton method
of Forsgren and Murray for linear inequality-constrained problems [21] also generates
second-order stationary points but assumes, instead of MFCQ, that the problem does
not have “primal degenerate” second-order stationary points. In the case of bound
constraints (for which regularity holds everywhere), Coleman and Li [11] proposed a
feasible affine-scaling trust-region method. They showed that if every cluster point
of the generated iterates is “nondegenerate,” then at least one cluster point is a
second-order stationary point [11, Thm. 3.10(ii)]. A related method was studied by
Monteiro and Wang [30] for the case of linear constraints and for f either convex
or concave. Under certain nondegeneracy and constant Hessian-range assumptions,
their method generates a second-order stationary point [30, Thm. 4.13]. An extension
of the Coleman–Li method to a case of implicit bound constraints was considered by
Dennis, Heinkenschloss, and Vicente [15]. They showed that if the search directions
have certain properties and the iterates are bounded, then at least one cluster point is a
second-order stationary point. Other trust-region methods, not using an interior-point
approach, have been developed to generate, under reasonable assumptions, second-
order stationary points for unconstrained and bound/equality-constrained problems
(see [11, 14, 26] and references therein; see also the introduction of [18]).

In the case of nonaffine g, the only other (infeasible) methods we are aware of
that can generate a second-order stationary point of (1.1) are the line search methods
proposed by Mukai and Polak [32] and by Facchinei and Lucidi [18]. The method in
[32] reformulates the inequalities as equalities (by expressing the slacks as the square
of artificial variables), which in turn are handled by an exact penalty function. It is
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shown that if the generated iterates x are bounded and remain in a “regular set,”
then every cluster point is a second-order stationary point. The method in [18] uses
an exact differentiable penalty function (for inequalities) of Glad and Polak [24], as
further studied by Di Pillo and Grippo [16]. It is shown that if (i) the generated iterates
x lie in a bounded set, (ii) every point in �n is regular (it is remarked that this can be
relaxed to every feasible solution’s being regular), and (iii) every first-order stationary
point of x �→ ‖max{g(x), 0}‖2 is a feasible solution, then every cluster point is a
second-order stationary point of (1.1). This set of assumptions is quite different from
the relaxed MFCQ that we make. Gould and Toint [26] give an example of quadratic
f and g(x) = −x for which the local minimizer of fµ(x,−g(x)) converges to the
origin, which does not satisfy the strong second-order necessary optimality condition
for (1.1).1 In fact, for quadratic f with rational coefficients and g(x) = −x, it is
NP-complete to decide whether the origin satisfies the strong second-order necessary
condition [33]. This suggests that a weak second-order necessary condition may be
the best we can hope to achieve.

After the original version of this paper was written, two independent works ap-
peared that influenced our subsequent revisions. The first is by Conn et al. [12] (also
see [14, sect. 13.6]), in which a feasible primal-dual interior-point trust-region method
is proposed for nonlinear programming with linear equality constraints and nonlinear
inequality constraints. This method allows approximate Hessian computation and
approximate solution of the trust-region subproblem. It is shown that, under rea-
sonable assumptions, the outer iterates have an asymptotic second-order stationarity
property [12, eq. (87)]. These results, as well as comments from the referees and the
editor, motivated us to revise our work to also consider primal-dual methods,2 ap-
proximate Hessian computation, approximate solution of the trust-region subproblem,
and a simplification of our second-order stationarity result. The convergence analysis
in [12] does not depend on the boundedness of the iterates, though it assumes that
the inner iterates satisfy (in our notation) ‖λk − µ(Sk)−1e‖ → 0 with sk = −g(xk).
This assumption is in some sense approximately enforced in our trust-region strategy
via its phase 2. Local superlinear convergence of the method in [12] was recently
studied in [25]. A second work by Wächter and Biegler [40] furnishes examples of
(1.1), with n = 1 variable and m = 2 linear and quadratic constraints, for which the
infeasible line search based methods in [10, 17, 23, 39, 42, 45] fail to achieve feasi-
bility when started at reasonable infeasible solutions. The same reference notes that
the trust-region method of [6] solves the examples. We will show in section 7 that
our method also solves, at least numerically, such an example using the troublesome
starting points. We note that our trust-region subproblem (2.1) differs from the one
used in [6, eq. (2.1)] in several ways: the use of δβ with β �= 1, the absence of ∆s from
the trust-region constraint, and the absence of bound constraints on ∆s. The last
obviates the need to solve approximately an indefinite quadratic program (QP). Also,
the analysis in [6] establishes convergence to first-order stationary points under a lin-
ear independence constraint qualification (LICQ). Our analysis establishes a similar
result under a relaxed MFCQ and establishes convergence to second-order stationary
points under an LICQ—see Corollary 6.2.

Throughout this paper, �n denotes the space of n-dimensional real column vec-
tors, �m++ denotes the positive orthant in �m, �n×m denotes the space of n×m real

1This condition replaces the equality ∇gi(x)T d = 0 in (1.3) with the inequality ∇gi(x)T d ≤ 0
for those i ∈ I(x) with λi = 0.

2The original version of this paper considered the simpler primal method.



INFEASIBLE INTERIOR-POINT TRUST-REGION METHODS 437

matrices, and T denotes transpose. For any y ∈ �m, we denote by yi the ith compo-
nent of y, and by ‖y‖p, ‖y‖ the p-, 2-norm of y (1 ≤ p ≤ ∞). For any A ∈ �n×m, let
‖A‖ := max‖y‖=1 ‖Ay‖. (“:=” means “define.”) For any I ⊆ {0, 1, 2, . . .}, we denote
by |I| the cardinality of I. We also define the second-order Taylor remainders:

Rf (x,∆x) := f(x + ∆x)− f(x)−∇f(x)T∆x− 1

2
∆xT∇2f(x)∆x,

Lg(x,∆x) := g(x + ∆x)− g(x)−∇g(x)T∆x,

Rg(x,∆x) := Lg(x,∆x)− 1

2
∆xT∇2g(x)∆x,

(1.8)

where ∆xT∇2g(x)∆x denotes the vector in �m with components ∆xT∇2gi(x)∆x,
i = 1, . . . ,m. We denote the �2-norm ball by B := {y ∈ �n : ‖y‖ ≤ 1}, and denote by
Π the class of continuous functions π : �++ �→ �++ satisfying limµ→0 π(µ) = 0. For
any � ≥ 1 and γ ∈ �, we define � ⊗ γ := �γ if γ ≥ 0, and otherwise � ⊗ γ := γ/�.
Then � ⊗ γ ≥ γ.

2. A trust-region strategy for (1.4).

2.1. Motivation. We sketch and motivate the key steps in our trust-region
strategy for solving (1.4) inexactly. Given (x, s, λ) ∈ �n × �2m

++ and trust-region
radius δ > 0, we choose a β ≥ 0 and solve the following trust-region subproblem
associated with (x, s, λ, δ, β):

minimize ∇f(x)T∆x− λTP ∆s +
1

2
∆xTM∆x +

1

2
∆sTΛS−1∆s

subject to ‖∆x‖ ≤ δ, AT∆x + ∆s = −δβr,
(2.1)

where we define

λP := µS−1e, M := ∇xxl(x, λ), r := g(x) + s, A := ∇g(x).(2.2)

This subproblem acts as a linear/quadratic approximation of (1.4) at (x, s), with λ
approximating the Lagrange multipliers associated with the equality constraints. It
can be solved accurately by various techniques [14, 31]. From an approximate solution
(∆x,∆s) of (2.1) and Lagrange multipliers λTR ∈ �m associated with the equality
constraints, a trial point is generated according to

xTR := x + ∆x, sTR := max{s + ∆s−∆sCS,−g(xTR)}.(2.3)

Here ∆sCS is a second-order correction term chosen to account for the absence of
curvature information in the linearized constraints and for the discrepancy between
λ and λP. This term, whose exact form will be given later in (2.6), ensures that the
quadratic model is accurate up to the second order; see (2.7) and Lemma 3.1(c)–
(e). Also, taking the maximum with −g(xTR) ensures that g(xTR) + sTR ≥ 0, which
is needed to drive towards feasibility. This mechanism has been employed in the
trust-region method of [6] for a similar purpose.

For any feasible solution (∆x,∆s) of (2.1), let υ denote its objective value. By
using the equality constraint in (2.1) to eliminate ∆s, we obtain

υ = δβλTP r + cT∆x +
1

2
δ2β‖Λ1/2S−1/2r‖2 + δβrTΛS−1AT∆x +

1

2
∆xTQ∆x,(2.4)
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where we define

b := Sλ− µe, c := ∇xl(x, λP), Q := M + AΛS−1AT .(2.5)

Then (2.1) is equivalent to minimizing (2.4) subject to ‖∆x‖ ≤ δ. Our trust-region
strategy proceeds in three phases. In phase 1, the aim is to maintain (s, λ) > 0 while
driving ‖r‖p below a desired threshold ε1. This is accomplished by accepting the
trial point if it achieves υ − τδβ‖r‖p + o(δ2) descent in the merit function fµ,τ (x, s),
where υ is the objective value of the approximate solution of (2.1).3 As this descent
amount is driven towards 0, by choosing β judiciously so that r is the dominant term
in (2.4), r would be driven towards 0. In phase 2, the aim is to maintain (s, λ) > 0
and ‖r‖p ≤ ε1 while driving ‖b‖∞ below a desired threshold ε2. This is accomplished
analogously to phase 1, with f̄µ,τ̄ used as the merit function. In phase 3, the aim is
to maintain (s, λ) > 0, ‖r‖p ≤ ε1, and ‖b‖∞ ≤ ε2, while driving towards second-order
stationarity for (1.4). This is accomplished by accepting the trial point if it achieves
υ + o(δ2) descent in the merit function fµ(x, s). As this descent amount is driven
towards 0, by choosing β and δ judiciously so that ∆xTQ∆x is the dominant term in
(2.4), second-order stationarity would be attained asymptotically.

How can we ensure that the trial point has the desired descent property for the
merit function? Specifically, how should we choose ∆sCS in (2.3), with (∆x,∆s) being
an (approximate) solution of (2.1)? Choosing ∆sCS = 0 does not work since it captures
neither the constraint curvature information nor the discrepancy between λ and λP,
and the resulting O(δ2) error between υ and the descent in the (augmented) barrier
function is too large to attain second-order stationarity. Rather, we will choose

∆sCS :=
1

2µ
SΛ∆xT∇2g(x)∆x +

1

2µ
S−1(∆S)2b,(2.6)

with the first term accounting for the constraint curvature information embodied in
M , and the second term accounting for the discrepancy between λ and λP. (Here, ∆S
denotes the m×m diagonal matrix with diagonal entries ∆s1, . . . ,∆sm.) This choice
arises naturally from our analysis of the trust-region subproblem, and, in particular,
it ensures that

fµ(xTR, sTR)− fµ(x, s) ≤ υ + o(δ2) +O(max{δ, δβ}3)(2.7)

(see Lemmas 3.1(c) and 3.2(c)).
How should we choose β? The most intuitive choice of β = 1 does not work. This

can be seen from (2.4), where choosing β = 1 makes the feasibility term δβλTP r and
the first-order stationarity term cT∆x equally dominant, in which case υ → 0 does
not ensure r → 0 or c→ 0. Instead, we make at most one of these two terms dominant
by choosing β to be either less than 1 or greater than 1, depending on the relative
size of λTP r and ‖c‖. (Actually, the choice of β matters only as δ approaches zero.
For δ above a given threshold, β can be chosen arbitrarily. For example, choosing
β = 0 would yield a primal-dual direction that is useful for fast local convergence.)
In particular, if

σ2‖c‖ < λTP r

for some positive constant σ2, then choosing β to be less than 1 would make δβλTP r
dominant (regardless of the choice of ∆x), i.e.,

υ = δβλTP r + o(δβ),

3The notations O(δ) and o(δ) mean, respectively, O(δ)/δ is bounded and o(δ)/δ → 0 as δ → 0.
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so that υ/δβ → 0 would force λTP r → 0. (Also, since ∆s = O(δβ), we need β > 2/3
so that the error term in (2.7) is o(δ2).) Otherwise, σ2‖c‖ ≥ λTP r, and let υc be
the objective value (2.4) of the Cauchy solution ∆xc := −δc/‖c‖. Choosing β to be
greater than 1 would make −δ‖c‖ dominant in υc, so by choosing ∆x to be no worse
than ∆xc, we would have

υ ≤ υc = −δ‖c‖+ o(δ).

Then υ/δ → 0 would force ‖c‖ → 0 and hence λTP r → 0. In either case, we obtain
λTP r → 0. By maintaining r ≥ 0 and using that λP is bounded away from zero
componentwise, we obtain r → 0. To drive towards first- and second-order stationarity
for (1.4), we set β to be strictly between 1 and 2, which makes δβλTP r−δ‖c‖ dominant
in υc, implying

υ ≤ υc = δβλTP r − δ‖c‖+ o(δβ) = −δβ
( ‖c‖
δβ−1

− λTP r

)
+ o(δβ).

Then υ/δβ → 0 would force ‖c‖/δβ−1 − λTP r to be asymptotically nonpositive, and,
by maintaining r small, this would make c small. In particular, when ‖r‖p and
‖c‖/δβ−1−λTP r are below o(δ2−β), we would have ‖c‖ = o(δ), and the first four terms
on the right-hand side of (2.4) would be o(δ2). Then, by choosing ∆x to be no worse
than δz, where z is a unit eigenvector associated with the minimum eigenvalue γ∗ of
Q, we would have

υ ≤ o(δ2) +
1

2
δ2γ∗ ≤ o(δ2) +

1

2
δ2dTQd ∀d ∈ B.

Then AT d = 0 would imply υ ≤ o(δ2) + 1
2δ

2dTMd. As υ/δ2 → 0, this would yield
asymptotic second-order stationarity, provided that λ − λP → 0 (since c depends on
λP while M depends on λ). The latter will be enforced by driving b = S(λ− λP) → 0
in phase 2. In summary, we will choose β to be either β1 or β2, with 2/3 < β1 <
1 < β2 < 2, when δ is below a given threshold; otherwise, we will choose β to be any
number in [0, β2].

While the above ideas are intuitively reasonable, there are various details involving
approximation and error estimation that need to be addressed. Also, it matters how
fast r and b are driven to 0 relative to c and ∆xTQ∆x. They should not go to 0 too
slowly and thus overwhelm the latter. They should not go to 0 too fast or the method
will resemble a feasible primal method. Moreover, to ensure convergence of (x, λ) to
second-order stationary points of (1.1) as µ→ 0, we need the infeasibility term λTP r in
(2.4) to go to zero faster than δ2−β . This in turn requires a careful estimation of the
size of δ in terms of µ, ‖b‖∞, ‖c‖, and υ—see (5.1) and the assumptions A1 and A3
in Proposition 6.1(c). It also necessitates the introduction of a mechanism to ensure
that δ does not go to zero too fast relative to µ2. Specifically, when µ2 is below a
certain threshold, we maintain δ to be at least µ2 upon entering phase 3 or after each
successful (i.e., nonnull) step in phase 3.

Thus, much of the complication in our method and its analysis arise from its
infeasible nature, necessitating a careful control and estimation of the infeasibility
term r relative to δ, µ, ‖b‖∞, ‖c‖, and υ. This contrasts with a feasible method,
e.g., [12], which does not face such complications. The primal-dual nature of the
method is another source of complication. A primal method has a simpler structure
and, in particular, does not need phase 2—see Note 1. Alternatively, if we assume
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analogously to [12, Assumpt. 10] that λ− λP → 0 when ‖c‖ → 0, then phase 2 would
not be needed. While infeasible interior-point methods are preferred over feasible
interior-point methods for linear programming, there is no established preference for
nonlinear programming. A recent study of this issue is described in [9]. A hybrid
method, in which a subset of inequality constraints is maintained as satisfied, seems
promising since it offers the greatest flexibility.

2.2. Inexact solution of the trust-region subproblem. It is well known
that an exact solution (∆x,∆s) of (2.1) satisfies, together with Lagrange multipliers
λTR ∈ �m, the following system of linear equations [14, 31]:

(γI + M)∆x + AλTR = −∇f(x),(2.8)

AT∆x + ∆s = −δβr,(2.9)

S−1Λ∆s + λTR = λP,(2.10)

where γ ≥ 0 is such that γI + M + AΛS−1AT is positive semidefinite and ‖∆x‖ ≤ δ,
with equality holding whenever γ > 0. Here, λP,M, r,A are given by (2.2). By letting
∆λ := λTR − λ and eliminating ∆s, this can be written as[

γI + M A
−AT Λ−1S

] [
∆x
∆λ

]
=

[ −c
δβr − Λ−1b

]
,

with b, c given by (2.5). For β = 0, this equation coincides with that used in many
infeasible primal-dual interior-point methods [10, 17, 23, 39, 42, 45].

On large problems, it is often desirable to solve (2.1) inexactly, as is discussed
in [14, Chap. 7] and references therein. We consider below a notion of an inexact
solution that allows for attainment of second-order stationarity. Let q(∆x) denote
the objective value of (2.1) as a function of ∆x, i.e., q(∆x) equals the right-hand side
of (2.4). Then, (2.1) reduces to

υ∗ := min
x∈δB

q(∆x).

Here we use the notation from (2.2), (2.5). Define the Cauchy solution:

∆xc := −δc̄ with c̄ :=




c

‖c‖ if c �= 0,

0 otherwise.

Then ‖∆xc‖ ≤ δ and hence υ∗ ≤ q(∆xc). Fix any � ≥ 1. Let γ∗ denote the minimum
eigenvalue of Q and let z ∈ �n be any unit vector satisfying zTQz ≤ � ⊗ γ∗ + �µ.
(Since γ∗ ≤ � ⊗ γ∗, we can take z to be any unit eigenvector of Q associated with
γ∗.) Let

∆xQ := δz.

Then ‖∆xQ‖ = δ and hence υ∗ ≤ q(∆xQ) ≤ υQ, where we define

υQ := δβλTP r + δ‖c‖+
δ2β

2
‖Λ1/2S−1/2r‖2 + δβ+1‖AΛS−1r‖+

δ2

2
(� ⊗ γ∗ + �µ).

We prefer to work with υQ rather than q(∆xQ), since it involves only eigenvalue, not
eigenvector.
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For any fixed � ≥ 1, we say that (∆x,∆s, λTR) is a �-approximate solution of
(2.1) if

(∆x,∆s) is feasible for (2.1), λTR satisfies (2.10),
and q(∆x) ≤ � ⊗min{q(∆xc), υQ}.

(2.11)

From the preceding discussion, we see that an exact primal-dual solution of (2.1) is a
�-approximate solution of (2.1). Also, if ∆xQ is available, then setting ∆x := ∆xQ

if q(∆xQ) ≤ q(∆xc), and otherwise setting ∆x := ∆xc, yields a �-approximate
solution. This solution can be further improved by minimizing q(∆x), with ∆x ∈ δB
restricted to a linear combination of ∆xc and ∆xQ. This minimization is a two-
dimensional trust-region problem. More generally, we can use (2.11) as a termination
criterion for any algorithm applied to solve (2.1). In the case in which Q is positive
semidefinite and r = 0, it is known that an ∆x ∈ δB satisfying q(∆x) ≤ υ∗/2 (called
the “Steihaug–Toint point”) can be computed using a truncated conjugated gradient
method; see [14, sect. 7.5.2]. Thus, in this case, we can take � = 2. If Q is indefinite,
the generalized Lanczos trust-region method of Gould, Lucidi, Roma, and Toint (see
[14, sec. 7.5.4]) can be used. The criterion (2.11) differs from that given in [12, eq.
(19)], though both involve the minimum eigenvalue of Q.

2.3. Trust-region strategy description. Below we formally describe our three-
phase trust-region strategy for solving (1.4) inexactly. Throughout this section, for
any (xk, sk, λk) ∈ �n ×�2m

++, we define analogously to (2.2) and (2.5)

λkP := µ(Sk)−1e, Mk := ∇xxl(xk, λk), rk := g(xk) + sk, Ak := ∇g(xk),(2.12)

bk := Skλk − µe, ck := ∇xl(xk, λkP), Qk := Mk + AkΛk(Sk)−1(Ak)T .(2.13)

In addition, for any (∆xk,∆sk, λkTR) ∈ �n ×�2m, we define analogously to (2.6) and
(2.3) the following:

∆skCS :=
1

2µ
SkΛk(∆xk)T∇2g(xk)∆xk +

1

2µ
(Sk)−1(∆Sk)2bk,

xkTR := xk + ∆xk, skTR := max{sk + ∆sk −∆skCS,−g(xkTR)},
rkTR := g(xkTR) + skTR, bkTR := SkTRλ

k
TR − µe.(2.14)

Algorithm 1.
Input. µ > 0, 1 ≤ p ≤ ∞, 1 < β2 < 2, 0 < ω1 < 1, � ≥ 1, 0 < δth ≤ δmax, 0 < δ0 ≤

δmax, (x0, s0, λ0) ∈ �n × �2m
++ with s0 ≥ −g(x0), and termination tolerances

ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0.
Initialization. Choose 2/3 < β1 < 1, 0 < σ1 < 1, σ2 > 0, τ > 0, τ̄ > 0, 0 < η < 1.

Initialize k := 0. Go to phase 1.
Phase 1 (towards feasibility).

1. If ‖rk‖p ≤ ε1, go to phase 2. Otherwise, go to step 2.
2. If δk > δth, set βk to any value in [0, β2]; else if

σ2‖ck‖ < (λkP)T rk,(2.15)

set βk := β1; else set βk := β2. Let (∆xk,∆sk, λkTR) be a �-approximate
solution of (2.1) associated with (xk, sk, λk, δk, β

k). Let υk denote its
objective value. Let

ρk :=
fµ,τ (xkTR, s

k
TR)− fµ,τ (xk, sk)

−τσ1(δk)βk‖rk‖p
.
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(Here ρk = −∞ if skTR �> 0.) If ρk ≥ η and λkTR > 0 and

‖rkTR‖p ≤ max
{

(1− σ1(δk)β
k

)‖rk‖p, ε1
}
,(2.16)

‖bkTR‖∞ ≤ max
{

(1− σ1(δk)β1)‖bk‖∞, ε2
}
,(2.17)

set (xk+1, sk+1, λk+1) := (xkTR, s
k
TR, λ

k
TR); else set (xk+1, sk+1, λk+1) :=

(xk, sk, λk) (“null step”). Let

δk+1 :=

{
ω1δk if null step,
any δ ∈ [δk, δmax] otherwise.

(2.18)

Increment k by 1 and return to step 1.
Phase 2 (towards centrality).

1. If ‖bk‖∞ ≤ ε2, go to phase 3, and if in addition δk < µ2 < δth, reset δk to
any δ ∈ [µ2, δmax]. Otherwise, go to step 2.

2. If δk > δth, set β
k to any value in [0, β2]; else set βk := β2. Let (∆xk,∆sk,

λkTR) be a �-approximate solution of (2.1) associated with (xk, sk, λk, δk, β
k).

Let υk denote its objective value. Let

ρk :=
f̄µ,τ̄ (xkTR, s

k
TR, λ

k
TR)− f̄µ,τ̄ (xk, sk, λk)

−τ̄σ1(δk)β1‖bk‖∞ .

(Here ρk = −∞ if skTR �> 0.) If

ρk ≥ η and λkTR > 0 and ‖rkTR‖p ≤ ε1 and (2.17) holds,(2.19)

set (xk+1, sk+1, λk+1) := (xkTR, s
k
TR, λ

k
TR); else set (xk+1, sk+1, λk+1) :=

(xk, sk, λk) (“null step”). Let δk+1 be given by (2.18). Increment k by 1
and return to step 1.

Phase 3 (towards first- and second-order stationarity).
1. If δk > δth, set β

k to any value in [0, β2]; else set βk := β2. Let (∆xk,∆sk,
λkTR) be a �-approximate solution of (2.1) associated with (xk, sk, λk, δk,
βk). Let υk denote its objective value. If

‖ck‖
(δk)β2−1

− (λkP)T rk ≤ ε3 and
υk

(δk)2
≥ −ε4,(2.20)

then terminate phase 3 and output (xk, sk, λk, δk, β
k, υk). Otherwise, go

to step 2.
2. Let

ρk :=

{
fµ(xkTR, s

k
TR)− fµ(xk, sk)

υk
if υk < 0,

−∞ otherwise.
(2.21)

(Here ρk = −∞ if skTR �> 0.) If

ρk ≥ η and λkTR > 0 and ‖rkTR‖p ≤ ε1 and ‖bkTR‖∞ ≤ ε2(2.22)

and the second condition in (2.20) fails, set (xk+1, sk+1, λk+1) := (xkTR,
skTR, λ

k
TR); else set (xk+1, sk+1, λk+1) := (xk, sk, λk) (“null step”). If

δk < µ2 < δth and the step is not null, let δk+1 be any δ ∈ [µ2, δmax];
else let δk+1 be given by (2.18). Increment k by 1 and return to step 1.
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Note 1. Algorithm 1 is a primal-dual strategy in the sense that ∆sk and ∆λk :=
λkTR − λk satisfy the primal-dual Newton equation (see (2.10))

Λk∆s + Sk∆λ = µe− Skλk.

We can also consider a primal strategy, whereby we instead initialize λ0 := µ(S0)−1e
and set

λkTR := µ(SkTR)−1e ∀k.
The resulting method is simpler than Algorithm 1, and, in particular, it maintains
bk = bkTR = 0 and λkP = λk for all k, thus allowing phase 2 to be bypassed altogether.
It can be seen that our convergence result, namely, Proposition 4.1, also extends to
this primal strategy.

Note 2. To improve numerical stability, we can make the substitution ∆̃s =

S−1∆s in (2.1) and solve for ∆̃s
k

:= (Sk)−1∆sk instead of ∆sk. Then, we have

(skTR)i = ski (1 + αki ), (λk+1
P )i =




(λkP)i if sk+1
i = ski ,

(λkP)i
(1 + αki )

otherwise

for all i = 1, . . . ,m, where

αki := max

{
∆̃s

k

i −
(∆skCS)i

ski
,
−gi(xkTR)

ski
− 1

}
.

The above equations give a numerically more stable way to compute skTR and λk+1
P .

Note 3. In step 1 of phase 2 and step 2 of phase 3, instead of µ2 we can more
generally use any constant multiple of µ2. In (2.15), the term ‖ck‖ may be replaced
more generally by ‖ck‖/min{1, (δk)β3−1}, with 1 ≤ β3 < β2. Proposition 4.1 still
applies to this case, though it is unclear what practical advantage it offers. Also,
following [12], we can allow ∇2f(xk) and ∇2gi(x

k) to be replaced by n×n symmetric
real matrices Hk and Hk

i , i = 1, . . . ,m, in the definition of Mk and ∆skCS. Proposition
4.1 still holds, provided that

‖∇2f(xk)−Hk‖ → 0 and ‖Hk
i ‖ is bounded, i = 1, . . . ,m, as k →∞.

Note 4. The equations (2.8)–(2.10) suggest a variant of Algorithm 1 whereby
we update γ explicitly and solve (2.8)–(2.10) instead of (2.1). More precisely, given
γk ≥ 0, we check whether

γI + M + AΛS−1AT(2.23)

is positive definite, with (x, s, λ, γ, δ, β) = (xk, sk, λk, γk, δk−1, β
k) and A,M given by

(2.2). If yes, we solve (2.8)–(2.10) to obtain (∆xk,∆sk, λkTR) and set δk := ‖∆xk‖ if
γk > 0 and otherwise set δk := max{‖∆xk‖, δk−1}. (We can check whether (2.23) is
positive definite using a single Cholesky factorization. If (2.23) is positive definite,
the factorization can be used to solve (2.8)–(2.10).) Otherwise, we choose a γk+1 > γk
and set (xk+1, sk+1, λk+1) := (xk, sk, λk) (see [39, sect. 3] for some rules for updating
γ). In step 2, an analogous formula for γk+1 would replace (2.18). Proposition 4.1
extends to this variant as long as {δk+1/δk} is bounded away from 0 and exceeds 1
whenever a successful step is taken at iteration k.
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3. Properties of the trust-region subproblem. In this section we study
properties of the approximate solutions of (2.1) and the corresponding trial point
(xTR, sTR, λTR) given by (2.3), (2.6). These properties will be used in the next section
to analyze Algorithm 1. We begin with the following lemma estimating the change
in ‖r‖p, ‖b‖∞, fµ(x, s), fµ,τ (x, s), and f̄µ,τ̄ (x, s, λ) when moving to a trial point. In
what follows, we define

R(s,∆s,∆sCS) :=

(
1

2
∆sCS −∆s

)T
S−2∆sCS +

m∑
i=1

|∆si − (∆sCS)i|3
(si)3

.

As we will see in (3.4) below, this remainder estimates the contribution by slack
variables to the error between the predicted descent υ (i.e., the objective value of
(2.1)) and the actual descent in the log-barrier value fµ(xTR, sTR)− fµ(x, s).

Lemma 3.1. Fix µ > 0, 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1, β1 > 0, 0 < σ1 < 1,
τ > 0, τ̄ > 0, 0 < η < 1, ε1 > 0, ε2 > 0, and (x, s, λ) ∈ �n×�2m

++. Let r, b be given by
(2.2), (2.5). For any 0 < δ ≤ 1 and β > 0, let (∆x,∆s) denote a feasible solution of
(2.1) and let υ denote its objective value. Then, the following results hold with ∆sCS,
(xTR, sTR), λTR given by (2.6), (2.3), (2.10), respectively, and with rTR := g(xTR)+sTR,

bTR := STRλTR − µe, ∆̂s := ∆s−∆sCS.
(a) rTR ≥ 0. If

‖Lg(x,∆x)−∆sCS‖p
δβ

≤ (1− σ1)‖r‖p,(3.1)

then ‖rTR‖p ≤ (1− σ1δ
β)‖r‖p. If

‖r‖p ≤ ε1 and
‖Lg(x,∆x)−∆sCS‖p

δβ
≤ ε1,(3.2)

then ‖rTR‖p ≤ ε1.
(b) bTR = ∆S(λTR − λ). If ‖∆s‖ < µ/‖λ‖∞, then λTR > 0. For any θ > 0, if

r ≥ 0 and

‖∆sCS‖∞ + ‖Lg(x,∆x)−∆sCS‖∞ ≤ θ
2‖λTR‖∞ ,

‖S−1∆s‖∞ ≤ θ√
2θ(‖b‖∞ + µ) + 2‖b‖∞

,
(3.3)

then ‖bTR‖∞ ≤ θ.

(c) Assume ‖S−1∆̂s‖∞ ≤ 2/3. Then

fµ(xTR, sTR)− fµ(x, s) ≤ υ + Rf (x,∆x) + µR(s,∆s,∆sCS).(3.4)

If υ < 0, then the right-hand side of (3.4) is below ηυ whenever Rf (x,∆x) +
µR(s,∆s,∆sCS) ≤ (η − 1)υ.

(d) Assume that ‖S−1∆̂s‖∞ ≤ 2/3 and that (3.1) holds. Then

fµ,τ (xTR, sTR)− fµ,τ (x, s)
≤ υ + Rf (x,∆x) + µR(s,∆s,∆sCS)− τσ1δ

β‖r‖p.(3.5)

If υ < 0, then the right-hand side of (3.5) is below −ητσ1δ
β‖r‖p whenever

Rf (x,∆x) + µR(s,∆s,∆sCS) ≤ −υ. If for some χ > 0,

υ ≤ (1 + χ)δβλTP r and (1 + 2χ)‖λP‖q ≤ (1− η)τσ1,(3.6)

then the right-hand side of (3.5) is below −ητσ1δ
β‖r‖p whenever Rf (x,∆x)+

µR(s,∆s,∆sCS) ≤ χδβλTP r.
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(e) Assume ‖S−1∆̂s‖∞ ≤ 2/3, r ≥ 0, and that (3.3) holds with θ := (1 −
σ1δ

β1)‖b‖∞. Then

f̄µ,τ̄ (xTR, sTR, λTR)− f̄µ,τ̄ (x, s, λ) ≤ −ητ̄σ1δ
β1‖b‖∞

whenever υ + Rf (x,∆x) + µR(s,∆s,∆sCS) ≤ (1− η)τ̄σ1δ
β1‖b‖∞.

Proof. (a) By (2.3), sTR ≥ −g(xTR) and so rTR ≥ 0. Also, for each i ∈ {1, . . . ,m},
we have (rTR)i = gi(xTR)+si+∆̂si if gi(xTR)+si+∆̂si > 0 and otherwise (rTR)i = 0.

Hence |(rTR)i| ≤ |gi(xTR) + si + ∆̂si|, implying

‖rTR‖p ≤ ‖g(xTR) + s + ∆̂s‖p
= ‖Lg(x,∆x)−∆sCS + (1− δβ)r‖p
≤ ‖Lg(x,∆x)−∆sCS‖p + (1− δβ)‖r‖p,

where the equality follows from the equation in (2.1) and the definition of Lg (see
(1.8)). Thus, the right-hand side is below (1− σ1δ

β)‖r‖p whenever (3.1) holds. Sim-
ilarly, the right-hand side is below ε1 whenever (3.2) holds.

(b) If ‖∆s‖ < µ/‖λ‖∞, then (2.10) and s > 0, λ > 0 imply that λTR = S−1Λ(µΛ−1e
−∆s) > 0. Next, we have from (2.3) and letting h := g(xTR) + s + ∆s−∆sCS that

g(xTR) + sTR = max{h, 0}.

Thus, for each i ∈ {1, . . . ,m}, either gi(xTR)+(sTR)i = hi, hi ≥ 0, or gi(xTR)+(sTR)i =
0, hi < 0. In the latter case, we have from h = Lg(x,∆x)−∆sCS + (1− δβ)r (see the
proof of (a)) and r ≥ 0 that Lgi(x,∆x)− (∆sCS)i ≤ hi < 0. Thus, we have

‖g(xTR) + sTR − h‖∞ ≤ ‖Lg(x,∆x)−∆sCS‖∞.

Then

bTR = ΛTRsTR − µe

= ΛTR(s + ∆s)− µe− ΛTR∆sCS + ΛTR(g(xTR) + sTR − h),

so that

‖bTR‖∞ ≤ ‖ΛTR(s + ∆s)− µe‖∞ + ‖λTR‖∞ (‖∆sCS‖∞ + ‖Lg(x,∆x)−∆sCS‖∞) .

By (2.10) with ∆λ := λTR − λ, we have

ΛTR(s + ∆s)− µe = (S + ∆S)(λ + ∆λ)− µe

= ∆S∆λ

= −∆SS−1(b + Λ∆s)

= −(S−1∆S)b− (S−1∆S)2Sλ,

so that

‖bTR‖∞ − ‖λTR‖∞(‖∆sCS‖∞ + ‖Lg(x,∆x)−∆sCS‖∞)

≤ ‖(S−1∆S)b‖∞ + ‖(S−1∆S)2Sλ‖∞
≤ αc1 + α2c2,(3.7)
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where for simplicity we define α := ‖S−1∆s‖∞, c1 := ‖b‖∞, c2 := ‖Sλ‖∞. Then, for
any θ > 0, ‖bTR‖∞ is below θ if

‖λTR‖∞(‖∆sCS‖∞ + ‖Lg(x,∆x)−∆sCS‖∞) ≤ θ

2

and the right-hand side of (3.7) is below θ/2, i.e.,

αc1 + α2c2 ≤ θ

2
.

This is a quadratic inequality in α, which is satisfied if and only if α ≤ ᾱ, where

ᾱ :=

√
c21 + 2θc2 − c1

2c2
=

θ√
c21 + 2θc2 + c1

≥ θ√
2θc2 + 2c1

.

Using c2 = ‖b + µe‖∞ ≤ ‖b‖∞ + µ completes the proof.
(c) We have from properties of the logarithm that, for any ξ > 0 and −1 < a < 1,

− ln(ξ(1 + a)) + ln(ξ) = −a +
a2

2
− a3

3
+

a4

4
− a5

5
+

a6

6
+ · · ·

≤ −a +
a2

2
+
|a|3
3

+
a4

3
+
|a|5
3

+
a6

3
+ · · ·

= −a +
a2

2
+

|a|3
3(1− |a|) .

Since |∆̂si|/si ≤ 2
3 for each i, this yields

− ln((sTR)i) ≤ − ln(si + ∆̂si)

= − ln

(
si

(
1 +

∆̂si
si

))

≤ − ln(si)− ∆̂si
si

+
(∆̂si)

2

2(si)2
+

|∆̂si|3
3(1− |∆̂si|/si)(si)3

≤ − ln(si)− ∆̂si
si

+
(∆̂si)

2

2(si)2
+
|∆̂si|3
(si)3

,

where the first inequality uses (sTR)i ≥ si + ∆̂si and the increasing property of ln(·).
Thus, summing the above inequality over i = 1, . . . ,m and using ∆̂si = ∆si−(∆sCS)i
and (2.6) yields

−
m∑
i=1

ln((sTR)i) ≤ −
m∑
i=1

ln(si)− ∆̂si
si

+
(∆̂si)

2

2(si)2
+
|∆̂si|3
(si)3

= −
m∑
i=1

ln(si)− ∆si
si

+
λi∆xT∇2gi(x)∆x

2µ
+

λi(∆si)
2

2µ si

+
((∆sCS)i/2−∆si) (∆sCS)i

(si)2
+
|∆si − (∆sCS)i|3

(si)3
.

Also, the definition of Rf (x,∆x) (see (1.8)) implies

f(xTR) = f(x) +∇f(x)T∆x +
1

2
∆xT∇2f(x)∆x + Rf (x,∆x).
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The above two inequalities, together with the definitions of fµ and υ, yield (3.4). The
subsequent claim readily follows.

(d) Since (3.1) holds, (a) implies ‖rTR‖p ≤ (1 − σ1δ
β)‖r‖p. Since ‖S−1∆̂s‖∞ ≤

2/3, (c) implies that (3.4) holds. These two inequalities and the definition of fµ,τ

(see (1.5)) yield (3.5). If υ < 0, then the right-hand side of (3.5) is below −τσ1δ
β‖r‖p

whenever Rf (x,∆x) +µR(s,∆s,∆sCS) ≤ −υ. Since 0 < η < 1, the first claim readily
follows. If for some χ > 0, (3.6) holds, then, whenever Rf (x,∆x)+µR(s,∆s,∆sCS) ≤
χδβλTP r, we have from (3.5) that

fµ,τ (xTR, sTR)− fµ,τ (x, s) ≤ (1 + 2χ)δβλTP r − τσ1δ
β‖r‖p

≤ (1 + 2χ)δβ‖λP‖q‖r‖p − τσ1δ
β‖r‖p

≤ −ητσ1δ
β‖r‖p.

(e) Since r ≥ 0 and (3.3) holds with θ := (1− σ1δ
β1)‖b‖∞, (b) implies ‖bTR‖∞ ≤

(1 − σ1δ
β1)‖b‖∞. Since ‖S−1∆̂s‖∞ ≤ 2/3, (c) implies that (3.4) holds. These two

inequalities and the definition of f̄µ,τ̄ (see (1.6)) yield the desired conclusion.
We next have the following technical lemma that estimates the (scaled) stepsize

and the remainder terms in terms of the trust-region radius δ.
Lemma 3.2. Fix µ > 0, 1 ≤ p ≤ ∞, β2 > 0, δmax > 0, and (x, s, λ) ∈ �n ×�2m

++.
For any δ ∈ (0, δmax] and β ∈ [0, β2], let (∆x,∆s) denote a feasible solution of (2.1)
with λP, M , r, A given by (2.2). Then, the following results hold with b, ∆sCS given by

(2.5), (2.6), and ∆̂s := ∆s−∆sCS, δ̂ := max{δ, δβ}, δ̂max := max{δmax, (δmax)β2 , 1},
C1 := max

{∑m
i=1 ‖∇2gi(x)‖, ‖AT ‖+

√
m‖r‖p

}
, C2 := 2 max{C1, C

2
1}max{1, ‖λ‖∞,

‖λP‖�∞}2�=1, C3 := max{C2
2 δ̂max, C

3
2 δ̂

3
max}.

(a)

‖∆sCS‖∞ ≤ δ̂2

2µ2 (C1‖b‖∞µ + C1µ
2 + C2‖b‖∞),

‖Lg(x,∆x)−∆sCS‖p ≤ ‖Rg(x,∆x)‖p + C2δ̂
2‖b‖∞

(
1

µ
+

1

µ2

)
.

(b)

‖∆s‖ ≤ C1δ̂, ‖S−1∆s‖ ≤ C2

2

δ̂

µ
, ‖S−1∆̂s‖ ≤ C2δ̂max

δ̂

µ

(
1 +

‖b‖∞
µ2

)
.

(c)

R(s,∆s,∆sCS) ≤ C3
δ̂3

µ3

(
µ

(
1 +

‖b‖∞
µ2

)2

+

(
1 +

‖b‖∞
µ2

)3
)
.

Proof. Using ‖r‖ ≤ √m‖r‖p and the feasibility condition for (2.1), we have

‖∆s‖ ≤ ‖AT ‖δ + ‖r‖δβ
≤ C1δ̂,

‖S−1∆s‖ ≤ ‖∆s‖
mini si

≤ C1δ̂

mini si

=
C1‖λP‖∞δ̂

µ
.
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Also, we have

‖S−1∆sCS‖ =
1

2µ
‖Λ∆xT∇2g(x)∆x + (S−1∆S)2b‖

≤ 1

2µ
‖λ‖∞‖∆xT∇2g(x)∆x‖1 +

1

2µ
‖(S−1∆S)S−1∆s‖1‖b‖∞

≤ 1

2µ
‖λ‖∞C1δ

2 +
1

2µ
‖S−1∆s‖2‖b‖∞

≤ 1

2µ
‖λ‖∞C1δ

2 +
1

2µ

(
C1‖λP‖∞ δ̂

µ

)2

‖b‖∞

≤ 1

2
C2

δ̂2

µ
+ C2

δ̂2

µ3
‖b‖∞

= C2
δ̂2

µ

(
1

2
+
‖b‖∞
µ2

)
,

where the second inequality uses ‖∆xT∇2g(x)∆x‖1 =
∑m
i=1 |(∆x)T∇2gi(x)∆x| ≤

C1δ
2.
(a) We have from the above estimates that

‖∆sCS‖∞ =
1

2µ
‖SΛ∆xT∇2g(x)∆x + (S−1∆S)∆Sb‖∞

≤ 1

2µ
‖Sλ‖∞‖∆xT∇2g(x)∆x‖1 +

1

2µ
‖(S−1∆S)∆s‖∞‖b‖∞

≤ 1

2µ
(‖b‖∞ + µ)C1δ

2 +
1

2µ
‖S−1∆s‖∞‖∆s‖∞‖b‖∞

≤ 1

2µ
(‖b‖∞ + µ)C1δ

2 +
1

2µ

(
C1‖λP‖∞ δ̂

µ

)(
C1δ̂

)
‖b‖∞

≤ 1

2µ
(‖b‖∞ + µ)C1δ

2 +
1

2
C2

(
δ̂

µ2

)2

‖b‖∞.

Further,

‖Lg(x,∆x)−∆sCS‖p
=

∥∥∥∥Rg(x,∆x)− 1

2µ
(SΛ− µI)∆xT∇2g(x)∆x− 1

2µ
S−1(∆S)2b

∥∥∥∥
p

≤ ‖Rg(x,∆x)‖p +
1

2µ
‖Sλ− µe‖∞‖∆xT∇2g(x)∆x‖1 +

1

2µ
‖(S−1∆S)∆s‖1‖b‖∞

≤ ‖Rg(x,∆x)‖p +
1

2µ
‖b‖∞C1δ

2 +
1

2µ
‖S−1∆s‖‖∆s‖‖b‖∞

≤ ‖Rg(x,∆x)‖p +
1

2µ
‖b‖∞C1δ

2 +
1

2µ

(
C1‖λP‖∞ δ̂

µ

)(
C1δ̂

)
‖b‖∞

≤ ‖Rg(x,∆x)‖p + C2‖b‖∞
(
δ̂2

µ
+

δ̂2

µ2

)
,

where the first inequality uses ‖ · ‖p ≤ ‖ · ‖1, the second inequality uses b = Sλ− µe,
and ‖(S−1∆S)∆s‖1 = (S−1∆s)T (∆s) ≤ ‖S−1∆s‖‖∆s‖.
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(b) We have from the above estimates and 1 ≤ δ̂max, δ̂ ≤ δ̂max that

‖S−1∆̂s‖ ≤ ‖S−1∆s‖+ ‖S−1∆sCS‖

≤ C1‖λP‖∞ δ̂

µ
+ C2

δ̂2

µ

(
1

2
+
‖b‖∞
µ2

)

≤ 1

2
C2

δ̂

µ
+ C2

δ̂2

µ

(
1

2
+
‖b‖∞
µ2

)

≤ C2δ̂max
δ̂

µ

(
1 +

‖b‖∞
µ2

)
.

(c) We have

R(s,∆s,∆sCS) =

(
1

2
∆sCS −∆s

)T
S−2∆sCS +

m∑
i=1

∣∣∣∣∣∆̂si
si

∣∣∣∣∣
3

≤ (‖S−1∆sCS‖+ ‖S−1∆s‖) ‖S−1∆sCS‖+ ‖S−1∆̂s‖3

≤ C2
2 δ̂max

δ̂3

µ2

(
1 +

‖b‖∞
µ2

)(
1

2
+
‖b‖∞
µ2

)
+ C3

2 δ̂
3
max

δ̂3

µ3

(
1 +

‖b‖∞
µ2

)3

≤ C3
δ̂3

µ3

(
µ

(
1 +

‖b‖∞
µ2

)2

+

(
1 +

‖b‖∞
µ2

)3
)
,

where the first inequality uses ‖ · ‖3 ≤ ‖ · ‖, the second inequality uses the proof of
(b), and the last inequality uses the definition of C3.

4. Convergence of trust-region strategy. Using Lemmas 3.1 and 3.2, we
show below that Algorithm 1 terminates finitely under suitable assumptions. More-
over, δk is not too small at termination. The latter will be used to establish conver-
gence to a second-order stationary point of (1.1) as µ→ 0; see Corollary 6.2.

Proposition 4.1. Fix any µ > 0, and let 1 ≤ p ≤ ∞ and {(xk, sk, λk, δk, βk,∆xk,
∆sk,∆skCS, x

k
TR, s

k
TR, λ

k
TR)}k=0,1,... be generated by Algorithm 1, with λkP, r

k, Ak given
by (2.12). Suppose that {xk} is bounded. Then the following results hold:

(a) If there exists χ > 0 such that, during phase 1,

(1 + 2χ)‖λkP‖q ≤ (1− η)τσ1 whenever (2.15) holds,(4.1)

where 1/p + 1/q = 1, then phase 1 terminates finitely, i.e., there exists an
index k such that ‖rk‖p ≤ ε1.

(b) Phase 2 terminates finitely, i.e., there exists an index k such that ‖rk‖p ≤ ε1
and ‖bk‖∞ ≤ ε2.

(c) Phase 3 terminates finitely, i.e., there exists an index k such that ‖rk‖p ≤ ε1,
‖bk‖∞ ≤ ε2, and (2.20) holds.

(d) If µ2 < δth, then, for the index k of (c), either δ̂ := δk/ω1 ≥ min{1, µ2} or

there exists a ∆x ∈ δ̂ B satisfying one of the following:

Ck1 δ̂ ≥
µ

‖λk‖∞ ,(4.2)

‖Rg(xk,∆x)‖p
δ̂β2

+ Ck2 δ̂
2−β2

(
1

µ
+

1

µ2

)
ε2 > ε1,(4.3)



450 PAUL TSENG

Ck2 δ̂
2

2µ2 (µ2 + 3µε2 + 3ε2) + ‖Rg(xk,∆x)‖p > ε2
2ν

,(4.4)

Ck2 δ̂ >
2µ√

2µ/ε2 + 4
,(4.5)

Ck2 δ̂max
δ̂

µ

(
1 +

ε2

µ2

)
≥ 2

3
, or(4.6)

Rf (xk,∆x)

δ̂2
+ Ck3

δ̂

µ2

(
µ

(
1 +

ε2
µ2

)2

+

(
1 +

ε2
µ2

)3
)
≥ (1− η)ε4,(4.7)

where δ̂max is defined as in Lemma 3.2, Ck1 := max
{∑m

i=1 ‖∇2gi(x
k)‖,

‖(Ak)T ‖+
√
m‖rk‖p

}
, Ck2 := 2 max{Ck1 , (Ck1 )2}max{1, ‖λk‖∞, ‖λkP‖�∞}2�=1,

Ck3 := max{(Ck2 )2δ̂max, (C
k
2 )3δ̂3

max}, ν := ‖λkP‖∞ + ‖λk‖∞Ck2 δ̂/µ.

Proof. Let bk, ck, Qk and rkTR, b
k
TR be given by (2.13) and (2.14). Also, let δ̂k :=

max{δk, (δk)β
k} and ∆̂s

k
:= ∆sk −∆skCS. Since s0 ≥ −g(x0) and skTR ≥ −g(xkTR) for

all k, then sk ≥ −g(xk) or, equivalently, rk ≥ 0 for all k.
For each k ∈ {0, 1, . . .}, (∆xk,∆sk, λkTR) is a �-approximate solution of (2.1)

associated with (xk, sk, λk, δk, β
k), and υk is its objective value. Letting

qk(∆x) := (δk)β
k

(λkP)T rk + (ck)T∆x +
1

2
(δk)2β

k‖(Λk)1/2(Sk)−1/2rk‖2

+ (δk)β
k

(rk)TΛk(Sk)−1(Ak)T∆x +
1

2
∆xTQk∆x ∀∆x ∈ δkB

(4.8)

(cf. (2.4)), this implies that

υk = qk(∆xk) ≤ � ⊗ qk(∆xkc ) = �kqk(∆xkc )

for some �k ∈ {�, 1/�}, where ∆xkc := −δk c̄k and c̄k := ck/‖ck‖ if ck �= 0, and oth-
erwise c̄k := 0. In the case of βk = β2, dividing both sides by (δk)β2 and rearranging
terms yields

‖ck‖
(δk)β2−1 − (λkP)T rk ≤ 1

2
(δk)β2‖(Λk)1/2(Sk)−1/2rk‖2 − υk/�k

(δk)β2

− δk(rk)TΛk(Sk)−1(Ak)T c̄k +
1

2
(δk)2−β2(c̄k)TQk c̄k.

(4.9)

(a) Suppose that phase 1 does not terminate finitely. Then ‖rk‖p > ε1 for all k =
0, 1, . . .. Let K1 := {k ∈ {0, 1, . . .} : ρk ≥ η and λkTR > 0 and (2.16), (2.17) hold}.
Then, by the definition of ρk and the updating rule,

fµ,τ (xk+1, sk+1) ≤ fµ,τ (xk, sk)− ητσ1(δk)β
k‖rk‖p ∀k ∈ K1,

(xk+1, sk+1) = (xk, sk) ∀k �∈ K1.
(4.10)

Also, (2.16) implies that ‖rk‖p is monotonically decreasing, and (2.17) implies that
‖bk‖∞ is monotonically decreasing whenever it is above ε2. Thus {rk} and {bk} are
bounded. Then {Ck1 } is bounded.

By (4.10), fµ,τ (xk, sk) is monotonically decreasing with k. Since {xk} is bounded,
the definitions of fµ,τ (see (1.5)) imply that −∑m

i=1 ln(ski ) must be bounded above.
Since {rk} is bounded so that {sk} is bounded, this implies that sk is bounded
away from zero componentwise, and thus {(Sk)−1} and {λkP} are bounded. Then
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{fµ,τ (xk, sk)} is bounded below and thus must converge. Also, since {bk} is bounded,
the boundedness of {(Sk)−1} implies that {λk} is bounded. Then {Ck2 }, {Ck3 }, and
{λkTR} are bounded.

If |K1| <∞, then the updating rule (2.18) implies δk+1 = ω1δk for all k sufficiently
large, so that δk → 0. If |K1| = ∞, then since {fµ,τ (xk, sk)} converges, by (4.10) and
‖rk‖p > ε1 for all k, we have {δk}k∈K1 → 0. Since δk+1 ≥ δk for all k ∈ K1, there
must exist a subsequence K of {0, 1, . . .}\K1 such that

{δk}k∈K → 0.(4.11)

By taking k ∈ K sufficiently large, if necessary, we can assume that δk ≤ min{1, δth}
for all k ∈ K, so that βk equals either β1 or β2 for k ∈ K. For each k ∈ K, either
ρk < η or λkTR �> 0 or (2.16) fails or (2.17) fails. If λkTR �> 0, then Lemmas 3.1(b) and

3.2(b) imply Ck1 δ̂k ≥ ‖∆sk‖ ≥ µ/‖λk‖∞. Since {Ck1 } and {λk} are bounded and, by

(4.11), {δ̂k}k∈K → 0, this cannot hold for an infinite number of k ∈ K. If (2.16) fails,
then Lemma 3.1(a) implies

‖Lg(xk,∆xk)−∆skCS‖p
(δk)βk

> (1− σ1)‖rk‖p > (1− σ1)ε1.(4.12)

Since δk ≤ min{1, δth}, either βk = β1 with δ̂k = (δk)β1 , or βk = β2 with δ̂k = δk.
Since ‖∆xk‖ ≤ δk → 0 as k ∈ K → ∞ (short for “k ∈ K, k → ∞”), Lemma 3.2(a)
implies that

‖Lg(xk,∆xk)−∆skCS‖p
(δk)βk

≤ ‖Rg(xk,∆xk)‖p
(δk)βk

+ Ck2
(δ̂k)2

(δk)βk
‖bk‖∞

(
1

µ
+

1

µ2

)
→ 0(4.13)

as k ∈ K →∞,

and hence (4.12) cannot hold for an infinite number of k ∈ K. Also, Lemma 3.2(a)–

(b), the boundedness of {Ck1 }, {Ck2 }, {bk}, and {δ̂k}k∈K → 0 imply

‖∆skCS‖∞ ≤ (δ̂k)2

2µ2 (Ck1 ‖bk‖∞µ + Ck1µ
2 + Ck2 ‖bk‖∞) → 0 as k ∈ K →∞,

‖(Sk)−1∆sk‖ ≤ Ck2
2

δ̂k
µ → 0 as k ∈ K →∞.

(4.14)

Also, (4.13) implies {‖Lg(xk,∆xk)−∆skCS‖∞}k∈K → 0. Then, by Lemma 3.1(b) and
the boundedness of {λkTR} and {bk}, (2.17) holds for all k ∈ K sufficiently large. Thus,
it must be that ρk < η for all k ∈ K sufficiently large. By passing to a subsequence
if necessary, we can assume that either (i) ρk < η and βk = β1 for all k ∈ K or (ii)

ρk < η and βk = β2 for all k ∈ K. Since xk, bk, Ck3 are bounded for all k and δ̂k = δk
or δ̂k = (δk)β1 for all k ∈ K, then β1 > 2/3, ‖∆xk‖ ≤ δk → 0 as k ∈ K → ∞, and
Lemma 3.2(c) imply that

Rf (xk,∆xk)

(δk)2
→ 0 as k ∈ K →∞,

R(sk,∆sk,∆skCS)

(δk)2
≤ Ck3

(δ̂k)3

(δk)2

(
(Ck4 )2

µ2
+

(Ck4 )3

µ3

)
→ 0 as k ∈ K →∞,

(4.15)
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where we denote for simplicity Ck4 := 1 + ‖bk‖∞/µ2. Similarly, we have from Lemma
3.2(b) and the boundedness of {Ck2 } and {Ck4 } that

‖(Sk)−1∆̂s
k‖ ≤ Ck2 δ̂maxδ̂k

Ck4
µ
→ 0 as k ∈ K →∞.(4.16)

Thus, we can assume by taking k sufficiently large that ‖(Sk)−1∆̂s
k‖∞ ≤ 2/3 for all

k ∈ K.
In case (i), for each k ∈ K, we have from δk ≤ δth and βk = β1 that (2.15) holds,

so, by (4.1), (1 + 2χ)‖λkP‖q ≤ (1 − η)τσ1. Since ρk < η, Lemma 3.1(d) implies that
either (ia) (4.12) holds, or (ib) υk > (1 + χ)(δk)β1(λkP)T rk, or (ic)

Rf (xk,∆xk) + µR(sk,∆sk,∆skCS) > χ(δk)β1(λkP)T rk.(4.17)

As argued earlier, subcase (ia) cannot occur for an infinite number of k ∈ K. Then,
by further passing to a subsequence if necessary, we can assume that either (ib) holds
for all k ∈ K or (ic) holds for all k ∈ K. In subcase (ib), since υk = qk(∆xk), dividing
both sides by (δk)β1 and using (4.8) and ‖∆xk‖ ≤ δk gives

(δk)1−β1‖ck‖+
(δk)β1

2
‖(Λk)1/2(Sk)−1/2rk‖2 + δk‖AkΛk(Sk)−1rk‖+

(δk)2−β1

2
‖Qk‖

> χ(λkP)T rk ≥ 0,

where the second inequality uses rk ≥ 0 and λkP > 0. This together with β1 < 1, (4.11),
and the boundedness of λk, rk, ck, Ak, Qk, (Sk)−1 implies that {(λkP)T rk}k∈K →
0. In subcase (ic), dividing both sides of (4.17) by (δk)β1 and using (4.15) yields
{(λkP)T rk}k∈K → 0.

In case (ii), if υk < 0, then ρk < η and Lemma 3.1(d) imply that either (4.12)
holds or

Rf (xk,∆xk) + µR(sk,∆sk,∆skCS) > (η − 1)υk.(4.18)

As argued earlier, (4.12) cannot occur for an infinite number of k ∈ K, so either (4.18)
holds or υk ≥ 0 for all k ∈ K sufficiently large. In the former case, dividing both sides
of (4.18) by (δk)2 and using (4.15) yields

lim inf
k∈K→∞

υk

(δk)2
≥ 0.

In the latter case, the above clearly also holds. Since (4.9) holds for all k ∈ K, this,
together with β2 < 2, (4.11), and the boundedness of λk, λkP, rk, c̄k, Ak, Qk, (Sk)−1

for all k, yields

lim sup
k∈K→∞

‖ck‖
(δk)β2−1

− (λkP)T rk ≤ 0.(4.19)

For each k ∈ K, since δk ≤ δth and βk = β2 so that (2.15) fails, we must have
(λkP)T rk ≤ σ2‖ck‖. Then (4.19) implies that {‖ck‖/(δk)β2−1}k∈K → 0 and hence
{(λkP)T rk}k∈K → 0.

Thus, in either case (i) or (ii), we have {(λkP)T rk}k∈K → 0. Since λkP = µ(Sk)−1e >
0 and rk ≥ 0 so that

(λkP)T rk ≥
(

min
i

(λkP)i

)
‖rk‖p =

µ‖rk‖p(
maxi ski

) ∀k,
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this, together with the boundedness of {sk}, implies {‖rk‖p}k∈K → 0. Thus ‖rk‖p <
ε1 for all k ∈ K sufficiently large, contradicting ‖rk‖p > ε1 for all k.

(b) Suppose that phase 2 does not terminate finitely. By part (a), phase 1 ter-
minates finitely, so there exists a k2 ∈ {0, 1, . . .} such that k ≥ k2 if and only if
‖rk‖p ≤ ε1. Let

K2 := {k ≥ k2 : (2.19) holds}.
Then, by the definition of ρk and the updating rule,

f̄µ,τ̄ (xk+1, sk+1, λk+1) ≤ f̄µ,τ̄ (xk, sk, λk)− ητ̄σ1(δk)β1‖bk‖∞ ∀k ∈ K2,
(xk+1, sk+1, λk+1) = (xk, sk, λk) ∀k ∈ {k2, k2+1, . . .}\K2.

(4.20)
Since ‖rk‖p ≤ ε1 and, by (2.17), ‖bk‖∞ is monotonically decreasing for k ≥ k2,
{rk} and {bk} are bounded. Since {xk} is bounded and, by (4.20), f̄µ,τ̄ (xk, sk, λk)
is monotonically decreasing for k ≥ k2, an argument similar to that for part (a)
shows that sk, (Sk)−1, λkP, λk are bounded for k ≥ k2 and that {f̄µ,τ̄ (xk, sk, λk)}k≥k2
converges. Then Ck1 , C

k
2 , C

k
3 , λkTR are bounded for k ≥ k2.

If |K2| < ∞, then the updating rule (2.18) implies δk+1 = ω1δk for all k ≥ k2

sufficiently large, so that δk → 0. If |K2| = ∞, then since {f̄µ,τ̄ (xk, sk, λk)}k≥k2
converges and ‖bk‖∞ > ε2 for all k ≥ k2, by (4.20), {δk}k∈K2

→ 0. Since δk+1 ≥ δk
for all k ∈ K2, this shows there must exist a subsequence K of {k2, k2 + 1, . . .}\K2

such that (cf. (4.11))

{δk}k∈K → 0.

By taking k sufficiently large, we can further assume that δk ≤ min{1, δth} for all

k ∈ K, so that βk = β2 and δ̂k = δk for all k ∈ K. For each k ∈ K, we have from
k �∈ K2 that (2.19) fails. Since {Ck1 } and {λk} are bounded, by using Lemmas 3.1(b)
and 3.2(b), we obtain as in the proof of part (a) that λkTR > 0 for all k ∈ K sufficiently
large. If ‖rkTR‖p > ε1, then Lemma 3.1(a) would imply

‖Lg(xk,∆xk)−∆skCS‖p
(δk)β2

> ε1.

Since {Ck2 }, {bk} are bounded and ‖∆xk‖ ≤ δk → 0 as k ∈ K →∞, we obtain from
Lemma 3.2(a) that (4.13) holds; thus the above inequality cannot occur for an infinite
number of k ∈ K. Also, Lemma 3.2(a)–(b) and the boundedness of {Ck1 }, {Ck2 }, {bk}
imply that (4.14) holds, and (4.13) implies {‖Lg(xk,∆xk)−∆skCS‖∞}k∈K → 0. Then,
by Lemma 3.1(b) and the boundedness of {λkTR} and {bk}, (2.17) holds for all k ∈ K
sufficiently large. Thus, it must be that ρk < η for all k ∈ K sufficiently large. By a
similar reasoning, (4.16) holds, so we can assume, by taking k ∈ K sufficiently large,

that ρk < η and ‖(Sk)−1∆̂s
k‖∞ ≤ 2/3 for all k ∈ K. Then, for each k ∈ K, Lemma

3.1(e) implies that

υk + Rf (xk,∆xk) + µR(sk,∆sk,∆skCS) > (1− η)τ̄σ1(δk)β1‖bk‖∞.

Also, by Lemma 3.2(c), (4.15) holds, so dividing both sides by (δk)β1 and using (4.15)
yields

lim inf
k∈K→∞

υk

(δk)β1
≥ (1− η)τ̄σ1‖bk‖∞ > (1− η)τ̄σ1ε2.
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On the other hand, since υk = qk(∆xk) and ‖∆xk‖ ≤ δk, (4.8), together with βk =
β2 > 1 > β1 and the boundedness of λk, λkP, rk, ck, Ak, Qk, (Sk)−1 for all k, implies
limk∈K→∞ υk/(δk)β1 = 0, a contradiction.

(c) Suppose that phase 3 does not terminate finitely. By part (b), phase 2 ter-
minates finitely, so there exists a k3 ∈ {0, 1, . . .} such that k ≥ k3 if and only if
‖rk‖p ≤ ε1 and ‖bk‖∞ ≤ ε2. Let

K3 :=

{
k ≥ k3 : (2.22) holds and

υk

(δk)2
< −ε4

}
.

Then, by the definition of ρk and the updating rule,

fµ(xk+1, sk+1) ≤ fµ(xk, sk) + ηυk and υk < 0 ∀k ∈ K3,

(xk+1, sk+1) = (xk, sk) ∀k ∈ {k3, k3 + 1, . . .}\K3.
(4.21)

Since ‖rk‖p ≤ ε1 and ‖bk‖∞ ≤ ε2 for k ≥ k3, {rk} and {bk} are bounded. Since
{xk} is bounded and, by (4.21), fµ(xk, sk) is monotonically decreasing for k ≥ k3, an
argument similar to that for part (a) shows that sk, (Sk)−1, λkP, λk are bounded for
k ≥ k3, and that {fµ(xk, sk)}k≥k3 converges. Then Ck1 , C

k
2 , C

k
3 , λkTR are bounded for

k ≥ k3.
We claim that there exists a δ̄ > 0 such that

υk

(δk)2
< −ε4 ∀k ≥ k3 with δk ≤ δ̄.(4.22)

(If not, there would exist a subsequence K of {k3, k3+1, . . .} such that υk/(δk)2 ≥ −ε4
for all k ∈ K and {δk}k∈K → 0. Then, for all k ∈ K sufficiently large so that δk ≤ δth
and hence βk = β2 < 2, (4.9) together with the boundedness of λk, rk, c̄k, Ak, Qk,
(Sk)−1 would imply (4.19). Thus (2.20) would hold for all k ∈ K sufficiently large,
contradicting the nontermination of phase 3.) If |K3| < ∞, then the updating rule
(2.18) implies δk+1 = ω1δk for all k ≥ k3 sufficiently large, so that δk → 0. If
|K3| = ∞, then since {fµ(xk, sk)}k≥k3 converges, by (4.21), {υk}k∈K3 → 0. This and
the definition of K3 imply {δk}k∈K3 → 0. Since δk+1 ≥ δk for all k ∈ K3, this shows
there must exist a subsequence K of {k3, k3 + 1, . . .}\K3 such that (cf. (4.11))

{δk}k∈K → 0.

By (4.22), we can assume that υk/(δk)2 < −ε4 for all k ∈ K, so that (2.22) fails for
all k ∈ K. By taking k sufficiently large, we can further assume that δk ≤ min{1, δth}
for all k ∈ K, so that βk = β2 and δ̂k = δk for all k ∈ K. Since {Ck1 } and {λk}
are bounded, by using Lemmas 3.1(b) and 3.2(b), we obtain as in the proof of part
(a) that λkTR > 0 for all k ∈ K sufficiently large. Since {Ck2 } and {bk} are bounded,
by using Lemmas 3.1(a) and 3.2(a), we obtain as in the proof of part (b) that (4.13)
holds and ‖rkTR‖p ≤ ε1 for all k ∈ K sufficiently large. Also, Lemma 3.2(a)–(b) and
the boundedness of {Ck1 }, {Ck2 }, {bk} imply that (4.14) holds, and (4.13) implies
{‖Lg(xk,∆xk) −∆skCS‖∞}k∈K → 0. Then, by Lemma 3.1(b) (with θ := ε2) and the
boundedness of {λkTR} and {bk}, we obtain similarly to the proof of part (b) that
‖bkTR‖∞ ≤ ε2 for all k ∈ K sufficiently large. Thus, it must be that ρk < η for all
k ∈ K sufficiently large. By similar reasoning, (4.16) holds, so we can assume, by

taking k ∈ K sufficiently large, that ρk < η and ‖(Sk)−1∆̂s
k‖∞ ≤ 2/3 for all k ∈ K.
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Then, for each k ∈ K, υk < 0 and Lemma 3.1(c) imply that (4.18) holds. Also, by
Lemma 3.2(c), (4.15) holds. Dividing both sides of (4.18) by (δk)2 and using (4.15)
yields

lim inf
k∈K→∞

υk

(δk)2
≥ 0,

which contradicts υk/(δk)2 < −ε4 for all k ∈ K.
(d) Assume that µ2 < δth. Let k index the final iteration of phase 3 of Algo-

rithm 1; i.e., (2.20) holds. If δk ≥ ω1 min{1, µ2}, then the desired conclusion follows.
Suppose instead δk < ω1 min{1, µ2}. If a successful (i.e., nonnull) step is taken at
iteration k − 1, then µ2 > δk ≥ δk−1 and the updating rule would imply δk ≥ µ2,
a contradiction. Thus it must be that a null step is taken at iteration k − 1, i.e.,
(xk, sk, λk) = (xk−1, sk−1, λk−1). Then δk = ω1δk−1, and we establish below the

desired conclusion with δ̂ := δk−1 and ∆x := ∆xk−1.
Using the first inequality of (2.20), as well as δk < δk−1 and (λkP, r

k, bk, ck) =
(λk−1

P , rk−1, bk−1, ck−1) and the criterion for entering phase 3, we have

‖rk−1‖p ≤ ε1, ‖bk−1‖ ≤ ε2, and
‖ck−1‖

(δk−1)β2−1
− (λk−1

P )T rk−1 ≤ ε3.

Since the method did not terminate at iteration k− 1, this implies that we must have

υk−1

(δk−1)2
< −ε4.

Since a null step is taken at iteration k − 1, this in turn implies that one of the
following holds:

(i) λk−1
TR �> 0, (ii) ‖rk−1

TR ‖p > ε1, (iii) ‖bk−1
TR ‖∞ > ε2, (iv) ρk−1 < η.

Since δk−1 = δk/ω1 < min{1, µ2} < δth, then βk−1 = β2 and δ̂k−1 = δk−1. In case
(i), Lemmas 3.1(b), 3.2(b) and λk = λk−1, Ck1 = Ck−1

1 imply

Ck1 δk−1 ≥ ‖∆sk−1‖ ≥ µ

‖λk‖∞ ,

and so (4.2) holds. In case (ii), Lemma 3.1(a) and xk = xk−1 imply

‖Lg(xk,∆xk−1)−∆sk−1
CS ‖p

(δk−1)β2
> ε1,

and so (4.3) follows from Lemma 3.2(a). In case (iii), Lemma 3.1(b), sk = sk−1, and
‖bk−1‖∞ ≤ ε2 imply that

either ‖∆sk−1
CS ‖∞ + ‖Lg(xk,∆xk−1)−∆sk−1

CS ‖∞ >
ε2

2‖λk−1
TR ‖∞

or ‖(Sk)−1∆sk−1‖∞ >
1√

2 + 2µ/ε2 + 2
≥ 1√

2µ/ε2 + 4
.

Also, ‖λk−1
TR ‖∞ = ‖λkP − (Sk)−1Λk∆sk−1‖∞ ≤ ‖λkP‖∞ + ‖λk‖∞‖(Sk)−1∆sk−1‖∞.

Then (4.4)–(4.5) follow from Lemma 3.2(a)–(b), and Ck1 = Ck−1
1 ≤ Ck2 = Ck−1

2 ,
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δ̂k−1 = δk−1, ‖bk−1‖∞ ≤ ε2. In case (iv), since υk−1 < 0, Lemma 3.1(c) and xk =
xk−1, sk = sk−1 imply that

either ‖(Sk)−1∆̂s
k−1‖∞ >

2

3

or Rf (xk,∆xk−1) + µR(sk,∆sk−1,∆sk−1
CS ) > (η − 1)υk−1 > (1− η)ε4(δk−1)2.

Then (4.6)–(4.7) follow from Lemma 3.2(b)–(c) and Ck3 = Ck−1
3 , δ̂k−1 = δk−1,

‖bk−1‖∞ ≤ ε2.
Proposition 4.1 assumes that {xk} is bounded and ‖λkP‖q is strictly below τ when-

ever (2.15) holds during phase 1. While the first assumption is reasonable (see Corol-
lary 6.2 and the subsequent discussion), it is less obvious whether the second assump-
tion is reasonable, since {λkP} depends on τ . The following lemma gives a sufficient
condition for ‖λkP‖q to be bounded whenever (2.15) holds, independent of τ . Then, it
suffices to choose τ large enough, namely,

τ > sup
(2.15) holds

‖λkP‖q
((1− η)σ1)

,

and (4.1) would hold for any sufficiently small χ > 0. More generally, if gi is affine
and r0

i = 0 for some i, then we have rki = 0 for all k, and gi can be removed from
consideration when applying this lemma. In particular, if g is affine and r0 = 0, i.e.,
the starting point is an interior feasible solution, then rk = 0 for all k, and thus phase
1 is never entered and the second assumption is automatically satisfied.

Lemma 4.2. Suppose there exist ζ ≥ 0 and ξ > 0 such that Xζ is bounded and

ξB ∩ {convex hull of ∇gi(x), i ∈ Iζ(x)} = ∅ ∀x ∈ Xζ .(4.23)

Then, for any µ > 0, there exists κζ,ξ,µ > 0 such that ‖λkP‖q ≤ κζ,ξ,µ for all σ2 ≥ ζ/ξ,
all 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1, and all sequences (xk, sk, λkP) ∈ �n × �2m

++,
k = 0, 1, . . ., satisfying (2.15), ‖rk‖p ≤ ζ, and SkλkP ≤ µe, where rk and ck are given
by (2.12), (2.13).

Proof. Suppose the claim is false so that there exist σ2 ≥ ζ/ξ, 1 ≤ p, q ≤ ∞ with
1/p+ 1/q = 1, and (xk, sk, λkP) ∈ �n×�2m

++, k = 0, 1, . . ., satisfying (2.15), ‖rk‖p ≤ ζ,
and SkλkP ≤ µe, but ‖λkP‖q → ∞. Then, xk ∈ Xζ for all k, and so {xk} is bounded.
Since ‖rk‖p ≤ ζ for all k, {sk} is bounded. By passing to a subsequence, if necessary,
we can assume that (xk, sk, λkP/‖λkP‖1) converges to some (x̄, s̄, λ̄). Then ‖λ̄‖1 = 1
and, since λkP > 0 for all k, λ̄ ≥ 0. Let J := {i ∈ {1, . . . ,m} : λ̄i > 0}. Then, for each
i ∈ J , (λkP)i →∞, so ski (λkP)i ≤ µ implies ski → 0. This, together with

|gi(xk) + ski | = |rki | ≤ ‖rk‖p ≤ ζ

for all k, yields in the limit |gi(x̄)| ≤ ζ. Thus, J ⊆ Iζ(x̄). Also, (2.15) implies

‖∇f(xk) +∇g(xk)λkP‖ = ‖ck‖ < (λkP)T rk

σ2
≤ ‖λkP‖qζ

σ2

for all k, and thus dividing both sides by ‖λkP‖1 and using ‖ · ‖q ≤ ‖ · ‖1 yields in the
limit ‖∇g(x̄)λ̄‖ ≤ ζ/σ2 ≤ ξ. This contradicts (4.23).

A compactness argument shows that the assumption of Lemma 4.2 is equivalent
to Xζ being bounded and

0 �∈ {convex hull of ∇gi(x), i ∈ Iζ(x)}(4.24)
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for all x ∈ Xζ .4 By the Farkas lemma, (4.24) is equivalent to the existence of a d ∈ �n
satisfying ∇gi(x)T d < 0 for all i ∈ Iζ(x). Thus, when ζ = 0, (4.24) reduces to the
well-known MFCQ at x; see, e.g., [5]. When ζ > 0, (4.24) may be viewed as a relaxed
MFCQ.

To illustrate (4.23), consider the following example.
Example 1. Assume

n = 2, m = 3, g1(x) = −x2, g2(x) = x2 − 1, g3(x) = x2
1 − x2.

Then Xζ (with p = ∞) is bounded for any ζ ≥ 0. For 0 ≤ ζ < 1/2, it can be seen that
Iζ(x) ∈ {{1}, {2}, {3}, {1, 3}, {2, 3}} for all x ∈ Xζ , from which a bit of calculus shows
that (4.23) holds for any 0 < ξ < (1 + 1/(1 − 2ζ))−1. Notice that ∇gi(x), i ∈ I(x),
are not linearly independent at the feasible solution x = [0 0]T .

5. An interior-point trust-region method for (1.1). Below we describe
formally our method for solving (1.1), which uses Algorithm 1 to solve (1.4) inexactly
in the inner iterations. The barrier parameter µ is adjusted in the outer iterations.

Algorithm 2.
0. Choose µ1 > 0, 1 ≤ p ≤ ∞, 1 < β2 < 2, 0 < ω1 < 1, � ≥ 1, 0 < δth ≤ δ0 ≤ δmax,

(x0, s0, λ0) ∈ �n × �2m
++ with s0 ≥ −g(x0), 0 < ω2 < 1, and functions

π1, π2, π3, π4 ∈ Π. Initialize t := 1. Go to step 1.
1. Apply Algorithm 1 with input µt, p, β2, ω1, �, δth, δt−1, δmax, (xt−1, st−1, λt−1)

and termination tolerances πj(µt), j = 1, 2, 3, 4. The method generates an
(xt, st, λt) ∈ �n ×�2m

++ and δt ∈ (0, δmax], βt ∈ [0, β2], and υt ∈ � satisfying

‖rt‖p ≤ π1(µt), ‖bt‖∞ ≤ π2(µt),

‖ct‖
(δt)β2−1

≤ (λtP)T rt + π3(µt),
υt

(δt)2
≥ −π4(µt),

(5.1)

where rt := g(xt) + st, λtP := µt(S
t)−1e, bt := Stλt − µte, c

t := ∇xl(xt, λtP),
and υt is the objective value of some �-approximate solution of (2.1) associ-
ated with (xt, st, λt, δt, β

t). Moreover, βt = β2 whenever δt ≤ δth. Go to step
2.

2. If µt is below a desired threshold, terminate the method. Otherwise, choose any
0 < µt+1 ≤ ω2µt. Increment t by 1 and return to step 1.

To obtain the desired convergence results, we need πj(µ) → 0 as µ → 0, j =
1, 2, 3, 4, sufficiently fast but not too fast relative to each other. In particular, we
make the following (relative) local growth assumptions on π1, . . . , π4:

A1.
(a) limµ→0 π1(µ)/µ = 0 and lim supµ→0 π3(µ)/π1(µ) <∞.
(b) limµ→0 π2(µ)/µ2 = 0.
(c) limµ→0 π1(µ)/(µπ2(µ))(2−β2)/2 = 0.
(d) limµ→0 π1(µ)/(µ2π4(µ))2−β2 = 0.
Notice that A1 is satisfied if we choose any π4 ∈ Π and any π0 ∈ Π and then set

π2(µ) := π0(µ)µ2, π1(µ) := π3(µ) := π0(µ)·min
{
µ, (µπ2(µ))

(2−β2)
2 , (µ2π4(µ))2−β2

}
.

4Assume that Xζ is bounded but (4.23) is false, so that there exist I ⊆ {1, . . . ,m}, xk ∈ Xζ , and

(λk
P)i ≥ 0 for i ∈ I such that Iζ(xk) = I,

∑
i∈I(λk

P)i = 1 for all k, and
∑

i∈I ∇gi(x
k)(λk

P)i → 0.

Then, any cluster point (x̄, λ̄i)i∈I satisfies x̄ ∈ Xζ , λ̄i ≥ 0 for i ∈ I, and Iζ(x̄) = I,
∑

i∈I λ̄i = 1,∑
i∈I ∇gi(x̄)λ̄i = 0, and thus (4.24) does not hold for all x ∈ Xζ . The converse is obvious.
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6. Convergence of the interior-point trust-region method. We first have
the following proposition, which is algorithm-independent. The global convergence of
Algorithm 2 follows as its corollary.

Proposition 6.1. Fix 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1, 1 < β2 < 2, � ≥ 1,
0 < δth ≤ δmax, and π1, π2, π3, π4 ∈ Π. Suppose for each t = 1, 2, . . . that we have
µt > 0, (xt, st, λt) ∈ �n×�2m

++, δt ∈ (0, δmax], βt ∈ [0, β2], and υt ∈ � satisfying (5.1)
and that υt is the objective value of some �-approximate solution of (2.1) associated
with (xt, st, λt, δt, β

t), with rt, λtP, b
t, ct defined as in Algorithm 2. Suppose further that

µt → 0 and there exists a subsequence T of {1, 2, . . .} such that {xt}t∈T converges to
some x̄. Then the following results hold:

(a) x̄ is a feasible solution of (1.1).
(b) If x̄ satisfies (4.24) with ζ = 0, then {λtP}t∈T is bounded and every cluster

point λ̄ satisfies (1.2).
(c) If π1, . . . , π4 satisfy A1 and, in addition to the assumption of (b), we have

βt = β2 whenever δt ≤ δth, and the following assumptions A2 and A3 are
satisfied, then {λt}t∈T ′ → λ̄ and (1.7) holds for any T ′ ⊆ T such that
{(xt, λtP)}t∈T ′ → (x̄, λ̄) and any dt ∈ �n satisfying both ‖dt‖ = 1 and
[∇gi(xt)T dt]i∈I(x̄) = 0 for all t ∈ T ′.
A2. lim sup x→x̄

δ→0
sup‖∆x‖≤δ Rf (x,∆x)/δ3 <∞.

A3. For each t with (µt)
2 < δth, either δ̂t := δt/ω1 ≥ min{1, (µt)2} or there

exists a ∆xt ∈ δ̂t B satisfying one of the following:

Ct1δ̂t ≥
µt

‖λt‖∞ ,(6.1)

‖Rg(xt,∆xt)‖p
(δ̂t)β2

+ Ct2(δ̂t)
2−β2

(
1

µt
+

1

(µt)2

)
π2(µt) > π1(µt),(6.2)

Ct2
(δ̂t)

2

2(µt)
2π5(µt) + ‖Rg(xt,∆xt)‖p > π2(µt)

2νt
m,(6.3)

Ct2δ̂t >
2µt√

2µt/π2(µt) + 4
,(6.4)

Ct2δ̂max
δ̂t
µt

Ct4 ≥
2

3
,(6.5)

Rf (xt,∆xt)

(δ̂t)2
+ Ct3

δ̂t
(µt)2

(
µt
(
Ct4
)2

+
(
Ct4
)3) ≥ (1− η)π4(µt),(6.6)

where π5(µ) := µ2 + 3(µ + 1)π2(µ), δ̂max is defined as in Lemma 3.2, At :=
∇g(xt), Ct1 := max

{∑m
i=1 ‖∇2gi(x

t)‖, ‖(At)T ‖+
√
mπ1(µt)

}
, Ct2 := 2 max{Ct1,

(Ct1)2}max{1, ‖λt‖∞, ‖λtP‖�∞}2�=1, C
t
3 := max{(Ct2)2δ̂max, (C

t
2)3δ̂3

max}, Ct4 :=

1 + π2(µt)/(µt)
2, and νt := ‖λtP‖∞ + ‖λt‖∞Ct2δ̂

t/µt.

Proof. By passing to a subsequence if necessary, we can without loss of generality
assume that xt → x̄.

(a) Since st > 0 and ‖rt‖p ≤ π1(µt) → 0, it follows from xt → x̄ that g(x̄) =
− limt→∞ st ≤ 0.

(b) If {λtP} is not bounded, so that there exists a subsequence T of {1, 2, . . .} such
that {‖λtP‖1}t∈T →∞, then the first and third inequalities in (5.1) and ‖ · ‖q ≤ ‖ · ‖1
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would yield

‖∇f(xt) +∇g(xt)λtP‖
‖λtP‖1

=
‖ct‖
‖λtP‖1

≤ ‖λtP‖qπ1(µt) + π3(µt)

‖λtP‖1
(δt)

β2−1 → 0 as t ∈ T →∞.

Passing to the limit yields∇g(x̄)λ̄ = 0, where λ̄ ≥ 0 is any cluster point of {λtP/‖λtP‖1}t∈T .
Since ‖λ̄‖1 = 1 and, for each i with λ̄i > 0, we have {(λtP)i}t∈T → ∞ so that
gi(x̄) = − limt→∞ sti = − limt→∞ µt/(λtP)i = 0, this would contradict x̄ satisfying
(4.24) with ζ = 0. Hence {λtP} is bounded.

Since {λtP} is bounded, then the boundedness of {δt} and the first and third
inequalities in (5.1) yield

‖ct‖ ≤ (‖λtP‖π1(µt) + π3(µt))(δt)
β2−1 → 0.(6.7)

Since StλtP = µte→ 0 and st → −g(x̄), this implies that any cluster point λ̄ of {λtP}
satisfies λ̄ ≥ 0, g(x̄)T λ̄ = 0, and ∇xl(x̄, λ̄) = 0.

(c) Consider any T ′ ⊆ T such that {(xt, λtP)}t∈T ′ → (x̄, λ̄) and any dt ∈ �n
satisfying ‖dt‖ = 1 and [∇gi(xt)T dt]i∈I(x̄) = 0 for all t ∈ T ′. Since

π2(µt)

µt
≥ ‖bt‖∞

µt
=
‖St(λt − λtP)‖∞

µt
≥ mini s

t
i‖λt − λtP‖∞
µt

=
‖λt − λtP‖∞
‖λtP‖∞

,

we have ‖λt−λtP‖∞ ≤ ‖λtP‖∞π2(µt)/µt. Since {λtP}t∈T ′ → λ̄ and limµ→0 π2(µ)/µ = 0
by A1(b), we obtain {λt}t∈T ′ → λ̄.

For each t ∈ T ′, we have from [∇gi(xt)T dt]i∈I(x̄) = 0 that

(dt)T
(
λti
sti
∇gi(xt)∇gi(xt)T

)
dt = 0 ∀i ∈ I(x̄).(6.8)

For each i �∈ I(x̄), we have sti → −gi(x̄) > 0 and λti → λ̄i = 0 as t ∈ T ′ → ∞, so
λti/s

t
i → 0, and hence the left-hand side of (6.8) tends to zero. Summing this term

over all i = 1, . . . ,m yields

(dt)TAtΛt(St)−1(At)T dt → 0 as t ∈ T ′ →∞.(6.9)

For each t ∈ T ′, we have from the definition of υt (see (2.11)) that υt ≤ �⊗υtQ =

�tυ
t
Q for some �t ∈ {�, 1/�}, where

υtQ := (δt)
βt(λtP)T rt + δt‖ct‖+

1

2
(δt)

2βt‖(Λt)1/2(St)−1/2rt‖2

+ (δt)
βt+1‖AtΛt(St)−1rt‖+

1

2
(δt)

2(� ⊗ γt∗ + �µt),

Qt := ∇xxl(xt, λt)+AtΛt(St)−1(At)T , and γt∗ denotes the minimum eigenvalue of Qt.
Also, � ⊗ γt∗ = ϕtγ

t
∗ for some ϕt ∈ {�, 1/�}. Using (5.1) and γt∗ ≤ (dt)TQtdt yields

−π4(µt)

�t
≤ υt

�t(δt)2

≤ υtQ
(δt)2

≤ (λtP)T rt

(δt)2−β
t +

‖ct‖
δt

+
1

2
(δt)

2βt−2‖(Λt)1/2(St)−1/2rt‖2

+(δt)
βt−1‖AtΛt(St)−1rt‖+

1

2
(ϕt(d

t)TQtdt + �µt).(6.10)
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Moreover, (5.1) and λTP r ≤ ‖λP‖q‖r‖p give

(λtP)T rt

(δt)2−β
t +

‖ct‖
δt

≤ (λtP)T rt

(δt)2−β
t +

(λtP)T rt + π3(µt)

(δt)2−β2

≤ ‖λtP‖qπ1(µt)

(δt)2−β
t +

‖λtP‖qπ1(µt) + π3(µt)

(δt)2−β2
.(6.11)

Since µt → 0, by taking t sufficiently large if necessary, we can assume that
(µt)

2 < δth for all t ∈ T ′. For each t ∈ T ′, either (i) δ̂t ≥ min{1, δth}, (ii) (µt)
2 ≤ δ̂t <

min{1, δth}, or (iii) δ̂t < min{1, (µt)2}. In cases (ii) and (iii), we have δt = ω1δ̂t < δth
and hence βt = β2. In case (iii), since (µt)

2 < δth, A3 implies that there exists

∆xt ∈ δ̂t B satisfying either (iiia) (6.1), (iiib) (6.2), (iiic) (6.3), (iiid) (6.4), (iiie) (6.5),
or (iiif) (6.6), with π5, At, Ct1, C

t
2, C

t
3, C

t
4, νt as defined therein. By further passing to

a subsequence if necessary, we can assume that we are either in case (i) for all t ∈ T ′,
in case (ii) for all t ∈ T ′, or in subcase (iiia) for all t ∈ T ′ or . . ., etc. We show below
that the right-hand side of (6.11) tends to zero as t ∈ T ′ →∞ in each of these cases
and subcases. Since xt, λtP, λ

t are bounded for all t, then Ct1, C
t
2, C

t
3 are bounded for

all t ∈ T ′.
In case (i), since min{1, δth} ≤ δ̂t = δt/ω1 for all t ∈ T ′, the boundedness of

{λtP} and π1(µt) → 0, π3(µt) → 0 imply that the right-hand side of (6.11) tends to
zero as t ∈ T ′ → ∞. In cases (ii) and (iii), since {λtP} is bounded, βt = β2, and
lim supµ→0 π3(µ)/π1(µ) < ∞ by A1(a), it suffices to show that π1(µt)/(δt)

2−β2 → 0

or, equivalently, π1(µt)/(δ̂t)
2−β2 → 0 as t ∈ T ′ →∞. We do this below.

In case (ii), we have from A1(d) that

π1(µt)

(δ̂t)2−β2

≤ π1(µt)

((µt)2)2−β2
→ 0 as t ∈ T ′ →∞.

In subcase (iiia), we have from (6.1), A1(d), and the boundedness of {Ct1}, {λt}
that

π1(µt)

(δ̂t)2−β2

≤ π1(µt)

(µt)2−β2

(
Ct1‖λt‖∞

)2−β2 → 0 as t ∈ T ′ →∞.

In subcase (iiib), since ‖∆xt‖ ≤ δ̂t < (µt)
2 → 0 and {Ct2} is bounded, we obtain

from (6.2) and A1(b) that

π1(µt)

(δ̂t)2−β2

<
‖Rg(xt,∆xt)‖p

(δ̂t)2
+ Ct2

(
1

µt
+

1

(µt)2

)
π2(µt) → 0 as t ∈ T ′ →∞.

In subcase (iiic), we see from A1(b) that limµ→0 π5(µ)/µ2 = 1. Since {‖Rg(xt,∆xt)‖p
/(δ̂t)

2} and {Ct2} are bounded, then (6.3) implies that {π2(µt)/((δ̂t)
2νt)}t∈T ′ is bound-

ed. Since νt = ‖λtP‖∞ + ‖λt‖∞Ct2δ̂
t/µt and {λtP}, {λt}, {Ct2} are bounded, this

implies, passing to a subsequence if necessary, that either {π2(µt)/(δ̂t)
2}t∈T ′ or

{µtπ2(µt)/(δ̂t)
3}t∈T ′ is bounded. Then we obtain from A1(c) that

either
π1(µt)

(δ̂t)2−β2

=
π1(µt)

(π2(µt))(2−β2)/2
·
(
π2(µt)

(δ̂t)2

)(2−β2)/2

→ 0

or
π1(µt)

(δ̂t)2−β2

=
π1(µt)

(µtπ2(µt))(2−β2)/3
·
(
µtπ2(µt)

(δ̂t)3

)(2−β2)/3

→ 0 as t ∈ T ′ →∞.
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In subcase (iiid), we have from (6.4) and the boundedness of {Ct2} and {π2(µt)/µt}
→ 0 that {√µtπ2(µt)/δ̂t}t∈T ′ is bounded, and thus A1(c) yields

π1(µt)

(δ̂t)2−β2

=
π1(µt)

(µtπ2(µt))(2−β2)/2
·
(√

µtπ2(µt)

δ̂t

)2−β2

→ 0 as t ∈ T ′ →∞.

In subcase (iiie), we have from A1(b) that {Ct4} → 1. Then (6.5) and the bound-

edness of {Ct2} imply that {µt/δ̂t}t∈T ′ is bounded. This, together with A1(a) and
β2 > 1, yields

π1(µt)

(δ̂t)2−β2

=
π1(µt)

(µt)2−β2
·
(
µt

δ̂t

)2−β2

→ 0 as t ∈ T ′ →∞.

In subcase (iiif), we have, upon multiplying both sides of (6.6) by (µt)
2/δ̂t, that

(µt)
2Rf (xt,∆xt)

(δ̂t)3
+ Ct3

(
µt
(
Ct4
)2

+
(
Ct4
)3) ≥ (1− η)

(µt)
2π4(µt)

δ̂t
.

Since {Ct3} is bounded and, by A2, {Rf (xt,∆xt)/(δ̂t)
3} is bounded and, by A1(b),

{Ct4} → 1, we have that {(µt)2π4(µt)/δ̂t}t∈T ′ is bounded. This in turn, together with
A1(d), implies that

π1(µt)

(δ̂t)2−β2

=
π1(µt)

((µt)2π4(µt))2−β2
·
(

(µt)
2π4(µt)

δ̂t

)2−β2

→ 0 as t ∈ T ′ →∞.

Thus, in all cases and subcases, we obtain that the right-hand side of (6.11) tends
to zero as t ∈ T ′ →∞. Also, the first and third inequalities of (5.1) and assumption
A1(a) imply

rt → 0, ct → 0, and ‖(St)−1rt‖ =
‖Λ̃trt‖
µt

≤ ‖λtP‖∞‖rt‖
µt

→ 0.

These together with π4(µt) → 0, {(xt, λt, λtP)}t∈T ′ → (x̄, λ̄, λ̄), and βt = β2 > 1 in
cases (ii) and (iii) yield from (6.10) that lim inft→∞,t∈T ′ (dt)TQtdt ≥ 0. Using (6.9),
this in turn yields (1.7).

Combining Propositions 4.1 and 6.1 and Lemma 4.2, we obtain the following
global convergence result for Algorithm 2.

Corollary 6.2. Suppose that Xζ is bounded and (4.24) holds for all x ∈ Xζ ,
where ζ := max{‖g(x0)+s0‖p,maxµ≤µ1 π1(µ)} and (µ1, x

0, s0, λ0) denotes the starting
iterate for Algorithm 2. Then {(µt, xt, st, λt, δt)}t=1,2,..., generated by Algorithm 2,
with σ2 and τ chosen sufficiently large within Algorithm 1, is defined. Moreover,
xt ∈ Xζ for all t, {λt} is bounded, and the following results hold for every cluster
point (x̄, λ̄) of {(xt, λt)}:

(a) (x̄, λ̄) satisfies (1.2).
(b) If π1, . . . , π4 satisfy A1 and f satisfies A2 in Proposition 6.1(c), then (1.7)

holds for any subsequence T ′ of {1, 2, . . .} such that {(xt, λt)}t∈T ′ converges to
(x̄, λ̄) and for any subsequence of unit directions {dt}t∈T ′ satisfying
[∇gi(xt)T dt]i∈I(x̄) = 0 for all t ∈ T ′.
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Proof. The assumptions on Xζ imply that (4.23) holds for some ξ > 0. Suppose
at the beginning of an iteration t of Algorithm 2 that we have ‖g(xt−1) + st−1‖p ≤ ζ
and st−1 ≥ −g(xt−1). Then when we apply Algorithm 1 at step 1 with σ2 ≥ ζ/ξ,
Lemma 4.2 and the fact that Algorithm 1 maintains ‖g(x) + s‖p to be monotonically
decreasing whenever ‖g(x) + s‖p > π1(µt) imply that each inner iterate (xk, λkP)
generated by Algorithm 1 satisfies xk ∈ Xζ and ‖λkP‖q is bounded above (independent
of τ) whenever (2.15) holds. Then, by choosing τ in Algorithm 1 sufficiently large,
(4.1) holds for all such k. An induction argument then shows that the inner iterates
generated by Algorithm 1 are defined and satisfy (4.1) at all inner iterations k, and
thus, by Proposition 4.1(a), Algorithm 1 terminates finitely with an (xt, st, λt) and
δt, υ

t satisfying ‖g(xt) + st‖p ≤ ζ (so xt ∈ Xζ), as well as (5.1) and st ≥ −g(xt).
Since xt lies in the closed and bounded set Xζ , x̄ also lies in Xζ . Since (5.1)

is satisfied for all t, Proposition 6.1(a) yields that x̄ is a feasible solution of (1.1).
Since x̄ satisfies (4.24) with ζ = 0, Proposition 6.1(b) yields that {λtP} is bounded
and every cluster point λ̄, together with x̄, satisfies (1.2). Proposition 4.1(d) implies
that assumption A3 holds for all t. Since π1, . . . , π4 satisfy A1 and f satisfies A2,
Proposition 6.1(c) yields that {λt} is bounded and, in fact, λt − λtP → 0. This proves
(a). Then (b) follows from Proposition 6.1(c).

Notice that A2 is satisfied if f is thrice differentiable at x̄. If g is affine so that
∇g(xt) = ∇g(x̄) for all t, Corollary 6.2(b) yields that (x̄, λ̄) satisfies the second-
order stationarity condition (1.3). If ∇gi(x̄), i ∈ I(x̄), are linearly independent, then
for any d̄ in the null space of [∇gi(x̄)T ]i∈I(x̄) there exists a dt in the null space of
[∇gi(xt)T ]i∈I(x̄) that converges to d̄ as xt → x̄. (For example, we can take dt to be
the orthogonal projection of d̄ onto the latter null space.) Using this dt in Corollary
6.2(b) yields that (x̄, λ̄) satisfies the second-order stationarity condition (1.3). Thus,
in the above two cases, we obtain that x̄ is a second-order stationary point of (1.1).

To summarize, if (i) f is thrice-differentiable, (ii) either g is affine or ∇gi(x),
i ∈ I(x), are linearly independent for all x ∈ X0, and (iii) Xζ is bounded and (4.24)
holds for all x ∈ Xζ , with ζ defined as in Corollary 6.2 (so that ζ depends on the initial
iterate for Algorithm 2), then {xt} generated by Algorithm 2, with π1, π2, π3, π4 chosen
to satisfy assumption A1 (and with σ2, τ chosen sufficiently large within Algorithm
1), is defined and bounded, and all cluster points are second-order stationary points
of (1.1). If g is affine and the initial iterate is feasible, i.e., g(x0) + s0 = 0, then the
method maintains feasibility at all iterations, and the condition (iii) can be refined
to the feasible set X0 being bounded and the MFCQ holding at all x ∈ X0. This
contrasts with the sufficient conditions for the methods of [11, 21, 30]. If g is given
by Example 1 and f is any thrice-differentiable function defined on �2, then

max

{
‖g(x0) + s0‖∞, max

µ≤µ1

π1(µ)

}
<

1

2

is sufficient for {xt} generated by Algorithm 2 (with the same provision as above) to
be defined and bounded, and for all cluster points to be second-order stationary points
of (1.1). In practice, we can initialize σ2, τ to any positive value and then increase
both by a constant factor whenever at some iteration k of Algorithm 1 we find that
τ ≤ ‖λkP‖q/((1−η)σ1). It can be seen that this does not affect the convergence results
of Corollary 6.2.

Lastly, following [12] and analogous to the discussions in Note 3, we can allow
∇2f(xt) and ∇2gi(x

t) to be replaced by n × n symmetric real matrices Ht and Ht
i ,

i = 1, . . . ,m, in Algorithm 2. Our convergence result and, in particular, Proposition
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6.1 and Corollary 6.2, still hold, provided that

‖∇2f(xt)−Ht‖ → 0 and ‖∇2gi(x
t)−Ht

i ‖ → 0, i = 1, . . . ,m, as t→∞.

7. Preliminary numerical experience. We implemented a version of Algo-
rithm 2 in Matlab and ran it on five Hock and Schittkowski (HS) problems [27] as well
as one of the Wächter–Biegler (WB) examples [40]. Our tests use only five HS prob-
lems due to the time required to set up the gradients and Hessians of f and g1, . . . , gm
for each problem. As such, our reported numerical experience should be considered
as very preliminary. However, the intention of our tests is mainly to validate the
convergence theory and to gain some understanding of the numerical behavior of the
method. Notice that the last two problems, HS108 and HS116, are nontrivial, and
thus they provide a reasonably good test of our implementation.

Parameter choices. In our Matlab implementation of Algorithm 2, we choose

µ1 = 10, p = 2, ω1 = 0.3, ω2 =
1

4
, δthr = 1, δ0 = δmax = 100,

as well as π4(µ) = max{µ0.2, 10µ}, π2(µ) = µ2π4(µ),5 π1(µ) = π3(µ) = π4(µ) ·min{µ,
(µπ2(µ))(2−β2)/2, 1000(µ2π4(µ))2−β2}. For a given starting x0, we set

s0 = max{−g(x0), s0
mine}(7.1)

with s0
min > 0 a user-chosen parameter. We update µt+1 = ω2µt for all t. In Algorithm

1, we further set

β1 = 0.9, β2 =

{
1.1 in phase 1,
1.9 in phase 2 or 3,

σ1 = η = 0.1, τ̄ = 0.1,

and we initialize both σ2 and τ to 10 and increase them by a factor of 1/ω1 whenever
τ ≤ ‖λkP‖/((1 − η)σ1).6 We set βk = 0 whenever δk > δth. If a successful step is
taken at iteration k, we set δk+1 to be either min{δk/ω1, δmax} or δk, depending on
whether ρk ≥ 0.95. We remark that the above parameter choices were made without
too much fine-tuning and can conceivably be improved.

Solving the trust-region subproblem. In one implementation, we solve (2.1) inex-
actly by using binary search to find a γ ≥ 0 such that γI +M +AΛS−1AT is positive
semidefinite and the solution of (2.8)–(2.10) satisfies |‖∆x‖ − δ|/δ < 10−9 whenever
γ > 10−15. In a second implementation, we solve (2.1) inexactly using a version of
the Moré–Sorensen method [31]. The performance of the two implementations are
generally comparable in terms of number of iterations and solution accuracy. An ex-
ception occurs on HS108 and HS116 with s0

min = 1, where the second implementation
requires roughly twice the number of iterations. We do not yet have an explanation
for this. The numerical results reported below are for the first implementation. In
the future, we hope to try more efficient solution strategies, such as those described
in [14], in conjunction with the inexact solution idea of subsection 2.2.

5Because this choice of π2(µ) becomes small rapidly with µ, we replace it by π2(µ) = µπ4(µ), pro-
vided ‖(Sk)−1∆sk−1‖/δk is below a fixed threshold, where k indexes the final iteration of Algorithm
1.

6We set β2 near 1 in phase 1 in order to prevent 1 − σ1(δk)β
k

in (2.16) from being treated as 1
by Matlab when δk is small. Using different β2 in different phases does not affect the convergence
properties of Algorithm 1, as given in Proposition 4.1.
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Initialization. For the HS problems, the starting x0 is as given in [27]. The WB
example is

n = 1, m = 2, f(x) = x, g1(x) = −x2, g2(x) = −x + 1, x0 = −1,

which corresponds to setting a = 0, b = 1 in [40, eq. (8)]. It can be verified that
x0, together with s0 given by (7.1), satisfies the assumptions of Theorem 1 in [40], so
that an interior-point method of the type described therein would not converge to a
feasible solution when started at (x0, s0).

Acceleration step. Our initial implementation found the correct solution on all
problems except HS116. On HS116, {xk} remains bounded while ‖λkP‖ → ∞ during
phase 1 of Algorithm 1. This suggests that (4.24) fails for the ζ given in Corollary 6.2,
which is plausible since ζ is quite large on this problem. To improve convergence, we
added line search based acceleration steps to Algorithm 1, which we describe below.
The addition of these steps does not affect the convergence properties of Algorithm
1, as given in Proposition 4.1.

The acceleration step is activated at iteration k of Algorithm 1 whenever a null
step is about to be taken. Then, instead of taking the null step, we compute a
second trial point (xkTR2, s

k
TR2, λ

k
TR2) and test it for acceptance. This second trial

point is computed as follows: Let (∆x
k
,∆s

k
, λ̄k) be a solution of (2.8)–(2.10) with

(x, s, λ) = (xk, sk, λk), β = 0, and

γ =

{
0 in phase 1,
γk in phase 2 or 3,

where γk denotes the trust-region Lagrange multiplier that is obtained in computing
(∆xk,∆sk, λk).7 Let

∆λ
k

:= λ̄k − λk, tk := 0.95 min

{
min

i:∆s
k
i<0

(
−ski
∆s

k

i

)
min

i:∆λ
k
i<0

(
−λki
∆λ

k

i

)}
.

Then, starting at t = tk, we test

xkTR2 := xk + t∆xk, skTR2 := max{sk + t∆s
k
,−g(xk)}, λkTR2 := λk + t∆λ

k

for acceptance and, if not accepted, we replace t by t/2 until t is below max{0.01,

0.1/‖∆x
k‖}. If none of the trial points is accepted, a null step is taken. The addition

of this step accelerates convergence significantly on HS116 and, to a lesser extent, on
other problems.

Numerical results. The performance of the final Matlab implementation (with the
acceleration steps) on the five HS problems, numbered as in [27] and the WB example,
is summarized in Table 7.1. (Here b denotes the number of bound constraints, which
are treated as inequalities.) As can be seen from the table, our method seems robust
in the sense that reasonable solution accuracy is achieved in a reasonable number
of iterations. Furthermore, the generated solution is in each case a second-order
stationary point, though possibly not a global optimal solution (which is unavoidable
for a local method). The final values of σ2 and τ vary. On HS116, they are quite

7Thus, if we are in phase 1 and γk = 0, or if we are in phase 2 or 3, then both (∆xk,∆sk, λk
TR)

and (∆x
k
,∆s

k
, λ̄k) are solutions of linear equations with the same left-hand matrix, and thus the

same matrix factorization can be used to compute both.
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Table 7.1
Performance of Algorithm 2 on five HS problems and a WB example, as indicated by the

number of gradient and Hessian evaluations of f, g1, . . . , gm (neval), the number of trust-region
subproblems solved (nsolv), the number of additional matrix factorizations in the acceleration steps
(nacc), the infeasibility ‖max{0, g(x)}‖ (infeas), and the objective value f(x) upon termination
(obj). The number in parentheses is the final µ value. (†Convergence to a second-order stationary
point (−0.5, 0.7071). ‡Convergence to a second-order stationary point (0.5, 0.4, . . . , 1).)

Problem n,m, b s0min neval/nsolv/nacc/infeas/obj

HS1 2,1,1 0.01 29/29/0/0/3·10−9 (10−4)
1 29/29/0/0/3·10−9 (10−4)

HS16 2,5,3 0.01 28/41/0/2·10−7/23.149† (10−3)
1 47/71/0/2·10−7/23.149† (10−3)

HS43 4,3,0 0.01 14/17/0/7·10−6/−43.980 (5·10−3)
1 14/17/0/7·10−6/−43.980 (5·10−3)

HS108 9,14,1 0.01 51/69/12/2·10−6/−0.6477‡ (5·10−4)
1 49/69/12/2·10−6/−0.6477‡ (5·10−4)

HS116 13,41,26 0.01 398/443/47/2·10−4/97.620 (10−3)
1 124/168/31/2·10−4/97.620 (10−3)

WB 1,1,1 0.01 32/47/12/4·10−10/1.000 (5·10−4)
1 24/37/2/4·10−10/1.000 (5·10−4)

high, near 45000. Most of the iterations are spent in phase 3, followed by phase 1 and
then phase 2. For example, on HS16 with s0

min = 1, the number of iterations spent in
phases 1, 2, and 3 are, respectively, 12, 5, and 54.

The performance of our method on the HS problems, while respectable, is not
nearly as good as those reported for some other interior-point methods [23, 45].
Nonetheless, we feel encouraged by the robustness of the results and their consis-
tency with the theory. For a comparison, the method in [23] reportedly has difficulty
solving HS116 and, according to [40], the methods in [10, 17, 23, 39, 42, 45] fail to solve
the WB example. A nice feature of our method is that it readily allows for incorpo-
ration of acceleration steps, while maintaining its theoretical convergence properties.
This suggests that it can serve as a safeguard in combination with other primal-dual
methods in order to enhance the robustness of the latter. Also, similar to [23, sect.
7], instead of introducing slack variables for all inequality constraints, we can do this
only for those inequality constraints such that gi(x

0) ≥ 0. For the remaining inequal-
ity constraints, we can use the barrier penalty − ln(−gi(x)) directly. Such a hybrid
method may be more efficient. Lastly, Dominique Orban [35] has suggested that
preconditioners can be taken into account by considering symmetric positive definite
matrices which define norms that are uniformly equivalent to the �2-norm.

8. Incorporating equality constraints. Algorithm 2 may be extended to
solve a nonlinear program with both equality and inequality constraints:

minimize f(x)
subject to g(x) ≤ 0, h(x) = 0,

(8.1)

where f : �n �→ �, g : �n �→ �m, and h : �n �→ �m′
(m ≥ 0, m′ ≥ 0) are twice

continuously differentiable functions. We sketch the extensions below.
If h is affine and the starting x0 satisfies h(x0) = 0, then Algorithm 2 may be

extended to solve (8.1) by adding the constraints ∇h(x)T∆x = 0 to (2.1), thus main-
taining that the iterates lie in the linear manifold {x ∈ �n : h(x) = 0}. Convergence
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results analogous to Corollary 6.2 may be obtained by replacing (4.24) with

0 �∈ {∇g(x)λ +∇h(x)ψ : ‖λ‖1 + ‖ψ‖1 = 1, λ ≥ 0, λi = 0 ∀i �∈ Iζ(x)}(8.2)

and further restricting dt in (1.7) to satisfy ∇h(xt)T dt = 0, etc.
In general, Algorithm 2 may be extended to solve (8.1) using a penalty approach.

In particular, when we apply Algorithm 1 at iteration t of Algorithm 2, we would
replace f in the objective by, for example, the �2-penalty function (see, e.g., [19, p.
63]):

f t(x) := f(x) +
1

2µt
‖h(x)‖2.

Then, with (5.1) accordingly modified, it can be seen that part (a) of Proposition 6.1
still holds, while part (b) holds provided that (4.24) is replaced by (8.2) and that (1.2)
is replaced by the corresponding first-order necessary optimality condition for (8.1).
By using the formula for ∇2f t(x) and defining

l(x, λ, ψ) := f(x) + g(x)Tλ + h(x)Tψ,

part (c) can be analogously extended by further assuming that h is thrice differentiable
and further restricting dt to satisfy ∇h(xt)T dt = 0 for all t ∈ T ′. Corollary 6.2 may
be extended accordingly. Also, for the primal method (see Note 1), it appears that
these results can be extended to the barrier function 1/(·)κ (κ > 0) in place of − ln(·).

9. Extension of the primal method to a semidefinite nonlinear pro-
gram. The primal version of our method, as described in Note 1, and its convergence
properties may be extended to the following semidefinite nonlinear program:

minimize f(x)
subject to −g(x) � 0,

where f : �n �→ � and g = [gij ]
m
i,j=1 : �n �→ S are twice continuously differentiable

functions and, for A ∈ S, “A � 0” (respectively, “A � 0”) means that A is positive
semidefinite (respectively, positive definite) [2, 20, 28, 34, 38]. Here W denotes the
space of m×m block-diagonal real matrices with k blocks of sizes m1, . . . ,mk, respec-
tively (the blocks are fixed), and S denotes the subspace comprising those A ∈ W
that are symmetric, i.e., AT = A. We sketch the extension below. We speculate
that the primal-dual method, i.e., Algorithm 1, can be extended in an analogous
manner. However, the analysis is more involved since there are many choices for the
primal-dual search direction in the case of semidefinite programs.

We endow W with the inner product and norm

〈A,B〉 := tr[ATB], ‖A‖ :=
√
〈A,A〉 ∀A,B ∈ W,

where tr[·] denotes the matrix trace. For A ∈ S, we also define ‖A‖p := ‖[αi]mi=1‖p
(1 ≤ p ≤ ∞), where α1, . . . , αm are the eigenvalues of A. Thus, ‖A‖ = ‖A‖2 =
(
∑m
i=1 ‖Ai‖2)1/2, where Ai denotes the ith column of A. Also, define O := {A ∈ W :

ATA = I} and S++ := {A ∈ S : A � 0}.
Accordingly, we define the Lagrangian l(x,Λ) := f(x) + 〈g(x),Λ〉, with Λ ∈ S.

The first-order stationarity condition is

−g(x) � 0, Λ � 0, 〈g(x),Λ〉 = 0, ∇xl(x,Λ) = 0.



INFEASIBLE INTERIOR-POINT TRUST-REGION METHODS 467

We work with the barrier problem:

minimize fµ(x, s) := f(x)− µ ln(det[S])
subject to g(x) + S = 0, S � 0.

The trust-region subproblem is accordingly

minimize ∇f(x)T∆x− µ〈S−1,∆S〉+
1

2
∆xT∇xxl(x,Λ)∆x +

1

2
‖Λ1/2∆SS−1/2‖2

subject to ‖∆x‖ ≤ δ, ∇g(x)T∆x + ∆S = −δβ(g(x) + S),

where ∆x �→ ∇g(x)T∆x is a linear mapping from �n to S. From an approximate
solution (∆x,∆S), we generate a trial point,

xTR := x + ∆x, STR := S + ∆̂S + [−g(xTR)− (S + ∆̂S)]+, ΛTR := µ(STR)−1,

with ∆̂S := ∆S−∆xT∇2g(x)∆x/2, and we test whether to accept (xTR, STR,ΛTR) as
the new iterate or to decrease δ and repeat, etc. Here, ∆xT∇2g(x)∆x := [∆xT∇2gij(x)
∆x]mi,j=1, and [A]+ denotes the matrix obtained by replacing, in the spectral decom-
position of A, the negative eigenvalues of A by zero; see [36, sect. 2] for properties of
[·]+. Analogously, we use the �2 augmented barrier function:

fµ,τ (x, S) := fµ(x, S) + τ‖g(x) + S‖.
Then, Algorithms 1 and 2 extend in a straightforward manner. Moreover, Lemma

3.1(a) extends by noting that g(xTR)+STR = [g(xTR)+S+∆̂S]+, and hence ‖g(xTR)+

STR‖ ≤ ‖g(xTR)+S+∆̂S‖. Lemma 3.1(c) extends by using the Taylor series expansion
(e.g., [38, eq. (45)]), giving that

− ln(det[S + ∆̂S])

≤ − ln(det[S])− 〈S−1, ∆̂S〉+
1

2
‖S−1/2∆̂SS−1/2‖2 +

∞∑
j=3

(−1)j

j
tr[(S−1∆̂S)j ]

and assuming ‖S−1/2∆̂SS−1/2‖ ≤ 2/3. Lemma 3.1(d) extends accordingly, as does
Proposition 4.1, with ε2 = 0 and omitting (4.4), (4.5).

To extend assumption (4.24) and Lemma 4.2, we define, for each ζ ≥ 0, x ∈ �n,
and P ∈ O, Iζ(x, P ) := {i ∈ {1, . . . ,m} : ‖[PT g(x)P ]i‖ ≤ ζ}. Then, we replace (4.24)
by

0 �∈ {∇x〈g(x),Λ〉 : Λ � 0, ‖Λ‖1 = 1, [PTΛP ]i = 0 ∀i �∈ Iζ(x, P )
} ∀P ∈ O,

and Lemma 4.2 extends analogously. In particular, for any ζ ≥ 0, ξ > 0, µ > 0,
suppose that there exist σ2 ≥ ζ/ξ and a sequence (xk, Sk, µk) ∈ �n × S++ × �++,
k = 0, 1, . . ., such that µk ≤ µ and

‖g(xk) + Sk‖ ≤ ζ, σ2‖∇xl(xk,Λk)‖ < 〈Λk, g(xk) + Sk〉 ∀k,
with Λk := µk(Sk)−1, but ‖Λk‖ → ∞. Then we would obtain as in the proof of
Lemma 4.2 that any cluster point (x̄, S̄, Λ̄) of (xk, Sk,Λk/‖Λk‖1) satisfies ‖Λ̄‖1 = 1,
S̄ � 0, Λ̄ � 0, and S̄Λ̄ = 0. Then, for any P ∈ O such that PT S̄P is diagonal, and
letting I := {i ∈ {1, . . . ,m} : [PT S̄P ]i = 0}, it can be seen that [PT Λ̄P ]i = 0 for
i �∈ I. Also, for each i ∈ I, we have

ζ ≥ ‖g(x̄) + S̄‖ = ‖PT (g(x̄) + S̄)P‖ ≥ ‖[PT (g(x̄) + S̄)P ]i‖ = ‖[PT g(x̄)P ]i‖.
Thus I ⊆ Iζ(x, P ). Also, we have from ‖∇xl(xk,Λk)‖ < 〈Λk, g(xk) + Sk〉/σ2 ≤
‖Λk‖ζ/σ2 that, in the limit, ‖∇x〈g(x), Λ̄〉‖x=x̄ ≤ ζ/σ2 ≤ ξ.
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Parts of (a) and (b) of Proposition 6.1 extend readily, thus yielding analogous
results on convergence to first-order stationary points. Part (c) can be similarly
extended to show that, under a modification to the stated assumptions, (1.7) holds
for any subsequence {(xt,Λt)}t∈T ′ → (x̄, λ̄), any subsequence P t ∈ O with (P t)TStP t

diagonal for all t ∈ T ′ and {P t}t∈T ′ → some P̄ , and any subsequence dt ∈ �n with
‖dt‖ = 1 and [(P t)T (∇g(xt)T dt)P t]i∈I0(x̄,P̄ ) = 0 for all t ∈ T ′. The modification
entails omitting A1(b), A1(c), (6.3), and (6.4) and setting π2 ≡ 0. To our knowledge,
such an asymptotic second-order stationarity result has not been obtained previously.

Acknowledgments. The author thanks the referees and, in particular, Do-
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Abstract. Most local convergence analyses of the sequential quadratic programming (SQP)
algorithm for nonlinear programming make strong assumptions about the solution, namely, that the
active constraint gradients are linearly independent and that there are no weakly active constraints.
In this paper, we establish a framework for variants of SQP that retain the characteristic superlinear
convergence rate even when these assumptions are relaxed, proving general convergence results and
placing some recently proposed SQP variants in this framework. We discuss the reasons for which
implementations of SQP often continue to exhibit good local convergence behavior even when the
assumptions commonly made in the analysis are violated. Finally, we describe a new algorithm that
formalizes and extends standard SQP implementation techniques, and we prove convergence results
for this method also.
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AMS subject classifications. 90C33, 90C30, 49M45

PII. S1052623498333731

1. Introduction. We investigate local convergence properties of variants of the
sequential quadratic programming (SQP) algorithm applied to the nonlinear program-
ming problem

NLP: min
z

φ(z) subject to g(z) ≤ 0,(1.1)

where φ : IRn → IR and g : IRn → IRm are twice Lipschitz continuously differentiable
functions. We are interested in degenerate problems: those for which the active con-
straint gradients at the solution are linearly dependent and/or the strict complemen-
tarity condition fails to hold.

We showed in [18] that even when strict complementarity (SC), second-order suf-
ficient conditions, and a constraint qualification hold, nonuniqueness of the optimal
multiplier can produce nonsuperlinear behavior of SQP. Motivated by this observa-
tion and by the fact that primal-dual interior-point algorithms for related problems
converge superlinearly under the conditions just described [20, 16], we proposed a
stabilized SQP (sSQP) method [18] and proved a local superlinear convergence result,
later enhanced by Hager [11]. Independently, Fischer [8] proposed an algorithm into
which a special procedure for choosing the Lagrange multiplier estimate is inserted
between iterations of SQP. He proved superlinear convergence under slightly different
assumptions from ours.

Our purposes in this paper are twofold. First, we introduce a common frame-
work, which we call iSQP (for inexact SQP), that allows for a unified analysis of the
stabilization procedures of the preceding paragraph. We prove general convergence
results for methods in the iSQP framework, highlighting the effect on the convergence
rate of changes between successive Lagrange multiplier estimates.
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Our second goal requires a little more explanation. Implementations of SQP (for
example, SNOPT [10]) often continue to exhibit good local convergence behavior even
on degenerate problems, even though such problems fail to satisfy the standard as-
sumptions made in local convergence analyses and even though theoretical examples
of poor convergence behavior are easy to construct (see [18]). The iSQP framework
proves to be useful in providing some theoretical support for this good practical per-
formance. We find that the strategy of using the active (or working) set from the
quadratic prgramming (QP) subproblem at the previous iteration as the initial active
set for the current iteration is important in explaining the good behavior, as is the
fact that the solver of the QP subproblem is allowed to return a slightly infeasible
answer. Further, we propose and analyze an algorithm called SQPsws, in which the
techniques used in existing implementations are formalized to produce an algorithm
whose local convergence is superlinear under certain assumptions.

The main point of difference between the basic SQP algorithm as presented here
and the versions that are implemented in standard software is that the implementa-
tions usually make use of quasi-Newton Hessian approximations, whereas we assume
here that exact Hessians are used. Still, we believe that our observations below are
relevant to the quasi-Newton case and, in particular, that quasi-Newton versions of
the various algorithms discussed here would exhibit fast local convergence. Extension
of the analysis to this case would, however, not be trivial, since it would have to take
into account such factors as the effects of degeneracy on the quasi-Newton updates,
so we leave this issue for possible future work. Another feature of the description pre-
sented here is that we focus on the local properties of the SQP approach and ignore
the various algorithmic devices used to ensure global convergence.

The remainder of the paper is structured as follows. In section 2, we outline first-
order optimality conditions and define various terms and assumptions that are used
in the remainder of the paper. Section 3 defines the various second-order sufficient
conditions that are required by the algorithms described in later sections. The iSQP
framework is defined in section 4, where we also prove a useful result about the active
set identified by the iSQP subproblem. Section 5 contains the main results about
convergence of algorithms in the iSQP framework. Brief discussions of the stabilized
SQP algorithm and Fischer’s approach are given in sections 6 and 7, respectively,
where we outline how both methods fit into the iSQP framework. Finally, the new
algorithm SQPsws is described and some superlinear convergence results for it are
proved in section 8.

2. Assumptions, notation, and basic results. We now review the optimal-
ity conditions for (1.1) and discuss various assumptions that are used in subsequent
sections. These include second-order sufficient conditions of various types, along with
complementarity conditions and the Mangasarian–Fromovitz constraint qualification
(MFCQ). Finally, we quote a result that plays a key role in the analysis of the re-
mainder of the paper—that MFCQ is equivalent to boundedness of the set of optimal
Lagrange multipliers.

The Lagrangian for (1.1) is

L(z, λ) = φ(z) + λT g(z),(2.1)

where λ ∈ IRm is the vector of Lagrange multipliers. We assume throughout that z∗

is a strict local solution of (1.1). When a constraint qualification holds at z∗ (see
discussion below), first-order necessary conditions imply that there exists a vector
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λ∗ ∈ IRm such that

Lz(z∗, λ∗) = 0, g(z∗) ≤ 0, λ∗ ≥ 0, (λ∗)T g(z∗) = 0.(2.2)

These relations are the well-known Karush–Kuhn–Tucker (KKT) conditions. The
following sets play an important role in the remainder of the paper:

Sλ = {λ∗ |λ∗ satisfies (2.2)},(2.3a)

S = {z∗} × Sλ.(2.3b)

We can write the conditions (2.2) alternatively as[ ∇φ(z∗) +∇g(z∗)λ∗

g(z∗)

]
∈
[

0
N(λ∗)

]
,(2.4)

where N(λ) is the set defined by

N(λ)
def
=

{ {y | y ≤ 0 and yTλ = 0} if λ ≥ 0,
∅ otherwise.

(2.5)

The active set at z∗ is defined by

B = {i = 1, 2, . . . ,m | gi(z∗) = 0}.(2.6)

For any optimal multiplier λ∗ ∈ Sλ, we define the set B+(λ
∗) to be the “support”

of λ∗, that is,

B+(λ
∗) = {i ∈ B | λ∗

i > 0}.
We define B+ (without argument) as

B+
def
= ∪λ∗∈Sλ B+(λ

∗)(2.7)

and denote its complement in B by B0, that is,

B0
def
= B\B+.

Note that B0 is the set of indices i ∈ B such that λ∗
i = 0 for all λ∗ ∈ Sλ. The SC

condition for the set S (which we use only sparingly in this paper) is that

B0 = ∅.(2.8)

At some points in the paper, we use a condition that Fischer [8] calls weak com-
plementarity (WCC), namely that

Range[∇gi(z
∗)]i∈B+(λ∗) = Range[∇gi(z

∗)]i∈B+ for all λ∗ ∈ Sλ.(2.9)

Despite its name, WCC is not weaker than SC; neither condition implies the other.
In section 4, we define the term strict working set to be, roughly speaking, the set

of indices in i ∈ {1, 2, . . . ,m} for which the Lagrange multipliers λi of the (possibly
inexact) QP subproblem are strictly positive.

We assume throughout that the MFCQ holds at z∗ [15]. That is,

∇gB(z∗)T y < 0 for some y ∈ IRn,(2.10)
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where ∇gB(·) is the n× |B| matrix whose rows ∇gi(·), i ∈ B, are the gradients of the
functions gi, i ∈ B.

The general smoothness and first-order assumption that we make throughout the
paper is as follows.

Assumption 1. The functions φ(·) and g(·) are twice Lipschitz continuously differ-
entiable in an open neighborhood of z∗, and the first-order condition (2.2) is satisfied
at z∗.

The following result concerning boundedness of the optimal multiplier set Sλ is
often used in the analysis of later sections.
Lemma 2.1 (Gauvin [9]). Suppose that Assumption 1 holds. Then Sλ defined in

(2.3a) is bounded if and only if the MFCQ (2.10) is satisfied.
Since Sλ is defined by the linear conditions ∇φ(z∗) +∇g(z∗)λ∗ and λ∗ ≥ 0, it is

closed and convex. Therefore under the conditions of Lemma 2.1, it is also compact.
We use the notation δ(·) to denote Euclidean distances from the primal, dual,

and primal-dual optimal sets, according to context. Specifically, we define

δ(z)
def
= ‖z − z∗‖, δ(λ)

def
= dist (λ,Sλ), δ(z, λ)

def
= dist ((z, λ),S).(2.11)

We also use P (λ) to denote the projection of λ onto Sλ; that is, we have P (λ) ∈ Sλ
and ‖P (λ)−λ‖ = dist (λ,Sλ). Note that from (2.11) we have δ(z)2+δ(λ)2 = δ(z, λ)2,
and therefore

δ(z) ≤ δ(z, λ), δ(λ) ≤ δ(z, λ).(2.12)

For further analysis of these errors, we use B and B+ to define a direction set T as

T =

{
w | ∇gi(z

∗)Tw = 0 for i ∈ B+

∇gi(z
∗)Tw ≤ 0 for i ∈ B0

}
.(2.13)

We define the primal error by

e(z)
def
= z − z∗,

and decompose it as

e(z) = eT (z) + eN (z),(2.14)

where eT (z) is the projection of e(z) onto the cone T and eN (z) is the remainder
(which is, of course, normal to T at eT (z)). In fact, there are coefficients ξi, i ∈ B
(not necessarily unique), such that

eN (z) =
∑
i∈B+

ξi∇gi(z
∗) +

∑
i∈B0

ξi∇gi(z
∗), ξi ≥ 0 for i ∈ B0.(2.15)

Since T is a cone, it is easy to see that eT (·) and eN (·) are continuous in their
arguments and that

eN (αz) = αeN (z), eT (αz) = αeT (z) for all α ≥ 0.

Moreover, since eN (z)T eT (z) = 0, we have

‖eN (z)‖2 + ‖eT (z)‖2 = ‖e(z)‖2 = δ(z)2 ≤ δ(z, λ)2
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and therefore

‖eN (z)‖ ≤ δ(z), ‖eT (z)‖ ≤ δ(z).(2.16)

We use order notation in the following (standard) way: If a matrix, vector, or
scalar quantity M is a function of another matrix, vector, or scalar quantity A, we
write M = O(‖A‖) if there is a constant β such that ‖M‖ ≤ β‖A‖ for all ‖A‖
sufficiently small. We write M = Ω(‖A‖) if there is a constant β such that ‖M‖ ≥
β−1‖A‖ for all ‖A‖ sufficiently small, and M = Θ(‖A‖) if both M = O(‖A‖) and
M = Ω(‖A‖). We write M = o(‖A‖) if, for all sequences {Ak} with ‖Ak‖ → 0, the
corresponding sequence {Mk} satisfies ‖Mk‖/‖Ak‖ → 0.

If r is a vector and A is an index set, we use rA to denote the subvector consisting
of components ri, i ∈ A.

3. Second-order conditions. The presence of degeneracy allows for a variety
of second-order sufficient conditions, all of which can be expected to hold for a wide
range of problems and all of which are useful in investigating the local convergence
properties of various algorithms. In this section, we define three such conditions that
are needed by algorithms in later sections. We also introduce “extended” variants
of the nonlinear programming problem (1.1) that differ from (1.1) only in that just
a subset of the constraints is enforced. For some of these subsets, z∗ remains a
strict local solution satisfying some second-order sufficient condition; such subsets are
particularly useful in the context of the algorithm to be discussed in section 8. Finally,
we include here several results that relate the conditions introduced in this section to
the assumptions of the preceding section.

Second-order sufficient conditions typically assume that there is a positive value
σ > 0 such that the condition

wTLzz(z∗, λ∗)w ≥ σ‖w‖2(3.1)

holds for some set of λ∗ and w vectors. The three conditions used in this paper are
as follows.

Condition 2s.1 (second-order sufficient condition). The condition (3.1) holds for
all λ∗ ∈ Sλ and all w such that

∇gi(z
∗)Tw = 0 for all i ∈ B+,

∇gi(z
∗)Tw ≤ 0 for all i ∈ B0;

that is, w ∈ T .
Condition 2s.2 (strong second-order sufficient condition). The condition (3.1)

holds for all λ∗ ∈ Sλ and all w such that

∇gi(z
∗)Tw = 0 for all i ∈ B+.

Condition 2s.3 (locally strong second-order sufficient condition). For each λ∗ ∈
Sλ, the condition (3.1) holds for all w such that

∇gi(z
∗)Tw = 0 for all i ∈ B+(λ

∗).(3.2)

Any of these conditions, in tandem with Assumption 1, is sufficient to guarantee
that z∗ is a strict local solution of (1.1) (see, for instance, Bertsekas [5, Proposi-
tion 3.3.2, Exercise 3.3.7]). The following lemma relates these three conditions with
the WCC and SC conditions of section 2.
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Lemma 3.1.
(i) Condition 2s.3 ⇒ Condition 2s.2 ⇒ Condition 2s.1.
(ii) If the SC condition (2.8) holds, then Conditions 2s.2 and 2s.1 are identical.
(iii) If the WCC condition (2.9) holds, then Conditions 2s.3 and 2s.2 are identical.
Proof. The proof of (i) is obvious, since the set of vectors w on which (3.1) is

required to hold is successively larger as we go from 2s.1 to 2s.2 to 2s.3. Statement (ii)
follows immediately from the definition (2.8) of SC. For (iii), note that (2.9) implies
that

null [∇gi(z
∗)]Ti∈B+(λ∗) = null [∇gi(z

∗)]Ti∈B+
for all λ∗ ∈ Sλ,

from which the result follows immediately.
For any subset B̃ ⊆ B (where B is the active set defined in (2.6)), we can define

the nonlinear program in which just the constraints i ∈ B̃ are enforced as follows:

NLP(B̃): min
z

φ(z) subject to gi(z) ≤ 0, all i ∈ B̃.(3.3)

Note that any first-order point (z∗, λ∗
B̃) for (3.3) can be extended to a first-order

point for (1.1) by simply adding zeros to fill out the components i /∈ B̃. Conversely,
we can recover a point (z∗, λ∗

B̃) that satisfies the first-order conditions for (3.3) from

any solution (z∗, λ∗) ∈ S of (1.1) for which λ∗
i = 0, i /∈ B̃, by deleting the (zero)

components i /∈ B̃ from λ∗. Note, however, that the vector so obtained does not
necessarily satisfy second-order conditions for (3.3); in fact, z∗ may not even be a
local solution for (3.3).

We now define two sets Φ and Φ̄ made up of subsets B̃ ⊆ B as follows:

Φ
def
= {B̃ ⊆ B | z∗ is a local solution of NLP(B̃)(3.4)

that satisfies Condition 2s.1 applied to NLP(B̃)},
Φ̄

def
= {B̃ ∈ Φ | the optimal Lagrange multiplier for NLP(B̃) is unique}.(3.5)

When B̃ ∈ Φ̄, we use λ∗(B̃) to denote the unique optimal multiplier for NLP(B̃),
padded out with zeros to length m. Note that B ∈ Φ, so that Φ �= ∅. When the SC
and nondegeneracy conditions hold at the solution of (1.1), we have Φ = Φ̄ = {B}.

The sets Φ and Φ̄ become particularly relevant in section 8, where we propose an
algorithm whose steps are obtained by applying SQP to problems of the form NLP(B̃).
For now, we prove two simple results about the way that these sets are related to each
other and to the second-order sufficient conditions.
Lemma 3.2. Given some set B̃ ∈ Φ, a sufficient condition for B̃ ∈ Φ̄ is that the

vectors {∇gi(z
∗), i ∈ B̃ ∩ B+} are linearly independent.

Proof. Since B̃ ∈ Φ, there is a vector λ∗
B̃ such that∑

i∈B̃
λ∗
i∇gi(z

∗) +∇φ(z∗) = 0.(3.6)

For the components i ∈ B̃ ∩ B0, we must have that λ∗
i = 0, since otherwise the vector

λ∗
B̃ could be padded out with zeros to yield a vector λ∗ ∈ Sλ with λ∗

i �= 0 for i ∈ B0,
contradicting the definition of B+. Hence, we can rewrite (3.6) as∑

i∈B̃∩B+

λ∗
i∇gi(z

∗) +∇φ(z∗) = 0,
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and so linear independence of the given vector set implies uniqueness of λ∗
B̃. Therefore

B̃ ∈ Φ̄, as claimed.
Lemma 3.3. Suppose that Condition 2s.3 holds. Then Condition 2s.3 also holds

for NLP(B̃), where B̃ ⊆ B is such that there exists a λ∗ ∈ Sλ with B+(λ
∗) ⊆ B̃. In

particular, B̃ ∈ Φ.
Proof. Suppose that Condition 2s.3 holds for NLP. For all λ∗ ∈ Sλ with B+(λ

∗) ⊆
B̃, we have by the correspondence between optimal Lagrange multipliers for NLP and
NLP(B̃) discussed above that (3.1) holds for all w satisfying (3.2). Hence, Condition
2s.3 holds for the problem NLP(B̃) as well. Since there is at least one vector λ∗

with the properties indicated, and since Condition 2s.3 implies Condition 2s.1 by
Lemma 3.1(i), we have B̃ ∈ Φ.

4. The iSQP framework. In the best-known form of the SQP algorithm, the
following inequality constrained subproblem is solved to obtain the step at each iter-
ation:

min
∆z

∆zT∇φ(z) + 1
2∆zTLzz(z, λ)∆z(4.1)

subject to g(z) +∇g(z)T∆z ≤ 0,

where (z, λ) is the current primal-dual iterate. Denoting the Lagrange multipliers for
the constraints in (4.1) by λ+, we see that the solution ∆z satisfies the following KKT
conditions (cf. (2.4)):[ Lzz(z, λ)∆z +∇φ(z) +∇g(z)λ+

g(z) +∇g(z)T∆z

]
∈
[

0
N(λ+)

]
.(4.2)

We focus our attention, however, on a more general framework that allows for
inexactness in the subproblem solution by introducing perturbations into both the
objective and constraints of (4.1). We assume only that (∆z, λ+) is the solution of

min
∆z

∆zT (∇φ(z) + t) + 1
2∆zTLzz(z, λ)∆z(4.3)

subject to g(z) +∇g(z)T∆z + r ≤ 0,

for some perturbation vectors t and r. The KKT conditions for (4.3) are[ Lzz(z, λ)∆z +∇φ(z) + t+∇g(z)λ+

g(z) +∇g(z)T∆z + r

]
∈
[

0
N(λ+)

]
.(4.4)

We introduce further terminology and notation here: Given a primal-dual solution
(∆z, λ+) to (4.1) or (4.3), the strict working set is the set of indices i for which λ+

i is
strictly positive. We denote this set by B(z, λ) in the case of (4.1) and B(z, λ; t, r) in
the case of (4.3).

When (z, λ) is sufficiently close to S, it happens under mild assumptions that the
strict working set B(z, λ; t, r) from an iteration of iSQP identifies a superset of B+(λ

∗)
for some optimal multiplier λ∗. This result is interesting for its own sake and also in
the context of section 8, so we prove it here.
Lemma 4.1. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold. Then

there is a threshold value δ̄ such that whenever δ(z, λ) ≤ δ̄ and ‖(t, r)‖ ≤ δ̄, the
solution of the iSQP subproblem (4.3) yields a strict working set B(z, λ; t, r) such that
B+(λ

∗) ⊆ B(z, λ; t, r) for at least one λ∗ ∈ Sλ.
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Proof. Suppose, on the contrary, that there is a sequence (z�, λ�) with δ(z�, λ�) ↓
0 and a sequence of perturbations (t�, r�) with ‖(t�, r�)‖ ↓ 0 such that the stated
property does not hold. That is, taking the active set B(z�, λ�; t�, r�) for the iSQP
subproblem, we find that the subvector λ∗

B\B(z�,λ�;t�,r�) is nonzero for all λ∗ ∈ Sλ. By
taking a subsequence if necessary, we can assume that B(z�, λ�; t�, r�) ≡ B̂ ⊆ B for all
�. By the compactness of Sλ (Lemma 2.1) and continuity of ‖λ∗

B\B̂‖ as a function of

λ∗, we have that

0 < ζ
def
= min

λ∗∈Sλ

∥∥∥λ∗
B\B̂

∥∥∥ .

From Lemma 5.1, we have that the updated multiplier (λ�)+ obtained from the iSQP
subproblem (4.3) at (z�, λ�, t�, r�) satisfies

δ((λ�)+) = O(δ(z�)) +O(‖(t�, r�)‖) ↓ 0.
Denoting by P ((λ�)+) the projection of (λ�)+ onto the set Sλ, we have that

δ((λ�)+)2 =
∥∥(λ�)+ − P ((λ�)+)

∥∥2 ≥
∑
i∈B\B̂

[
P ((λ�)+)i

]2 ≥ ζ2 > 0,

giving a contradiction.

5. Local convergence of iSQP. In this section, we describe the improvement
obtained in a single iSQP step (4.3) (alternatively, (4.4)).

First, we apply a result of Robinson [17] to show that small-norm local solutions
∆z exist for the inexact subproblem (4.3), provided that (z, λ) is sufficiently close to
the solution set S defined in (2.3b). Our two main results, Theorems 5.2 and 5.3, relate
the errors eN (z +∆z) and δ(z +∆z, λ+) at the new iterate to errors at the current
point (z, λ). In particular, Theorem 5.3 demonstrates that superlinear convergence of
the primal iterate depends critically on stability of the Lagrange multiplier estimates:
λ must not change too much from one iteration to the next.

The first result is obtained by applying Robinson’s stability results in [17] to the
iSQP subproblem (4.3).
Lemma 5.1. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold. Then

for all (z, λ, t, r) with δ(z, λ) and ‖(t, r)‖ sufficiently small, the problem (4.3) has a
local solution ∆z near 0 that satisfies

‖∆z‖+ δ(λ+) = O(δ(z)) +O(‖(t, r)‖),(5.1)

where λ+ is the vector of multipliers corresponding to the solution ∆z of (4.3).
Proof. For any fixed λ∗ ∈ Sλ, consider the problem

min
∆z

∆zT∇φ(z∗) + 1
2∆zTLzz(z∗, λ∗)∆z(5.2)

subject to g(z∗) +∇g(z∗)T∆z ≤ 0,

whose primal-dual solution set is {0} × Sλ. MFCQ holds for this problem, since the
active set B is the same as for the nonlinear problem (1.1). It is easy to see that
Condition 2s.1 is satisfied as well.

Consider now the parametrized version (4.3) of the problem (5.2), in which the
parametrization is defined by the vector p = (z, λ, t, r). (We recover (5.2) from (4.3)
by setting p = p0 = (z∗, λ∗, 0, 0).) We define the following subsets of IRn:
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stat(p) = {∆z | (∆z, λ+) satisfies KKT conditions for (4.3) for some λ+},
lsol(p) = {∆z |∆z is a local solution of (4.3)}.

By applying Theorem 3.2 of Robinson [17], we find that there is a neighborhood
N1(λ

∗) of p0 and a neighborhood M1(λ
∗) of 0 such that

stat(p) ∩M1(λ
∗) is continuous in p at p0;

lsol(p)∩M1(λ
∗) is nonempty for p ∈ N1(λ

∗) and a subset of stat(p)∩M1(λ
∗).

Moreover, we have from Theorem 4.2 of Robinson [17] that there is a neighborhood
N2(λ

∗) of p0 and a constant ε(λ∗) > 0 such that for each p ∈ N2(λ
∗) we have that all

stationary pairs (∆z, λ+) for (4.3) satisfy

inf
λ̄∈Sλ

‖(∆z, λ+ − λ̄)‖(5.3)

≤ ε(λ∗)

∥∥∥∥∥∥

 (Lzz(z, λ)− Lzz(z∗, λ∗))∆z + (∇φ(z)−∇φ(z∗))

+(∇g(z)−∇g(z∗))λ+ + t
(g(z)− g(z∗)) + (∇g(z)−∇g(z∗))T∆z + r



∥∥∥∥∥∥ .

For the left-hand side of this expression, it is easy to see that

inf
λ̄∈Sλ

‖(∆z, λ+ − λ̄)‖ ≥ 1√
2

(‖∆z‖+ δ(λ+)
)
.(5.4)

For the right-hand side, we have by the Lipschitz continuity of ∇2φ and ∇2gi, i =
1, 2, . . . ,m, that

‖[Lzz(z, λ)− Lzz(z∗, λ∗)]∆z‖ ≤ C1 (δ(z) + ‖λ− λ∗‖) ‖∆z‖,
‖∇φ(z)−∇φ(z∗)‖ ≤ C1δ(z),

‖g(z) +∇g(z)T∆z − g(z∗)−∇g(z∗)T∆z‖ ≤ C1δ(z) (1 + ‖∆z‖)
for some constant C1 (which is, in particular, independent of the multiplier λ∗).
Moreover, by the boundedness of Sλ, we have after a possible adjustment of C1 that∥∥∇g(z)λ+ −∇g(z∗)λ+

∥∥ ≤ C1‖λ+‖δ(z) ≤ C1

(
C2 + δ(λ+)

)
δ(z),

where C2 is a constant that bounds the norms of all elements of Sλ. By using these
expressions together with (5.4) in (5.3), we have

‖∆z‖+ δ(λ+)(5.5)

≤ ε(λ∗)C3

[‖λ− λ∗‖‖∆z‖+ δ(z)‖∆z‖+ δ(z) + δ(λ+)δ(z) + ‖(t, r)‖] ,
where C3 is a constant (in particular, independent of the particular choice of λ∗ ∈ Sλ).
By reducing the size of N2(λ

∗) if necessary, we have that

ε(λ∗)C3 [‖λ− λ∗‖+ δ(z)] ≤ 1/4 for all (z, λ, t, r) ∈ N2(λ
∗).(5.6)

Thus, by transferring terms involving ‖∆z‖ and δ(λ+) from the right-hand side to
the left-hand side in (5.5), we obtain

‖∆z‖ [1− ε(λ∗)C3(‖λ− λ∗‖+ δ(z))]

+ δ(λ+) [1− ε(λ∗)C3δ(z)] ≤ ε(λ∗)C3 [δ(z) + ‖(t, r)‖] ,
so that from (5.6) we have that

‖∆z‖+ δ(λ+) ≤ 2ε(λ∗)C3 [δ(z) + ‖(t, r)‖] .(5.7)
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Note that (5.7) holds for the fixed choice of λ∗ in Sλ, and only for (z, λ, t, r) within
the neighborhood N2(λ

∗) of (z∗, λ∗, 0, 0). Since

{N2(λ
∗) |λ∗ ∈ Sλ}

is a cover of the set

{z∗} × Sλ × {0} × {0},(5.8)

we have by the compactness of Sλ (and hence of (5.8)) that there is a finite subcover,
say

{N2(λ
∗
l ) |λ∗

l ∈ Sλ, l = 1, 2, . . . , L}.
Note that the set

∪l=1,2,...,LN2(λ
∗
l )

is a neighborhood of (5.8).
By setting

C4 = 2C3 max
l=1,2,...,L

ε(λ∗
l ),

we have from (5.7) that

‖∆z‖+ δ(λ+) ≤ C4 [δ(z) + ‖(t, r)‖](5.9)

whenever

(z, λ, t, r) ∈ ∪l=1,2,...,LN2(λ
∗
l ).(5.10)

We can choose δ̄ sufficiently small that

δ(z, λ) ≤ δ̄, ‖(t, r)‖ ≤ δ̄ ⇒ (z, λ, t, r) ∈ ∪l=1,2,...,LN2(λ
∗
l ),

so that (5.9) holds for all (z, λ) with δ(z, λ) ≤ δ̄ and ‖(t, r)‖ ≤ δ̄.
In subsequent discussions, we use the term “iSQP” to describe the inexact SQP

procedure in which each iteration consists of obtaining a solution to the problem (4.3)
from the current iterate (z, λ) and then setting

(z, λ)← (z +∆z, λ+),(5.11)

where (∆z, λ+) is a primal-dual solution of (4.3) that satisfies (5.1).
The next result shows that while the iSQP step may not give a “superlinear”

decrease in distance to the solution set, it does reduce the error substantially in the
eN (·) component of the primal error vector. (This result explains an observation
made while doing computational experiments for an earlier paper [18]. It is similar
to Lemma 3.12 of Fischer [8], though the latter result assumes WCC (2.9), which is
not needed below.)
Theorem 5.2. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold.

For all (z, λ) with δ(z, λ) and ‖(t, r)‖ sufficiently small, the new iterate generated by
the iSQP algorithm satisfies

‖eN (z +∆z)‖ = O(δ(z)2) +O(‖t‖2) +O(‖r‖).(5.12)
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Moreover, we have

gB+
(z +∆z) = O(δ(z)2) +O(‖t‖2) +O(‖r‖).(5.13)

Proof. Let {(zk, λk, tk, rk)} be any sequence with

δ(zk, λk)→ 0, ‖(tk, rk)‖ → 0,

and let (∆zk, λk+) be the primal-dual solution to (4.3) obtained when (z, λ) = (zk, λk)
and (t, r) = (tk, rk). Denote the corresponding sequence of strict working sets for
the iSQP subproblem (4.3) by Bk. From Lemma 5.1, we have ∆zk → 0, so since
g(zk) → g(z∗) and rk → 0, none of the inactive indices j /∈ B can be active in the
subproblem for k sufficiently large. We can therefore assume without loss of generality
that Bk ⊆ B.

Note first that, from (5.1) and ‖e(z)‖ = δ(z), we have

‖e(zk +∆zk)‖ ≤ ‖e(zk)‖+ ‖∆zk‖ = O(δ(zk)) +O(‖(tk, rk)‖).(5.14)

For all active indices i ∈ Bk, we have from Taylor’s theorem together with (5.14) and
(4.3) that

∇gi(z
∗)T e(zk +∆zk) = gi(z

k +∆zk)− gi(z
∗) +O(δ(zk)2) +O(‖(tk, rk)‖2)

= gi(z
k) +∇gi(z

k)T∆zk +O(δ(zk)2) +O(‖(tk, rk)‖2)
= −rki +O(δ(zk)2) +O(‖(tk, rk)‖2)
= r̃ki ,(5.15)

where

r̃ki = O(δ(zk)2) +O(‖tk‖2) +O(‖rk‖).(5.16)

Meanwhile, for i ∈ B\Bk, we have from (4.2) and (5.1) that

∇gi(z
∗)T e(zk +∆zk) = gi(z

k) +∇gi(z
k)T∆zk +O(δ(zk)2) +O(‖(tk, rk)‖2)

≤ −rki +O(δ(zk)2) +O(‖(tk, rk)‖2)
≤ r̃ki ,(5.17)

where the estimate (5.16) holds once again.

Since (∆zk, λk+) is the solution to (4.3), then, by boundedness of Sλ, we have
from (4.4) and (5.1) that

∇φ(zk) + Lzz(zk, λk)∆zk +
∑
i∈Bk

λk+i ∇gi(z
k) + tk = 0

⇒ ∇φ(z∗) +
∑
i∈Bk

λk+i ∇gi(z
∗) = O(δ(zk)) +O(‖(tk, rk)‖).

By the definition (2.7) of B+, there is a λ∗ ∈ Sλ such that

∇φ(z∗) +
∑
i∈B+

λ∗
i∇gi(z

∗) = 0, λ∗
B+

> 0.(5.18)
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(We can construct λ∗ by taking λ(i) ∈ Sλ with λ
(i)
i > 0 for each i ∈ B+, according to

the definition (2.7), and setting λ∗ =
∑
i∈B+

λ(i)/|B+|.) By combining the last two
equations, we obtain∑

i∈B+\Bk
λ∗
i∇gi(z

∗) =
∑
i∈Bk

(λk+i − λ∗
i )∇gi(z

∗) +O(δ(zk)) +O(‖(tk, rk)‖).

By taking inner products of both sides with e(zk + ∆zk) and using (5.14), we have
by (5.15), (5.16), and boundedness of Sλ that∑

i∈B+\Bk
λ∗
i∇gi(z

∗)T e(zk +∆zk) = O(δ(zk)2) +O(‖tk‖2) +O(‖rk‖).

Since λ∗
B+

> 0, and since by (5.17) none of the terms∇gi(z
∗)T e(zk+∆zk), i ∈ B+\Bk,

can be larger than a small positive number of the size indicated in (5.16), we have
that

∇gi(z
∗)T e(zk +∆zk) = r̃ki for all i ∈ B+\Bk,

where the values of r̃ki may have been adjusted from (5.17) but still satisfy the estimate
(5.16). Hence, for the indices i ∈ B+\Bk, we can replace the inequality by an equality
in (5.17). By combining this observation with (5.15) and (5.17), we find that

∇gB+(z
∗)T e(zk +∆zk) = r̃kB+

,(5.19a)

∇gB0
(z∗)T e(zk +∆zk) ≤ r̃kB0

,(5.19b)

where

‖r̃kB‖ = O(δ(zk)2) +O(‖tk‖2) +O(‖rk‖).(5.20)

Consider now the partitioning of e(zk+∆zk) into its eN (·) and eT (·) components,
as in (2.14). From (2.13), we see that the eT component is obtained by solving

min
eT

1

2
‖eT − e(zk +∆zk)‖2(5.21)

subject to ∇gB+(z
∗)T eT = 0, ∇gB0(z

∗)T eT ≤ 0.

The problem (5.21) is a feasible and strictly convex problem, so it has a unique
solution. Also consider the following perturbation:

min
eT

1

2
‖eT − e(zk +∆zk)‖2(5.22)

subject to ∇gB+(z
∗)T eT = r̃kB+

, ∇gB0(z
∗)T eT ≤ r̃kB0

,

for which the (unique) solution is e(zk + ∆zk), because of (5.19). By applying
Lemma B.1, we have that the solutions of (5.21) and (5.22) are related as follows:

‖eT (zk +∆zk)− e(zk +∆zk)‖ = O(‖r̃kB‖) = O(δ(zk)2) +O(‖tk‖2) +O(‖rk‖).
Since eN (·) = e(·)− eT (·), the result (5.12) follows immediately.

The second part of the result follows readily from a Taylor series argument, to-
gether with (5.19a), (5.14), and the estimate of ‖r̃k‖.
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We are now ready to prove the result about local convergence of the iSQP algo-
rithm.
Theorem 5.3. Suppose that Assumption 1, Condition 2s.1, and the MFCQ con-

dition hold. Suppose that a new iterate (z+∆z, λ+) is generated by the iSQP algorithm
from the point (z, λ). Then for all (z, λ, t, r) with δ(z, λ) and ‖(t, r)‖ sufficiently small,
we have

δ(z +∆z, λ+) = ‖λ− λ+‖O(δ(z)) +O(δ(z)2) +O(‖(t, r)‖).(5.23)

For the special case in which g(·) is linear, we have

δ(z +∆z, λ+) = O(δ(z)2) +O(‖(t, r)‖).(5.24)

Proof. Consider the problem[ ∇φ(z̃) +∇g(z̃)λ̃+ t̃
g(z̃) + r̃

]
∈
[

0

N(λ̃)

]
,(5.25)

where

t̃ = Lzz(z, λ)∆z +∇φ(z) + t+∇g(z)λ+(5.26a)

−∇φ(z +∆z)−∇g(z +∆z)λ+,

r̃ = g(z) +∇g(z)T∆z + r − g(z +∆z).(5.26b)

By (4.4), a solution of (5.25) is simply (z̃, λ̃) = (z + ∆z, λ+). Viewing (5.25) as a
perturbed version of (2.4), we can apply Corollary 4.3 of Robinson [17] to deduce that

δ(z +∆z, λ+) = O(‖(t̃, r̃)‖).(5.27)

By using the assumed smoothness of φ and g, we have

t̃ = ∇2φ(z)∆z +

m∑
i=1

λi∇2gi(z)∆z − [∇φ(z +∆z)−∇φ(z)]

−[∇g(z +∆z)−∇g(z)]λ+ + t

=

m∑
i=1

(λi − λ+
i )∇2gi(z)∆z +O(‖∆z‖2) + t,

so by using the boundedness of the sets containing λ and λ+ and the estimate (5.1),
we obtain

‖t̃‖ ≤ ‖λ− λ+‖ [O(δ(z)) +O(‖(t, r)‖)] +O(δ(z)2) +O(‖(t, r)‖2) +O(‖t‖)
= ‖λ− λ+‖O(δ(z)) +O(δ(z)2) +O(‖(t, r)‖).(5.28)

For r̃, we have

r̃ = O(‖∆z‖2) + r = O(δ(z)2) +O(‖(t, r)‖).(5.29)

The result (5.23) is immediate from (5.27), (5.28), and (5.29).
The second result (5.24) also is immediate if we observe that the term containing

λ− λ+ vanishes from t̃ when g(·) is linear.
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6. sSQP. Superlinear convergence of the sSQP method has been discussed by
Wright [18] and Hager [11]. We show here that this method can be placed in the iSQP
framework and that the superlinear convergence result therefore can be derived from
Theorem 5.3.

The sSQP algorithm is derived by applying proximal point ideas to the SQP
subproblem (4.1). Specifically, it adds a term to the objective for (4.1) that penalizes
the step from λ to λ+. From a current primal-dual iterate (z, λ), we find a local
solution of the following minimax subproblem for (∆z, λ+) such that (∆z, λ+ − λ) is
small:

min
∆z

max
λ+≥0

∆zT∇φ(z) + 1
2∆zTLzz(z, λ)∆z(6.1)

+(λ+)T [g(z) +∇g(z)T∆z]− 1
2µ‖λ+ − λ‖2,

where µ is a positive parameter that may be varied from one iteration to the next.
The first-order conditions for (∆z, λ+) to solve (6.1) are[ Lzz(z, λ)∆z +∇φ(z) +∇g(z)λ+

g(z) +∇g(z)T∆z − µ(λ+ − λ)

]
∈
[

0
N(λ+)

]
.(6.2)

It is easy to show that for δ(z, λ) sufficiently small, any solution to (6.2) with ‖∆z‖
small must have λ+

i = 0 for i /∈ B. For such indices i, we have

gi(z) +∇gi(z)
T∆z − µ(λ+

i − λi) ≤ gi(z) +∇gi(z)
T∆z + µλi ≤ (1/2)gi(z

∗) < 0,

when the second inequality holds whenever δ(z, λ) and ‖∆z‖ are sufficiently small. By
complementarity, it follows that λ+

i = 0, as claimed. Therefore we can asymptotically
drop the inactive constraints from consideration. Denoting by B̃ ⊆ B the subset of
active indices in (6.2) (so that λ+

B\B̃ = 0), we have by partitioning indices that


 Lzz(z, λ)∆z +∇φ(z) +∇gB̃(z)λ

+

B̃
gB̃(z) +∇gB̃(z)

T∆z − µ(λ+

B̃ − λB̃)
gB\B̃(z) +∇gB\B̃(z)

T∆z + µλB\B̃


 ∈


 0

N(λ+

B̃ )
N(λ+

B\B̃)


 .

Since µλB\B̃ ≥ 0, the pair (∆z, λ+) that solves this system also satisfies


 Lzz(z, λ)∆z +∇φ(z) +∇gB̃(z)λ

+

B̃
gB̃(z) +∇gB̃(z)

T∆z − µ(λ+

B̃ − λB̃)
gB\B̃(z) +∇gB\B̃(z)

T∆z


 ∈


 0

N(λ+

B̃ )
N(λ+

B\B̃)


 .(6.3)

Hence, we can view sSQP as a special case of (4.4) in which we have

t = 0, rB̃ = −µ(λ+

B̃ − λB̃), r{1,...,m}\B̃ = 0.(6.4)

There is no circular logic here in the choice of λ+. If we fix λ+ at its optimal value
from (6.1) and fix t and r in (4.4) at the values in (6.4), then the same (∆z, λ+) that
solves (6.1) (and (6.3)) will solve (4.4).

A form of the sSQP algorithm was proposed earlier by Bartholomew-Biggs [3].
The basic steps generated by Bartholomew-Biggs’s algorithm have the form indicated
above (except that a quasi-Newton approximation is used in place of the actual Hes-
sian of the Lagrangian). However, there are numerous modifications that place the
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algorithm in the global convergence framework of that author’s REQP algorithm [1, 2].
For instance, the multiplier estimates λ are not necessarily updated at each iteration,
and successive values of µ are chosen by heuristics rather than by an estimate of the
distance to the solution set, as is the case in [18]. The focus of Bartholomew-Biggs’s
work is somewhat complementary to that of Wright and Hager, since the latter con-
cerns itself with local convergence issues (for the case in which MFCQ is satisfied),
while the former focuses on global convergence. The sSQP approach is also closely
related to a variant of the method of multipliers/augmented Lagrangian algorithm
(see Bertsekas [4] and [5, section 4.2]) in which just one Newton step is applied to the
augmented Lagrangian function at each iteration, and in which the parameter µ is
decreased to zero. Indeed, such a variant is given for the case of equality constrained
problems by Bertsekas [4, p. 240], who points out its superlinear local convergence
properties (for the case in which the active constraint gradients are linearly indepen-
dent).

Superlinear convergence of the sSQP algorithm can be proved if the stabilization
parameter µ is related appropriately to the distance δ(z, λ) from (z, λ) to the solution
set S. Such an estimate is readily available; we show in the appendix (Theorem A.1)
that

η(z, λ)
def
=

∥∥∥∥
[ Lz(z, λ)

min(λ,−g(z))

]∥∥∥∥ = Θ(δ(z, λ)),(6.5)

where the “min” operation applies componentwise to the argument vectors.
Suppose now that we choose µ to satisfy

µ = η(z, λ)τ ,(6.6)

where τ ∈ (0, 1). From (6.3), since B̃ denotes the active constraints in (6.2), we have
that [ Lzz(z, λ) ∇gB̃(z)

∇gB̃(z)
T −µI

] [
∆z

λ+

B̃ − λB̃

]
=

[ −∇φ(z)−∇gB̃(z)λB̃
−gB̃(z)

]
.(6.7)

From [11, equation (33)], we have that

‖λ+ − λ‖ = O(δ(z, λ)).(6.8)

Therefore if we define (t, r) as in (6.4), we have from (6.5), (6.6), and (6.8) that

(t, r) = O(δ(z, λ)1+τ ).(6.9)

By substituting (6.8) and (6.9) into (5.23), we obtain

δ(z +∆z, λ+) = O(δ(z, λ))O(δ(z)) +O(δ(z, λ)1+τ ) = O(δ(z, λ)1+τ ).

Hence, the convergence rate of sSQP can be derived by placing it in the framework
of iSQP.

The same result can be derived from the results of Hager [11]. The following
result is a simple consequence of [11, Theorem 1] (restated with a minor correction
by Wright [19, Theorem 8]).
Theorem 6.1. Suppose that Assumption 1, Condition 2s.3, and the MFCQ con-

dition hold. Suppose, too, that µ defined by (6.6) is used as the stabilization parameter
at each iteration of sSQP. Then there exists a positive threshold δ̄ such that for any
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(z, λ) with δ(z, λ) ≤ δ̄ there exists a local solution (∆z, λ+) of the sSQP subproblem
(6.1) such that

δ(z +∆z, λ+) = O(δ(z, λ)1+τ ).(6.10)

Proof. From Condition 2s.3, we have for each λ∗ ∈ Sλ that wTLzz(z∗, λ∗)w ≥
σ‖w‖2 for some σ > 0 and all w with ∇gB+(λ∗)(z

∗)Tw = 0. Moreover, the choice
(6.6) ensures that we have

σ0δ(z, λ) ≤ µ ≤ σ1,

for δ(z, λ) sufficiently small, where σ0 and σ1 are constants defined in Theorem 1
of Hager [11], with σ0 “sufficiently large.” By applying Hager’s result, we find that
there is a neighborhood U(λ∗) of (z∗, λ∗) such that if (z, λ) ∈ U(λ∗), then the sSQP
subproblem (6.1) yields a local solution such that (6.10) is satisfied. Note that the set

{U(λ∗) |λ∗ ∈ Sλ}
forms a cover of S. By compactness, we can select a finite subcover

{U(λ∗
1),U(λ∗

2), . . . ,U(λ∗
p)}

for some λ∗
1, λ

∗
2, . . . , λ

∗
p ∈ Sλ. By choosing δ̄ positive but small enough that

δ(z, λ) ≤ δ̄ ⇒ (z, λ) ∈ U(λ∗
1) ∪ U(λ∗

2) ∪ · · · ∪ U(λ∗
p),

we obtain the desired result.
In Wright [18], it was shown that if the initial estimate λ0 is not too close to the

boundary of Sλ (in the sense that λ0
i ≥ ξ for some ξ > 0 and all i ∈ B), then all

steps are obtained from a system of the form (6.7) with B̃ = B. Moreover, we can set
τ = 1 in (6.6) (yielding a quadratic rate of convergence), and we need assume only
that the weaker Condition 2s.1 holds. Implementation of such an approach would not
be difficult, since it requires only a reliable way to estimate the active set B, along
with solution of a subproblem to adjust λB so that all components of this vector are
sufficiently positive.

7. Fischer’s method. Fischer’s method, as described in the paper [8], gener-
ates steps ∆z in the primal variables by solving a standard SQP subproblem. The
Lagrange multiplier estimate obtained from this subproblem is discarded, and an aux-
iliary subproblem similar to the SQP subproblem is solved to obtain the multiplier
estimate corresponding to the updated value of z. Superlinear convergence of the
resulting algorithm is proved in [8], under assumptions that we discuss later.

Fischer’s method can be described in terms of the iSQP framework of section 4
as analyzed in section 5. We can show that the primal step ∆z generated by this
method can be embedded in a primal-dual solution (∆z, λ̃+) to an iSQP subproblem
of the form (4.3), so that Theorem 5.3 applies. Superlinear convergence of the primal
iterates then follows from the fact that the difference between λ̃+ and Fischer’s specific
Lagrange multiplier estimate λ̂ has magnitude O(δ(z)). Superlinear convergence of

Fischer’s Lagrange multiplier estimates λ̂ to the set Sλ follows from the fact that
δ(λ̂) = O(δ(z)).

A single step of Fischer’s algorithm proceeds as follows. Given the primal iterate
z, the following subproblem is solved to find the pair (d, λ̂):[ ∇φ(z) + d+∇g(z)λ̂

g(z) +∇g(z)T d

]
∈
[

0

N(λ̂)

]
.(7.1)
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The primal component d is discarded, and λ̂ is adopted as the Lagrange multiplier
estimate. The next primal step is then obtained by solving the SQP subproblem (4.2)

from the point (z, λ̂), that is,[ Lzz(z, λ̂)∆z +∇φ(z) +∇g(z)λ+

g(z) +∇g(z)T∆z

]
∈
[

0
N(λ+)

]
.(7.2)

The dual component λ+ is now discarded (indeed, there is no need to calculate it at
all), and this iteration is complete. The next iteration begins by solving (7.1) again,

with z +∆z replacing z, to obtain the new multiplier estimate λ̂+.
Note that in the auxiliary problem (7.1), (d, λ̂) is the primal-dual solution of the

problem

min
d

1

2
dT d+ dT∇φ(z) subject to ∇g(z)T d+ g(z) ≤ 0

(see Fischer [8, p. 13]). More tellingly, we can view (7.1) as a perturbation of the
problem [ ∇φ(z∗) + d+∇g(z∗)λ̂

g(z∗) +∇g(z∗)T d

]
∈
[

0

N(λ̂)

]
,(7.3)

in which z has been replaced by z∗. Noting that the solution set for (7.3) is (d, λ̂) ∈
0 × Sλ, we can again apply Robinson’s results from [17] (and, in particular, [17,
Corollary 4.3]) to obtain the estimate

‖d‖+ δ(λ̂) = O(δ(z))(7.4)

for all solutions (d, λ̂) of (7.1).
Fischer [8, Theorem 3.13] shows that under certain assumptions (discussed below),

the primal component ∆z for the solution of (7.2) is also the solution of the following
iSQP subproblem:[ Lzz(z, λ̂)∆z +∇φ(z) +∇g(z)λ̃+ + t

g(z) +∇g(z)T∆z + r

]
∈
[

0

N(λ̃+)

]
,(7.5)

where the perturbation vectors t and r and the multiplier estimates λ̃+ satisfy

t = 0, ‖r‖ = O(δ(z)2), ‖λ̃+ − λ̂‖ = O(δ(z)).(7.6)

Hence, Theorem 5.3 can be applied to deduce that

δ(z +∆z, λ̃+) = ‖λ̃+ − λ̂‖O(δ(z)) +O(δ(z)2) +O(‖(t, r)‖) = O(δ(z)2).(7.7)

Since δ(z +∆z) ≤ δ(z +∆z, λ̃+), this expression implies Q-quadratic convergence in
the primal iterates. Q-quadratic convergence of the primal-dual iterates follows from
(7.4). Note that the multipliers λ̃+ are never calculated explicitly by the algorithm.

The assumptions needed to prove Theorem 3.13 in [8] include the WCC condition
(2.9), the MFCQ condition (2.10), the second-order sufficient Condition 2s.1, and the
following constant-rank condition:

∇gB+
(z) has constant rank for all z near z∗.(7.8)
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8. SQP with strict working sets. Although the preceding two sections show
that modified versions of SQP algorithms converge superlinearly on degenerate prob-
lems (under certain assumptions), practical experience shows that standard SQP
strategies usually encounter little trouble with problems of this type. Frequently, the
strict working sets Bk for the QP subproblems settle down to a constant set in the
neighborhood of the solution, and the Lagrange multiplier estimates often approach
a unique limit.

As we saw in Theorem 5.3, superlinear convergence depends critically on stabi-
lization of the Lagrange multiplier estimates λk. Such stabilization is guaranteed to
occur if the strict working sets Bk eventually become subsets of some fixed set B̃ ⊆ B
with the following properties:

(i) there is a unique multiplier λ∗(B̃) ∈ Sλ such that λ∗
i (B̃) = 0 for i /∈ B̃; and

(ii) the nonlinear program NLP(B̃) obtained by dropping the constraints i /∈ B̃
from (1.1) still has a minimizer at z∗ that satisfies Condition 2s.1.

If these properties hold, the only possible limit for the sequence of Lagrange multiplier
estimates λk is the unique vector λ∗(B̃) defined in (i). Recall from definition (3.5)
that Φ̄ contains precisely those subsets of B with properties (i) and (ii).

The code SNOPT [10] is a recent implementation of SQP that appears to exhibit
fast local convergence on most degenerate problems of the type we consider in this
paper. Rather than our idea of a strict working set, SNOPT uses the slightly different
concept of a working setWk associated with each iteration k, with the properties that
equality holds for the ith linearized constraint if i ∈ Wk; the multiplier estimates λki
are zero for i /∈ Wk; and the gradients ∇gi(x

k), i ∈ Wk, are linearly independent.
We conjecture that the good behavior of SNOPT is due to the fact that the working
sets Wk eventually become subsets of a set B̃ with the properties (i) and (ii) above.
Features of SNOPT that promote this behavior, besides the maintenance of linear
independence already mentioned, include

(a) the use of warm starts; that is, the working set Wk from the QP subproblem
at iteration k is used as a starting estimate of the working set Wk+1 at
iteration k + 1; and

(b) the fact that it allows constraints not in the working set (i /∈ Wk) to be
violated by small tolerances.

Typical behavior of an algorithm with these properties is as follows. Because of linear
independence of the gradients ∇gi(x

k), i ∈ Wk, a sufficiently advanced iterate will
produce a working set Wk with the property (i). Iterate k + 1 then uses Wk as a
starting guess and solves a QP that takes just the constraints i ∈ Wk into account.
It finds a solution with this working set in which the “ignored” constraints i /∈ Wk

are violated by only small amounts, if at all, making this QP solution an acceptable
approximation to the true SQP step. It then sets Wk+1 =Wk, or possibly drops the
indices that have become inactive in the subproblem. The new working set usually
retains the property (i), and subsequent iterations will stay with this set or some
subset thereof, forcing the Lagrange multipliers to converge to a unique limit.

Unfortunately, a rigorous theoretical result concerning the SQP behavior just
discussed does not seem to be possible. Instead, we propose here a formal algorithm
called SQPsws (for “SQP with strict working sets”) that is motivated by the informal
procedure with warm starts and tolerances just described. We show that if, near
the solution, a strict working set with the properties (i), (ii) is encountered at some
iteration, then Algorithm SQPsws converges superlinearly thereafter, even if the strict
working sets at later iterations fail to have one of these properties. While a strict
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working set of this type is likely to be identified in most practical situations, we
can prove a rigorous convergence result only under conditions similar to those of the
preceding two sections.

The key features of Algorithm SQPsws are its use of a stack of candidate warm-
start strict working sets (instead of just the working set from the previous QP sub-
problem) and its toleration of a specific level of infeasibility for constraints outside
the strict working set, which has the effect of allowing the Lagrange multipliers to
stabilize, thereby leading to superlinear convergence. Specifically, the tolerances re-
quire that violation of the constraints outside the strict working set be no more than
η(zk, λk)1+τ , where the quantity η(·, ·) defined in (6.5) measures distance from (zk, λk)
to the solution set S, and τ is a parameter in the range (0, 1).

The stack of strict working sets maintained by Algorithm SQPsws has the form

top→ B̂s → B̂s−1 → · · · → B̂1 → B̂0 = {1, 2, . . . ,m},
where s is a counter of stack size, the top element B̂s is the strict working set Bk−1

from the previous iteration, and

B̂s ⊂ B̂s−1 ⊂ · · · ⊂ B̂1 ⊂ B̂0,

where all inclusions are strict. The index sets B̂s−1, . . . , B̂1 are all strict working
sets from previous iterations of the algorithm. Elements of the stack are popped
and discarded if the solution to the subproblem (8.1) fails to meet the prescribed
tolerances for the ignored constraints. As a last resort, if the stack is popped down
to its last element B̂0, the full SQP subproblem (4.1) is solved. In any case, the step
produced by each iteration of the algorithm fits the iSQP framework (4.3), so the
theory developed in section 4 can be applied.
Algorithm SQPsws.

choose τ ∈ (0, 1) and set (z0, λ0);

set k ← 0, s← 0, B̂0 ← {1, 2, . . . ,m};
repeat

set µk ← η(zk, λk), isqpsol ← false;
while not isqpsol

B̄ ← B̂s;
solve the SQP subproblem for the constraint set B̄:

min
∆z

∆zT∇φ(zk) + 1
2∆zTLzz(zk, λk)∆z(8.1)

subject to gi(z
k) +∇gi(z

k)T∆z ≤ 0, all i ∈ B̄,
denoting its strict working set by Bk and its primal-dual

solution by (∆z, λ̃B̄);
if gi(z

k) +∇gi(z
k)T∆z ≤ µ1+τ

k for all i /∈ B̄,
isqpsol ← true;

else
s← s− 1;

end while
if Bk �= B̄

s← s+ 1, B̂s ← Bk;
zk+1 ← zk +∆z, λk+1 ← (λ̃B̄, 0);
k ← k + 1;

until convergence.
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Our analysis of Algorithm SQPsws requires a number of technical results, most
of which pertain to the adequacy of the chosen subset B̄ of constraints in (8.1) in
defining an approximate solution of the full subproblem (4.1), and to the progress
that the resulting step makes toward the solution of the original problem (1.1).

We start by formalizing some of the ideas mentioned at the start of this sec-
tion concerning variants of the nonlinear programming problem (1.1) and the iSQP
subproblem (4.3) in which some of the constraints are ignored. In (3.3), we defined
the extended nonlinear programming problem NLP(B̃) in which just a subset B̃ ⊆ B
is enforced. We now define the extended iSQP subproblem corresponding to B̃ and
NLP(B̃) as follows:

min
∆z

∆zT (∇φ(z) + t) + 1
2∆zTLzz(z, λ)∆z(8.2)

subject to gi(z) +∇gi(z)
T∆z + ri ≤ 0, i ∈ B̃.

The KKT conditions for (8.2) are[ Lzz(z, λ)∆z +∇φ(z) + t+∇gB̃(z)λ
+

B̃
gB̃(z) +∇gB̃(z)

T∆z + rB̃

]
∈
[

0
N(λ+

B̃ )

]
.(8.3)

Note that (8.2) is truly an iSQP subproblem for (3.3) only if the Lagrangian L(z, λ)
does not contain terms in its summation for indices i outside of the set B̃, that is,
only if λi = 0 for all i /∈ B̃. For generality, however, we allow λ{1,...,m}\B̃ �= 0 in some
of the results below.

Our first technical result is a simple result based on Hoffman’s lemma concerning
the nearness of a given vector λ ∈ IRm (with property λi = 0 for all i /∈ B̃) to the
unique optimal multiplier λ∗(B̃) of NLP(B̃) for some B̃ ∈ Φ̄.
Lemma 8.1. There is a constant β ≥ 1 such that the following statement holds.

For all λ ∈ IRm with the property that λi = 0 for all i /∈ B̃, for some B̃ ∈ Φ̄, we have

‖λ− λ∗(B̃)‖ = ‖λB̃ − λ∗
B̃(B̃)‖ ≤ βδ(λ),

where, as always, δ(λ) denotes the distance from λ to the optimal multiplier set Sλ of
the original problem (1.1).

Proof. Denoting by P (λ) the closest vector in Sλ to λ, we have that

δ(λ)2 = ‖λ− P (λ)‖2 =
∑
i∈B̃

[λi − P (λ)i]
2 +

∑
i∈B\B̃

P (λ)2i ,

implying that ∥∥∥P (λ)B\B̃
∥∥∥ ≤ δ(λ).(8.4)

Note that P (λ) satisfies the following system of linear equalities and inequalities:∑
i∈B
∇gi(z

∗)P (λ)i = ∇φ(z∗), P (λ) ≥ 0, P (λ)i = 0, i /∈ B.(8.5)

The following system, on the other hand, has the unique solution λ̄ = λ∗(B̃):∑
i∈B
∇gi(z

∗)λ̄i = ∇φ(z∗), λ̄ ≥ 0, λ̄i = 0, i /∈ B̃.(8.6)
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Because of (8.5), we have that P (λ) violates (8.6) only in that possibly P (λ)i > 0 for
some i ∈ B\B̃. Hence, by Hoffman’s lemma [13] and the uniqueness of λ∗(B̃), there is
a positive quantity β(B̃) such that

‖λ∗(B̃)− P (λ)‖ ≤ β(B̃)
∥∥∥P (λ)B\B̃

∥∥∥ .

By choosing

β = max
B̃∈Φ̄

β(B̃) + 1,

combining this expression with (8.4), and using ‖P (λ)− λ‖ = δ(λ), we have that

‖λ− λ∗(B̃)‖ ≤ ‖λ− P (λ)‖+ ‖P (λ)− λ∗(B̃)‖ ≤ βδ(λ),

giving the result.
We now modify two of the results of section 5 to apply to those extended problems

(8.2) for which z∗ satisfies Condition 2s.1, that is, B̃ ∈ Φ̄. The combination of these
two results—Lemma 5.1 and Theorem 5.3—with Lemma 8.1 yields some powerful
estimates.
Lemma 8.2. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold. Then

there exists a threshold value δ̄ > 0 with the following property. If δ(z, λ) ≤ δ̄ and
‖(t, rB̃)‖ ≤ δ̄ and λi = 0 for all i /∈ B̃, for some B̃ ∈ Φ̄, then the extended iSQP
subproblem (8.2) has at least one solution (∆z, λ+), and for all such solutions we
have

‖∆z‖+ ‖λ+

B̃ − λ∗
B̃(B̃)‖ = O(‖z − z∗‖) +O(‖(t, rB̃)‖),(8.7)

where λ∗
B̃(B̃) is the (unique) optimal Lagrange multiplier for NLP(B̃) (3.3). Moreover,

we have that

‖z +∆z − z∗‖+ ‖λ+

B̃ − λ∗
B̃(B̃)‖ ≤ ‖λB̃ − λ∗

B̃(B̃)‖O(δ(z)) +O(δ(z)2) +O(‖(t, rB̃)‖)
= O(δ(λ)δ(z)) +O(δ(z)2) +O(‖(t, rB̃)‖)
= O(δ(z, λ)2) +O(‖(t, rB̃)‖).(8.8)

Proof. For a given B̃ ∈ Φ̄, we obtain by applying Lemma 5.1 to (8.3) that there
is a threshold δ̄(B̃) such that (8.7) holds whenever∥∥∥∥

[
z − z∗

λB̃ − λ∗
B̃(B̃)

]∥∥∥∥ ≤ δ̄(B̃), ‖(t, rB̃)‖ ≤ δ̄(B̃).(8.9)

(Note that we can write the distance of λ+

B̃ to the dual solution set for (3.3) explicitly

as ‖λ+

B̃−λ∗
B̃(B̃)‖, since this set contains just the single element λ∗

B̃(B̃).) By Lemma 8.1,

we have for all (z, λ) with λi = 0, i /∈ B̃, that∥∥∥∥
[

z − z∗

λB̃ − λ∗
B̃(B̃)

]∥∥∥∥ ≤ ‖z − z∗‖+ βδ(λ) ≤ 2βδ(z, λ),

where the last inequality follows from β ≥ 1. It follows that both bounds in (8.9) are
satisfied if we set

δ̄ =
1

2β
min
B̃∈Φ̄

δ̄(B̃).
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For (8.8), we obtain by applying Theorem 5.3 to the extended iSQP problem (8.2)
that

‖z +∆z − z∗‖+ ‖λ+

B̃ − λ∗
B̃(B̃)‖ ≤ ‖λ+

B̃ − λB̃‖O(δ(z)) +O(δ(z)2) +O(‖(t, rB̃)‖).

By applying the triangle inequality to the term ‖λ+

B̃ − λB̃‖, reducing δ̄ if necessary to

ensure that the O(δ(z)) term is smaller than 1/2, and rearranging, we obtain that

‖z+∆z−z∗‖+(1/2)‖λ+

B̃ −λ∗
B̃(B̃)‖ ≤ ‖λB̃−λ∗

B̃(B̃)‖O(δ(z))+O(δ(z)2)+O(‖(t, rB̃)‖),
yielding the first inequality in (8.8). The second relation follows immediately from
Lemma 8.1, while the third follows from (2.12).

We now are in a position to prove our main convergence result for Algorithm
SQPsws. We show that if a strict working set Bk from Φ̄ enters the stack at some
sufficiently advanced iterate, then it remains in the stack and the algorithm converges
superlinearly.
Theorem 8.3. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold.

Then there exists a positive threshold δ̂ such that if at some iteration k̄ we have
δ(zk̄, λk̄) ≤ δ̂, and if there is an index set B̃ ∈ Φ̄ present in the stack at the start of
iteration k̄, then B̃ remains in the stack at all subsequent iterations, and Algorithm
SQPsws converges superlinearly with Q-order 1 + τ .

Proof. Consider all subproblems (8.1) arising for Algorithm SQPsws in which
the conditions gi(z

k) + ∇gi(z
k)T∆z ≤ µ1+τ

k hold for all i /∈ B̄. These subproblems
have the form of (4.3), where t = 0 and r is a vector whose elements do not exceed

η(zk, λk)1+τ in magnitude. Because of (6.5), we can choose δ̂ small enough that

δ(zk, λk) ≤ δ̂ implies that

δ(zk, λk) ≤ δ̄, ‖(0, r)‖ ≤ δ̄,

where δ̄ is the threshold value such that the assumptions of Lemma 5.1 and The-
orems 5.2 and 5.3 are satisfied when δ(z, λ) ≤ δ̄ and ‖(t, r)‖ ≤ δ̄. We reduce δ̂ if
necessary so that the conditions of Lemma 8.2 are satisfied by (z, λ), t = 0, and

rB = O(η(z, λ)1+τ ) whenever δ(zk, λk) ≤ δ̂. Further assumptions on the size of δ̂ are
made in the course of the proof.

The main part of our proof is to show that, at any iterate k for which

B̃ is present in the stack at the start of iteration k and(8.10a)

δ(zk, λk) ≤ δ̂,(8.10b)

we have that

B̃ is present in the stack at the end of iteration k,(8.11a)

λk+1

{1,...,m}\B̃ = 0, and(8.11b)

δ(zk+1, λk+1) = O(δ(zk, λk)1+τ ) ≤ δ(zk, λk).(8.11c)

By definition, the premise (8.10) is satisfied at iteration k̄, and so from (8.11a) and
(8.11c) it holds for all subsequent iterations. Hence, (8.11c) implies superlinear con-
vergence.

Suppose that (8.10) holds for some k. Since B̃ is present in the stack at the start of
this iteration, the active set Bk−1 from the subproblem (8.1) at the previous iteration
must be such that Bk−1 ⊆ B̃. In particular, we have that λki = 0 for all i /∈ B̃.
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At the end of iteration k, the set B̃ can have disappeared from the stack only if
it was tried and rejected in (8.1), that is, if the solution to (8.1) obtained with B̄ = B̃
had

gi(z
k) +∇gi(z

k)T∆zk > µ1+τ
k for some i /∈ B̃.(8.12)

Because of our choice of δ̂, we can apply Lemma 8.2 to (8.1) by setting B̄ = B̃,
(z, λ) = (zk, λk), and (t, rB̃) = 0. We obtain from (8.8) that

‖zk +∆zk − z∗‖ = O(δ(zk, λk)2),

while from (8.7), we have

‖∆zk‖ = O(δ(zk)) = O(δ(zk, λk)).(8.13)

Hence, because of gB(z∗) = 0, we have that

gi(z
k) +∇gi(z

k)T∆zk = gi(z
k +∆zk) +O(‖∆zk‖2)

= O(‖zk +∆zk − z∗‖) +O(‖∆zk‖2)
= O(δ(zk, λk)2) for all i ∈ B.

Since from (6.5) we have that µk = Θ(δ(zk, λk)), the condition (8.12) cannot hold for

any i ∈ B. Neither can it hold for any constraint for the NLP, because by choosing δ̂
small enough, we have from (8.13) that

gi(z
k) +∇gi(z

k)T∆zk ≤ (1/2)gi(z
∗) < 0 for all i /∈ B.

Hence, the violation (8.12) does not occur, so the set B̃ will not be popped from the
stack.

Since B̃ remains in the stack, we must have Bk ⊆ B̃, so that (8.11b) holds.
Since Bk ⊆ B̃, we have that the primal-dual solution of (8.1) with B̄ = Bk is an

approximate solution to the extended iSQP subproblem (8.2) with

t = 0, rBk = 0, 0 ≤ −ri ≤ µ1+τ
k for i ∈ B̃\Bk.

Because of our assumptions on δ̂, Lemma 8.2 applies to this situation, and we obtain
from (8.8) and the estimates above that

‖zk +∆zk − z∗‖+ ‖λk+1

B̃ − λ∗
B̃(B̃)‖ = O(µ1+τ

k ) = O(δ(zk, λk)1+τ ).

Since

δ(zk +∆zk, λk+1) ≤ ‖zk +∆zk − z∗‖+ ‖λk+1

B̃ − λ∗
B̃(B̃)‖,

the first relation in (8.11c) follows. The second relation in (8.11c) follows from a

choice of sufficiently small δ̂.
It seems reasonable to expect a set from Φ̄ to enter the stack at some suffi-

ciently advanced iteration in most nonpathological cases. The strict working set Bk
(for (zk, λk) close to S) is likely to belong at least to Φ by the following argument:
The solution of (8.1) satisfies at least the second-order necessary conditions for the
quadratic subproblem in which just the constraints i ∈ Bk are enforced. Since we know
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from Lemma 4.1 that there exists at least one λ∗ ∈ Sλ with B+(λ
∗) ⊆ Bk, we can rea-

sonably expect that at least second-order necessary conditions are satisfied at z∗ for
NLP(Bk) as well. Hence, we would have Bk /∈ Φ only if the second-order conditions for
NLP(Bk) are necessary but not sufficient—an uncommon scenario. Moreover, we can
expect Bk to belong to the more restricted set Φ̄ because, as mentioned above, active-
set solvers for the quadratic subproblem typically ensure that the working constraint
Jacobian ∇gBk(zk) has full rank. (This property can be assured in any case by the
simple procedure below.) In fact, our toleration of small violations in the nonenforced
constraints i /∈ Bk tends to discourage even nearly dependent active constraint sets.
Hence, the optimal Lagrange multiplier vector corresponding to Bk will be unique
unless ∇gBk loses rank between zk and z∗—another uncommon occurrence.

The preceding paragraph suggests that we can prove that the conditions of Theo-
rem 8.3 are satisfied if we make a few additional assumptions. One such assumption—
full rank of ∇gBk(zk)—can be guaranteed by applying a procedure based on the
following observations to remove some indices from Bk if necessary. Any solution
(∆zk, λk+1) of (8.1) satisfies the system∑

i∈Bk
∇gi(z

k)λk+1
i = −∇φ(zk)− Lzz(zk, λk)∆zk.(8.14)

If ∇gBk(zk) does not have full rank, there is a vector ∆λ �= 0 such that∑
i∈Bk

∇gi(z
k)∆λi = 0.

Because of the MFCQ condition (2.10), we have for zk sufficiently close to z∗ that at
least one component of ∆λ is negative. Since by (8.14) the vector (∆zk, λk+1 +α∆λ)
is a primal-dual solution of (8.1) for all α such that λk+1+α∆λ ≥ 0, we can choose α
to reduce at least one component of λk+1 +α∆λ to zero. By applying this procedure
repeatedly as needed, we can arrive at a revised strict working set Bk with the desired
property. In fact, by allowing a small violation of the equality in (8.14)—a violation
t = O(µ1+τ

k ) that stays within the iSQP framework (4.4) and hence retains the stated
convergence rate—we can remove even nearly dependent constraints from the active
set Bk, thus increasing the likelihood that Bk belongs to Φ̄.
Corollary 8.4. Suppose that Assumption 1, Condition 2s.3, and MFCQ are

satisfied and that the constant-rank constraint qualification condition of Janin [14]
holds; that is, there is an open neighborhood of z∗ such that for any subset B̂ of B,
the matrix ∇gB̂(z) has constant rank for all z in this neighborhood. Then there exists
a positive threshold δ̄ such that if δ(zk, λk) ≤ δ̄ for some k, Algorithm SQPsws, with
the modification above to ensure full rank of ∇gBk(zk), converges superlinearly.

Proof. We prove the result by showing that if δ(zk, λk) ≤ δ̄ for some point (zk, λk),
then solution of an iSQP subproblem at this point will yield an active set Bk for which
Bk ∈ Φ̄. Since we know that every iteration of Algorithm SQPsws takes a step that
fits the iSQP framework (4.3), it follows that Bk will appear at the top of the stack
at the end of iteration k. Hence, superlinear convergence follows from Theorem 8.3.

From Lemma 4.1, we have that the strict working set Bk generated by iteration k
is such that there exists at least one λ∗ ∈ Sλ with B+(λ

∗) ⊆ Bk. Hence, by Lemma 3.3,
we have that Bk ∈ Φ. Since by our discussion above, the active constraint Jacobian
∇gBk(zk) has full rank, and since the constant rank condition holds, we have that
∇gBk(z∗) has full rank also. Therefore by Lemma 3.2, we have Bk ∈ Φ̄.



494 STEPHEN J. WRIGHT

Note that the constant-rank condition assumed here is stronger than the corre-
sponding condition (7.8) used by Fischer [8].

Appendix A. Estimating the distance to the optimal set. An estimate
of the distance from the current point (z, λ) to the primal-dual optimal set S is a
critical ingredient in the modifications to the SQP algorithm discussed above. We
show here that the easily computed quantity η(z, λ) (6.5) is a satisfactory estimate in
a neighborhood of S.
Theorem A.1. Suppose that Assumption 1, Condition 2s.1, and the MFCQ

condition are satisfied. Then if λ ≥ 0, we have that

η(z, λ)
def
=

∥∥∥∥
[ Lz(z, λ)

min(λ,−g(z))

]∥∥∥∥ = Θ(δ(z, λ)).

Proof. We start with the easy part of the proof, which is to show that η(z, λ) =
O(δ(z, λ)). By the assumed smoothness of φ and g, we have

Lz(z, λ) = Lz(z, λ)− Lz(z∗, P (λ)) = O(δ(z, λ)).(A.1)

For δ(z, λ) sufficiently small, we have 0 ≤ λi < −gi(z) for all i /∈ B, and therefore

i /∈ B ⇒ 0 ≤ min(λi,−gi(z)) = λi = |λi − P (λ)i| ≤ δ(λ).(A.2)

For the active indices i ∈ B, we have from λi ≥ 0 that

i ∈ B ⇒ |min(λi,−gi(z))| ≤ |gi(z)| ≤ |gi(z)− gi(z
∗)| = O(δ(z)).(A.3)

The result η(z, λ) = O(δ(z, λ)) follows from the estimates (A.1), (A.2), and (A.3).
The more difficult part of the proof is to show that δ(z, λ) = O(η(z, λ)). Our

main theoretical tool is again Theorem 4.2 of Robinson [17].
We first define the vectors v ∈ IRm and ω ∈ IRm as follows:

vi =

{ −gi(z) if −gi(z) < λi,
0 otherwise,

i = 1, 2, . . . ,m,(A.4)

ωi =

{
λi if −gi(z) ≥ λi,
0 otherwise,

i = 1, 2, . . . ,m.(A.5)

For each i = 1, 2, . . . ,m, we have that either gi(z) + vi = 0 or λi − ωi = 0. We have
also that g(z) + v ≤ 0 and λ−ω ≥ 0, and therefore, by definition of N(·) in (2.5), we
have that

g(z) + v ∈ N(λ− ω).(A.6)

Note too that v and ω are complementary; that is,

v ≥ 0, ω ≥ 0, vTω = 0.(A.7)

In fact, we have that

v + ω = min(−g(z), λ),

and so from (A.7), (A.2), and (A.3) we obtain that

‖v‖2 + ‖ω‖2 = ‖v + ω‖2 = ‖min(−g(z), λ)‖2 = O(δ(z, λ)2).(A.8)
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We therefore have the following estimates for v and w:

‖v‖ ≤ O(δ(z, λ)), ‖ω‖ ≤ O(δ(z, λ)).(A.9)

We now define perturbed variants of the objective function φ and constraint
function g as follows:

φ̂(ẑ; û, v̂)
def
= φ(ẑ)− ẑT û,

ĝ(ẑ; û, v̂)
def
= g(ẑ) + v̂,

where (û, v̂) is the perturbation vector. Note that φ̂(·; 0, 0) = φ(·) and ĝ(·; 0, 0) = g(·).
It is not difficult to show, with the help of (A.6), that (ẑ, λ̂) = (z, λ− ω) is a primal-
dual solution of the following perturbed version of (1.1):

min
ẑ

φ̂(ẑ; û, v̂) subject to ĝ(ẑ; û, v̂) ≤ 0,

where

û = Lz(z, λ− ω), v̂ = v.

Both perturbations are small. For û, we have from (A.1) and (A.9) that

‖û‖ = ‖Lz(z, λ− ω)‖

≤ ‖Lz(z, λ)‖+
∥∥∥∥∥
m∑
i=1

ωi∇gi(z)

∥∥∥∥∥ ≤ O(δ(z, λ)) +O(‖ω‖) = O(δ(z, λ)),(A.10)

while for v̂, we have immediately from (A.9) that ‖v̂‖ = ‖v‖ = O(δ(z, λ)). Hence,
(z, λ− ω) is the solution of a slightly perturbed nonlinear program, where the size of
the perturbation is uniformly small for (z, λ) near S, so we can apply Theorem 4.2 of
Robinson [17].

By the first inequality in the cited theorem, we have that

δ(z, λ− ω) = O

(
dist

(
0,

[ Lz(z, λ− ω)
g(z)

]
−
[

0
N(λ− ω)

]))
= O (‖Lz(z, λ− ω)‖+ dist(g(z), N(λ− ω))) .(A.11)

For the first term, we have as in (A.10) that

‖Lz(z, λ− ω)‖ = O(‖Lz(z, λ)‖) +O(‖ω‖).
For the second term, we have by application of the triangle inequality and (A.6) that

dist(g(z), N(λ− ω)) ≤ ‖v‖+ dist(g(z) + v,N(λ− ω)) = ‖v‖.
By substituting these estimates into (A.11), we obtain

δ(z, λ− ω) = O (‖Lz(z, λ)‖+ ‖v‖+ ‖ω‖) .(A.12)

By applying the triangle inequality again, we obtain from (A.8) and (A.12) that

δ(z, λ) ≤ δ(z, λ− ω) + ‖ω‖
= O (‖Lz(z, λ)‖+ ‖v‖+ ‖ω‖)
= O (‖Lz(z, λ)‖+ ‖min(−g(z), λ)‖)
= O(η(z, λ)),
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as required.
The estimate (6.5) was proposed by several other authors independently of this

paper. Facchinei, Fischer, and Kanzow propose the same estimate in a revised version
of their paper [7]. Hager and Gowda [12, Theorems 1 and 3] propose a more general
measure, which reduces to (6.5) when λ ≥ 0 and does not require the MFCQ condition
to hold.

Appendix B. Perturbation analysis of a convex program. We consider
the following convex quadratic program:

min
x

1
2x

TQx+ cTx subject to Ax = b, Cx ≤ d,(B.1)

where Q is symmetric positive definite. Suppose the constraints satisfy the following
property:

Aw = 0, Cw < 0 for some vector w.(B.2)

If in addition we were to assume that the rows of A were linearly independent, these
constraints would satisfy the MFCQ. We have the following result.
Lemma B.1. Consider the problem (B.1), where we take Q, A, and C to be fixed,

while c, b, and d are allowed to vary. Assume that (B.2) holds. Then
(i) (B.1) has at most one solution x(c, b, d) for any vector triple (c, b, d), and if in

addition the rows of A are linearly independent, it has exactly one solution;
(ii) if the solution exists for two vector triples (c, b, d) and (c′, b′, d′), the following

Lipschitz continuity property is satisfied:

‖x(c, b, d)− x(c′, b′, d′)‖ ≤ L‖(c, b, d)− (c′, b′, d′)‖,(B.3)

where the constant L depends only on Q, A, and C.
Proof. Because the objective function is strictly convex and the feasible region

is convex polyhedral, a unique solution will exist whenever the feasible region is
nonempty. When the MFCQ is satisfied, the feasible set is in fact nonempty for
all b and d. Therefore, (i) is true.

The proof of (ii) is similar to that of Proposition 7.5.9 and Corollary 7.5.10 of
Cottle, Pang, and Stone [6], so we omit the details.
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Abstract. In this paper we consider an extended formulation of the Steiner traveling salesman
problem, that is, when variables are associated with both the edges and the nodes of the graph. We
give a complete linear description of the associated polytope when the underlying graph is series-
parallel. By projecting this polytope onto the edge variables, we obtain a characterization of the
Steiner traveling salesman polytope in the same class of graphs. Both descriptions yield polynomial
time (cutting plane) algorithms for the corresponding problems in that class of graphs.
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1. Introduction. A cycle of a graph G is called simple if no node is incident
to more than two of its edges. Given a graph G = (V,E), a weight vector w ∈ R

|E|

associated with the edges of G, and a subset of distinguished nodes T ⊆ V , called
terminals, the Steiner traveling salesman problem (StSP) is the problem of finding
a minimum weight simple cycle of G spanning T . Such a cycle is called a Steiner
tour. The nodes not in T are called Steiner nodes. Given a weight vector c ∈ R

|V |

associated with the nodes of G (in addition to the edge weights), and a root vertex
r ∈ V , the r-traveling salesman problem (r-TSP) is to find a simple cycle containing
r and whose total weight of both nodes and edges is minimized. Such a cycle is called
an r-tour. An r-tour will be called trivial if it is reduced to the node r. The r-TSP
is also called the extended formulation of the StSP.

In this paper we give a complete description, in R
|E|+|V |, of the polytope as-

sociated with the solutions to the r-TSP in the class of series-parallel graphs. By
projecting this polytope onto R

|E|, we obtain a complete characterization of the poly-
tope associated with the solutions to the StSP in the same class of graphs. This yields
polynomial cutting plane algorithms to solve both the r-TSP and the StSP in that
class of graphs.

The StSP and r-TSP are both NP-hard. They contain as a special case the well-
known traveling salesman problem (TSP). The TSP has been shown to be polynomial
in special classes of graphs. In [9], Cornuéjols, Fonlupt, and Naddef consider the
graphical Steiner TSP, that is, when the Steiner tour can go through a node more
than once. They give a linear time algorithm for this problem on series-parallel graphs.
Their algorithm is an extension of an algorithm of Ratliff and Rosenthal [25] for graphs
that model rectangular warehouses (a particular class of series-parallel graphs).
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Let G = (V,E) be a graph. If F ⊆ E, U ⊆ V , then (xF , yU ) ∈ R
|E|+|V | denotes

the incidence vector of the subgraph (U,F ) of G, i.e., xF (e) = 1 if e ∈ F and 0
otherwise, and yU (v) = 1 if v ∈ U and 0 otherwise. The r-traveling (resp., Steiner
traveling) salesman polytope of G, denoted by r-TSP(G) (resp., StSP(G,T )), is the
convex hull of the incidence vectors of the r-tours (resp., Steiner tours) of G, i.e.,

r-TSP(G) = conv{(xF , yU ) ∈ R
|E|+|V || (U,F ) is an r-tour of G},

StSP(G,T ) = conv{xF ∈ R
|E|| F ⊆ E is a Steiner tour}.

Let TSP(G) denote the polytope associated with the TSP.
To the best of our knowledge, neither the r-TSP(G) nor the StSP(G,T ) has been

considered in the literature. However, the traveling salesman polytope, TSP(G), has
been one of the most attractive subjects in polyhedral combinatorics in the past three
decades [20], [21]. In particular, several classes of facet defining inequalities of TSP(G)
have been identified, and efficient separation algorithms have been devised.

Complete descriptions of the TSP(G) have been obtained for some classes of
graphs. Cornuéjols, Naddef, and Pulleyblank [8] describe the TSP(G) for Halin
graphs. In [3], Barahona and Grötschel characterize the TSP(G) for graphs not con-
tractible to K5 \ {e}. A complete description of a minimal system of inequalities
defining TSP(G), when G is complete, is known for graphs having no more than 8
nodes. Norman [24] describes the TSP(G) for complete graphs on 6 nodes. Boyd and
Cunningham [5] give that description for graphs on 7 nodes, and Christof, Jünger,
and Reinelt [10] give a description of the TSP(G) for graphs on 8 nodes.

A graph G = (V,E) is said to be k-edge connected (for k fixed) if, for any pair of
nodes i, j ∈ V , there are at least k edge-disjoint paths from i to j. Given weights on
the edges of G and a set of terminals T ⊆ V , the Steiner 2-edge connected subgraph
problem is the problem of finding a minimum 2-edge connected subgraph of G, span-
ning T . This problem is closely related to the StSP. In fact, as is pointed out in [13],
when T = V , the problem of determining if a graph G = (V,E) contains a Steiner
tour (Hamiltonian cycle) can be reduced to the Steiner 2-edge connected subgraph
problem. The relation between the two problems has been widely investigated in the
metric case, that is, when the underlying graph G = (V,E) is complete and the weight
function satisfies the triangle inequalities (i.e., w(e1) ≤ w(e2) +w(e3) for every three
edges e1, e2, e3 defining a triangle in G). In particular, Monma, Munson, and Pul-
leyblank [23] showed that τ ≤ 4

3Q2 when T = V , where τ is the weight of an optimal
Steiner tour and Q2 is the weight of an optimal 2-edge connected subgraph. Then
it follows that the value τ ′ of an optimal solution of the classical linear relaxation of
the TSP(G) provides a lower bound on τ . Cunningham (see [23]) shows that τ ′ also
provides a lower bound on Q2. Further structural properties and worst case analysis
are given in Frederickson and Ja’Ja’ [15], Bienstock, Brickell, and Monma [4], and
Goemans and Bertsimas [17].

Given a graph G = (V,E) with weights on its edges and a set of terminals S ⊆ V ,
the Steiner tree problem is to find a minimum weight tree in G which spans S. This
problem, which is known to be NP-hard, is closely related to the StSP. Although a
polynomial time algorithm in series-parallel graphs is known for this problem, still we
do not have a complete description of the associated polytope in that class of graphs.
In [16], Goemans gives an extended formulation for that problem and characterizes
the associated polytope when the graph is series-parallel. By projecting that polytope
onto the edge variables, he also obtains a large class of facet-defining inequalities for
the Steiner tree polytope. For more details on the polyhedral aspect of that problem,
see [6], [7], [22], and [11].
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In the next section we present an integer programming formulation of the r-TSP
and give some basic properties of the relaxation of our formulation. In section 3,
we prove that the linear inequalities in our formulation are sufficient to completely
characterize the r-TSP(G) when G is series-parallel. In section 4, we give a complete
description of the StSP(G,T ) in series-parallel graphs; this is done by projecting r-
TSP(G) on the edge variables. The remainder of this section is devoted to more
definitions and notations.

The graphs we consider are finite, undirected, and connected and may have mul-
tiple edges and loops. We denote a graph by G = (V,E), where V is the node set and
E is the edge set of G. If e is an edge with endnodes u and v, then we write e = uv.

A graph G is said to be contractible to a graph H if H may be obtained from G by
a sequence of elementary removals and contractions of edges. A contraction consists
of identifying a pair of adjacent vertices, preserving all other vertices, and preserving
all other adjacencies between vertices. A graph is called series-parallel [12] if it is not
contractible to K4 (the complete graph on four nodes). Clearly, series-parallel graphs
have the following property.

Remark 1. If G is a series-parallel graph contractible to a graph H, then H is
series-parallel.

Given a graph G = (V,E) and a node subsetW ⊆ V of G, the set of edges having
one endnode in W and the other in V \W is called a cut of G and denoted by δ(W ).
If v ∈ V is a node of G, then we write δ(v) for the cut δ({v}). We denote by G(W )
the subgraph of G induced by W , and by E(W ) its edges. For W,W ′ ⊆ V , (W,W ′)
denotes the set of edges having one endnode in W and the other in W ′. If W ⊆ V ,
we let W = V \W . Given a constraint ax ≥ α, aT , x ∈ R

n, and a solution x∗ ∈ R
n,

we will say that ax ≥ α is tight for x∗ if ax∗ = α.

2. The polytope r-TSP(G). Let G = (V,E) be a graph and r ∈ V a root
vertex. Let x(e), y(v) be variables associated with each edge e and node v. For any
subset of edges F ⊆ E, we let x(F ) =

∑
e∈F x(e).

The r-TSP can then be formulated as the following integer program:

Minimize
∑
e∈E

w(e)x(e) +
∑
v∈V

c(v)y(v)

subject to

x(δ(W )) ≥ 2y(v) for all W ⊂ V, |W | ≥ 2, r ∈W, v ∈W,(1)
x(δ(r)) ≤ 2y(r),(2)
x(δ(v)) = 2y(v) for all v ∈ V \ {r},(3)
x(e) ≤ y(v) for all v ∈ V, e ∈ δ(v),(4)
y(v) ≤ 1 for all v ∈ V,(5)
x(e) ≥ 0 for all e ∈ E,(6)
x(e), y(v) ∈ N for all e ∈ E, v ∈ V.(7)

Constraints (1) and (3) will be called generalized cut constraints. A generalized
cut constraint is associated with a cut δ(W ) and a node v ∈ W . The pair (δ(W ), v)
will be called a generalized cut. A generalized cut will be called tight for a solution
(x, y) if the corresponding constraint is tight for (x, y). Notice that the generalized
cuts (δ(W ), v) with W = {v} (equations (3)) are tight for all solutions of H(G). The
case where |W | ≥ 2 will be specified if necessary. Inequalities (5) and (6) are called
trivial inequalities. Inequalities (4) combined with the trivial inequalities (5) imply
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that if x(e) = 1 for some e ∈ δ(v), then y(v) = 1. Let H(G) denote the polytope
defined by inequalities (1)–(6). We have the following.

Theorem 2. If G is series-parallel, then r-TSP(G) = H(G).
The proof of this theorem will be given in the following section. In what follows

we are going to discuss some properties of the solutions of H(G), which will be useful
in the rest of the paper.

Lemma 3. Let (x, y) ∈ R
|E|+|V | be a solution of H(G) such that x(e) > 0 for all

e ∈ E. If (δ(W ), v) is a generalized cut tight for (x, y), then G(W ) is connected.
Proof. This is clear if W = {v}. So suppose that |W | ≥ 2, and let us assume, on

the contrary, that there is a partitionW 1,W 2 ofW such that (W 1,W 2) = ∅. Without
loss of generality, we may suppose that v ∈W 1. Since G is connected, it follows that
(W,W 1) �= ∅ �= (W,W 2). By our hypothesis, we have x(W,W 2) > 0. As (δ(W ), v) is
tight for (x, y), it follows that x(δ(W )) = x(W,W 1)+x(W,W 2) = 2y(v). This implies
that x(δ(W ∪W 2)) = x(W,W 1) < 2y(v), and thus the generalized cut (δ(W ∪W 2), v)
is violated by (x, y). But this contradicts the fact that (x, y) ∈ H(G).

Lemma 4. Let (x, y) ∈ H(G), and let (δ(W ), v) and (δ(W ′), v′) be two generalized
cuts tight for (x, y). Then the following hold:

(i) If v ∈W ∪W ′, then (δ(W ∩W ′), v′) and (δ(W ∪W ′), v) are both generalized
cuts tight for (x, y).

(ii) If v ∈W ′ \W and v′ ∈W \W ′, then (δ(W ′ \W ), v) and (δ(W \W ′), v′) are
both generalized cuts tight for (x, y).

Proof . The proof follows from the submodularity of the cuts, that is,

x(δ(W )) + x(δ(W ′)) ≥ x(δ(W ∩W ′)) + x(δ(W ∪W ′)) for any W,W ′ ⊂ V.

3. Proof of Theorem 2. Let G = (V,E) be a graph and T ⊆ V a set of
terminals. A Steiner 2-edge connected subgraph of G is a 2-edge connected subgraph
of G spanning T . Denote by STECP(G,T ) the convex hull of the incidence vectors of
the Steiner 2-edge connected subgraphs of G, and let P (G,T ) be the polytope given
by the following linear inequalities:

0 ≤ x(e) ≤ 1 for all e ∈ E,(8)
x(δ(W )) ≥ 2 for all W ⊆ V, T �=W

⋂
T �= ∅,(9)

x(δ(W )) ≥ 2x(e) for all W ⊆ V, T ⊆W, e /∈ E(W ).(10)

Inequalities (9) and (10) are called Steiner and left-Steiner cut inequalities, re-
spectively. In [2], Bäıou and Mahjoub state the following.

Theorem 5. If G is series-parallel, then STECP(G,T ) = P (G,T ).
For a complete proof of this theorem, see [1]. In what follows we are going to use

that description to prove Theorem 2.
The proof of Theorem 2 is by induction on the number of edges. The theorem

is trivially true for a graph with no more than two edges. Suppose it is true for any
series-parallel graph with no more than m edges and suppose that G contains exactly
m+1 edges. Let us assume, on the contrary, that r-TSP(G,S) �= H(G), and let (x, y)
be a fractional extreme point of H(G). We have the following lemmas.

Lemma 6. x(e) and y(v) are positive for all e ∈ E and v ∈ V .
Proof. By inequalities (4) it suffices to prove that x(e) > 0 for all e ∈ E. If e0

is an edge such that x(e0) = 0, then let x′ ∈ R
|E|−1 be given by x′(e) = x(e) for

all e ∈ E \ {e0}. Clearly, (x′, y) belongs to H(G′), where G′ is the graph obtained
from G by deleting e. Moreover (x′, y) is an extreme point of H(G′). Since (x′, y) is
fractional and G′ is series-parallel, we have a contradiction.
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Lemma 7. If (δ(W ), v) is a generalized cut tight for (x, y) with |W | ≥ 2, then
y(v) = 1.

Proof . Suppose, on the contrary, that y(v) < 1. Suppose that |W | is minimum.
That is, for every generalized tight cut (δ(W ′), w′) with |W ′| ≥ 2 and |W ′| < |W |, we
have y(w′) = 1. Now remark that by constraints (1)

y(v) ≥ y(v′) for all v′ ∈W.(11)

Let G′ = (V ′, E′) be the graph obtained from G by contractingW , and denote by
w̄ the node resulting from this contraction. By Lemma 3 together with Remark 1, it
follows that G′ is series-parallel. Let x′ be the restriction of x on E′, and y′ ∈ R

|W |+1

such that y′(u) = y(u) if u ∈W and y′(w̄) = y(v).
It is easy to see that (x′, y′) is a solution of H(G′). As G′ is series-parallel and

|E′| < |E|, by the induction hypothesis, H(G′) is integral. In consequence, (x′, y′)
can be written as a convex combination of (integral) extreme points of H(G′). Thus
there are t extreme points of H(G′), (x′

1, y
′
1), . . . , (x

′
t, y

′
t) and λ1, . . . , λt ≥ 0, such that

(x′, y′) =
t∑
i=1

λi(x
′
i, y

′
i),

t∑
i=1

λi = 1.

Since y′(w̄) = y(v) < 1, there must exist a solution among (x′
1, y

′
1), . . . , (x

′
t, y

′
t), say

(x′
1, y

′
1) such that y′1(w̄) = 0. By equality (3) associated with w̄, it follows that

x′
1(δ(W )) = x′

1(δ(w̄)) = 2y
′
1(w̄)) = 0. Let (x

∗, y∗) ∈ R
|E|+|V | be the solution such that

x∗(e) =
{

x′
1(e) if e ∈ E(W ),
0 otherwise,

y∗(v) =
{

y′1(v) if v ∈W,
0 otherwise.

In what follows we are going to show that every constraint ofH(G) that is tight for
(x, y) is also tight for (x∗, y∗). Since (x, y) �= (x∗, y∗), this contradicts the extremality
of (x, y).

First, it can be easily seen that every inequality among (2)–(6) that is tight for
(x, y) is also tight for (x∗, y∗). So let us consider a generalized cut (δ(W ′), v′) tight
for (x, y) with |W ′| ≥ 2. Suppose first that W ′ ⊆W .

If v′ ∈ W , then (δ(W ′), v′) is also a generalized cut in G′, and thus it is tight for
both (x′, y′) and (x′

1, y
′
1). Hence x

∗(δ(W ′)) = x′
1(δ(W

′)) = 2y′1(v
′) = 2y∗(v′).

If v′ ∈ W , then 2y(v) ≤ x(δ(W ′)) = 2y(v′). By (11) this implies that y(v′) =
y(v) = y′(w̄). Thus (δ(W ′), w̄) is a generalized cut in G′ tight for (x′, y′), and hence
x∗(δ(W ′)) = x′

1(δ(W
′)) = 2y′1(w̄) = 0 = 2y∗(v′). Now if W ⊆ W ′, by the definition

of (x∗, y∗), we have x∗(δ(W ′)) = 2y∗(v′) = 0. Thus we can suppose that W \W ′ �=
∅ �=W ′ \W . We consider two cases.

Case 1. v ∈ W ∪W ′. From Lemma 4(i) we have that (δ(W ∩ W ′), v′) is a
generalized cut tight for (x, y). Since (W ∩ W ′) ⊂ W , it follows from above that
(δ(W ∩ W ′), v′) is also tight for (x∗, y∗) and thus x∗(δ(W ′)) = x∗(δ(W ∩ W ′)) =
2y∗(v′).

Case 2. v ∈ W ′ \ W . Then v′ /∈ W ∪W ′; otherwise by Lemma 4(i), by ex-
changing v′ and v, (δ(W ∩W ′), v) would be a generalized cut tight for (x, y), which
contradicts the minimality of |W |. Thus suppose that v′ ∈W \W ′. By Lemma 4(ii),
(δ(W \W ′), v′) is a generalized cut tight for (x, y). Since (δ(W \W ′), v′) is also a
generalized cut in G′, it is also tight for (x′, y′) and hence for (x′

1, y
′
1). Thus

x∗(δ(W ′)) = x′
1(δ(W \W ′)) = 2y′1(v

′) = 2y∗(v′).
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Now, let

T = {v ∈ V : y(v) = 1}.
Lemma 8. |T | ≥ 2.
Proof. Assume the contrary, that is, |T | ≤ 1. Then by inequalities (4), it follows

that x(e) < 1 for all e ∈ E. And by the inequality of type (1) corresponding to
W = {r} together with inequality (2), it follows that y(v) < 1 for all v ∈ V \ {r}. If
T = ∅, then we also have y(r) < 1. In consequence, if we consider the solution (0, 0),
we will have that all the constraints of H(G) that are tight for (x, y) are also tight
for that solution. But this contradicts the extremality of (x, y).

Now let us assume that |T | = 1. Hence y(r) = 1 (and y(v) < 1 for all v ∈ V \{r}).
If x(δ(r)) < 2, then, by considering the incidence vector of the trivial r-tour, we

will also have a solution that satisfies with equality all the constraints of H(G) tight
for (x, y), which again yields a contradiction.

So suppose that x(δ(r)) = 2. Since 0 < y(v) < 1 for all v ∈ V \ {r}, by Lemma 7
no inequality (1) is tight for (x, y).

Claim. No inequality (4) is tight for (x, y).
Proof of the claim. As (x, y) is an extreme point of H(G) and 0 < x(e) < 1

for all e ∈ E, it follows that there is a set of pairs (e1, v1), . . . , (el, vl), ei ∈ δ(vi) for
i = 1, . . . , l, such that (x, y) is the unique solution of the system

(L)




y(r) = 1,
x(δ(v)) = 2y(v) for all v ∈ V,
x(ei) = y(vi) for i = 1, . . . , l.

Let f = uv ∈ E. Suppose that x(f) = y(u). Let G′ = (V ′, E′) be the graph
obtained from G by contracting f . Let x′ be the restriction of x on E′ and y′ ∈ R

|V ′|

such that y′(w) = y(w) if w ∈ V ′\{w0} and y′(w0) = y(v), where w0 is the node of V
′

that arises from the contraction of f . Now as x(f) < 1 and y(r) = 1, we have u �= r.
If v = r, we let w0 be the root vertex in G′. Note that x′(δ(w0)) = 2y′(w0). It can
be, in fact, easily seen that (x′, y′) ∈ H(G′). In what follows we will show that (x′, y′)
is also an extreme point of H(G′). Indeed, if this is not the case, as by the induction
hypothesis H(G′) is integral, there are integral extreme points (x1, y1), . . . , (xk, yk)
and scalars λ1, . . . , λk ≥ 0 such that

(x′, y′) =
k∑
i=1

λi(x
i, yi),

k∑
i=1

λi = 1.

Note that any constraint of H(G′) tight for (x′, y′) is also tight for (xi, yi) for
i = 1, . . . , k. We distinguish two cases.

Case 1. v �= r. Thus y′(w0) < 1. In consequence, there must exist one of the
extreme points (xi, yi), say (x1, y1), such that y1(w0) = 0. Since x

1(δ(w0)) = 2y
1(w0)

and x1(e) ≥ 0 for all e ∈ E, it follows that x1(e) = 0 for all e ∈ δ(w0). Consider the
solution (x̄, ȳ) ∈ R

|E|+|V | given by

x̄(e) =

{
x1(e) if e ∈ E \ (δ(u) ∪ δ(v)),
0 otherwise,

ȳ(w) =

{
y1(w) if w ∈ V \ {u, v},
0 otherwise.

We have that (x̄, ȳ) is a solution of (L). In fact, clearly equalities (3) as well
as the equality x(δ(r)) = 2y(r) are satisfied by (x̄, ȳ). Moreover, as y′(r) = 1, we
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have ȳ(r) = y1(r) = 1. Now for a pair (ei, vi), as x̄(e) = 0 for e ∈ δ(u) ∪ δ(v) and
ȳ(u) = ȳ(v) = 0, it follows that the corresponding inequality is satisfied with equality
if vi ∈ {u, v}. If vi ∈ V \ {u, v}, as x′(ei) = y′(vi), we should have x1(ei) = y1(vi).
Hence (x̄, ȳ) satisfies system (L). As (x̄, ȳ) �= (x, y), this is a contradiction.

Case 2. v = r. Thus y′(w0) = 1. Since x′(δ(u) \ {f}) < 1, there must exist one
of the extreme points (xi, yi), say (x1, y1), such that x1(δ(u)\{f}) = 0. Consider the
solution (x̄, ȳ) ∈ R

|E|+|V | given by

x̄(e) =

{
0 if e = f,
x1(e) otherwise,

ȳ(w) =




y1(w) if w ∈ V \ {u, v},
0 if w = u,
1 if w = v.

As above, one can easily verify that (x̄, ȳ) is a solution of (L), which is again a
contradiction and this ends the proof of the claim.

From the claim above and Lemma 6, it follows that the only inequalities tight for
(x, y) are

(L′)
{

y(r) = 1,
x(δ(v)) = 2y(v) for all v ∈ V.

Now we claim thatG contains at least one nontrivial r-tour. In fact, as x(δ(r)) = 2
and x(e) ≤ 1 for all e ∈ E, r is adjacent to at least two nodes. If there is no nontrivial
tour, then G must contain a cut δ(S) separating r and one of its neighbors, say u,
such that δ(S) = {ru}. On the other hand, we have x(ru) ≤ x(δ(u)) = 2y(u). If
|S̄| ≥ 2, as y(u) < 1, by Lemma 7 it follows that x(ru) = x(δ(S)) �= 2y(u). Hence
x(δ(S)) < 2y(u), a contradiction. Now suppose that |S̄| = 1, that is, S̄ = {u}. Thus
x(ru) = x(δ(u)) = 2y(u). However, by inequalities (4) one should have x(ru) ≤ y(u).
Since y(u) > 0, this is also impossible.

Now the incidence vector of any nontrivial r-tour verifies equalities (L′). This
yields a contradiction with the fact that (x, y) is an extreme point, which finishes the
proof of our lemma.

In what follows, we will show that the projection of (x, y) onto R
|E|, i.e., x, is an

extreme point of P (G,T ). It is clear that every constraint of P (G,T ) can be obtained
from some linear combination of constraints of H(G). Thus x ∈ P (G,T ). Now to
prove that x is an extreme point of P (G,T ), it suffices to display a system of equalities
from P (G,T ), where x is the unique solution.

If there exists an inequality of type (4) that is tight for (x, y) with y(v) = 1,
then this equality corresponds to an inequality x(e) ≤ 1 of P (G,T ) that is tight for
x. Denote such equalities by (8′). Let (δ(W ), v) be a generalized cut tight for (x, y).
Then by Lemma 7 we have y(v) = 1 and hence v ∈ T . Thus the equation yielded by
(δ(W ), v) corresponds to the Steiner cut inequality x(δ(W )) ≥ 2 of P (G,T ) that is
tight for x. Let us denote by (9′) such equalities.

Now consider an equality of type (3). If y(v) = 1 for v �= r, then, as before, this
equality corresponds to a Steiner cut of P (G,T ) that is tight for x. If inequality (2)
is tight for (x, y)—that is, x(δ(r)) = 2—then, by Lemma 8, |T | ≥ 2, and r ∈ T , this
equality also corresponds to a Steiner cut tight for x in P (G,T ). We will also denote
these equalities by (9′). If y(v) < 1 and there exists e ∈ δ(v) such that x(e) = y(v),
then this yields a left-Steiner cut x(δ(v)) ≥ 2x(e) tight for x. We let (10′) be the set
of these equalities. Let (S) be the system of equalities defined by (8′), (9′), and (10′).

We claim that x is the unique solution of (S). Indeed, if there is a further solution
x′ of (S), then by considering y′ ∈ R

|V | such that y′(v) = 1
2x

′(δ(v)) for all v ∈ V ,
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the solution (x′, y′) would verify with equality all the constraints tight for (x, y). As
x′ �= x and (x, y) is an extreme point of H(G), this is impossible.

Now since the equalities of (S) all come from inequalities of P (G,T ), x is an
extreme point of P (G,T ). Since x is fractional and G is series-parallel, this contradicts
Theorem 5.

4. The polytope StSP(G, T ). Let G = (V,E) be a graph and T ⊆ V a set of
terminals. Let N = V \ T be the set of Steiner vertices.

Let PE,N (G) ⊆ R
|E|+|N | be the polytope obtained from H(G) by selecting a root

vertex r ∈ T and setting y(v) = 1 for all v ∈ T . Thus PE,N (G) is given by the
following system:

x(δ(W )) ≥ 2y(v) for all W ⊂ V, T ⊆W, v /∈W,(12)
x(δ(v)) ≤ 2y(v) for all v ∈ N,(13)
x(e) ≤ y(v) for all v ∈ N, e ∈ δ(v),(14)
y(v) ≤ 1 for all v ∈ N,(15)
x(δ(W )) ≥ 2 for all W ⊆ V, T �=W

⋂
T �= ∅,(16)

x(δ(v)) = 2 for all v ∈ T \ {r},(17)
x(δ(r)) ≤ 2,(18)
x(e) ≤ 1 for all e ∈ δ(v), v ∈ T,(19)
x(e) ≥ 0 for all e ∈ E.(20)

As PE,N (G) is a face of H(G), by Theorem 2, we have the following.
Corollary 9. PE,N (G) is integral if G is series-parallel.
Now, to describe the polytope StSP(G,T ), we are going to project onto the sub-

space of the edge variables. To do this we use Fourier–Motzkin elimination [26] to
eliminate the node variables y(v) from PE,N (G). For every node v ∈ N , we will
combine inequalities containing +y(v) with the ones containing −y(v) as follows:

• By combining inequalities (12) and (13), we obtain the inequalities
x(δ(W )) ≥ x(δ(v)) for all W ⊂ V, T ⊆W, v /∈W ;(21)

• combining inequalities (12) and (14), we obtain the left-Steiner cut inequali-
ties (10);
• combining inequalities (13) and (15), we obtain

x(δ(v)) ≤ 2 for all v ∈ N ;(22)

• and finally, the combination of inequalities (14) and (15) gives the inequalities
x(e) ≤ 1 for all e ∈ δ(v), v ∈ N . This, together with inequalities (19), yields

x(e) ≤ 1 for all e ∈ E.(23)

Lemma 10. The left-Steiner cut inequalities (10), x(δ(W )) ≥ 2x(e), with |W | ≥
2, are redundant for StSP(G,T ).

Proof . As e /∈ E(W ), there is a node, say v, of e that belongs to W . By
inequality (21) associated with W and v together with the left-Steiner cut associated
with δ(V \ {v}) and the edge e, we have

x(δ(W )) ≥ x(δ(v)) = x(δ(V \ {v})) ≥ 2x(e).
By Lemma 10, the left-Steiner cut inequalities that may be essential in the de-

scription of StSP(G,T ) can be written as follows:

x(δ(v)) ≥ 2x(e) for all v ∈ N, e ∈ δ(v).(24)
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Now from the development above and Corollary 9 we obtain the following result.

Theorem 11. If G is series-parallel, then inequalities (16)–(18), (20), and (21)–
(24) completely describe StSP(G,T ).

5. Concluding remarks. We have studied an extended formulation of the StSP
and have given a complete linear description of the associated polytope when the
underlying graph is series-parallel. By projecting this polytope onto the edge variables
space, we have obtained a description of the Steiner traveling salesman polytope in
that class of graphs.

It would be interesting to have such a description for the graphical Steiner trav-
eling salesman polyhedron in that class of graphs. A complete characterization of
that polyhedron in series-parallel graphs is, unfortunately, still unknown even when
T = V . In fact, as shown by Cornuéjols, Fonlupt, and Naddef [9], the traveling sales-
man polyhedron in this case may contain constraints which do not come from cuts.
In [14], Fonlupt and Naddef characterize the graphs for which the graphical traveling
salesman polyhedron is given by the nonnegativity and the cut constraints.

Given a graph G = (V,E) and two nodes u, v of V , let Gu,v be the graph obtained
from G by identifying u and v. Let w be the node resulting from the identification of
u and v. Let Pu,v(G) be the polytope, the extreme points of which are the incidence
vectors of the paths of G between u and v, different from uv (if uv ∈ E). Clearly,
Pu,v(G) = StSP(Gu,v, {w}). Thus Theorem 11 provides at the same time a description
of Pu,v(G) when G is series-parallel and uv ∈ E.

We conclude by mentioning that, as inequalities (1), (16), and (21) can be sep-
arated in polynomial time, by the ellipsoid method [18], Theorems 2 and 11 provide
polynomial cutting plane algorithms for both the r-TSP and StSP problems on series-
parallel graphs. These are, to the best of our knowledge, the first polynomial time
algorithms for these problems in that class of graphs.
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Abstract. We analyze the worst-case performance of a simple algorithm for the breakpoint
median problem (BMP), a well-known problem in computational biology. BMP is the special case
of the min-cost traveling salesman problem on a complete graph G = (V,E), in which the edge
cost vector c ∈ R

E has the form 1 − x∗, with x∗ a convex combination of the incidence vectors of
the Hamiltonian circuits of G. The performance guarantee shown is 5/3, which improves on the
previously known guarantee of 2. We also consider the signed variant of BMP and prove that a
similar approach yields a performance guarantee of 3/2 (again improving over the previously known
2). Our proofs are based on formulating the problem as a suitable integer linear program and then
defining a feasible dual solution for the associated linear programming relaxation in two phases, in a
so-called additive bounding fashion.

Key words. breakpoint median problem, approximation algorithm, linear programming, addi-
tive bounding, traveling salesman problem, perfect matching
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1. Introduction. We analyze the worst-case performance of a simple algorithm
for a problem currently very popular in computational molecular biology, namely
a (1-)median problem in which one wants to find a point closest to a given set of
points in a finite but exponentially large metric space. Our analysis will yield the first
improvement over a general approximation algorithm that achieves a performance
guarantee of 2. Our proofs are based on formulating the problem as a suitable integer
linear program (ILP) and then defining a feasible dual solution for the associated linear
programming (LP) relaxation in two phases. This two- (or more) phase approach to
deriving feasible dual solutions, when applied to the practical solution of ILPs, goes
under the name of additive bounding; see Fischetti and Toth [4].

1.1. The breakpoint median problem. The breakpoint median problem (BMP)
was introduced by Sankoff and Blanchette [11, 12] as a model for finding the genome
that is closest to a given set of genomes, and it is widely used by the methods that
solve the fundamental problem of reconstructing evolutionary trees for several species
based on their genomic sequence; see Sankoff, Sundaram, and Kececioglu [14], Sankoff
and Blanchette [11, 12], Blanchette, Bourque, and Sankoff [1], Sankoff, Bryant, De-
nault, Lang, and Burger [13], Moret, Wyman, Bader, Warnow, and Yan [8], and
Moret, Wang, Warnow, and Wyman [7]. In particular, all these methods iteratively
find the “best” genome to assign to a node of the tree, once the genomes associated
with the neighbors of the node have been fixed. If the measure of distance between
genomes is the breakpoint distance (as is almost always the case), then the problem of
finding the “best” genome is a BMP. For this reason, BMP has received considerable
attention from computational biologists in the last few years.
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We will first illustrate the problem for the model in which gene orientation is
unknown, also called the unsigned BMP. In the last section, we will consider the case
in which this orientation is known, the signed BMP. Moreover, we will focus on the
case of circular genomes, which makes notation easier. It is easy to verify that the
same results hold for the case of linear genomes.

Assuming that all given genomes contain the same genes, each genome (species)
can be represented as a circular permutation of the numbers from 1 to n, where n is
the number of genes, i.e., a circular sequence π1 π2 . . . πn π1 . . ., where, for each
j = 1, . . . , n, there exists an i such that πi = j. In what follows, we will use the
term permutation implicitly to refer to a circular permutation. The elements of the
permutation represent genes within the genome. A breakpoint of π1 with respect to π2

is a pair π1
i π1

i+1 (with i ∈ {1, . . . , n} and indices intended modulo n) of consecutive
elements in π1 that are not consecutive in π2, i.e., such that neither π1

i π1
i+1 nor

π1
i+1 π1

i appear consecutively in π2. In the breakpoint model, the distance (called also
breakpoint distance) between two permutations π1, π2 is the number of breakpoints
of π1 with respect to π2, denoted by b(π1, π2). It is easy to verify that b(π1, π2) =
b(π2, π1) and that the breakpoint distance satisfies the triangle inequality.

Given q permutations π1, π2, . . . , πq, BMP calls for a permutation µ at minimum
overall breakpoint distance from the given permutations, i.e., such that

∑q
k=1 b(π

k, µ)
is minimized. It is known (and formally proved in the next subsection) that BMP
is a special case of the traveling salesman problem (TSP). The problem is trivial for
q ≤ 2, but NP-hard for any q ≥ 3, as shown by Pe’er and Shamir [9] and Bryant
[2]. For general q, it is possible to show that the problem is APX -hard [15], i.e.,
it does not have a polynomial time approximation scheme unless P=NP. General
results about finding the median element in a metric space (see Gusfield [5]) show
that the approximation achieved by taking as a solution the best permutation among
π1, π2, . . . , πq yields an approximation guarantee of 2 − 2

q . In particular, this yields

a trivial 4
3 approximation algorithm when q = 3. Actually, for q = 3, Pe’er and

Shamir [10] presented a 7
6 approximation algorithm for the signed case. In this paper,

we will improve on the trivial 2 approximation for general q, showing a 5
3 and a

3
2

approximation algorithm for the unsigned and signed cases, respectively.

1.2. A graph theoretic representation. We start with a description of the
notation used in what follows. Given an undirected graph G = (V,E) and a node set
S ⊂ V , we let δ(S) be the set of edges with one endpoint in S and the other in V \S,
and E(S) the set of edges with both endpoints in S. Moreover, for i ∈ V , we will
write δ(i) instead of δ({i}). We let S denote the collection of the nontrivial subsets
of V , i.e., S = {S ⊂ V : ∅ �= S �= V }. We let a cycle C be defined by its set of edges,
i.e., C ⊆ E. The set of vertices visited by C is denoted by V (C). A Hamiltonian
cycle (tour for short) is a cycle that visits each node of G once. We let C denote the
family of all cycles of G which are not tours, and T denote the collection of all tours
of G. Given a tour T ∈ T , we let χT ∈ {0, 1}E denote the incidence vector of T , i.e.,
χTe = 1 if e ∈ T , χTe = 0 if e �∈ T . For an edge set S ⊆ E, let c(E) :=

∑
e∈S ce.

Throughout the paper we will adopt the following graph theoretic representation
of the problem; see [11, 9, 3]. We will work on a complete undirected graph G = (V,E)
on n nodes 1, . . . , n. Any (circular) permutation on n elements π1 π2 . . . πn π1 . . .
is naturally represented in G by the Hamiltonian cycle (tour for short), which visits
nodes π1, π2, . . . , πn in this order. (Clearly, there is a bijection between (circular) per-
mutations and tours of G.) Given two tours T1, T2, the breakpoint distance between
the associated permutations is given by n − |T1 ∩ T2|. Accordingly, given q tours of
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Fig. 1.1. A graph for which the 5/3 ratio of the approximation algorithm is tight. The edges
drawn have cost 1/3, whereas the edges not drawn have cost 1.

G, say T1, T2, . . . , Tq, BMP calls for another tour T such that qn −
∑q
k=1 |Tk ∩ T | is

minimized.

We can express the BMP objective function by associating costs with the edges
of G. In particular, for e ∈ E, the cost of an edge is defined as q minus the number of
tours among T1, . . . , Tq that contain edge e. In fact, in order to simplify the notation
in the remainder of the paper, we define the (normalized) cost of edge e as

ce :=
q − |{k ∈ {1, . . . , q} : e ∈ Tk}|

q
.(1.1)

Clearly, BMP calls for a cheapest tour with respect to these costs, the actual value of
the BMP solution being the cost of the tour multiplied by q. In what follows, we will
refer to the optimal BMP solution value corresponding to these costs, keeping in mind
that the actual solution value is scaled by q. Note that we have c = 1−∑q

k=1
1
qχ

Tk .
Hence, by possibly allowing some tours among T1, . . . , Tq to be equal, the cost vectors
c ∈ R

E defined by (1.1) coincide with the vectors of the form 1− x∗, with x∗ ∈ R
E a

convex combination of the incidence vectors of the tours of G, i.e., x∗ =
∑
T∈T λTχ

T

with
∑
T∈T λT = 1 and λT ≥ 0 for T ∈ T .

Given a complete undirected graph G = (V,E) with edge costs ce, e ∈ E, TSP
calls for a tour of G of minimum cost. The above discussion shows that BMP is a
special case of the TSP in which edges have a special cost structure. We stress that
these costs do not satisfy the triangle inequality; i.e., the approximation results for
this latter case do not extend to BMP. For instance, in the example of Figure 1.1,
there are a few triples i, j, k such that cij = cjk =

1
3 and cik = 1. The most popular

ILP formulation of TSP is the following (see, e.g., [6]):

min
∑
e∈E

cexe,(1.2)

∑
e∈δ(i)

xe = 2, i ∈ V,(1.3)

∑
e∈δ(S)

xe ≥ 2, S ∈ S,(1.4)

xe ≤ 1, e ∈ E,(1.5)

xe ≥ 0, e ∈ E,(1.6)

xe integer, e ∈ E.(1.7)
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It is easy to show that constraints (1.4) are equivalent to the following:∑
e∈E(S)

xe ≤ |S| − 1, S ∈ S.(1.8)

The convex combinations of incidence vectors of tours coincide with the vectors in the
convex hull H of the solutions of (1.3)–(1.7), i.e., the BMP edge costs are given by
1−x∗ with x∗ ∈ H. In fact, the results shown in this paper hold for the more general
case in which costs are given by 1− x∗ and x∗ satisfies (1.5), (1.6) and the following
relaxation of (1.3) and (1.8):∑

e∈δ(i)
xe ≤ 2, i ∈ V,(1.9)

∑
e∈C

xe ≤ |C| − 1, C ∈ C.(1.10)

The basic properties of the edge costs that will be used within the analysis, derived
immediately from the above requirements, are the following.

Property 1. For each e ∈ E, 0 ≤ ce ≤ 1.
Property 2. For each i ∈ V and S ⊆ δ(i), c(S) ≥ |S| − 2.
Property 3. For each cycle C which is not Hamiltonian, c(C) ≥ 1.
1.3. Additive bounding. Additive bounding [4] is a general methodology for

combinatorial optimization problems. Here we will consider the main ideas of the
method only when applied to an LP of the form

min cx,
Ax ≥ b,
Cx ≥ d,
x ≥ 0,

(1.11)

which is typically the LP relaxation of some ILP and where the constraint set has
been partitioned into two parts for convenience of illustration. The corresponding
dual LP reads

max by + dz,
AT y + CT z ≤ c,

y, z ≥ 0.
(1.12)

The main idea of additive bounding, applied in the context of LPs, is to first fix z = 0
and determine a feasible solution ȳ of the restricted dual

max by,
AT y ≤ c,

y ≥ 0,
(1.13)

by some combinatorial method. Then, for the given ȳ, one finds a feasible solution z̄
of the residual dual

bȳ +max dz,
CT z ≤ c−AT ȳ,

z ≥ 0,
(1.14)

again by some combinatorial method. The final solution is ȳ, z̄, yielding the lower
bound bȳ + dz̄ on (1.11). Overall, additive bounding for LPs is essentially a dual
heuristic working in two phases.
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2. The approximation algorithm and its analysis. The approximation al-
gorithm that we propose for BMP is very simple and has already been proposed for
the general TSP in several contexts. We first find a 2-matching R of minimum cost
in G; i.e., R is a set of edges of minimum cost such that every node is incident with
exactly two edges in the set. If R turns out to be a tour, it is our (optimal) solution
S. Otherwise, we delete the most expensive edge from every cycle in R (whose length
is at least 3) and add arbitrarily chosen edges in E \R to get a tour S. Let c∗ denote
the cost of the optimal solution. The purpose of this section is to show the following
result.

Theorem 2.1. c(S) ≤ 5
3c

∗.
The ratio is tight, as shown by the example in Figure 1.1, given by the complete

graph on 12 nodes in which the edges depicted have cost 1
3 and the remaining edges

have cost 1. (It is not difficult to show that 1 − c is a convex combination of the
incidence vectors of tours.) An optimal 2-matching solution is given by the four
triangles and has cost 4, as does the optimal tour. After removal of an arbitrary
edge from each triangle, the heuristic above may add four edges of cost 1, returning
a solution of value 20

3 .
Clearly, c(R) is a valid lower bound on c∗. The proof of Theorem 2.1 is made

nontrivial by the fact that there are examples in which c∗ is arbitrarily close to 2c(R);
i.e., no approximation guarantee better than 2 can be shown by using only c(R) as a
lower bound.

Before giving a formal proof of Theorem 2.1, we outline the main ideas of the
proof. We will apply the additive bounding ideas by considering in subsection 2.1 a
suitable LP relaxation of TSP analogous to (1.2)–(1.6). Then, starting from R, we
define in subsection 2.2 a heuristic solution ȳ of a suitable restricted dual, correspond-
ing to an LP relaxation of 2-matching. In the classical additive bounding approach,
one would find a dual solution of value c(R). Nevertheless, for our purposes, we will
consider a solution of value ≤ c(R), where inequality may be strict. In subsection
2.3, we then find a convenient solution z̄ of the residual dual problem. Letting a(R)
denote the lower bound associated with ȳ, z̄, we will conclude the proof by showing
that c(S) ≤ 5

3 max{c(R), a(R)}.
We stress that what we will do to derive lower bound a(R) will be simply to show

a feasible solution of the dual of an LP relaxation of our problem. However, the only
intuitive interpretation that we can give for the derivation of this dual solution is
the additive bounding framework, without which the origin of this solution would be
completely unclear.

2.1. An alternative LP relaxation. Our analysis will use the following LP
relaxation of the TSP, equivalent to (1.2)–(1.6), in which we will use variables xij and
xji for each edge ij ∈ E. The LP relaxation is

min
∑
i∈V

∑
j∈V \{i}

1
2cijxij ,(2.1)

xij − xji = 0, i ∈ V, j ∈ V \ {i},(2.2) ∑
j∈V \{i}

xij = 2, i ∈ V,(2.3)

∑
i∈S

∑
j∈V \S

xij ≥ 2, S ∈ S,(2.4)

xij ≤ 1, i ∈ V, j ∈ V \ {i},(2.5)
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xij ≥ 0, i ∈ V, j ∈ V \ {i}.(2.6)

Graphically, one may imagine that each edge ij ∈ E is replaced by two antiparallel
arcs (i, j) and (j, i), with associated binary variables xij and xji. Constraints (2.2)
require that if an arc is selected in the solution, so is its antiparallel counterpart.
Moreover, equations (2.3) require that exactly two arcs in the solution leave each
node i ∈ V , and inequalities (2.4) that at least two arcs in the solution go from nodes
in S to nodes in V \ S for each S ∈ S.

In our analysis, we will never consider constraints (2.2) (fixing the associated dual
variable to 0). After removal of these constraints, the dual reads

max
∑
i∈V

2yi +
∑
S∈S

2wS −
∑
i∈V

∑
j∈V \{i}

uij ,

yi +
∑

S∈S:i∈S,j∈V \S
wS − uij ≤ 1

2cij , i ∈ V, j ∈ V \ {i},

wS ≥ 0, S ∈ S,
uij ≥ 0, i ∈ V, j ∈ V \ {i}.

(2.7)

2.2. The restricted dual. In the restricted dual, defined from (2.7), we will fix
wS = 0 for S ∈ S, obtaining

max
∑
i∈V 2yi −

∑
i∈V

∑
j∈V \{i}

uij ,

yi − uij ≤ 1
2cij , i ∈ V, j ∈ V \ {i},

uij ≥ 0, i ∈ V, j ∈ V \ {i}.
(2.8)

Note that, with constraints (2.2) and (2.4) removed (fixing wS to 0 is equivalent
to removing (2.4)), LP relaxation (2.1)–(2.6) is also a relaxation of the 2-matching
problem. Here, our aim is to define a solution of (2.8) that has a convenient expression
and whose value is “close” to c(R).

Definition 2.2. For each node i ∈ V , let

ȳi :=
ce
2
,(2.9)

where e is the most expensive edge in R incident with i,

ūij := max{0, ȳi − 1
2cij} for j ∈ V \ {i},(2.10)

and

r(i) := 2ȳi −
∑

j∈V \{i}
ūij .(2.11)

It is immediate to check that the solution ȳ, ū defined by (2.9) and (2.10) is feasible
for (2.8) and has value

∑
i∈V r(i). We now compute a convenient lower bound on r(i).

Lemma 2.3. For each node i ∈ V let ij, ik be the two edges in R incident with i
such that cij ≥ cik. Then,

r(i) ≥




cij + cik
2

if 2cij + cik < 1,

1− cij
2

if 2cij + cik ≥ 1.
(2.12)
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Proof. Note that ūij = 0 and ūik =
cij−cik

2 . If 2cij + cik < 1, by Property 2, the
cost of each edge it �∈ R is cit ≥ 1− cij − cik > cij . Hence, ūit = max{0, ȳi − cit

2 } = 0
for all t �= j, k, implying

r(i) = 2 · cij
2
− cij − cik

2
=

cij + cik
2

.

Consider now the case 2cij+cik ≥ 1. In this case, there may be one or more edges
it �∈ R such that ūit > 0. Let S be the subset of these edges, i.e., S := {it : it �∈ R
and ūit > 0} and s := |S|. From (2.10) we have

r(i) = 2ȳi − ūik −
∑
it∈S

ūit = 2 · cij
2
− cij − cik

2
−
∑
it∈S

cij − cjt
2

=
1

2

(
cik − (s− 1)cij +

∑
it∈S

cit

)
.

If s = 0, we have

1

2

(
cik − (s− 1)cij +

∑
it∈S

cit

)
=

cij + cik
2

≥ 1− cij
2

as 2cij + cik ≥ 1. Otherwise, s ≥ 1, and noting that ij, ik �∈ S since ij, ik ∈ R,
Property 2 implies ∑

it∈S∪{ij,ik}
cit ≤ |S ∪ {ij, ik}| − 2 = s,

i.e.,
∑
it∈S cit ≥ s− cij − cik. Therefore,

1

2

(
cik − (s− 1)cij +

∑
it∈S

cit

)
≥ s(1− cij)

2
≥ 1− cij

2
.

2.3. The residual dual and the worst-case ratio. Consider the dual solution
ȳ, ū given in Definition 2.2. Keeping these values fixed, we have the following residual
dual:∑

i∈V
2ȳi −

∑
i∈V

∑
j∈V \{i}

ūij +max
∑
S∈S

2wS ,

∑
S∈S:i∈S,j∈V \S

wS ≤ 1
2
cij − ȳi + ūij , i ∈ V, j ∈ V \ {i},(2.13)

wS ≥ 0, S ∈ S.

Let C1, C2, . . . , Cp be the cycles in R. For % = 1, . . . , p define β� :=
∑
e∈C� ce and

γ� := maxe∈C� ce. Note that β� ≥ 1 by Property 3. We have the following.
Lemma 2.4. For % = 1, . . . , p, i ∈ V (C�), and j ∈ V \ V (C�),

1
2cij − ȳi + ūij ≥



0 if γ� ≥ 1

3 ,
1− 3γ�
2

if γ� <
1
3 .

(2.14)
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Proof. Nonnegativity follows immediately from dual feasibility. Moreover, if
γ� < 1

3 , then ȳi ≤ 1
2γ�, cij ≥ 1 − 2γ� by Property 2, and ȳi − 1

2cij ≤ 3
2γ� − 1

2 < 0,
implying ūij = 0 by (2.10).

We can therefore define the following feasible solution of (2.13).
Definition 2.5. For S ∈ S, define

w̄S :=

{
1− 3γ�
2

if S = V (C�) for some % ∈ {1, . . . , p} such that γ� <
1
3 ,

0, otherwise.
(2.15)

The lower bound associated with the dual solution ȳ, w̄, ū of (2.7) defined by (2.9),
(2.10), and (2.15) is given by (recalling the definition of r(i))

a(R) :=
∑
S∈S

2w̄S +
∑
i∈V

2ȳi −
∑

(i,j)∈A
ūij =

p∑
�=1


2w̄V (C�) +

∑
i∈V (C�)

r(i)


 .(2.16)

We now derive a convenient lower bound on 2w̄V (C�) +
∑
i∈V (C�)

r(i) as a function of
β� and γ�, % = 1, . . . , p.

Lemma 2.6. For % = 1, . . . , p,

2w̄V (C�) +
∑

i∈V (C�)

r(i) ≥ 3
2
(1− γ�).(2.17)

Proof. As before, for a given node i ∈ V (C�), we let ij and ik denote the two
edges in R incident with i such that cij ≥ cik.

If γ� < 1
3 , we have ce < 1

3 for all e ∈ C�, i.e., 2ce + cf < 1 for all e, f ∈ C�.

By Lemma 2.3, this implies r(i) ≥ cij+cik
2 for all i ∈ V (C�), i.e.,

∑
i∈V (C�)

r(i) =∑
e∈C� ce ≥ β�. Moreover, 2w̄V (C�) = 1− 3γ�, i.e.,

2w̄V (C�) +
∑

i∈V (C�)

r(i) ≥ β� + 1− 3γ� ≥ 3
2
(1− γ�),

as γ� <
1
3 and β� ≥ 1. For the rest of the proof, we will consider the case γ� ≥ 1

3 .

For the given i, we partition V (C�) into V1 := {i ∈ V (C�) : r(i) =
cij+cik

2 } and
V2 := V (C�) \ V1. Note that

1−γ�
2 ≤ 1−ce

2 for all e ∈ C�. Hence, if |V2| ≥ 3,
∑

i∈V (C�)

r(i) ≥
∑
i∈V2

r(i) ≥
∑
i∈V2

1− cij
2

≥ |V2|1− γ�
2
≥ 3
2
(1− γ�).

On the other hand, if |V2| = 0, we have (as in the case of γ� < 1
3 )
∑
i∈V (C�)

r(i) ≥
β� ≥ 1, whereas 3

2 (1 − γ�) ≤ 1 as γ� ≥ 1
3 . Hence, the two cases left are |V2| = 2

and |V2| = 1. If |V2| = 1, say V2 = {i1}, where i1j1 and i1k1 are the two edges in R
incident with i1 such that ci1j1 ≥ ci1k1 , we have

∑
i∈V (C�)

r(i) ≥

 ∑
i∈V (C�)\{i1}

cij + cik
2


+ 1− ci1j1

2

= β� − ci1j1 + ci1k1
2

+
1− ci1j1
2

≥ 3
2
(1− γ�),
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as
1−ci1j1

2 ≥ 1−γ�
2 and β� − ci1j1+ci1k1

2 ≥ 1− γ�. Finally, if |V2| = 2, say V2 = {i1, i2},
where i1j1, i1k1 and i2j2, i2k2 are the edges in R incident, respectively, with i1 and i2
such that ci1j1 ≥ ci1k1 and ci2j2 ≥ ci2k2 , we have∑
i∈V (C�)

r(i) = β� − ci1j1 + ci1k1
2

− ci2j2 + ci2k2
2

+
1− ci1j1
2

+
1− ci2j2
2

≥ 3
2
(1− γ�),

as
1−ci1j1

2 ≥ 1−γ�
2 ,

1−ci2j2
2 ≥ 1−γ�

2 , and β� − ci1j1+ci1k1
2 − ci2j2+ci2j2

2 ≥ 1−γ�
2 , since the

latter is equivalent to 2β� ≥ (ci1j1+ci1k1+ci2j2+ci2k2−γ�)+1, implied by β� ≥ 1 and
β� ≥ ci1j1 + ci1k1 + ci2j2 + ci2k2 − γ�, which holds since γ� := maxe∈C� ce, |V (C�)| ≥ 3,
and |{i1j1, i1k1, i2j2, i2k2}| ≥ 3.

From (2.16) and (2.17) we have a(R) ≥∑p
�=1

3
2 (1− γ�), implying

c∗ ≥
p∑
�=1

3
2 (1− γ�).

Combining this with

c∗ ≥ c(R) =

p∑
�=1

β�

and with

c(S) ≤
p∑
�=1

(β� − γ� + 1),

where S is the heuristic solution found by our approximation algorithm, we get

c(S) ≤
p∑
�=1

β� +

p∑
�=1

(1− γ�) ≤ c∗ + 2
3c

∗ ≤ 5
3c

∗,

proving Theorem 2.1.

3. The signed BMP. In this section we consider the case of BMP arising when
the orientation of the genes within the given genomes is known. We will use an
approach similar to the one in the previous section to achieve an approximation ratio
of 3

2 . As the proofs are absolutely analogous to those of the previous section, in this
section we will state only the main lemmas without giving proofs.

When gene orientation is known, genomes are represented by (circular) signed
permutations of the numbers from 1 to n, i.e., cyclic sequences π1 π2 . . . πn π1 . . .
where, for each j = 1, . . . , n, there exists an i such that πi = ±j. A breakpoint of π1

with respect to π2 is now a pair π1
i π1

i+1 of consecutive elements in π1 that are not
consecutive in π2, i.e., such that neither π1

i π1
i+1 nor −π1

i+1 −π1
i appear consecutively

in this order in π2.
The graph representing the problem now has 2n nodes 1, . . . , 2n. Following the

terminology in [9], the base (perfect) matching B is given by edge set {(2i − 1, 2i) :
i = 1, . . . , n}. A Hamiltonian (perfect) matching of G is a perfect matching M such
that M ∪ B is a tour of G. Any signed permutation on n elements corresponds to
a Hamiltonian matching and vice versa. In particular, given a signed permutation
π1 π2 . . . πn π1 . . ., the associated Hamiltonian matching is defined by

M := {(2|πi| − ν(πi), 2|πi+1| − 1 + ν(πi+1)) : i ∈ {1, . . . , n}},
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where the indices of the vertices must be taken modulo 2n and ν(πi) := 0 if πi ≥ 0,
ν(πi) := 1 if πi < 0. This is a bijection [9, 3], i.e., its inverse yields the signed
permutation associated with a given Hamiltonian matching. Now, given two per-
mutations π1, π2 and the associated Hamiltonian matchings M1,M2, it is easy to
check that π1

i π1
i+1 is a breakpoint of π1 with respect to π2 if and only if edge

e = (2|πi| − ν(πi), 2|πi+1| − 1 + ν(πi+1)) �∈ M2 (noting that e ∈ M1); for further
details, see [9, 3]. Hence, given two Hamiltonian matchings M1,M2, the breakpoint
distance between the associated permutations is given by n − |M1 ∩M2|. Accord-
ingly, given q Hamiltonian matchings of G, say M1,M2, . . . ,Mq, BMP calls for a
Hamiltonian matching M such that qn−∑q

k=1 |Mk ∩M | is minimized.
Let E = {ij : 1 ≤ i, j ≤ 2n, i �= j} \B be the set of edges which are contained in

some Hamiltonian matching. For e ∈ E, the (normalized) cost of e is defined by

ce :=
q − |{k ∈ {1, . . . , q} : e ∈Mk}|

q
,

and BMP calls for the cheapest Hamiltonian matching.

The counterpart of a cycle that is not a tour in the previous section is now called
a half-cycle, which is a matching of G that contains strictly fewer than n edges (i.e.,
it is not perfect) and forms a cycle with some of the edges of the base matching
B—formally, a half-cycle is an edge set H ⊂ E for which there exists A ⊆ B with
|A| = |H| such that H ∪ A is a cycle. Note that each perfect matching P ⊂ E that
is not Hamiltonian is partitioned into half-cycles, each corresponding to a cycle of
P ∪B.

The approximation algorithm finds a perfect matching of minimum cost in G, say
R, removes from R the most expensive edge in each half-cycle, and adds edges in an
arbitrary way so as to get a Hamiltonian matching S. The result illustrated in this
section is the following theorem.

Theorem 3.1. c(S) ≤ 3
2c

∗.
The properties of the edge costs that we will use within this section are Property

1 and the following.

Property 4. For each i ∈ V and S ⊆ δ(i), c(S) ≥ |S| − 1.
Property 5. For each half-cycle H, c(H) ≥ 1.
Again, c(R) is a valid lower bound on the cost of the optimal BMP solution, and

the optimal solution value c∗ can be as large as 2c(R). In order to get an alternative
lower bound, we use the following LP relaxation. Let S now denote the collection of
nontrivial subsets S ⊂ V such that no edge in B has one endpoint in S and the other
in V \ S,

min
∑
i∈V

∑
j∈V \{i}:ij∈E

1
2cijxij ,(3.1)

xij − xji = 0, i ∈ V, j ∈ V \ {i} : ij ∈ E,(3.2) ∑
j∈V \{i}:ij∈E

xij = 1, i ∈ V,(3.3)

∑
i∈S

∑
j∈V \S

xij ≥ 2, S ∈ S,(3.4)

xij ≥ 0, i ∈ V, j ∈ V \ {i} : ij ∈ E,(3.5)
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whose dual, after removal of constraints (3.2), reads

max
∑
i∈V

yi,

yi +
∑

S∈S:i∈S,j∈V \S
wS ≤ 1

2cij , i ∈ V, j ∈ V \ {i} : ij ∈ E,

wS ≥ 0, S ∈ S.

(3.6)

The restricted dual is obtained by fixing wS = 0 for S ∈ S, and its feasible solution
is given in the folowing definition.

Definition 3.2. For each node i ∈ V , let

ȳi :=




ce
2

if ce < 1
2 ,

1− ce
2

if ce ≥ 1
2 ,

(3.7)

where e is the edge in R incident with i and

r(i) := ȳi.(3.8)

It is not difficult to check that ȳ is a feasible solution of (3.6) (with wS fixed to
0). The following lemma is a restatement of the above definition and is given only to
show the analogy to Lemma 2.3.

Lemma 3.3. For each node i ∈ V , let ij be the edge in R incident with i. Then,

r(i) ≥




cij
2

if cij < 1
2 ,

1− cij
2

if cij ≥ 1
2 .

(3.9)

Consider the set of half-cycles in which R is partitioned, say H1, . . . , Hp. For
% = 1, . . . , p let V (H�) denote the set of nodes visited by cycle C�, and define β� :=∑
e∈H� ce and γ� := maxe∈H� ce. Note that β� ≥ 1 by Property 5. We have the

following.
Lemma 3.4. For % = 1, . . . , p, i ∈ V (H�), and j ∈ V \ V (H�),

1
2cij − ȳi ≥



0 if γ� ≥ 1

2 ,
1− 2γ�
2

if γ� <
1
2 .

(3.10)

Accordingly, the feasible solution of the restricted dual is the following definition.
Definition 3.5. For S ∈ S, define

w̄S :=

{
1− 2γ�
2

if S = V (H�) for some % ∈ {1, . . . , p} such that γ� <
1
2 ,

0, otherwise.
(3.11)

Hence, our lower bound is

a(R) :=

p∑
�=1


2w̄V (H�) +

∑
i∈V (H�)

r(i)


 ,(3.12)

and we have the following result.
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Lemma 3.6. For % = 1, . . . , p,

2w̄V (H�) +
∑

i∈V (H�)

r(i) ≥ 2(1− γ�).(3.13)

The proof of Theorem 3.1 follows by c∗ ≥ a(R) ≥ ∑p
�=1 2(1 − γ�), c

∗ ≥ c(R) =∑p
�=1 β�, and c(S) ≤∑p

�=1(β� + 1− γ�).
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Abstract. We study subdifferential conditions of the calmness property for multifunctions
representing convex constraint systems in a Banach space. Extending earlier work in finite dimensions
[R. Henrion and J. Outrata, J. Math. Anal. Appl., 258 (2001), pp. 110–130], we show that, in contrast
to the stronger Aubin property of a multifunction (or metric regularity of its inverse), calmness can
be ensured by corresponding weaker constraint qualifications, which are based only on boundaries
of subdifferentials and normal cones rather than on the full objects. Most of the results can be
immediately interpreted in the context of error bounds.
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1. Introduction. Following [24, p. 399], a multifunction M : Y ⇒ X between
metric spacesX,Y is calm at some point (ȳ, x̄) of its graph if there exist neighborhoods
V, U of ȳ, x̄, respectively, and some L > 0 such that the corresponding distance
functions satisfy

d(x,M(ȳ)) ≤ Ld(y, ȳ) ∀x ∈M(y) ∩ U , ∀y ∈ V.(1.1)

With U := X, calmness reduces to the upper Lipschitz property of multifunctions,
introduced by Robinson [23]. Obviously, calmness is also weaker than the well-known
Aubin property of multifunctions

d(x,M(y′)) ≤ Ld(y, y′) ∀x ∈M(y) ∩ U , ∀y, y′ ∈ V.(1.2)

(In particular, M(y) = ∅ for y close to but different from ȳ is possible under calm-
ness but violates the Aubin property.) Calmness plays a key role in many issues of
mathematical programming like optimality conditions, error bounds, or stability of
solutions. The focus of this paper will be on multifunctions defined by convex systems
in a Banach space X like

M(y) := {x ∈ C | f(x) ≤ y} or M(y) := {x ∈ X | d(x,C) + d(x,D) ≤ y} (y ∈ R),
(1.3)
where C,D ⊆ X are closed, convex subsets and f is convex. Of course, writing down
the calmness property (1.1) for the first system considered in (1.3) immediately yields
the existence of a local error bound for f with respect to the set C. Hence all results
obtained for this first part have an immediate link to the context of error bounds,
which are extensively studied in the literature (e.g., [5], [15], [14], [16], [17], [19]). The
aim of this paper is to derive dual (i.e., formulated in terms of the subdifferential and
normal cone) conditions for calmness of the systems in (1.3) which are weaker than
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the well-known Slater-type conditions implying the stronger Aubin property (1.2) of
M (or, equivalently, the metric regularity of M−1).

IfM is a polyhedral multifunction, then it is automatically calm (see [23]). Apart
from this special class, certain conditions have to hold true in order to ensure calmness,
and it seems natural to characterize these conditions in terms of well-known objects
from nonsmooth analysis such as (co-) derivatives, (sub-) differentials, or tangent or
normal cones. Similar characterizations have been successfully established for the
stronger Aubin property. In finite dimensions, for instance, (1.2) is equivalent to each
of the following two conditions, described by Mordukhovich [18] and Aubin (see, e.g.,
[1] and [6, Corollary 1.19] for necessity), respectively:

D∗M(ȳ, x̄)(0) = {0},(1.4)

∃α, β > 0 : B(0, 1) ⊆ D−M−1(x, y)(B(0, α)) ∀x, y ∈ GphM ∩B((x̄, ȳ), β).(1.5)

Here, D∗ and D− refer to Mordukhovich’s coderivative and to Aubin’s contingent
derivative, respectively, while B refers to appropriate closed balls. As coderivatives
relate to normal cones while derivatives are associated with tangent cones, the first
criterion above is of dual nature and the second one is of primal nature. The question
arises of whether the criteria above can be modified appropriately to characterize the
weaker calmness property (1.1) rather than (1.2). A primal criterion of calmness was
found in [9, Proposition 2.1] (sufficiency) and [10, Proposition 4.1] (necessity):

DM(ȳ, x̄)(0) = {0}.(1.6)

Note that (1.6) immediately enforces the isolatedness of x̄ in M(ȳ) because a se-
quence xn → x̄, xn ∈M(ȳ), xn �= x̄ would generate a nontrivial tangent vector (0, ξ)
to GphM at (ȳ, x̄), whence a contradiction 0 �= ξ ∈ DM(ȳ, x̄)(0) to (1.6). Conse-
quently, a reduced version of calmness (also called calmness on selections) is equiva-
lently characterized by (1.6). A dual characterization of calmness in the broader sense
of (1.1) was given in [7] for the special case of finite-dimensional multifunctions

M(y) := {x ∈ C|g(x) + y ∈ D},

where C ⊆ R
p, D ⊆ R

m are closed subsets and g : R
p → R

m is locally Lipschitz.
In this special case, Mordukhovich’s criterion (1.4) for the Aubin property takes the
form ⋃

y∗∈ND(g(x̄))\{0}
D∗g(x̄)(y∗) ∩ (−NC(x̄)) = ∅,

where N refers to Mordukhovich’s normal cone. It was shown in [7] that under mild
assumptions, calmness is implied by the weaker condition⋃

y∗∈ND(g(x̄))\{0}
D∗g(x̄)(y∗) ∩ (−bdNC(x̄)) = ∅,

where “bd” refers to the topological boundary. Hence, reducing Lipschitzian stability
to upper Lipschitzian stability corresponds to a transition from certain geometric
objects to their boundaries. This fact becomes most evident for the simple case of
one single inequality g(x) + y ≤ 0 (i.e., D = R−): if g (as a function) and C (as a
set) are regular in the sense of Clarke, then calmness of M holds true at some point
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(0, x̄) with g(x̄) = 0, provided that bd ∂g(x̄) ∩ (−bdNC(x̄)) = ∅ (see Theorem 4.2
in [7]). Here, “∂” refers to either Mordukhovich’s or Clarke’s subdifferential (which
coincide due to regularity). This last constraint qualification can be opposed again to
the corresponding criterion of the Aubin property, which now takes the form ∂g(x̄)∩
(−NC(x̄)) = ∅. For absent abstract constraints (C = R

p) the calmness condition
reduces to 0 /∈ bd ∂g(x̄) (as opposed to the condition 0 /∈ ∂g(x̄), which ensures the
stronger Aubin property).

The aim of this paper is to study possible infinite-dimensional extensions of the
previous results. For the first system in (1.3), a counterexample will show that, even
for Clarke-regular data, the mentioned constraint qualification bd ∂g(x̄)∩(−bdNC(x̄)) =
∅ no longer implies calmness in a Banach space setting. It does, however, for convex
data, and in this case it can even be weakened again. This gives an improvement
even for the finite-dimensional case. Therefore, the focus of the paper is on convex
constraint systems.

2. Notation. Throughout this paper, X will denote some Banach space, and X∗

its dual endowed with the strong topology. In these spaces, B(α, β) and B∗(α, β) are
the closed balls around α with radius β, whereas B0(α, β) refers to the corresponding
open ball in X. By iS we denote the indicator function of a closed set S ⊆ X, and by
epif the epigraph of some function f : X → R ∪ {∞}. N(S;x), ∂f , and ∂∞f refer to
the normal cone to S at some x ∈ S and to the usual and singular subdifferentials of
f , respectively, all in the sense of convex analysis. In contrast, ∂c represents Clarke’s
subdifferential. “bd ” and “int” are the topological boundary and interior. For a
multifunction M : X ⇒ Y between Banach spaces,

GphM = {(x, y) ∈ X × Y |y ∈M(x)},
rangeM = {y ∈ Y | ∃x ∈ X, y ∈M(x)},

M−1 : Y ⇒ X, M−1(y) = {x ∈ X|y ∈M(x)}
denote its graph, its range, and its inverse, respectively.

3. Convex constraint systems with a perturbed inequality. In this sec-
tion, we consider constraint systems involving a fixed abstract constraint set and an
inequality which is subject to perturbations. More precisely, we are interested in the
calmness property (1.1) of the multifunction

M(y) := {x ∈ C | f(x) ≤ y} (y ∈ R),(3.1)

where C is a closed, convex subset of some Banach space X and f is a convex, lower
semicontinuous function. First, we state an auxiliary result. Recall from [2] that a set
S ⊆ X is compactly epi-Lipschitzian at some x0 ∈ S if there exist a norm-compact
set K and a constant r > 0 such that

S ∩B(x0, r) +B(0, tr) ⊆ S − tK ∀t ∈ (0, r).

Lemma 3.1. For C and f as introduced above, the sum rule

∂(f + iC)(x̄) ⊆ ∂f(x̄) +N(C; x̄)

applies if the following constraint qualification is satisfied:

∂∞f(x̄) ∩ −N(C; x̄) = {0} and
C or epi f is compactly epi-Lipschitzian at x̄.

}
(CQ∗)
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Proof. Define two closed and convex subsets of X × R by D1 = epi f and D2 =
C × R. The first part of (CQ∗) implies that

N(D1; (x̄; f(x̄))) ∩ −N(D2; (x̄; f(x̄))) = {0}.
Along with the second part of (CQ∗), this last relation is sufficient for the intersection
rule

N(D1 ∩D2; (x̄; f(x̄))) ⊆ N(D1; (x̄; f(x̄))) +N(D2; (x̄; f(x̄)))

(see [11, Corollary 4.5]). Now, let x∗ ∈ ∂(f + iC)(x̄) be arbitrarily given, i.e., 〈x∗, x−
x̄〉 ≤ f(x)− f(x̄) for all x ∈ C. Consequently,

〈(x∗,−1), (x, t)− (x̄, f(x̄))〉 ≤ 0 ∀x ∈ C, ∀t ≥ f(x).
In other words, (x∗,−1) ∈ N(D1 ∩ D2; (x̄; f(x̄))), and the above intersection rule
ensures that (x∗,−1) = (y∗, r) + (z∗, t) for certain (y∗, r) ∈ N(D1; (x̄; f(x̄))) and
(z∗, t) ∈ N(D2; (x̄; f(x̄))). By definition of D2, one gets t = 0 and z∗ ∈ N(C; x̄).
It results that r = −1; hence y∗ ∈ ∂f(x̄) by definition of D1. Summarizing, x∗ ∈
∂f(x̄) +N(C; x̄), as we wanted to show.

Remark 3.2. The constraint qualification (CQ∗) in Lemma 3.1 is always satisfied
if the convex function f is continuous at x̄ or if x̄ is an interior point of C. The second
part of (CQ∗) holds true whenever X is finite-dimensional or the convex set C has
nonempty interior.

Theorem 3.3. With the setting introduced above, the multifunction M in (3.1)
is calm at a point (0, x̄) ∈ GphM of its graph if one of the following conditions is
satisfied:

f(x̄) < 0,(3.2)

bd ∂f(x̄) ∩ −bdN(C; x̄) �= ∂f(x̄) ∩ −N(C; x̄),(3.3)

bd ∂f(x̄) ∩ −bdN(C; x̄) = ∅, and (CQ∗).(3.4)

Proof. From (0, x̄) ∈ GphM it follows that x̄ ∈ C and f(x̄) ≤ 0. In case of (3.2),
it follows that

0 ∈ int [f(x̄),∞) ⊆ int rangeM−1.(3.5)

SinceM has a closed and convex graph, this last relation implies the metric regularity
of M−1 at (x̄, 0) by the Robinson–Ursescu theorem (see [21], [25]). However, the
metric regularity of M−1 at (x̄, 0) is equivalent to M having the Aubin property at
(0, x̄) (cf. [3], [20], [24]), which in turn implies the calmness of M at (0, x̄). Hence,
in what follows we assume that f(x̄) = 0. Suppose next that (3.3) is satisfied. Then,
since both ∂f(x̄) and −N(C; x̄) are (strongly) closed in X∗, it holds that

int ∂f(x̄) ∩ −N(C; x̄) �= ∅ or ∂f(x̄) ∩ −intN(C; x̄) �= ∅.(3.6)

If the first condition of (3.6) holds, then choose x∗ ∈ int ∂f(x̄) ∩ −N(C; x̄). Accord-
ingly, there exists some α > 0 such that B∗(x∗;α) ⊆ ∂f(x̄). In other words,

〈x∗ + αp∗, x− x̄〉 ≤ f(x)− f(x̄) = f(x) ∀p∗ ∈ B∗(0; 1), ∀x ∈ X.
It follows that

〈p∗, x− x̄〉 ≤ α−1(f(x)− 〈x∗, x− x̄〉) ≤ α−1f(x) ∀p∗ ∈ B∗(0; 1), ∀x ∈ C,
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since x∗ ∈ −N(C; x̄). Consequently,

‖x− x̄‖ ≤ α−1f(x) ∀x ∈ C and f(x) ≥ 0 ∀x ∈ C,(3.7)

and thus the desired calmness property of M follows (with U := X and V := R in
(1.1)):

d(x,M(0)) ≤ ‖x− x̄‖ ≤ α−1y = α−1d(y, 0) ∀y ∈ R, ∀x ∈M(y).

If the second condition of (3.6) holds true, then choose x∗ ∈ ∂f(x̄) ∩ −intN(C; x̄).
Now, there is some α > 0 such that B∗(x∗;α) ⊆ −N(C; x̄); hence

〈x∗ − αp∗, x− x̄〉 ≥ 0 or 〈p∗, x− x̄〉 ≤ α−1〈x∗, x− x̄〉 ∀p∗ ∈ B∗(0; 1), ∀x ∈ C.
Due to x∗ ∈ ∂f(x̄), this yields ‖x− x̄‖ ≤ α−1〈x∗, x− x̄〉 ≤ α−1f(x) for all x ∈ C. In
this way, we end up once more at relation (3.7) and, hence, at the calmness of M at
(0, x̄), as above.

Finally, assume that (3.4) holds. If 0 ∈ int ∂f(x̄), then—because of 0 ∈ ∂f(x̄) ∩
−N(C; x̄)—(3.3) is satisfied and calmness of M follows as shown before. Suppose
that 0 ∈ bd ∂f(x̄). When N(C; x̄) = X∗, calmness of M follows again from (3.3). In
the opposite case, N(C; x̄) �= X∗, it always holds that 0 ∈ −bdN(C; x̄), which gives
a contradiction to (3.4). It remains to check the case of

0 /∈ ∂f(x̄).(3.8)

Then, one has

∂f(x̄) ∩ −N(C; x̄) = ∅ or ∂f(x̄) ⊆ −intN(C; x̄).(3.9)

To verify this statement, assume that neither of the two conditions is satisfied. Then,
there exist x∗1, x

∗
2 ∈ ∂f(x̄) such that x∗1 ∈ −N(C; x̄) and x∗2 /∈ −intN(C; x̄). The

convexity of ∂f(x̄) and −N(C; x̄) guarantees the existence of some x∗ (on the line
segment [x∗1, x

∗
2]) such that x∗ ∈ ∂f(x̄) ∩ −bdN(C; x̄). By the cone property of

N(C; x̄), one has that tx∗ ∈ −bdN(C; x̄) for all t > 0. Due to the closedness of ∂f(x̄),
there must be some t∗ > 0 such that t∗x∗ /∈ ∂f(x̄) (otherwise we have a contradiction
with (3.8)). But then, since x∗ ∈ ∂f(x̄), there must exist some t̂ > 0 such that
t̂x∗ ∈ bd ∂f(x̄). At the same time, t̂x∗ ∈ −bdN(C; x̄), whence a contradiction to
(3.4), and (3.9) must hold true.

Now, the first case of (3.9) implies the existence of some x′ ∈ C such that f(x′) < 0
(Slater’s condition). Indeed, negating Slater’s condition means that x̄ is a minimum
of f over C or, equivalently, a free minimum of the lower semicontinuous function
f + iC . Consequently,

0 ∈ ∂(f + iC)(x̄) ⊆ ∂f(x̄) +N(C; x̄),

where we have applied Lemma 3.1. However, the obtained relation contradicts the
first case of (3.9). Hence, Slater’s condition is satisfied, and one has (3.5) with x̄
replaced by x′. Consequently, the calmness of M at x̄ follows as in the lines below
(3.5).

Concerning the second case of (3.9), assume first that ∂f(x̄) = ∅. Then, we are
back to the first case of (3.9) already considered. Finally, if ∂f(x̄) �= ∅, then the
second case of (3.9), along with (3.4), yields (3.3), and the calmness of M at (0, x̄)
follows again.
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For missing abstract constraints, a much simpler characterization of calmness can
be derived from Theorem 3.3, as follows.

Corollary 3.4. Let X be a Banach space, and f : X → R ∪ {∞} a convex,
lower semicontinuous function. Then, the multifunction M(y) := f−1(−∞, y] is calm
at a point (0, x̄) with f(x̄) ≤ 0 if

f(x̄) < 0 or 0 /∈ bd ∂f(x̄).(3.10)

Proof. The first condition of (3.10) coincides with (3.2); thus it suffices to consider
the second condition of (3.10). Evidently, in the setting of (3.1), we have C = X;
hence N(C; x̄) = bdN(C; x̄) = {0}. Along with 0 /∈ bd ∂f(x̄), this provides

bd ∂f(x̄) ∩ −bdN(C; x̄) = ∅;
hence (3.4) is satisfied. (Note that (CQ∗) is trivially satisfied in the context of this
corollary; see Remark 3.2.)

Note that in the setting of Corollary 3.4 we have the following implications:

(3.3) =⇒ 0 ∈ int ∂f(x̄) =⇒ (3.4) =⇒ (3.10).

Hence, in contrast to the alternative of conditions (3.3) and (3.4) in Theorem 3.3,
there is no point in considering (3.3) here in addition to (3.10). In the general setting
of Theorem 3.3, however, it is no longer true that (3.3) implies (3.4), as can be seen
from the second part of Example 3.6 below.

Remark 3.5. For finite-dimensional X, condition (3.4)—with the convex sub-
differential replaced by Clarke—was shown in [7] to be sufficient for calmness of the
multifunctionM if f is locally Lipschitzian and both f and C are regular in the sense
of Clarke. Theorem 3.3 demonstrates that this condition can be weakened to “(3.3) or
(3.4)” in the convex case even if X is infinite-dimensional. More precisely, one has the
following structure of constraint qualifications here (assuming that f is continuous at
x̄ ∈ C and f(x̄) = 0):

∂f(x̄) ∩ −N(C; x̄) = ∅ =⇒ (3.4) =⇒ (3.3) or (3.4)
�

Slater’s condition ⇓
�

Aubin property of M at (0, x̄) calmness of M at (0, x̄).

(3.11)

In this diagram, we mean by Slater’s condition the existence of some x∗ ∈ C such
that f(x∗) < 0 (which is equivalent to the Aubin property of M at (0, x̄) or to the
metric regularity of M−1 at (x̄, 0) by the Robinson–Ursescu theorem).

We continue with some examples.
Example 3.6. The three constraint qualifications considered in Remark 3.5 are

strictly different. Setting, for instance, f(x) = |x|, C = R, x̄ = 0, Slater’s condition
is obviously violated (and also 0 ∈ ∂f(x̄) ∩ −N(C; x̄) �= ∅), whereas (3.4) holds true:

bd ∂f(x̄) ∩ −bdN(C; x̄) = {−1, 1} ∩ {0} = ∅.
Indeed, M is calm at (0, x̄) but fails to have the Aubin property there. Another example
is f(x) = f(x1, x2) = ‖x‖, C = {(x1, x2) | x1 ≥ 0}. Then, at x̄ = (0, 0), one has

bd ∂f(x̄) ∩ −bdN(C; x̄) = {(x1, x2) | x2
1 + x2

2 = 1, x1 ≥ 0, x2 = 0} = {(1, 0)},
∂f(x̄) ∩ −N(C; x̄) = {(x1, x2) | x2

1 + x2
2 ≤ 1, x1 ≥ 0, x2 = 0}

= conv {(0, 0), (1, 0)}.
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Hence, (3.4) is violated here, whereas (3.3) is satisfied, and thus Theorem 3.3 ensures
the calmness of M at (0, x̄). Again, M fails to have the Aubin property.

The following example demonstrates that Theorem 3.3 provides a sufficient but
not a necessary condition for the calmness of the multifunction M considered there.

Example 3.7. Let X = C = R, x̄ = 0, and f(x) = max{x, 0}. Then, (0, x̄) ∈
GphM , f(x̄) = 0, and M(0) = R−. One has M(y) = ∅ for y < 0, and M(y) =
(−∞, y] for y ≥ 0; hence d(x,M(0)) ≤ d(y, 0) for all y ∈ R and all x ∈ M(y). This
means calmness of M at (0, x̄). On the other hand, since ∂f(x̄) = [0, 1], (3.10) is
violated, which implies the violation of both (3.4) and (3.3).

Note that, in the last example, M was a polyhedral multifunction; hence it seems
that one cannot recover by Theorem 3.3 Robinson’s result mentioned in the introduc-
tion. However, this will be possible after some modification, following the ideas of
[12].

The next example requires some technical work. It illustrates the limitation
of Theorem 3.3 to convex data. In finite dimensions, the condition “f(x̄) < 0 or
0 /∈ bd ∂cf(x̄)” (i.e., (3.10) with the convex subdifferential replaced by Clarke’s) was
found in [7] to ensure calmness of the multifunctions (3.1) without abstract constraints
(i.e., C = X) as long as f is regular at x̄ in the sense of Clarke. This is no longer true
in infinite dimensions unless the data are restricted to be convex as in Corollary 3.4.

Example 3.8. For k ∈ N, let τk ∈ (0, k−2) be the unique solution of τ+k
√
τ = 1.

Define the sequence of real functions

ϕk(τ) :=

{ |τ |(1− k√|τ |) if τ ∈ [−τk, τk],
τ2
k if |τ | ≥ τk.

Elementary analysis shows that each ϕk is (globally) Lipschitz continuous with mod-
ulus 1 and regular at zero in the sense of Clarke. (Close to the origin, each ϕk can be
represented as the maximum of two C1- functions.) Furthermore,

ϕk ≥ 0, ϕk(τ) = 0⇐⇒ τ = 0, and ϕk(τk) = τ2
k ∀k ∈ N,∀τ ∈ R.(3.12)

Now, let X = l1, and define f : X → R by f(x) :=
∑∞
k=1 ϕk(xk). Evidently, f(0) = 0

by (3.12). Since ϕk(τ) ≤ τ2
k ≤ k−4 for all τ ∈ R and all k ∈ N, f is well defined. For

arbitrary x, y ∈ X, one has

|f(x)− f(y)| =
∣∣∣∣∣
∞∑
k=1

(ϕk(xk)− ϕk(yk))
∣∣∣∣∣ ≤

∞∑
k=1

|ϕk(xk)− ϕk(yk)|

≤
∞∑
k=1

|xk − yk| = ‖x− y‖1;

hence f is (globally) Lipschitz continuous with modulus 1.
Next, we calculate Clarke’s directional derivative f0(0;h) of f at zero in arbitrary

direction h ∈ X. By definition (see [4]), one has

f0(0;h) = lim sup
t↓0,x→0

f(x+ th)− f(x)
t

= lim
n→∞

f(x(n) + t(n)h)− f(x(n))

t(n)

= lim
n→∞

∞∑
k=1

ϕk(x
(n)
k + t(n)hk)− ϕk(x(n)

k )

t(n)
,(3.13)
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where x(n) → 0 and t(n) ↓ 0 are suitable sequences realizing the above limsup as a
limit. Now, we fix an arbitrary k′ ∈ N. Assume that there exist ε > 0 and n0 ∈ N

such that

ϕk′(x
(n)
k′ + t(n)hk′)− ϕk′(x(n)

k′ )

t(n)
≤ ϕk′(t

(n)hk′)

t(n)
− ε ∀n ≥ n0.(3.14)

In order to lead (3.14) to a contradiction, define a sequence x̃(n) ∈ X by

x̃
(n)
k :=

{
x

(n)
k , k �= k′,

0, k = k′,
∀k, n ∈ N.

It follows that x̃(n) → 0 and, in view of (3.12),

f(x̃(n) + t(n)h)− f(x̃(n))

t(n)
=

∞∑
k=1,k �=k′

ϕk(x
(n)
k + t(n)hk)− ϕk(x(n)

k )

t(n)
+
ϕk′(t

(n)hk′)

t(n)

≥
∞∑
k=1

ϕk(x
(n)
k + t(n)hk)− ϕk(x(n)

k )

t(n)
+ ε

=
f(x(n) + t(n)h)− f(x(n))

t(n)
+ ε

for n ≥ n0, whence the contradiction with (3.13),

lim sup
t↓0,x→0

f(x+ th)− f(x)
t

≥ f0(0;h) + ε.

Therefore, we may negate (3.14) in order to obtain a subsequence symbolized by the
index m(n) such that

lim inf
n→∞

ϕk′(x
(m(n))
k′ + t(m(n))hk′)− ϕk′(x(m(n))

k′ )

t(m(n))

≥ lim
n→∞

ϕk′(t
(m(n))hk′)

t(m(n))
= dϕk′(0;hk′) = ϕ0

k′(0;hk′)

≥ lim sup
n→∞

ϕk′(x
(m(n))
k′ + t(m(n))hk′)− ϕk′(x(m(n))

k′ )

t(m(n))
,(3.15)

where “dϕk′” refers to the usual directional derivative, which, by the already stated
regularity of ϕk′ in the sense of Clarke, exists and coincides with ϕ0

k′ . From the
definition of ϕk′ , one calculates dϕk′(0;hk′) = |hk′ |. Since k′ was arbitrarily fixed,
(3.15) provides

lim
n→∞

ϕk(x
(m(n))
k + t(m(n))hk)− ϕk(x(m(n))

k )

t(m(n))
= |hk| ∀k ∈ N.

This finally allows us to interchange limit and summation in the last term of (3.13)
(upon passing to the subsequence m(n) there too):

f0(0;h) =

∞∑
k=1

|hk| = ‖h‖1 ∀h ∈ X.
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Consequently, ∂cf(0) = B1, where ∂cdenotes Clarke’s subdifferential and B1 is the
unit ball in X.

Next, we verify that f is regular at 0 in the sense of Clarke. To this aim, we
calculate its usual directional derivative at 0 in arbitrary direction h. Since for each
sequence t(n) ↓ 0 it holds that

lim
n→∞

ϕk(t
(n)h̃)

t(n)
= dϕk(0; h̃) = |h̃| ∀h̃ ∈ R,∀k ∈ N,

one may interchange limit and summation once more:

‖h‖1 =
∞∑
k=1

lim
n→∞

ϕk(t
(n)hk)

t(n)
= lim
n→∞

∞∑
k=1

ϕk(t
(n)hk)

t(n)
= lim
n→∞

f(t(n)h)− f(0)
t(n)

.

As t(n) ↓ 0 was arbitrary, it follows that df(0;h) = ‖h‖1 = f0(0;h); hence f is regular
in the sense of Clarke.

Finally, we consider the multivalued mapping M : R ⇒ X defined by M(t) :=
{x ∈ X | f(x) ≤ t}. This is exactly the setting of (3.1) with abstract constraints
missing (X = C). By the definition of f and (3.12), one has

f(x) ≥ 0 ∀x ∈ X and f(x) = 0⇐⇒ x = 0.

Hence, M(0) = {0}. Define a sequence z(n) = (0, . . . , 0, τn, 0, 0, . . .) ∈ X, with τn at
position n. Then, again by (3.12),

d(z(n),M(0)) = ‖z(n)‖1 = τn and f(z(n)) = ϕn(τn) = τ2
n ∀n ∈ N.

Setting y(n) := f(z(n)), we have constructed sequences z(n), y(n) such that z(n) ∈
M(y(n)), z(n) → 0, y(n) → 0 (because of τn ∈ (0, n−2)). From here, we derive that M
fails to be calm at (0, 0):

d(z(n),M(0)) = τ−1
n f(z(n)) = τ−1

n d(f(z(n)), 0) ≥ n2d(f(z(n)), 0)

(again by τn ∈ (0, n−2)), which contradicts (1.1). On the other hand, we have seen
that ∂cf(0) = B1; hence 0 ∈ int ∂cf(0), and the constraint qualification “f(x̄) < 0 or
0 /∈ bd ∂cf(x̄)”—which was sufficient for calmness in the regular, finite-dimensional
and in the convex, infinite-dimensional cases—is evidently satisfied. However, the
same constraint qualification (to which the conditions (3.4) and (3.3) reduce when
C = X) does not imply calmness in the regular, infinite-dimensional case, as was
shown in this example.

The next result is an immediate application of Theorem 3.3 to the characterization
of calmness for nonstructured multifunctions.

Corollary 3.9. Let X be a Banach space, Y a metric space, M : X ⇒ Y a
multifunction with closed values, and (x̄, ȳ) ∈ GphM . Assume further that

(1) the distance function d(ȳ,M(·)) is convex and lower semicontinuous in a
neighborhood of x̄;

(2) 0 /∈ bd ∂d(ȳ,M(·))(x̄).
Then M−1 is calm at (ȳ, x̄).

Proof. Corollary 3.4 immediately provides calmness at (ȳ, x̄) of the multifunction
P : R ⇒ X defined by

P (t) := {x ∈ X | d(ȳ,M(x)) ≤ t}.
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This means the existence of some L > 0, ε > 0 such that

d(x, P (0)) ≤ L|t| ∀t ∈ (−ε, ε), ∀x ∈ B0(x̄; ε) ∩ P (t).

Since P (0) = M−1(ȳ) and M−1(y) ⊆ P (d(ȳ, y)) for all y ∈ Y , the calmness of M−1

at (ȳ, x̄) follows:

d(x,M−1(ȳ)) = d(x, P (0)) ≤ Ld(ȳ, y) ∀y ∈ B0(ȳ; ε), ∀x ∈ B0(x̄; ε) ∩M−1(y).

Note that Corollary 3.9(2) is far removed from being necessary for calmness or
even the stronger Aubin property.

Example 3.10. ConsiderM(x) := [x,∞) at (0, 0) ∈ GphM . Since d(0,M(x)) =
max{0, x}, Corollary 3.9(1) is satisfied, whereas condition (2) is violated. On the other
hand, the inverse multifunctionM−1(y) = {x|x ≤ y} is easily seen to satisfy the Aubin
property (1.2) and, hence, calmness at (0, 0).

At the end of this section we want briefly to compare our conditions for the calm-
ness of system (3.1) with similar conditions which were obtained in the context of
error bounds. First, recall that the calmness of (3.1) is equivalent to the existence of
a local error bound. A rigorous comparison is difficult because the obtained condi-
tions may differ by many features (e.g., local vs. global error bounds, primal vs. dual
conditions, finite- vs. infinite-dimensional spaces, point vs. neighborhood conditions).
However, one could at least try to reduce all these conditions to a simple common
setting, where C = X is finite-dimensional and f is convex and finite-valued. As far
as dual conditions for error bounds are concerned, they usually come down to just
Slater’s condition in dual form, “0 /∈ ∂f(x̄)” in that situation (see, e.g., [14, condi-
tion (ACQ11)], [15, Section 3, Corollary 2(b)], or [5, Theorem 1]). Slater’s condition,
however, is much stronger than our condition (3.10), as was shown in Example 3.6
(see also (3.11)). A primal condition for calmness proposed in [17, Theorem 13] is

0 ∈ int(f(C) + R+).

However, in our setting, with C = X, this relation obviously reduces to Slater’s
condition in primal form: “∃x∗ : f(x∗) < 0.” Hence, the same remarks as above apply
with respect to condition (3.10). A mixed primal/dual condition was derived in [15,
Theorem 1] for finite dimensions:

∃γ > 0 : f ′(x̄; d) ≥ γ−1 ‖d‖ ∀x̄ ∈ f−1(0), ∀d ∈ N(f−1(−∞, 0]; x̄).(3.16)

Here, f ′ refers to the directional derivative of f . It is elementary to verify that in the
special setting considered here (C = X), (3.10) implies (3.16). In particular, (3.16)
could be applied in Example 3.7, where (3.10) failed. On the other hand, (3.16) is
not a point condition by relying on the whole solution set f−1(−∞, 0]. This could
make its verification in general problems less convenient than that of (3.10), which
is sufficient at least for local error bounds. A similar comparison holds true for a
nonsmooth Abadie’s constraint qualification formulated in [19].

4. Calmness of the intersection of two sets. In this section, we turn to the
calmness property with respect to two sets. To this aim, let C,D ⊆ X be closed,
convex subsets such that x̄ ∈ C ∩ D. We want to characterize the calmness of the
multivalued mapping Q : R ⇒ X defined by

Q(t) := {x ∈ X | d(x,C) + d(x,D) ≤ t}
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at the point (0, x̄) ∈ GphQ.
Lemma 4.1. Q is calm at (0, x̄) ∈ GphQ, provided that

intN(D; x̄) ∩ −N(C; x̄) �= ∅.(4.1)

Proof. Choose x∗ ∈ intN(D; x̄) ∩ −N(C; x̄). From x∗ ∈ intN(D; x̄), it follows,
similarly to the proof of Theorem 3.3, that there exists some α > 0 such that

α‖x− x̄‖+ 〈x∗, x− x̄〉 ≤ 0 ∀x ∈ D.
Hence, x̄ is a minimizer of the function 〈x∗, x̄−·〉−α‖ ·−x̄‖ on the set D. Now, using
a well-known penalization argument, which appeals to the Lipschitz constant of the
function involved, it follows that there exists some ε > 0 such that

〈x∗, x̄− x〉 − α‖x− x̄‖+ (‖x∗‖+ α)d(x,D) ≥ 0 ∀x ∈ B(x̄; ε),
whence, by x∗ ∈ −N(C; x̄),

−α‖x− x̄‖+ (‖x∗‖+ α)d(x,D) ≥ 0 ∀x ∈ B(x̄; ε) ∩ C.
In other words, x̄ is a local minimizer of the function −α‖ · −x̄‖+ (‖x∗‖+ α)d(·, D)
on the set C. Now, upon repeating the same penalization argument, one arrives at

−α‖x− x̄‖+ (‖x∗‖+ α)d(x,D) + (‖x∗‖+ 2α)d(x,C) ≥ 0 ∀x ∈ B(x̄; ε′)
for some ε′ > 0. This, however, is the desired calmness property

d(x,Q(0)) ≤ ‖x− x̄‖ ≤ α−1(‖x∗‖+ 2α)(d(x,D) + d(x,C)) ≤ α−1(‖x∗‖+ 2α)|t|,
which holds true for all t ∈ R and all x ∈ B(x̄; ε′) ∩Q(t).

Next, we need an auxiliary result, which is of independent interest.
Lemma 4.2. If one of the sets C or D is compactly epi-Lipschitzian in a neigh-

borhood of x̄, then

N(D; x̄) ∩ −N(C; x̄) = {0} ⇐⇒ 0 ∈ int (D − C ∩B(x̄, 1)).
Proof. (=⇒) For symmetry reasons, one may take, e.g., D to be compactly epi-

Lipschitzian in a neighborhood of x̄. Assume that

0 /∈ int (D − C ∩B(x̄, 1)) = int (D − C ∩B(x̄, 1))
(the equality follows from [22, Lemma 1]). Accordingly, there exists a sequence bn → 0
with

bn /∈ D − C ∩B(x̄, 1)).
The separation theorem provides a corresponding sequence x∗n ∈ X∗ such that ‖x∗n‖ =
1 and

〈x∗n, bn〉 ≤ 〈x∗n, d− x̄〉 ∀d ∈ D, 〈x∗n, bn〉 ≤ 〈x∗n, x̄− c〉 ∀c ∈ C ∩B(x̄, 1).(4.2)

The first relation of (4.2) yields that 〈x∗n, x̄〉 ≤ infd∈D〈x∗n, d〉 + ‖bn‖. Now Ekeland’s
variational principle provides a sequence dn ∈ D such that

‖dn − x̄‖ ≤
√
‖bn‖ and 〈x∗n, dn〉 ≤ 〈x∗n, d〉+

√
‖bn‖ ‖dn − d‖ ∀d ∈ D.(4.3)
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The second relation of (4.3) entails that −x∗n ∈ N(D; dn)+B
∗(0,

√‖bn‖); hence there
are sequences z∗n ∈ N(D; dn) and b

∗
n with ‖b∗n‖ ≤

√‖bn‖ such that z∗n + x∗n + b∗n = 0.
In particular, ‖z∗n‖ → 1. Thus, the sequence z∗n is bounded and, hence, there exists a
weak∗ convergent subnet z∗λ ⇀w∗ z∗. Now, since z∗λ ∈ N(D; dλ), this last convergence,
dλ → x̄ (see the first relation of (4.3)), and the very definition of the normal cone
to convex sets yield that z∗ ∈ N(D; x̄). Now, the assumed property of D being
compactly epi-Lipschitzian in a neighborhood Vx̄ of x̄ results in the inclusion

N(D;x) ⊆
{
x∗ | ‖x∗‖ ≤ max

i=1,...,k
〈x∗, hi〉

}
∀x ∈ Vx̄ ∩D

for certain hi ∈ X (i = 1, . . . , k). From dλ → x̄, one derives that

max
i=1,...,k

〈z∗λ, hi〉 ≥ ‖z∗λ‖.

Consequently, z∗ �= 0. On the other hand, we also have that x∗λ = −z∗λ−b∗λ ⇀w∗ −z∗,
which together with the second part of (4.2) provides

〈−z∗, x̄− c〉↼w∗ 〈x∗λ, x̄− c〉 ≥ 〈x∗λ, bλ〉 → 0 ∀c ∈ C ∩B(x̄, 1),
whence z∗ ∈ −N(C; x̄). Summarizing, there is some z∗ �= 0 with z∗ ∈ N(D; x̄) ∩
−N(C; x̄). This contradicts our assumption.

(⇐=) Choose an arbitrary x∗ ∈ N(D; x̄) ∩ −N(C; x̄). Then,

〈x∗, d− x̄〉 ≤ 0 ∀d ∈ D and 〈x∗, x̄− c〉 ≤ 0 ∀c ∈ C.
In other words, 〈x∗, d − c〉 ≤ 0 for all d ∈ D and all c ∈ C. However, since by
assumption 0 ∈ int (D − C), it results that x∗ = 0, as we wanted to show.

Theorem 4.3. Let one of the sets C or D be compactly epi-Lipschitzian at x̄.
Then, Q is calm at (0, x̄) under the following condition:

bdN(D; x̄) ∩ −bdN(C; x̄) = {0}.(4.4)

Proof. For the case in which N(D; x̄)∩−N(C; x̄) = {0}, Lemma 4.2 ensures that
0 ∈ int (D − C). Since D − C equals the range of the multifunction M : X ⇒ X
defined by

M(x) =

{ −x+D, x ∈ C,
∅, x /∈ C,

we have 0 ∈ int rangeM , and the Robinson–Ursescu theorem yields the metric reg-
ularity of M at the point (x̄, 0) of its graph. This property means the existence of
L, ε > 0 such that

d(x,M−1(y)) ≤ Ld(y,M(x)) ∀x ∈ B(x̄, ε), ∀y ∈ B(0, ε).
With M−1(y) = C ∩ (D − y) and fixing y := 0, one arrives at

d(x,C ∩D) ≤ Ld(x,D) ∀x ∈ B(x̄, ε) ∩ C; hence
d(x,C ∩D) ≤ (L+ 1) (d(x,D) + d(x,C)) ∀x ∈ B(x̄, ε).

This, of course, is the calmness of the multifunction Q at (0, x̄).
Otherwise (N(D; x̄) ∩ −N(C; x̄) �= {0}), (4.4) implies that

intN(D; x̄) ∩ −N(C; x̄) �= ∅ or N(D; x̄) ∩ −intN(C; x̄) �= ∅.
In both cases, Lemma 4.1 yields the desired result.
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5. The differentiable nonconvex case. In this section we briefly return to
the constraint system (3.1), with a convex closed subset C ⊆ X as before, but with
a (strictly) differentiable function f . Theorem 3.3 has shown that, in the completely
convex case (C and f), each of the constraint qualifications (3.4), (3.3) is sufficient
for the calmness of (3.1). On the other hand, we know by Example 3.8 that neither of
the two conditions ensures calmness if f is just regular in the sense of Clarke. Since,
in that example, f was nondifferentiable, the question arises of whether a positive
result can be expected in the smooth case. The answer is affirmative even for a finite
number of inequalities.

Theorem 5.1. Consider a multifunction M : R
m ⇒ X defined by

M(y) := {x ∈ C | f(x) ≤ y} (y ∈ R
m),

where C ⊆ X is convex and closed and f : X → R
m is strictly differentiable. Then,

the constraint qualification

conv {∇fi(x̄)}i∈I(x̄) ∩ −bdN(C; x̄) = ∅(5.1)

implies the calmness of M at (0, x̄) ∈ GphM . Here, fi denote the components of f ,
and I(x) = {i ∈ {1, . . . ,m}|fi(x) = 0} refers to the set of active indices.

Proof. Assume first that conv {∇fi(x̄)}i∈I(x̄) ∩ −N(C; x̄) = ∅. Then, the strict
differentiability assumption on f allows us to apply Theorem 2.4 in [13] in order
to derive the metric regularity of M−1 at (x̄, 0), which is equivalent to the Aubin
property of M at (0, x̄) and, hence, implies calmness of M at (0, x̄). In the opposite
case, (5.1) guarantees the existence of some x∗ ∈ conv {∇fi(x̄)}i∈I(x̄) ∩−intN(C; x̄).
Accordingly, there exist λi ≥ 0 (i ∈ I(x̄)) with ∑i∈I(x̄) λi = 1 as well as ε > 0 such
that

x∗ =
∑
i∈I(x̄)

λi∇fi(x̄) and ε‖x− x̄‖ ≤ 〈x∗, x− x̄〉 ∀x ∈ C.

Due to the differentiability assumption on f and to the finiteness of I(x̄), there is
some η > 0 such that

fi(x)− fi(x̄) ≥ 〈∇fi(x̄), x− x̄〉 − ε

2
‖x− x̄‖ ∀x ∈ B(x̄, η), ∀i ∈ I(x̄).

Using the fact that fi(x̄) = 0 for i ∈ I(x̄), it holds for all x ∈ C ∩B(x̄, η) that

max
i∈I(x̄)

fi(x) ≥
∑
i∈I(x̄)

λifi(x) ≥
∑
i∈I(x̄)

λi〈∇fi(x̄), x− x̄〉 − ε

2
‖x− x̄‖ ≥ ε

2
‖x− x̄‖.

Measuring, without loss of generality, the distance in R
m with respect to the maximum

norm, one has for all x ∈M(y) ∩B(x̄, η) and all y ∈ R
m

d(x,M(0)) ≤ ‖x− x̄‖ ≤ 2

ε
max
i∈I(x̄)

fi(x) ≤ 2

ε
max

i=1,...,m
|yi| = 2

ε
d(y, 0).

This, however, is the calmness of M at (0, x̄).
The last result shows that the ideas of the completely convex case can be extended

to differentiable inequalities. With a single inequality which is differentiable and con-
vex, (5.1) reduces to (3.4) (without the need of the additional constraint qualification
(CQ∗)). One might ask about an alternative condition in the sense of (3.3) for the
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differentiable case as well. However, the closedness of the normal cone immediately
provides that the differentiable formulation of (3.3) implies (3.4); hence the two con-
ditions are not independent as in the convex (nonsmooth) setting. Finally, we note
that for finite-dimensional X, (5.1) can be weakened to the condition

bd conv {∇fi(x̄)}i∈I(x̄) ∩ −bdN(C; x̄) = ∅

(see [7, Theorem 9]). In infinite dimensions, the interior of the convex hull involved
is empty; hence this last relation is equivalent to (5.1).

6. Conclusion. The dual conditions for calmness formulated in this paper (in
particular, (3.3), (3.4), (3.10), and (5.1)) are weaker than the usual Slater-type char-
acterizations, which ensure the stronger Aubin property (or metric regularity) of the
considered systems. These conditions can be immediately applied to various issues in
mathematical programming such as error bounds, optimality conditions, weak sharp
minima (see also [8]), or the stability of solutions under perturbations.
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Abstract. We consider a conic-quadratic (and in particular a quadratically constrained) opti-
mization problem with uncertain data, known only to reside in some uncertainty set U . The robust
counterpart of such a problem leads usually to an NP-hard semidefinite problem; this is the case, for
example, when U is given as the intersection of ellipsoids or as an n-dimensional box. For these cases
we build a single, explicit semidefinite program, which approximates the NP-hard robust counterpart,
and we derive an estimate on the quality of the approximation, which is essentially independent of
the dimensions of the underlying conic-quadratic problem.
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robust optimization
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1. Introduction. A conic problem is an optimization problem of the form

(CP) min
x∈Rn

{
cTx : Ax− b ∈ K},

where K ⊆ R
N is a closed pointed convex cone with nonempty interior. The data

associated with (CP) is the triple (A, b, c), with A ∈ R
N×n, b ∈ R

N , and c ∈ R
n.

1.1. Uncertainty in conic problems. When the data (A, b) associated with
the constraint is uncertain1 and is only known to belong to some uncertainty set U , we
speak about an uncertain conic problem, which is in fact a family of conic problems:

(UCP)

{
min
x∈Rn

{
cTx : Ax− b ∈ K} : (A, b) ∈ U

}
.

The robust optimization (RO-) methodology, developed in [1, 2, 3, 4], associates with
(UCP) a single deterministic convex problem, the so-called robust counterpart (RC):

(RC) min
x∈Rn

{
cTx : Ax− b ∈ K ∀ (A, b) ∈ U}.

∗Received by the editors July 16, 2001; accepted for publication (in revised form) February 12,
2002; published electronically October 1, 2002.

http://www.siam.org/journals/siopt/13-2/39235.html.
†Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology,

32000 Haifa, Israel (morbt@ie.technion.ac.il, nemirovs@ie.technion.ac.il). The research for this paper
was done while the first author spent a sabbatical as visiting professor at TU Delft, with the support
of TU Delft and the Dutch Organization of Scientific Research (NWO).

‡Faculty of Information Technology and Systems, Delft University of Technology, P.O. Box 5031,
2600 GA Delft, The Netherlands (C.Roos@its.tudelft.nl).

1Without loss of generality we assume that the objective function is certain. Indeed, if c is
uncertain, we can use the following equivalent formulation:

min
x∈Rn

{
t : Ax− b ∈ K, cT x− t ≤ 0

}
,

which is a conic problem with a certain objective function.

535



536 A. BEN-TAL, A. NEMIROVSKI, AND C. ROOS

A feasible/optimal solution of (RC) is called a robust feasible/optimal solution of
(UCP). The importance of these solutions is motivated and illustrated in [1, 2, 3,
4]. Of course, a crucial issue regarding the usefulness and applicability of the RO-
methodology is the extent of the computational effort needed to solve problems such
as (RC). At first glance, this looks hopeless, as (RC) is a semi-infinite conic problem.
Nevertheless, for K = R

N
+ (the nonnegative orthant), i.e., when (CP) is a linear

programming problem, the first two authors have shown [3] that for a very wide class
of uncertainty sets U the resulting (RC)-problem is tractable (i.e., can be solved in
time polynomial in the dimensions n,N of (CP)). This is also the case for conic-
quadratic problems, i.e., when K is the Lorentz cone LN :

LN =
{
x ∈ R

N : xN ≥
√
x2

1 + · · ·+ x2
N−1

}
,

provided that the uncertainty set is an ellipsoid (see [2]); the corresponding results
are restated below in Theorems 2.1 and 3.2.

In this paper we deal with (conic) quadratic problems for which the uncertainty
sets U are more general. In particular, we are interested in the case in which U is
given as the intersection of several ellipsoids (we call this case the “∩-ellipsoid” case).
The situation is then severely aggravated: problem (RC) becomes NP-hard (see [2]
and also section 2.2 below).

The goal of this paper is to build approximate robust counterparts for the above
NP-hard problems, which are computationally tractable and for which a concise state-
ment can be given on the quality of the approximation.

1.2. Approximate robust counterparts. The approximation scheme we use
is of the lift-and-project type. Specifically, let the uncertainty set U be given as

U =
(
A0, b0

)
+W,

where (A0, b0) is a nominal data vector and W is a compact convex set, symmetric
with respect to the origin. (W is interpreted as the perturbation set.) Our aim is to
approximate the set X of robust feasible solutions:

X =
{
x ∈ R

n : Ax− b ∈ K ∀ (A, b) ∈ (A0, b0
)
+W

}
.

Towards this aim, we augment the vector x by an additional vector u and look at the
following set R, which is given by conic constraints:

R := {(x, u) : Px+Qu+ r ∈ K̂}

in terms of some matrices P and Q, a vector r, and a closed convex pointed nonempty
cone K̂ with nonempty interior.

Definition 1.1. We say that R is an approximate robust counterpart of X if
the projection of R onto the plane of x-variables, i.e., the set R̂ ⊆ R

n given by

R̂ := {x : Px+Qu+ r ∈ K̂ for some u},

is contained in X :

R̂ ⊆ X .(1.1)
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1.3. Level of conservativeness. Next we introduce a measure, called the level
of conservativeness, for the proximity of R̂ to X . To this end, let us look at an
uncertainty set

Uρ =
{(
A0, b0

)
+ ρW

}
, ρ ≥ 1.

Compared to the original uncertainty set U = U1, the perturbations in Uρ are increased
by a factor ρ. The set of robust feasible solutions corresponding to Uρ is

Xρ := {x ∈ R
n : Ax− b ∈ K ∀ (A, b) ∈ Uρ}.

Clearly, X1 = X . As ρ increases from 1, the set Xρ shrinks, and eventually we will
have

Xρ ⊆ R̂.(1.2)

The smallest ρ for which this occurs,

ρ∗ = inf
ρ≥1

{ρ : Xρ ⊆ R̂},(1.3)

is called the level of conservativeness of the approximate counterpart R. Thus we
have

Xρ∗ ⊆ R̂ ⊆ X .

The implications of this concept are twofold:
(i) If x ∈ R̂, i.e., if x can be augmented to a solution (x, u) ∈ R, then x is a

robust feasible solution of problem (CP). This follows from relation (1.1).
(ii) If x /∈ R̂, i.e., if x cannot be augmented to a solution (x, u) ∈ R, then x is not

a robust feasible solution of problem (CP) if its uncertainty set U is increased
to Uρ, with ρ ≥ ρ∗.

In real-world applications, the level of uncertainty (the size of vectors in the pertur-
bation set W ) is not something that can be specified precisely by the decision maker;
it is more likely that it will be specified up to a factor of order 1. Thus, for problems
for which the level of conservativeness itself is of order 1, the approximate robust
counterpart can be as meaningful as the true robust counterpart. The main results
of the paper show that for conic-quadratic problems under “∩-ellipsoid” uncertainty,
this is indeed the case: we derive an explicit semidefinite program which is an approx-
imate robust counterpart of the uncertain conic-quadratic problem and whose level
of conservativeness is a constant, essentially independent of the dimensions n,N of
(CP). The profound implication of these results is that the NP-hardness, associated
with uncertain conic-quadratic problems, can be circumvented, and a computation-
ally tractable tool is at hand, capable of producing robust solutions to these difficult
problems.

1.4. Organization of the paper. We start in the next section by considering
the case of an uncertain convex quadratically constrained problem. The more general
case of conic-quadratic problems is considered in section 3. In both cases we first
recall the results already known for simple-ellipsoid uncertainty from [2]. The main
results concern the cases of ∩-ellipsoid uncertainty, and, as a special case of it, box
uncertainty. In the box uncertainty case, we present robust counterparts for which



538 A. BEN-TAL, A. NEMIROVSKI, AND C. ROOS

the level of conservativeness is bounded above by a constant, namely, π/2. The robust
counterparts presented in the ∩-ellipsoid cases have level of conservativeness at most

(
2 log

(
6

K∑
k=1

rankQk

)) 1
2

.(1.4)

The matrices Qk in this expression are symmetric positive semidefinite matrices, of
the same order L, and it will always be assumed that their sum is positive definite.
Note that the expression under the logarithm in (1.4) may be as large as 6KL. In
many applications, however, it is likely to be much smaller.

2. Approximate robust counterparts of uncertain quadratically con-
strained problems. A generic convex quadratically constrained problem has the
form

(QC) min
x∈Rn

{
cT0 x : xTAT

i Aix ≤ 2bTi x+ ci, i = 1, . . . ,m
}
,

where the matrices Ai have size mi × n. Note that (QC) can be written as a conic-
quadratic problem:2

min
x∈Rn

{
cT0 x :

∥∥∥∥
(

Aix
1
2

(
1− 2bTi x− ci

) )∥∥∥∥ ≤ 1
2

(
1 + 2bTi x+ ci

)
, i = 1, . . . ,m

}
.

However, we shall treat the direct formulation (QC). An uncertain (QC)-problem
corresponds to the case in which the data {(Ai, bi, ci) : i = 1, . . . ,m} of the problem
is uncertain. To model the uncertainty, we use uncertainty sets Ui, and we assume

(Ai, bi, ci) ∈ Ui, i = 1, . . . ,m,(2.1)

where the uncertainty set Ui associated with the ith constraint is given as the inter-
section of ellipsoids.

In order to construct the robust counterpart (RC) of problem (QC), we should
be able to construct the robust counterpart of a single uncertain quadratic constraint

(UQC) xTATAx ≤ 2bTx+ c ∀ (A, b, c) ∈ Uρ,

where Uρ is the intersection of K ellipsoids; i.e., it is described as

Uρ =
{
(A, b, c) =

(
A0, b0, c0

)
+

L∑

=1

y

(
A
, b
, c


)
: y ∈ ρV

}
,

where V is the intersection of K ellipsoids,

V =
{
y ∈ R

L : yTQky ≤ 1, k = 1, . . . ,K
}
,

and where each Qk � 0. As stated above, we make the generic assumption that∑K
k=1 Qk � 0.

2When not further specified, ‖.‖ always denotes the 2-norm ‖.‖2.
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2.1. Simple ellipsoidal uncertainty. In this case we look for the robust coun-
terpart of the convex quadratic constraint

xTATAx ≤ 2bTx+ c ∀ (A, b, c) ∈ Usimple,(2.2)

where

Usimple =

{
(A, b, c) =

(
A0, b0, c0

)
+

L∑

=1

y

(
A
, b
, c


)
: ‖y‖2 ≤ 1

}
,

with

A
 ∈ R
M×n, b
 ∈ R

n, c
 ∈ R, � = 0, . . . , L.

This is a special case of (UQC), where K = 1 and Q1 is the identity matrix. This
case has been considered already in [2, 6], where the following result is proved.

Theorem 2.1. A vector x ∈ R
n is a solution of (2.2) if and only if for some

λ ∈ R the pair (x, λ) is a solution of the following linear matrix inequality (LMI):


c0 + 2xT b0 − λ 1
2c

1 + xT b1 · · · 1
2c
L + xT bL

(
A0x
)T

1
2c

1 + xT b1 λ
(
A1x
)T

...
. . .

...

1
2c
L + xT bL λ

(
ALx

)T
A0x A1x · · · ALx IM



� 0.

Fundamental in the proof of this result is the so-called S-lemma (see, e.g., [5]).
Lemma 2.2 (S-lemma). Let P and Q be symmetric matrices of the same order,

and assume that yTPy > 0 for some vector y. Then the implication

zTPz ≥ 0 ⇒ zTQz ≥ 0

is valid if and only if Q � λP for some λ ≥ 0.

2.2. Intersection-of-ellipsoids uncertainty. In this case we consider the ro-
bust feasible set for (UQC):

Xρ =
{
x : xTATAx ≤ 2bTx+ c ∀ (A, b, c) ∈ Uρ

}
,

where

Uρ =
{
(A, b, c) =

(
A0, b0, c0

)
+ ρ

L∑

=1

y

(
A
, b
, c


)
: yTQky ≤ 1, k = 1, . . . ,K

}
.

Note that the robust counterpart of (UQC) with the ∩-ellipsoid uncertainty Uρ is, in
general, NP-hard. In fact, the associated analysis problem “given x, check whether
it is robust feasible” is already NP-hard. To support our claim, we observe that the
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analysis problem in question is at least as difficult as the problem of maximizing a
positive definite quadratic form over the unit cube:

(MAXQ) given Q � 0 and q ∈ R, check whether max
y:|y�|≤1

yTQy ≤ q;

the latter problem is known to be NP-hard.3 Indeed, given data Q, q of (MAXQ) with
a K ×K matrix Q, let us find a K ×K matrix D such that DTD = Q and associate
with Q, q the following uncertainty set for (UQC):

U1 =

{
(A, b, c) = (0K×K , 0K×1, q) +

K∑

=1

y

(
A
, 0K×1, 0

)
: y2


 ≤ 1, � = 1, . . . ,K

}
,

where the first column of A
 equals the �th column ofD, and the remaining columns in
A
 are zero, � = 1, . . . ,K. With this setup, one has (A, b, c) = (Dy, 0(K−1)×K , 0K×1, q).
If x = (1, 0, 0, . . . , 0)T ∈ R

K , then Ax = Dy, and hence checking whether x is robust
feasible for (UQC) is exactly the same as checking whether yTQy = ‖Dy‖2 is ≤ q for
all y with |y
| ≤ 1; thus, the NP-hard problem (MAXQ) is reducible to the analysis
problem for (UQC) with a pretty simple ∩-ellipsoid uncertainty (“box uncertainty”:
L = K and Qk is the diagonal matrix with the only nonzero diagonal entry, equal to
1, in the cell (k, k)).

The NP-hardness of the robust counterpart of (UQC) in the presence of ∩-ellipsoid
uncertainty motivates our current goal—to build a tractable approximate robust coun-
terpart. We introduce some more convenient notations:

a[x] = A0x, c[x] = 2xT b0 + c0, Aρ[x] = ρ
(
A1x, . . . , ALx

)
,

bρ[x] = ρ




xT b1

...

xT bL


 , dρ =

1
2ρ




c1

...

cL


.

Then one may easily verify that x ∈ Xρ holds if and only if

yTQky ≤ 1, k = 1, . . . ,K ⇒ (a[x] +Aρ[x]y)
T
(a[x] +Aρ[x]y) ≤ 2 (bρ[x] + dρ)

T
y+c[x].

The last inequality can be rewritten as

yTAρ[x]
TAρ[x]y + 2yT

(
Aρ[x]

Ta[x]− bρ[x]− dρ
) ≤ c[x]− a[x]Ta[x].

Hence we obtain that x ∈ Xρ holds if and only if

yTQky ≤ 1, k = 1, . . . ,K ⇒
yTAρ[x]

TAρ[x]y + 2yT
(
Aρ[x]

Ta[x]− bρ[x]− dρ
) ≤ c[x]− a[x]Ta[x].

(2.3)

Observe that if y satisfies yTQky ≤ 1, then so does −y. Hence, x ∈ Xρ holds if and
only if

yTQky ≤ 1, k = 1, . . . ,K ⇒
yTAρ[x]

TAρ[x]y ± 2yT
(
Aρ[x]

Ta[x]− bρ[x]− dρ
) ≤ c[x]− a[x]Ta[x].

3FromMAXCUT-related studies it is known that it is NP-hard even to approximate the maximum
of a positive definite quadratic form over the unit cube within relative accuracy like 5% [7].
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Therefore, we may replace the implication by

t2 ≤ 1, yTQky ≤ 1, k = 1, . . . ,K ⇒
yTAρ[x]

TAρ[x]y + 2tyT
(
Aρ[x]

Ta[x]− bρ[x]− dρ
) ≤ c[x]− a[x]Ta[x].

This implication certainly holds if there exist λk ≥ 0, k = 1, . . . ,K, such that for all
t and for all y

K∑
k=1

λky
TQky +

(
c[x]− a[x]Ta[x]−

K∑
k=1

λk

)
t2

≥ yTAρ[x]
TAρ[x]y + 2tyT

(
Aρ[x]

Ta[x]− bρ[x]− dρ
)
.

We can equivalently express the last condition in a more concise form:


 t

y



T 
 c[x]− a[x]Ta[x]−∑K

k=1 λk
(
Aρ[x]

Ta[x]− bρ[x]− dρ
)T

Aρ[x]
Ta[x]− bρ[x]− dρ

∑K
k=1 λkQk −Aρ[x]

TAρ[x]




 t

y


 ≥ 0.

In other words, x ∈ Xρ certainly holds if

∃λ ≥ 0 s.t.


 c[x]− a[x]Ta[x]−∑K

k=1 λk
(
Aρ[x]

Ta[x]− bρ[x]− dρ
)T

Aρ[x]
Ta[x]− bρ[x]− dρ

∑K
k=1 λkQk −Aρ[x]

TAρ[x]


 � 0,

which can be rewritten as

∃λ ≥ 0 s.t.


 c[x]−∑K

k=1 λk (−bρ[x]− dρ)
T

−bρ[x]− dρ
∑K

k=1 λkQk


 �


 a[x]T

−Aρ[x]
T


 [a[x] −Aρ[x]] .

By the Schur complement lemma the latter is equivalent to

∃λ ≥ 0 s.t.


 c[x]−∑K

k=1 λk (−bρ[x]− dρ)
T

a[x]T

−bρ[x]− dρ
∑K

k=1 λkQk −Aρ[x]
T

a[x] −Aρ[x] IM


 � 0.

Thus we have proved the following theorem.
Theorem 2.3. The set Rρ of (x, λ) satisfying λ ≥ 0 and

 c[x]−∑K
k=1 λk (−bρ[x]− dρ)

T
a[x]T

−bρ[x]− dρ
∑K

k=1 λkQk −Aρ[x]
T

a[x] −Aρ[x] IM


 � 0(2.4)

is an approximate robust counterpart of the set Xρ of robust feasible solutions of
(UQC).

Unlike the case in which U is a single ellipsoid, in the general case of ∩-ellipsoids
we can no longer use the S-lemma (Lemma 2.2) to get an equivalence between the
LMI (2.4) and the uncertain quadratic inequality (UQC). Thus another fundamental
tool is needed, and this is offered by our so-called approximate S-lemma (cf. Lemma
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A.6 in the appendix). With this tool we are able to derive the main results of this
paper: Theorem 2.4, which follows, and Theorem 3.5 in the next subsection.

Theorem 2.4. The level of conservativeness of the approximate robust counter-
part R (as given by Theorem 2.3) of the set X is at most

ρ̃ :=

(
2 log

(
6

K∑
k=1

rankQk

)) 1
2

.(2.5)

Proof. We have to show that when x cannot be extended to a solution (x, λ) of
(2.4), then there exists ζ∗ ∈ R

n such that

ζT∗ Qkζ∗ ≤ 1, k = 1, . . . ,K,(2.6)

and

ρ̃2ζT∗ Aρ[x]
TAρ[x]ζ∗ + 2ρ̃ζT∗

(
Aρ[x]

Ta[x]− bρ[x]− d
) ≥ c[x]− a[x]Ta[x].(2.7)

The proof is based on Lemma A.6, which can be seen as an “approximate S-lemma.”
Using the notation of this lemma, let

R =


 0

(
Aρ[x]

Ta[x]− bρ[x]− d
)T

Aρ[x]
Ta[x]− bρ[x]− d Aρ[x]

TAρ[x]


 ,

R0 =

[
1 0T

0 0

]
, Rk =

[
0 0T

0 Qk

]
,

and r0 = 1. Note that R1, . . . , RK are positive semidefinite, and, due to our generic
assumption on the Qk’s,

R0 +

K∑
k=1

Rk =


 1 0T

0
∑K

k=1 Qk


 � 0.

Moreover, R0 is dyadic and r0 = 1 > 0. We are therefore in the situation in Lemma
A.6 where R0 is dyadic and r0 > 0. Hence the estimate (2.5) is valid. We proceed by
distinguishing two cases.

Case I. We assume in this case that there exist λ0, . . . , λK ≥ 0 such that

R �
K∑
k=0

λkRk,(2.8)

K∑
k=0

λk ≤ c[x]− a[x]Ta[x].(2.9)

Since the LMI (2.4) was shown to imply (2.3), our assumption that x cannot be
extended to a solution of (2.4) implies that x cannot be extended to a solution of
(2.3). On the other hand, by (2.8),

(t, yT )R

(
t
y

)
≤

K∑
k=0

λk(t, y
T )Rk

(
t
y

)
∀t, y.
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Hence, using the definition of R and Rk, with t = 1,

yTAρ[x]
TAρ[x]y + 2yT

(
Aρ[x]

Ta[x]− bρ[x]− d
) ≤ λ0 +

K∑
k=1

λky
TQky ≤

K∑
k=0

λk

whenever yTQky ≤ 1, k = 1, . . . ,K. Therefore, by (2.9),

yTAρ[x]
TAρ[x]y + 2yT

(
Aρ[x]

Ta[x]− bρ[x]− d
) ≤ c[x]− a[x]Ta[x],

showing that x is a solution of (2.3). Due to this contradiction, Case I cannot occur.
Case II. In this case there do not exist λ0, . . . , λK ≥ 0 such that (2.8) and (2.9)

hold. Hence, every feasible solution of problem (SDP) (in Lemma A.6) has objective
value greater than c[x]− a[x]Ta[x]. Thus we have

SDP > c[x]− a[x]Ta[x].(2.10)

By Lemma A.6, there exists y∗ = (t∗, η∗) such that

y∗TR0y∗ = t2∗ ≤ r0 = 1,(2.11)

y∗TRky∗ = η∗TQkη∗ ≤ ρ̃2, k = 1, . . . ,K,(2.12)

y∗TRy∗ = ηT∗ Aρ[x]
TAρ[x]η∗ + 2t∗ηT∗

(
Aρ[x]

Ta[x]− bρ[x]− d
)
= SDP

> c[x]− a[x]Ta[x],(2.13)

by (2.10). Setting η̄ = ρ̃−1η∗, the last three relations become


|t∗| ≤ 1,
η̄TQkη̄ ≤ 1, k = 1, . . . ,K,
ρ̃2η̄TAρ[x]

TAρ[x]η̄ + 2ρ̃η̄T t∗
(
Aρ[x]

Ta[x]− bρ[x]− d
)
> c[x]− a[x]Ta[x].

(2.14)
It is easily seen that if (t∗, η̄) is a solution of (2.14), then either ζ∗ = η̄ or ζ∗ = −η̄ is
a solution of (2.6)–(2.7).

This completes the proof of Theorem 2.4.

2.3. Box uncertainty.
Theorem 2.5. Consider the uncertain quadratic constraint (UQC), where the

uncertainty set is the “box”

Uρ =
{
(A, b, c) =

(
A0, b0, c0

)
+ ρ

L∑

=1

y

(
A
, b
, c


)
: |y
| ≤ 1, � = 1, . . . , L

}
.(2.15)

Then
(i) the set Rρ of (x, λ) satisfying λ ≥ 0 and

 c[x]−∑L

=1 λ
 (−bρ[x]− d)

T
a[x]T

−bρ[x]− d diag(λ) −Aρ[x]
T

a[x] −Aρ[x] IM


 � 0(2.16)

is an approximate robust counterpart of the set Xρ of robust feasible solutions
of (UQC), and

(ii) the level of conservativeness Ω of R is at most

Ω ≤ π

2
.(2.17)
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Proof. Part (i) of the theorem is a special case of Theorem 2.3, with K = L and
where each Qk is equal to a diagonal matrix whose only nonzero element is a 1 in
the kth position of the diagonal. Thus it remains to prove part (ii). This proof will
proceed in two steps. In Step 1 we build an approximate robust counterpart R̂ of
(UQC), which is seemingly different from the R given in part (i) of the theorem, and
we prove that the level of conservativeness of R̂ is π/2. In step 2 we demonstrate that
R̂ is in fact equivalent to R.

Step I. (Construction of R̂). The quadratic constraint

xTATAx ≤ 2bTx+ c

is equivalent, by the Schur complement lemma, to the LMI[
2bTx+ c (Ax)

T

Ax I

]
� 0.

Thus the robust feasible set of (UQC), Xρ, corresponding to the uncertainty set Uρ in
(2.15), is given by

Xρ =

x :


2xT b0 + c0

(
A0x
)T

A0x I


+ ρ

L∑

=1

y



2xT b
 + c


(
A
x
)T

A
x 0


 � 0, ‖y‖∞ ≤ 1


 .

An evident sufficient condition for a vector x to belong to Xρ is the possibility of
extending x by L matrix variables X1, . . . , XL, which together satisfy the following
LMIs:

X
 � ±ρ

 2xT b
 + c


(
A
x
)T

A
x 0


 ≡ Ã
[x], � = 1, . . . , L,


 2xT b0 + c0

(
A0x
)T

A0x I


 �∑L


=1 X

.

(2.18)

The system (2.18) is the aforementioned approximate robust counterpart of R̂. The
fact that the level of conservativeness of R is at most π/2 is then a direct consequence
of [4, Theorem 4.4.1, p. 190]. In using the latter, note that rank Ã
[x] = 2.

Step II. (R̂ is equivalent to R). The equivalence is shown in two parts:
II.1. If (x, λ1, . . . , λK) is a solution of (2.16), then x can be extended to a solution(

x, X1, . . . , XL
)
of (2.18).

II.2. If
(
x, X1, . . . , XL

)
a solution of (2.18), then for some λ ≥ 0, (x, λ1, . . . , λK)

is a solution of (2.16).
The proofs of both parts rely on the following lemma, whose proof depends on

Lemma A.8 in the appendix.
Lemma 2.6. Let c ∈ R, d ∈ R

m, and

P =

[
2c dT

d 0

]
.

Then
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(i) for every λ > 0 the matrix

Y [λ, P ] :=


 λ+ c2

λ
cdT

λ

cd
λ

ddT

λ


 =


 λ 0

0 0


+

1

λ


 c

d




 c

d



T

(2.19)

belongs to the set

L[P,−P ] = {X : X � P,X � −P};(2.20)

(ii) if P �= 0, then for every X ∈ L[P,−P ] there exists λ > 0 such that X �
Y [λ, P ].

Proof. Setting

a = (1, 0, . . . , 0)
T
, b = (c, d1, . . . , dm)

T
,

one has

abT + baT =

(
2c dT

d 0

)
, λaaT +

1

λ
bbT =

[
λ 0
0 0

]
+

1

λ

[
c
d

] [
c
d

]T
= Y [λ, P ].

Hence, Lemma 2.6 immediately follows from Lemma A.8.
Proof of II.1. For our case of box uncertainty we have (Qk)kk = 1 and (Qk)ij = 0

(i �= k or j �= k), and so the system (2.16) reduces (by the Schur complement lemma)
to 

 c[x]−∑L

=1 λ
 a[x]T

a[x] IM


 �

∑

, λ�>0

1

λ


(
f
[x]f
[x]

T
)
,(2.21)

where λ
 ≥ 0, � = 1, . . . , L, with λ
 = 0 ⇒ f
[x] = 0, and f1[x], . . . , fL[x] are the
columns of the matrix 

 (bρ[x] + d)
T

Aρ[x]
T


 ,

i.e.,

f
[x] =


 ρxT b
 + ρ

2c



ρA
x


 = ρ


 xT b
 + 1

2c



A
x


 .(2.22)

We rewrite (2.21) as[
c[x] a[x]T

a[x] IM

]
�
∑


, λ�>0

([
λ
 0
0 0

]
+

1

λ


(
f
[x]f
[x]

T
))

,

or, more explicitly,[
2xT b0 + c0

(
A0x
)T

A0x IM

]
�
∑


, λ�>0

([
λ
 0
0 0

]
+

1

λ


(
f
[x]f
[x]

T
))

.(2.23)
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Note that the matrix under the sum has the form of the matrix Y [λ, P ] in (2.19).
Hence, denoting this matrix as X
 whenever λ
 > 0, we may conclude from Lemma
2.6 that

λ
 > 0 ⇒ X
 � ±ρ
[

2xT b
 + c

(
A
x
)T

A
x 0

]
.(2.24)

Setting X
 = 0 whenever λ
 = 0, and using (2.23), we ensure that x, X1, . . . , XL is
a solution of (2.18). This proves II.1.

Proof of II.2. Assume that x can be extended to a solution x, X1, . . . , XL of
(2.18). By Lemma 2.6, for those �’s for which

ρ

[
2xT b
 + c


(
A
x
)T

A
x 0

]
�= 0(2.25)

there exist λ
 > 0 such that

X
 � Y 
 :=

[
λ
 0
0 0

]
+

1

λ


(
f
[x]f
[x]

T
) � ρ

[
2xT b
 + c


(
A
x
)T

A
x 0

]
,(2.26)

where the vectors f
[x] are as defined by (2.22). Setting Y 
 = 0 and λ
 = 0 whenever
the left-hand side in (2.25) vanishes, it follows that x, Y 1, . . . , Y L is a feasible solution
of (2.18), which in turn implies

[
2xT b0 + c0

(
A0x
)T

A0x I

]
�

L∑

=1

Y 
 =
∑


, λ�>0

([
λ
 0
0 0

]
+

1

λ


(
f
[x]f
[x]

T
))

.

Via the Schur complement lemma (note that λ
 = 0 ⇒ f
[x] = 0), the latter LMI
shows that (x, λ1, . . . , λL) is a feasible solution of (2.4). This completes the proof of
II.2, and thus of Theorem 2.5.

3. Robust solutions of uncertain conic-quadratic problems. An uncertain
conic-quadratic problem (CQP) has the form

(CQP) min
x∈Rn

{
cTx :

∥∥Aix+ bi
∥∥ ≤ aTi x+ βi, i = 1, . . . , m

}
,

where the data (Ai, bi, ai, βi) is uncertain and is only known to belong to some un-
certainty sets Ui, (

Ai, bi, ai, βi
) ∈ Ui, i = 1, . . . , m.

The crucial step in building a robust counterpart for (CQP) is the ability to build
a robust counterpart for a single constraint, i.e., the set of solutions x ∈ R

n of the
semi-infinite inequality system

‖Ax+ b‖ ≤ aTx+ β, (A, b, a, β) ∈ Uρ.(3.1)

Here, we deal with the situation in which the uncertainty affecting (3.1) is sidewise,
i.e., the uncertainty affecting the right-hand side in (3.1) is independent of that af-
fecting the left-hand side. More specifically,

Uρ = ULρ × URρ ,(3.2)
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where

ULρ =

{
(A, b) =

(
A0, b0

)
+

L∑

=1

y

(
A
, b


)
: y ∈ ρVL

}
,(3.3)

URρ =

{
(a, β) =

(
a0, β0

)
+

R∑
r=1

ξr (a
r, βr) : ξ ∈ ρVR

}
.(3.4)

The sets VL and VR are convex perturbation sets, and ρ > 0 is a parameter expressing
the magnitude of the perturbation.

As before, the specific form of VL is an intersection of ellipsoids, i.e., VL = VLK ,
where

VLK =
{
y ∈ R

L : yTQky ≤ 1, k = 1, . . . , K
}
,(3.5)

with

Qk � 0 and

K∑
k=1

Qk � 0.(3.6)

The form (3.5) includes two important special cases, namely,
• simple ellipsoidal uncertainty (K = 1),
• box uncertainty (K = L, (Qk)kk = 1, and (Qk)ij = 0 (i �= k or j �= k) for
k = 1, . . . , K).

For the right-hand side perturbation set VR we allow a much more general geometry:
VR is assumed to be bounded, containing zero, and semidefinite representable (sdr),
i.e., it can be represented as the projection of a set described by LMIs:

VR =
{
ζ ∈ R

R : ∃u ∈ R
S : P (ζ) +Q(u)− T � 0

}
(3.7)

for some symmetric matrix T , and symmetric matrices P (ζ), Q(u), which depend
linearly on their respective arguments. Specifically,

P (ζ) =

R∑
r=1

ζrPr, Q(u) =

S∑
s=1

usQs,(3.8)

where Pr(r = 1, . . . , R) and Qs(s = 1, . . . , S) are symmetric matrices, and it is
assumed that

∃ζ̄, ū : P (ζ̄) +Q(ū) � T.(3.9)

It is well known that sdr-sets include ∩-ellipsoids and many more [4, Lecture 4].
The sidewise uncertainty assumption implies the following fact: x is robust feasi-

ble for (3.1) if and only if there exists a τ such that

‖Ax+ b‖ ≤ τ,(3.10)

τ ≤ aTx+ β.(3.11)

This fact allows us to handle (3.1) by treating (3.10) and (3.11) separately. We start
with (3.11).
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Theorem 3.1. A pair (x, τ) satisfies (3.11), where URρ is given by (3.4), (3.7),
and (3.8), if and only if, for some symmetric matrix V , the triple (x, τ, V ) is a
solution of the following system of LMIs:

xTa0 + β0 +Tr (TV ) ≥ τ,(3.12)

Tr (V Pr) = ρ
(
xTar + βr

)
, r = 1, . . . , R,(3.13)

Tr (V Qs) = 0, s = 1, . . . , S,(3.14)

V � 0.(3.15)

Proof. The pair (x, τ) satisfies (3.11) if and only if

τ ≤ xT

(
a0 + ρ

R∑
r=1

ξra
r

)
+ β0 + ρ

R∑
r=1

ξrβ
r ∀ξ ∈ VR,

which is equivalent to

τ − xTa0 − β0 ≤ inf
ξ,u

{
R∑
r=1

ξrρ
(
xTar + βr

)
: P (ξ) +Q(u) � T

}
.(3.16)

The problem on the right-hand side (rhs) of (3.16) is a semidefinite problem:

(P) inf
ξ,u

{
ξT γr[x] : P (ξ) +Q(u) � T

}
,

where

γr[x] = ρ
(
xTar + βr

)
.

The dual problem of (P) is the semidefinite problem

(D) sup
V

{Tr (TV ) : P ∗(V ) = γr[x], Q
∗(V ) = 0, V � 0},

where P ∗ and Q∗ are the respective adjoints of P and Q, as given in (3.8). Thus

P ∗(V ) ∈ R
R, P ∗(V )r = Tr (V Pr), r = 1, . . . , R,

Q∗(V ) ∈ R
S , Q∗(V )s = Tr (V Qs), s = 1, . . . , S.

By assumption (3.9), problem (P) is strictly feasible, and due to the assumption that
the set VR is bounded, the objective value of (P) is bounded from below. Hence, by
SDP duality theory (see, e.g., [4]), problem (D) has an optimal solution and inf (P) =
max (D), i.e., there exists a V such that

rhs of (3.16) = inf (P) = Tr (TV ),

Tr (V Pr) = γr[x] = ρ
(
xTar + βr

)
, r = 1, . . . , R,

Tr (V Qs) = 0, s = 1, . . . , S,

V � 0.

(3.17)

Now (3.16) and (3.17) show that (x, τ, V ) indeed satisfies (3.12)–(3.15).
We now turn to the condition (3.10) with the uncertainty set ULρ given by (3.3),

(3.5), and (3.6). For a general perturbation set as given in (3.5), with K > 1, the
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verification of (3.10) is an NP-hard problem (see [2]). Therefore we shall derive an
approximate robust counterpart (Theorem 3.3 below). For the simple ellipsoidal case
(K = 1) an exact robust counterpart is given by the following result of [2].

Theorem 3.2. Consider the condition (3.10), where ULρ is given by (3.3) and VL
is the ellipsoid VL1 (see (3.5)). Then a pair (x, τ) satisfies (3.10) if and only if there
exists some λ1 ≥ 0 such that the triple (x, τ, λ1) satisfies the following LMI:


τ − λ1 0 a[x]T

0 λ1Q1 ρA[x]T

a[x] ρA[x] τIM


 � 0,(3.18)

where

a[x] = A0x+ b0(3.19)

A[x] =
(
A1x+ b1, . . . , ALx+ bL

)
.(3.20)

For the general ∩-ellipsoids case (K > 1), the following theorem gives an approx-
imate robust counterpart of (3.10).

Theorem 3.3. The set SL of triples (x, τ, λ) ∈ R
n×R×R

K satisfying the LMI


τ −∑K
k=1 λk 0 a[x]T

0
∑K

k=1 λkQk ρA[x]T

a[x] ρA[x] τIM


 � 0, λ ≥ 0,(3.21)

with a[x] and A[x] as given by (3.19)–(3.20), is an approximate robust counterpart of
the set of pairs (x, τ) satisfying (3.10), under the uncertainty set ULρ given by (3.3)
and (3.5).

Proof. We have to show that if (x, τ, λ) solves (3.21), then (x, τ) solves (3.10).
Now (3.21) is equivalent to the following three conditions:

(i)

Y :=




µ 0 a[x]T

0
∑K

k=1 λkQk ρA[x]T

a[x] ρA[x] τIM


 � 0,

(ii) µ ≥ 0, λ ≥ 0,

(iii) µ+
∑K

k=1 λk ≤ τ .
Condition (i) implies that for every y ∈ R

L and t ∈ R
 t yT 0

0 0 I






µ 0 a[x]T

0
∑K

k=1 λkQk ρA[x]T

a[x] ρA[x] τIM




 t yT 0

0 0 I


T � 0,

which is equivalent to


[
t yT

]  µ 0

0
∑K

k=1 λkQk




 t

y


 [t yT

]  a[x]T

ρA[x]T




[a[x] ρA[x]]


 t

y


 τI



� 0.



550 A. BEN-TAL, A. NEMIROVSKI, AND C. ROOS

By the Schur complement lemma, the latter is equivalent to

(i′) τ(µt2 +
∑K

k=1 λky
TQky) ≥ ‖ta[x] + ρA[x]y‖2

.

Therefore, conditions (i)–(iii) reduce to (i′), (ii), and (iii). From these conditions it
follows that if (y, t) are chosen such that

t2 ≤ 1, yTQky ≤ 1, k = 1, . . . , K,(3.22)

then

µt2 +

K∑
k=1

λky
TQky ≤ µ+

K∑
k=1

λk ≤ τ,(3.23)

and, since τ ≥ 0, from (3.23) and (i′),

τ2 ≥ ‖ta[x] + ρA[x]y‖2 ∀(y, t) satisfying (3.22).(3.24)

In particular, for t = 1 we get

τ ≥ ‖a[x] + ρA[x]y‖ ∀y satisfying (3.22).(3.25)

Substituting into (3.25) the expression for a[x] and A[x] (see (3.19)–(3.20)), (3.25)
becomes explicitly

τ ≥
∥∥∥∥∥A0x+ b0 + ρ

L∑

=1

λ

(
A
x+ b


)∥∥∥∥∥ ∀y s.t. yTQky ≤ 1, k = 1, . . . , K.(3.26)

Finally, (3.26) is precisely condition (3.10) for ULρ given by (3.3) and VL = VLK given
by (3.5).

Combining the results of Theorems 3.1 and 3.3, we obtain the following result.
Corollary 3.4. The set S of tuples

(x, τ, λ, V ) satisfying (3.12)–(3.15) and (3.21)

is an approximate robust counterpart of the uncertain conic-quadratic constraint (3.1),
where the uncertainty set Uρ is given by (3.2)–(3.9).

The level of conservativeness of S can be estimated in a way very similar to that
used in the case of uncertain quadratic constraints (see the proofs of Theorem 2.4 and
Theorem 2.5), and the result is in fact similar.

Theorem 3.5. (i) For the case of ∩-ellipsoidal uncertainty, with K > 1, the level
of conservativeness Ω of the approximate robust counterpart S in Corollary 3.4 is at
most

Ω̃ :=

(
2 log

(
6

K∑
k=1

rankQk

)) 1
2

.

(ii) For the special case of box uncertainty, one has

Ω ≤ π

2
.
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Appendix. Some technical lemmas.
Lemma A.1. Let x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn) ∈ R

n. If ‖x‖2 = 1 and
the coordinates ξi of ξ are independently identically distributed random variables with

Pr (ξi = 1) = Pr (ξi = −1) = 1

2
,

then one has

Pr
(∣∣ξTx∣∣ ≤ 1

) ≥ 1

3
.(A.1)

Proof.4 Without loss of generality we may assume that x ≥ 0 and

x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

We define θ = x1 and

s0 = 0, sk = sk (ξ) =

k∑
i=1

xiξi, k = 1, 2, . . . , n.

Then (A.1) is equivalent to Pr (|sn| ≤ 1) ≥ 1
3 . To prove this, we define the following

events:

A0 = {ξ : |sj | ≤ 1− θ, j = 1, . . . , n},

Ak = {ξ : |sj | ≤ 1− θ, j = 1, . . . , k − 1, and |sk| > 1− θ}.
Note that the events A0, A1, . . . , An form a partition of the probability space.

Assuming Ak �= ∅, we proceed by deriving a lower bound on the probability that
|sn| ≤ 1 occurs, namely:

Pr (|sn| ≤ 1 | Ak) ≥ p(θ) :=
1

2

(
1− 1− θ2

(2− θ)
2

)
.(A.2)

For k = 0 this is evident, since the left-hand side is then equal to 1. So let k ≥ 1 and
let us fix a realization ξ ∈ Ak. Then we have

1− θ < |sk| ≤ 1.(A.3)

Indeed, the left-hand side of (A.3) follows from the definition of Ak, and the right-hand
side from

|sk| = |sk−1 + sk − sk−1| ≤ |sk−1|+ |sk − sk−1| ≤ 1− θ + xk ≤ 1− θ + θ = 1.

Because of (A.3) we have the following implication:

0 ≥ (sn − sk) sign (sk) ≥ −2 + θ ⇒ |sn| ≤ 1.(A.4)

Indeed, if sk ≥ 0, then 1−θ < sk ≤ 1 and 0 ≥ sn−sk ≥ −2+θ imply that sn ≤ sk ≤ 1
and sn ≥ sk + θ − 2 > 1− θ + θ − 2 = −1, and if sk ≤ 0, then 1− θ < −sk ≤ 1 and

4This proof is mainly due to P. van der Wal, Delft University of Technology (private communi-
cation).
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0 ≥ −sn+sk ≥ −2+θ imply sn ≥ sk ≥ −1 and also sn ≤ sk−θ+2 < θ−1−θ+2 = 1.
So in both cases one has |sn| ≤ 1, proving (A.4). Hence we may write

Pr (|sn| ≤ 1 | Ak) ≥ Pr (0 ≥ (sn − sk) sign (sk) ≥ −2 + θ | Ak)

≥ 1

2
Pr (|sn − sk| ≤ 2− θ) , by symmetry,

≥ 1

2

(
1− Var (sn − sk)

(2− θ)
2

)
, by the Chebyshev inequality,

=
1

2

(
1−

∑n
j=k+1 x

2
k

(2− θ)
2

)
≥ 1

2

(
1− 1− θ2

(2− θ)
2

)
= p(θ).

Thus we have proved (A.2). Since (A0, A1, . . . , An) is a partition of the probability
space, it follows that

Pr (|sn| ≤ 1) ≥ p(θ) ≥ min
0≤θ≤1

1

2

(
1− 1− θ2

(2− θ)
2

)
= p

(
1

2

)
=

1

3
.

This proves the lemma.
Based on numerical experiments, we believe that Lemma A.1 can be improved as

stated in the conjecture below.
Conjecture A.2. Let x and ξ be as defined in Lemma A.1. Then

Pr
(∣∣ξTx∣∣ ≤ 1

) ≥ 1

2
.

Lemma A.3. Let rankB = k, B � 0, and let ξ be as defined in Lemma A.1.
Then

Pr
(
ξTBξ ≥ αTrB

) ≤ 2ke−
α
2 ∀α > 0.

Proof. Writing

B =

k∑
i=1

bib
T
i ,

the statement in the lemma can be rewritten as

Pr

(
k∑
i=1

(
bTi ξ
)2 ≥ α

k∑
i=1

‖bi‖2

)
≤ 2ke−

α
2 ∀α > 0.

We have

pk := Pr

(
k∑
i=1

(
bTi ξ
)2 ≥ α

k∑
i=1

‖bi‖2

)
= Pr

(
k∑
i=1

((
bTi ξ
)2 − α ‖bi‖2

)
≥ 0

)

≤ Pr
(
max
i

((
bTi ξ
)2 − α ‖bi‖2

)
≥ 0
)
≤

k∑
i=1

Pr
((
bTi ξ
)2 ≥ α ‖bi‖2

)

=

k∑
i=1

Pr
(∣∣bTi ξ∣∣ ≥ √

α ‖bi‖
)
= 2

k∑
i=1

Pr
(
bTi ξ ≥

√
α ‖bi‖

)
.
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For any random variable y with distribution F , we have for any ρ ≥ 0,

E (eρy) =
∫ 0

−∞
eρydF (y) +

∫ ∞

0

eρydF (y) ≥ 0 +

∫ ∞

0

dF (y) = Pr (y ≥ 0).

Hence,

Pr
(
bTi ξ ≥

√
α ‖bi‖

) ≤ E(eρ(bTi ξ−√
α‖bi‖)) = E(eρ (bTi ξ)

)
e−ρ

√
α ‖bi‖.

Furthermore, using the inequality cosh t ≤ e
1
2 t

2

, we have

E(eρ(bTi ξ)) = n∏
j=1

E(eρbijξj ) =
n∏
j=1

cosh (ρbij) ≤
n∏
j=1

e
1
2ρ

2b2ij = e
1
2ρ

2‖bi‖2

.

Substitution gives

Pr
(
bTi ξ ≥

√
α ‖bi‖

) ≤ e
1
2ρ

2‖bi‖2−ρ√α‖bi‖, ρ ≥ 0.

The right-hand side is minimal if ρ =
√
α/‖bi‖. Thus we obtain

Pr
(
bTi ξ ≥

√
α ‖bi‖

) ≤ e−
α
2 .

From this we derive the inequality

pk ≤ 2

k∑
i=1

Pr
(
bTi ξ ≥

√
α ‖bi‖

) ≤ 2

k∑
i=1

e
−α
2 = 2ke−

α
2 ,

which completes the proof of the lemma.
Lemma A.4. Let B denote a symmetric n × n matrix and ξ be as defined in

Lemma A.1. Then

Pr
(
ξTBξ ≤ TrB

)
>

1

8n2
.(A.5)

Proof. Consider the random variable

γ :=
∑
i<j

ξiξjAij =
1

2
(ξTBξ − TrB).

Then (A.5) is equivalent to

ω := Pr (γ ≤ 0) >
1

8n2
.(A.6)

Let µ(dt) be the distribution of γ, and let

I
 =

∫ ∞

−∞
|t|
 µ(dt), � = 1, 2, . . . .

Since E (γ) = 0, we have ∫
t≤0

|t|µ(dt) =
∫
t≥0

|t|µ(dt).
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Hence

I1 = 2

∫
t≤0

|t|µ(dt) = 2

∫
t≤0

|t| µ(dt)

Pr (γ ≤ 0)
× Pr (γ ≤ 0)

≤ 2

(∫
t≤0

t2µ(dt)

) 1
2 √

Pr (γ ≤ 0) ≤ 2ω
1
2 I

1
2
2 .

Further,

I2 =

∫ ∞

−∞
t2µ(dt) =

∫ ∞

−∞
|t| 12 |t| 32 µ(dt) ≤ I

1
2
1 I

1
2
2 ≤

√
2ω

1
4 I

1
4
2 I

1
2
3 .

Thus it follows that

ω ≥ I3
2

16I2
3

.(A.7)

Also

I2 = E (γ2
)
= E


 ∑
i<j, k<


ξiξjξkξ
AijAk



 =

∑
i<j

A2
ij

and

I3 ≤ E

∣∣∣∣∣∑

i<j

ξiξjAij

∣∣∣∣∣
3

 ≤ E


(∑

i<j

ξiξjAij

)2∣∣∣∣∣∑
i<j

ξiξjAij

∣∣∣∣∣



≤

∑
i<j

A2
ij


∑

i<j

|Aij | ≤

∑
i<j

A2
ij


√n(n− 1)

2

√∑
i<j

A2
ij .

The last inequality uses that
∑k

i=1 |αi| ≤
√
k
√∑k

i=1 α
2
i . Putting the above estimates

for I2 and I3 into (A.7), we get

ω ≥ 1

16

2

n(n− 1)
>

1

8n2
,

and hence the lemma is proved.
Conjecture A.5. Let B and ξ be as defined in Lemma A.4. Then

Pr
(
ξTBξ ≤ TrB

) ≥ 1

4
.

Lemma A.6 (approximate S-lemma). Let R,R0, R1, . . . , RK be symmetric n×n
matrices such that

R1, . . . , RK � 0,(A.8)

and assume that

∃λ0, λ1, . . . , λK ≥ 0 s.t.

K∑
k=0

λkRk � 0.(A.9)
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Consider the following quadratically constrained quadratic program,

QCQ = max
y∈Rn

{
yTRy : yTR0y ≤ r0, y

TRky ≤ 1, k = 1, . . . ,K
}

(A.10)

and the semidefinite optimization problem

SDP = min
µ0,µ1,...,µK

{
r0µ0 +

K∑
k=1

µk :

K∑
k=0

µkRk � R, µ ≥ 0

}
.(A.11)

Then
(i) If problem (A.10) is feasible, then problem (A.11) is bounded below and

SDP ≥ QCQ.(A.12)

Moreover, there exist y∗ ∈ R
n such that

y∗TRy∗ = SDP,(A.13)

y∗TR0y∗ ≤ r0,(A.14)

y∗TRky∗ ≤ ρ̃2, k = 1, . . . ,K,(A.15)

where (cf. (2.5))

ρ̃ :=

(
2 log

(
6

K∑
k=1

rankRk

)) 1
2

if R0 is a dyadic matrix, and

ρ̃ =

(
2 log

(
16n2

K∑
k=1

rankRk

)) 1
2

(A.16)

otherwise.
(ii) If

r0 > 0,(A.17)

then (A.10) is feasible, problem (A.11) is solvable, and

0 ≤ QCQ ≤ SDP ≤ ρ̃2QCQ.(A.18)

Remark A.7. We claim that the usual S-lemma (cf. Lemma 2.2) can be obtained
as a corollary of Lemma A.6. The “if” part of the S-lemma being evident, we focus
below on the “only if” part.

10. Observe that it suffices to prove the following statement:
(!) Assume that the set {z : zTPz > 0} is nonempty and that

z �= 0, zTPz ≥ 0 ⇒ zTQz > 0.(A.19)

Then

∃λ ≥ 0 : Q � λP.(A.20)
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Indeed, let P,Q be such that

{z : zTPz > 0} �= ∅ and zTPz ≥ 0 ⇒ zTQz ≥ 0.

Then the pair (P,Q + εI) for ε > 0 clearly satisfies the premise in (!). Believing
in (!), we therefore conclude that for every ε > 0 there exists λ(ε) ≥ 0 such that
Q+ εI � λ(ε)P . As ε → +0, λ(ε) remains bounded due to λ(ε)z̄TP z̄ ≤ z̄T (Q+ εI)z̄,
where z̄ is such that z̄TP z̄ > 0. Since λ(ε) ≥ 0 remains bounded as ε → +0, there
exists an accumulation point λ ≥ 0 of λ(ε) as ε → +0; since Q + εI � λ(ε)P , one
clearly has Q � λP , as required.

20. To prove (!), assume that the premise in (!) holds true, and observe that then
the optimal value QCQ(ε) in the optimization problem

max
x

{−xTQx : −xTPx ≤ 1, εxTx ≤ 1
}

(A.21)

remains bounded as ε → +0. Indeed, otherwise there clearly would exist a sequence
of vectors xi, ‖xi‖ → ∞ as i → ∞, such that xTi Pxi ≥ −1 and xTi Qxi → −∞ as
i → ∞. By evident reasons, this would imply the existence of a unit vector x̄ such
that x̄TPx̄ ≥ 0 and x̄TQx̄ ≤ 0, which would contradict (A.19). Now, the data

R = −Q, R0 = −P, R1 = εI, r0 = 1, K = 1

clearly satisfy the premises (A.8) and (A.9) of Lemma A.6, and with these data,
(A.10) coincides with (A.21). Since r0 = 1 > 0, part (ii) of Lemma A.6 applies.
Thus problem (A.11) is solvable and (A.18) holds. Hence, for every ε > 0 there exist
µ0(ε) ≥ 0 and µ1(ε) ≥ 0 such that

−µ0(ε)P + µ1(ε)εI � −Q, µ0(ε) + µ1(ε) ≤ ρ̄2QCQ(ε).

Since QCQ(ε) remains bounded as ε → 0, so are µ0(ε), µ1(ε); therefore there exists an
accumulation point (µ1 ≥ 0, µ2 ≥ 0) of (µ0(ε), µ1(ε)) as ε → +0, and λ = µ1 clearly
satisfies the conclusion in (A.20).

Proof. Notice that problem (A.11) is the semidefinite dual of

RQCQ = max
X0

{TrRX : TrR0X ≤ ro, TrRkX ≤ 1, k = 1, . . . ,K}.(A.22)

The latter problem is the standard semidefinite relaxation of the quadratically con-
strained quadratic problem (A.10), so we have

RQCQ ≥ QCQ.(A.23)

In part (i) of the lemma, (A.10) is assumed to be feasible; hence (A.22) is feasible
as well, and hence, by weak duality, between problem (A.11) and its dual (A.22),
problem (A.11) is bounded below. Now assumption (A.9) ensures that (A.11) is
strictly feasible; thus from semidefinite duality theory, problem (A.22) is solvable and

SDP = RQCQ.(A.24)

By (A.23) and (A.24), SDP ≥ QCQ, which completes the proof of the first part
of claim (i) in the lemma. To prove the second part, we first simplify the system
(A.13)–(A.15). Letting

X∗ denote an optimal solution of problem (A.22),
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we introduce

R̂ = X
1
2∗ RX

1
2∗ .(A.25)

Let

R̂ = UR̃UT (UTU = I, R̃ = diag (r1, . . . , rn))(A.26)

be the eigenvalue decomposition of R̂. Choosing

y∗ = X
1
2∗ Uu, u ∈ R

n,(A.27)

we have

yT∗ Ry∗ = uTUTX
1
2∗ RX

1
2∗ Uu = uTUT R̂Uu = uT R̃u =

n∑
i=1

riu
2
i .

Also

SDP = RQCQ = TrRX∗ = Tr R̂ = Tr R̃ =

n∑
i=1

ri,

and thus (A.13) is equivalent to

(a)
n∑
i=1

riu
2
i =

n∑
i=1

ri.

Now, defining

R̂k = X
1
2∗ RkX

1
2∗ , R̃k = UT R̂kU, k = 0, 1, . . . ,K,

and using (A.27), we obtain

yT∗ Rky∗ = uTUTX
1
2∗ RkX

1
2∗ Uu = uTUT R̂kUu = uT R̃ku.(A.28)

Since X∗ solves RQCQ,

r0 ≥ TrR0X∗ = Tr R̂0 = Tr R̃0(A.29)

and

1 ≥ TrRkX∗ = Tr R̂k = Tr R̃k, k = 1, . . . ,K.(A.30)

From (A.28) and (A.29) we see that (A.14) holds if

(b) uT R̃0u ≤ Tr R̃0,

and from (A.28) and (A.30), relation (A.15) holds if

(c) uT R̃ku ≤ ρ̃2Tr R̃k, k = 1, . . . ,K.
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We conclude that if there exists a ū satisfying

n∑
i=1

riū
2
i =

n∑
i=1

ri,(A.31)

ūT R̃0ū ≤ Tr R̃0,(A.32)

ūT R̃kū ≤ ρ̃2Tr R̃k, k = 1, . . . ,K,(A.33)

then y∗ = X
1
2∗ Uū satisfies (A.13)–(A.15). Note that (A.31) is automatically satisfied

if ū is a ±1-vector. Thus it suffices to show that (A.32) and (A.33) can be satisfied
by a ±1-vector ū.

Let us pretend for a moment that the vector ū is a random ±1-vector such that
Pr (ūi = 1) = Pr (ūi = −1) = 1

2 for each i. Let B denote the event that ū satisfies

(A.32), and Ck the event that ūT R̃kū ≤ ρ̃2Tr R̃k, and C = ∩kCk, i.e., C denotes the
event that ū satisfies (A.33). Then we only need to show that

Pr (B ∩ C) > 0.(A.34)

Since

B ⊆ (B ∪ C) ∩ Cc,

where c refers to the complement of the event, we may write

Pr (B ∪ C) ≥ Pr (B)− Pr (Cc) = Pr (B)− Pr ((∩kCk)c)

= Pr (B)− Pr (∪kCc
k) ≥ Pr (B)−

K∑
k=1

Pr (Cc
k).

Hence, (A.34) will certainly hold if for some p0 > 0,

Pr (B) > p0,(A.35)
K∑
k=1

Pr (Cc
k) ≤ p0.(A.36)

We first consider the case in which R0 is dyadic. Then R̂0 and R̃0 are also dyadic,
and hence we may write, for a suitable vector b,

R̃0 = bbT .

Then condition (A.32) is equivalent to

ūT
b

‖b‖ ≤ 1.

Hence, in the dyadic case, (A.35) is equivalent to

Pr
(∣∣uTx∣∣ ≤ 1

)
> p0,(A.37)

where x is the unit vector b/ ‖b‖. By Lemma A.1 this inequality certainly holds if
p0 =

1
3 . On the other hand, by Lemma A.3, for each k,

Pr (Cc
k) = Pr (ūT R̃kū > ρ̃2Tr R̃k) ≤ 2 (rank R̃k)e

− ρ̃2

2 .
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Since rank R̃k ≤ rankRk, we obtain

K∑
k=1

Pr (Cc
k) ≤ 2 e−

ρ̃2

2

K∑
k=1

rankRk,

and so inequalities (A.35) and (A.36) will hold if p0 =
1
3 and ρ̃ is such that

2 e−
ρ̃2

2

K∑
k=1

rankRk =
1

3
= p0.(A.38)

One may easily verify that the value of ρ̃ as given by (2.5) is indeed the solution of
(A.38). Thus the proof is complete for the case in which R0 is dyadic.

We finally consider the general case, where R0 is an arbitrary symmetric matrix.
Then we apply Lemma A.4, which gives that (A.35) holds for p0 = 1/(8n2). Then
solving ρ̃ from (A.38) with this value of p0, we get the value given in (A.16).

To complete the proof of the lemma we need only to prove SDP ≤ ρ̃2QCQ, the
last inequality in (A.18). For this, let y∗ satisfy (A.13)–(A.15). Then, since ρ̃ > 1,
the vector

ȳ =
y∗
ρ̃

is feasible for problem (A.10). Therefore, using (A.13),

QCQ ≥ ȳTRȳ =
1

ρ̃2
yT∗ Ry∗ =

SDP

ρ̃2
,

and hence the proof is complete.
Lemma A.8. Let a, b ∈ R

n be two nonzero vectors and X a symmetric n × n
matrix. Then

X � ± (abT + baT
)

(A.39)

holds if and only if

∃ρ > 0 s.t. X � ρaaT +
1

ρ
bbT .(A.40)

Proof. Suppose (A.40) holds. Then, for arbitrary y ∈ R
n one has

yTXy ≥ yT
(
ρaaT +

1

ρ
bbT
)
y = ρ

(
aT y
)2

+
1

ρ

(
bT y
)2

≥ 2
∣∣aT y∣∣ ∣∣bT y∣∣ ≥ ∣∣yT (abT + baT

)
y
∣∣ ;

hence (A.39) follows. On the other hand, if (A.40) does not hold, then the system

X � ρaaT + µbbT ,

(
ρ 1

1 µ

)
� 0(A.41)

does not have a solution (ρ, µ). This implies that the optimal value p∗ of the semidef-
inite optimization problem

(SDP) p∗ = min
t,ρ,µ

{
t : tI +X � ρaaT + µbbT ,

(
ρ 1

1 µ

)
� 0

}
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is positive. Clearly (SDP) is strictly feasible and bounded below. Hence its dual
problem (SDD),
(SDD)

max
v, v1, v2,

U � 0

{
−Tr (UX)− 2v : Tr (U) = 1,

(
v1 v

v v2

)
� 0, v1 = bTUb, v2 = aTUa

}
,

is solvable and has the same optimal value p∗ > 0. A feasible solution (U, v, v1, v2) to
(SDD) satisfies

|v| ≤ √
v1v2 =

√
(aTUa) (bTUb).

Hence, p∗ > 0 implies the existence of U � 0 such that

2
√
(aTUa) (bTUb) > Tr (UX).(A.42)

Let

ā = U
1
2 a, b̄ = U

1
2 b, X̄ = U

1
2XU

1
2 .

Then (A.42) can be rewritten as

Tr X̄ < 2
√
(āT ā)

(
b̄T b̄
)
= 2 ‖ā‖ ‖b̄‖.(A.43)

Now suppose that X satisfies (A.39). Then it follows that

X̄ � ± (āb̄T + b̄āT
)
.

Define Q = āb̄T + b̄āT , and let λ(Q) be the vector of eigenvalues of Q. It then follows
that

Tr X̄ ≥ ‖λ(Q)‖1 =
∥∥λ(āb̄T + b̄āT )

∥∥
1
= 2 ‖ā‖ ‖b̄‖.

This contradicts (A.43). Hence the proof is complete.
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Abstract. The paper deals with a discretized problem of the shape optimization of elastic
bodies in unilateral contact. The aim is to extend existing results to the case of contact problems
following the Coulomb friction law. Mathematical modelling of the Coulomb friction problem leads
to a quasi-variational inequality. It is shown that for small coefficients of friction the discretized
problem with Coulomb friction has a unique solution and that this solution is Lipschitzian as a
function of a control variable describing the shape of the elastic body.

The shape optimization problem belongs to a class of so-called mathematical programs with
equilibrium constraints (MPECs). The uniqueness of the equilibria for fixed controls enables us to
apply the so-called implicit programming approach. Its main idea consists of minimizing a nonsmooth
composite function generated by the objective and the (single-valued) control-state mapping. In
this paper, the control-state mapping is much more complicated than in most MPECs solved in
the literature so far, and the generalization of the relevant results is by no means straightforward.
Numerical examples illustrate the efficiency and reliability of the suggested approach.

Key words. shape optimization, contact problems, Coulomb friction, mathematical programs
with equilibrium constraints

AMS subject classifications. 49Q10, 74M10, 74S05
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Introduction. Shape optimization is a branch of optimal control theory in which
control variables are related to the geometry of considered structures. From our daily
experience we know that the geometry of a structure is one of the decisive factors de-
termining its properties. The goal of shape optimization is to find “the best possible”
geometry of a structure in order to enhance some desired properties. Special atten-
tion is paid to shape optimization of structures governed by variational inequalities.
It is well known that optimal control problems with state relations represented by
variational inequalities are generally nonsmooth, in view of a possible nondifferentia-
bility of the respective control-state mapping. This fact not only makes the analysis
more difficult, but also complicates the numerical computation. In particular, the
possible nondifferentiability of minimized functions restricts the choice of available
minimization methods.

The present paper deals with a particular problem of so-called contact shape opti-
mization, i.e., optimization of the geometry of a system of deformable bodies that are
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in mutual contact and subject to external forces. The mathematical model describ-
ing the equilibrium state of such a system is represented by differential inclusions,
whose complexity depends on physical phenomena involved in the model, such as the
influence of friction on contact parts of the boundaries. In [9], shape optimization of
elastic bodies in unilateral contact was analyzed with and without given friction. The
aim of the current paper is to extend those results to the case of friction that obeys
the classic Coulomb law. We confine ourselves to the simplest case, namely, the static
form of the Coulomb law of friction, which may not always be relevant from the me-
chanical point of view. To get a more realistic model, one has to use the quasi-static
formulation, e.g., one involving the rate of change of the displacement field u (for de-
tails, see [20]). The static case is, however, important from the computational point
of view since appropriate discretizations of rate dependent models lead to a sequence
of static ones. In contrast to the frictionless case or to a model with given friction,
both of which are described by classical variational inequalities, the mathematical
model of Coulomb friction leads to a quasi-variational inequality (see [7]), making the
mathematical analysis and the numerical realization substantially more involved. For
mechanical aspects of contact shape optimization, see [11].

The subject of this paper is the shape optimization of discretized contact problems
with Coulomb friction, provided that the coefficient of friction is sufficiently small.
To simplify our presentation, we focus on the so-called Signorini problem, i.e., on the
contact problem for one elastic body unilaterally supported by a rigid foundation.
The discretization of the state problem is based on a mixed finite element formula-
tion of the Signorini problem with given friction, i.e., on the formulation in terms of
displacements and normal contact stresses which are equal to Lagrange multipliers
associated with the unilateral constraints. This formulation is used to define a map-
ping Φ associating the respective Lagrange multipliers in the aforementioned mixed
finite element formulation with a given slip bound. Solutions to contact problems
with Coulomb friction are finally defined as fixed points of Φ in an appropriate set. It
is well known that for the coefficients of Coulomb friction that are small enough, the
mapping Φ has a unique fixed point or, equivalently, the discretized contact problem
with Coulomb friction has a unique solution (see [5]).

The shape optimization problem belongs to a class of so-called mathematical pro-
grams with equilibrium constraints (MPECs), which have been intensively studied
especially in the past fifteen years; see, e.g., [13]. The uniqueness of the equilibria
for fixed controls enables us to apply an effective method belonging to the useful and
reliable implicit programming approach. This method is described in detail in [18],
but in connection with substantially simpler equilibria. Its main idea consists of ana-
lyzing a composite function generated by the discretized objective and the discretized
(single-valued) control-state mapping. Subsequently, this composite function is min-
imized by a suitable nonsmooth minimization algorithm, e.g., by a bundle method.
In this paper, however, the control-state mapping is much more complicated than in
most MPECs solved in [18] and other works, and the generalization of the relevant
results is by no means straightforward.

The paper is organized as follows: Section 1 collects known results related to finite
element approximations, which are needed in section 2. Additionally, we provide the
reader with some basic notions from nonsmooth analysis, which are extensively used
in sections 3 and 4.

In section 2 we first present a mixed finite element formulation of the Signorini
problem with given friction, which is used to define the Coulomb friction model. We
prove that the discretized contact problem with Coulomb friction is solvable for any
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positive value of the coefficient F of Coulomb friction and is uniquely solvable for
F sufficiently small. We also prove that the bounds on F ensuring the uniqueness
of the solution are uniform with respect to the discretized control (design) variables.
The rest of the paper is restricted solely to this case. The main result of section 2
states that the control-state mapping is Lipschitzian on a set of admissible discretized
control variables.

Section 3 concerns the sensitivity analysis of this mapping. We show that it is
piecewise C1 and compute an upper approximation of its Clarke generalized Jacobian.
Moreover, we apply a suitable chain rule and clarify how to obtain “subgradient
information” needed in the chosen numerical solver.

Section 4 presents numerical tests. They illustrate the efficiency and reliability
of the suggested approach as well as the relevance of the obtained results from the
mechanical point of view.

The following notation is employed: xi is the ith component of a vector x ∈ R
n, E

is the unit matrix, and R
n
+ is the nonnegative orthant of R

n. For an [m×n] matrix A
and index sets I ⊂ {1, 2, . . . ,m}, J ⊂ {1, 2, . . . , n}, AI,J denotes the submatrix of A
with rows and columns specified by I and J , respectively. Further, AI and IA are
submatrices of A with rows and columns, respectively, specified by I. Similarly, for
a vector ∈ R

n, I is the subvector composed from the components δi, i ∈ I. For
a function f of two variables x, y, ∂xf(x, y) denotes its partial subdifferential with
respect to x. If f is differentiable, ∇xf(x, y) denotes its partial gradient. In certain
cases, we will prefer the notation ∇i f(x, y), i = 1, 2, for the gradient of f with respect
to the ith variable. For a finite set I, |I| denotes its cardinality. Let P1(T ) be a space
of polynomials on a set T ⊂ R

n of degree ≤ 1.
Furthermore, in agreement with the standard literature on linear elasticity [16],

u = (u1, u2) denotes the displacement field, ε(u) = (εij(u))i,j=1,2 stands for the

linearized strain tensor with components εij(u(x)) =
1
2 (

∂u(x)i
∂xj

+
∂u(x)j
∂xi

), and τ(u) =

(τij(u))i,j=1,2 is the stress tensor related to ε(u) by means of the linear Hooke’s law.

1. Preliminaries. The first part of this preliminary section collects results from
the finite element theory used in section 2 to the discretization of our problem.

Let Ω̂ = (0, a) × (0, b), a, b ∈ R+, be a rectangle whose boundary ∂Ω̂ is split

into three nonempty nonoverlapping parts Γ̂, Γ̂u, and Γ̂P , where Γ̂ = (0, a) × {0}.
Let T̂h be a uniform triangulation of Ω̂, whose nodes {Âij} form a rectangular grid,

Âij = (x̂i, ŷj), x̂i = a
N i, ŷj = b

M j, i = 0, . . . , N , j = 0, . . . ,M , where N , M are

positive integers. The symbol h stands for the norm of T̂h.
We shall define the following finite element spaces in Ω̂:

X̂h = {v̂h ∈ C(Ω̂) | v̂h|T̂ ∈ P1(T̂ ) ∀ T̂ ∈ T̂h},
V̂h = {v̂h ∈ X̂h | v̂h = 0 on Γ̂u},
X̂h0 = {v̂h ∈ X̂h | v̂h = 0 on Γ̂u ∪ Γ̂}.

Let ∆̂h be a partitioning of [0, a] realized by the nodes of T̂h lying on Γ̂. By Uh
ad

we denote the set of discretized design variables defined as follows:

Uh
ad = {αh ∈ C([0, a]) | αh is piecewise linear on ∆̂h, 0 ≤ αh ≤ C0 in [0, a]}

for some C0 ∈ (0, b/2).
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With any αh ∈ Uh
ad we will associate the following polygonal domain Ω(αh):

Ω(αh) = {(x1, x2) ∈ R
2 | αh(x1) < x2 < b; x1 ∈ (0, a)}.

The system of all Ω(αh), αh ∈ Uh
ad, will be denoted by Oh. Any Ω(αh) ∈ Oh will

be considered as an image Fαh(Ω̂), where Fαh : R
2 → R

2 is a mapping of the form
Fαh = Aijϕ̂ij , Aij = (x̂i, αh(x̂i)+ j(b−αh(x̂i))/M) ∈ R

2, i = 0, . . . , N , j = 0, . . . ,M ,

and ϕ̂ij is the Courant basis function of X̂h associated with the node Âij of T̂h. By
means of Fαh we define the partitioning of ∂Ω(αh) into Γ(αh), Γu(αh), and ΓP (αh) as

follows: Γ(αh) = Fαh(Γ̂), Γu(αh) = Fαh(Γ̂u), ΓP (αh) = Fαh(Γ̂P ). The triangulation

Th(αh) of Ω(αh) is a “deformation” of T̂h by means of Fαh .

The triangulations T̂h and Th(αh) are topologically equivalent ; i.e., for any αh ∈
Uh
ad the triangulation Th(αh) has the same number of the nodes as T̂h, and the nodes

of Th(αh) keep the same neighbors as T̂h. In addition, the position of all Aij depends
continuously on variations of αh ∈ Uh

ad.
For any Ω(αh) ∈ Oh we define the following spaces:

Xh(αh) = {vh ∈ C(Ω(αh)) | vh|T ∈ P1(T ) ∀ T ∈ Th(αh)},
Vh(αh) = {vh ∈ Xh(αh) | vh = 0 on Γu(αh)},
Xh0(αh) = {vh ∈ Xh(αh) | vh = 0 on Γu(αh) ∪ Γ(αh)},
Vh(αh) = Vh(αh)× Vh(αh).

It is readily seen that

vh ∈ {Xh(αh), Vh(αh), Xh0(αh)} iff v̂h = vh ◦ Fαh ∈ {X̂h, V̂h, X̂h0}.(1.1)

By means of (1.1), the one-to-one correspondence Xh(αh) ←→ X̂h, Vh(αh) ←→ V̂h,

Xh0(αh)←→ X̂h0 is established.
Convention. In what follows, the symbol “ˆ” above a function vh defined in

Ω(αh) denotes its “transport” on Ω̂ by means of (1.1).

We now introduce trace spaces on Γ̂ and Γ(αh), αh ∈ Uh
ad. Denote by V̂h, Vh(αh)

the spaces of restrictions of functions from V̂h, Vh(αh) to Γ̂, Γ(αh), respectively:

V̂h = V̂h|Γ̂, Vh(αh) = Vh(αh)|Γ(αh)
.

It is readily seen that

ϕh ∈ Vh(αh) iff ϕ̂h = ϕh ◦ Fαh |Γ̂ ∈ V̂h.

The trace spaces on Γ̂, Γ(αh) will be equipped with the following norms:

‖ϕ̂h‖h,Γ̂ := inf
v̂h∈V̂h

v̂h=ϕ̂h on Γ̂

|v̂h|1,Ω̂ , ‖ϕh‖h,αh := inf
vh∈Vh(αh)

vh=ϕh on Γ(αh)

|vh|1,Ω(αh),(1.2)

where | · |1,Ω̂, | · |1,Ω(αh) stand for the H1(Ω̂), H1(Ω(αh))-seminorms, respectively. The
following assertion follows directly from the above definitions.

Proposition 1.1. Let ϕ̂h ∈ V̂h. Then
‖ϕ̂h‖h,Γ̂ = |ûh|1,Ω̂, ‖ϕh‖h,αh = |zh|1,Ω(αh),
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where ûh ∈ V̂h, zh ∈ Vh(αh) are solutions of the following discretized nonhomogeneous
Dirichlet boundary value problems:∫

Ω̂

∇ûh · ∇v̂hdx̂ = 0 ∀v̂h ∈ X̂h0, ûh = ϕ̂h on Γ̂,∫
Ω(αh)

∇zh · ∇vhdx = 0 ∀vh ∈ Xh0, zh = ϕh on Γ(αh),

respectively.
It is easy to show that the norms ‖ · ‖h,Γ̂, ‖ · ‖h,αh are uniformly equivalent with

respect to αh ∈ Uh
ad as follows from the following result.

Proposition 1.2. There exist constants c1, c2 > 0 such that

c1‖ϕh‖h,αh ≤ ‖ϕ̂h‖h,Γ̂ ≤ c2‖ϕh‖h,αh(1.3)

holds for any ϕh ∈ Vh(αh) and any αh ∈ Uh
ad.

Remark 1.1. Let us consider a regular system {T̂h} of triangulations of Ω̂, h→ 0+.
Then the system {Th(αh), αh ∈ Uh

ad}, h → 0+, is uniformly regular with respect to
αh ∈ Uh

ad and h→ 0+, and the constants c1, c2 in (1.3) do not depend on h→ 0+.

In what follows, we shall suppose that {T̂h}, h → 0+ is a regular system of

triangulations of Ω̂.
Next we introduce a dual space of V̂h. Let Lκ be a finite-dimensional space in

duality with V̂h, and let 〈· , · 〉 be the corresponding duality pairing. In what follows,
we shall suppose that Lκ is chosen in such a way that the following condition is
satisfied:

(S ) µκ ∈ Lκ : (〈µκ, ϕ̂h〉 = 0 ∀ϕ̂h ∈ V̂h) =⇒ µκ = 0.

If so, then

‖µκ‖−h,Γ̂ := sup
ϕ̂h∈V̂h
ϕ̂h �=0

〈µκ, ϕ̂h〉
‖ϕ̂h‖h,Γ̂

(1.4)

defines a norm in Lκ. A more suitable expression for ‖ · ‖−h,Γ̂ gives the next result

(see [3]).
Proposition 1.3. It holds that

‖µκ‖−h,Γ̂ = |ŵh|1,Ω̂ = sup
v̂h∈V̂h
v̂h �=0

〈µκ, v̂h〉
|v̂h|1,Ω̂

,

where ŵh ∈ V̂h is the solution of the discretized Neumann problem in Ω̂:∫
Ω̂

∇ŵh · ∇v̂hdx̂ = 〈µκ, v̂h〉 ∀v̂h ∈ V̂h.(1.5)

Let µκ ∈ Lκ and ϕh ∈ Vh(αh). We define

〈µκ, ϕh〉αh := 〈µκ, ϕ̂h〉
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and

‖µκ‖−h,αh := sup
vh∈Vh(αh)
vh �=0

〈µκ, vh〉αh
|vh|1,Ω(αh)

.(1.6)

By virtue of (S ), (1.6) defines a shape dependent norm in Lκ. However, it is easy to
show that ‖ · ‖−h,Γ̂ and ‖ · ‖−h,αh are equivalent uniformly with respect to αh ∈ Uh

ad.
This follows from the next proposition.

Proposition 1.4. It holds that

1

c2
‖µκ‖−h,αh ≤ ‖µκ‖−h,Γ̂ ≤

1

c1
‖µκ‖−h,αh(1.7)

for any µκ ∈ Lκ and any αh ∈ Uh
ad, where c1, c2 are the same constants as in

Proposition 1.2.
We close this part with an extension-type result. By rhϕ̂h ∈ V̂h we denote the

extension of ϕ̂h ∈ V̂h from Γ̂ into Ω̂ having the smallest support:

rhϕ̂h = ϕ̂h on Γ̂, rhϕ̂h(Âij) = 0 ∀Âij /∈ Γ̂.

Proposition 1.5 (see [22]). There exists a constant c0 > 0 independent of h
such that

‖rhϕ̂h‖1,Ω̂ ≤ c0h−1/2‖ϕ̂h‖0,Γ̂(1.8)

holds for any ϕ̂h ∈ V̂h.
In the rest of this section we list, for the reader’s convenience, those basic concepts

from nonsmooth analysis which are essential for the whole development in sections 3
and 4.

Let F [Rn → R
m] be Lipschitzian near a point x ∈ R

n. The generalized Jacobian
of F at x, denoted ∂F (x), is a subset of R

m×n given by

∂F (x) = conv
{
lim
i→∞

∇F (xi) | xi → x, xi �∈ ΩF

}
,

where ΩF is the set of points at which F is not differentiable, and ∇F (xi) denotes
the standard Jacobian of F at xi. For m = 1 the generalized Jacobian amounts to
a set of row vectors whose transpose is the Clarke subdifferential of F at x, denoted
also by ∂F (x). These objects enjoy a rich calculus, which is thoroughly investigated,
e.g., in [1]. In section 3 we will employ a chain rule from this calculus.

In connection with MPECs, one frequently encounters the following mappings.
Definition 1.6. Let U be an open subset of R

n. A function F [U → R
m] is called

a PC1-function if it is continuous and if for every x0 ∈ U there exists an open neigh-
borhood O ⊂ U and a finite number of continuously differentiable functions Fi[O →
R
m], i = 1, 2, . . . , k, such that for every x ∈ O one has F (x) ∈ {F1(x), . . . , Fk(x)}.

The single functions Fi are called selections or pieces for F at x0, and the set

IF (x0) := {i ∈ {1, 2 . . . , k} | F (x0) = Fi(x0)}
is the active index set at x0. The selections Fi, i ∈ IF (x0), are called active selections
(pieces) for F at x0. A selection Fi is essentially active at x0, provided

x0 ∈ cl (int{z ∈ O | F (z) = Fi(z)}) .
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The respective index set of essentially active selections at x0 is denoted by IeF (x0)
and plays an important role in connection with the generalized Jacobian of F at x0.
Indeed, in [23] it was proved that every PC1-function is locally Lipschitzian and

∂F (x0) = conv {∇Fi(x0) | i ∈ IeF (x0)} .

To ensure the convergence of so-called bundle methods for nonsmooth optimiza-
tion in case of nonconvex objectives [24], one usually requires a slightly weakened
variant of the following property introduced by Mifflin in [14].

Definition 1.7. We say that f [Rn → R] is semismooth at x if f is Lipschitzian
near x and the limit

lim
g∈∂f(x+th′)
h′→h, t↓0

{〈g, h′〉}

exists for all h ∈ R
n.

This property can be extended in a straightforward way to vector-valued maps
[21], and it is not difficult to show that a PC1-function F [U → R

m] is semismooth at
each x ∈ U .

2. Shape optimization in discretized contact problems with Coulomb
friction. Let us consider a plane elastic body represented by a domain Ω(αh), αh ∈
Uh
ad (defined in the previous section), which is unilaterally supported along Γ(αh) by

the half-plane R
2
−. On Γ(αh) the following conditions will be prescribed:

u2(x1, αh(x1)) ≥ −αh(x1), T2(x1) ≥ 0,

(u2(x1, αh(x1)) + αh)T2(x1) = 0 ∀x1 ∈ (0, a),

}
(2.1)

|T1(x1)| ≤ FT2(x1),

(T1u1 + FT2|u1|)(x1) = 0 ∀x1 ∈ (0, a),

}
(2.2)

where u = (u1, u2) denotes the displacement field, T (x1) = (T1(x1), T2(x1)) stands for
the stress vector at a point (x1, αh(x1)) ∈ Γ(αh), and F is the coefficient of Coulomb
friction. The complementarity conditions (2.1) express the fact that the body cannot
penetrate into the rigid foundation R

2
−, that only compression may occur, and that

no contact induces zero pressure (the last equation in (2.1)). The set of conditions
(2.2) is the mathematical expression of the classical Coulomb law of friction.

The body is subject to body forces F = (F1, F2) and surface tractions P =
(P1, P2) on the part ΓP (αh). The goal is to find an equilibrium state. For the
variational formulation and the mathematical analysis of this problem, we refer to
[15]. The discretization of the contact problem with Coulomb friction will be based
on a mixed finite element formulation of contact problems with given friction, by
means of which Coulomb friction is incorporated into the mathematical model. For a
detailed analysis, see [7].

Let Vh(αh) and Lκ be the same as before. In addition, we shall suppose that Lκ is

in duality also with X̂h|Γ̂. If so, one can define the value 〈αh, µκ〉 for αh ∈ Uh
ad ⊆ X̂h|Γ̂

and µκ ∈ Lκ. By Λκ ⊂ Lκ we denote the cone of positive functionals:

µκ ∈ Λκ =⇒ 〈µκ, ϕ̂h〉 ≥ 0 ∀ϕ̂h ∈ X̂h|Γ̂, ϕ̂h ≥ 0 on Γ̂.
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Let αh ∈ Uh
ad, gκ ∈ Λκ be given. By a discretized mixed finite element formulation

of a contact problem with given friction gκ we call the following problem:

(P(αh, gκ))h
Find (uh, λκ) ∈ Vh(αh)× Λκ such that
aαh(uh, vh − uh)− 〈vh2 − uh2, λκ〉αh + 〈Fgκ,Πh(|v̂h1| − |ûh1|)〉

≥ /αh(vh − uh) ∀vh ∈ Vh(αh),
〈uh2, µκ − λκ〉αh ≥ −〈αh, µκ − λκ〉 ∀µκ ∈ Λκ,




where1

– aαh(uh, vh) :=
∫
Ω(αh)

τij(uh)εij(vh)dx = (Cε(uh), ε(vh))0,Ω(αh);

– /αh(vh) := (F, vh)0,Ω(αh) + (P, vh)0,ΓP (αh);

– C ∈ L(R2×2
sym,R

2×2
sym) is a linear mapping of the space of (2 × 2) symmetric

matrices into itself, defining a linear Hooke’s law: τ = Cε;
– Πh ∈ L(C(Γ̂), V̂h) is a piecewise linear Lagrange interpolation operator on Γ̂.

We make the following assumptions:

F ∈ (L2(Ω̂))2, P ∈ (L2(Γ̂P ))
2;(2.3)

C is constant in Ω̂ and satisfies the usual
symmetry and ellipticity conditions (see [16]);(2.4)

F > 0 is constant on Γ̂.(2.5)

Proposition 2.1 (see [7]). Let the assumptions (S) of section 1 and (2.3)–(2.5)
be satisfied. Then (P(αh, gκ))h has a unique solution (uh, λκ) for any (αh, gκ) ∈
Uh
ad × Λκ.

Remark 2.1. The solution of (P(αh, gκ))h depends on αh and gκ. For the
sake of simplicity of notation, we use the abbreviated form (uh, λκ) instead of
(uh(αh, gκ), λκ(αh, gκ)).

We now give an interpretation of the solution to (P(αh, gκ))h. To this end, let us
introduce

Khκ(αh) = {vh ∈ Vh(αh) | 〈vh2, µκ〉αh ≥ −〈αh, µκ〉 ∀µκ ∈ Λκ}.

Khκ(αh) is a closed convex subset of Vh(αh) approximating the nonpenetration condi-
tion on Γ(αh). From the last inequality in (P(αh, gκ))h it follows that uh ∈ Khκ(αh).
Restricting the choice of test functions to vh ∈ Khκ(αh), it is easy to see that the
duality term −〈vh2 − uh2, λκ〉αh is nonpositive for any vh ∈ Khκ(αh) so that it can
be omitted in the first inequality in (P(αh, gκ))h. Therefore uh ∈ Khκ(αh) solves the
variational inequality

aαh(uh, vh − uh) + F〈gκ,Πh(|v̂h1| − |ûh1|)〉 ≥ /αh(vh − uh) ∀vh ∈ Khκ(αh),(2.6)

while λκ ∈ Λκ is the Lagrange multiplier releasing the constraint uh ∈ Khκ(αh).
We now present the algebraic form of (P(αh, gκ))h, which will be used in the

analysis that follows. Let {ϕi}ni=1, {ξ̂i}mi=1, {π̂i}pi=1, {ω̂i}di=1 be basis functions of

Vh(αh), Lκ, V̂h, and X̂h|Γ̂. (Observe that the dimension of Vh(αh) does not depend

on αh ∈ Uh
ad !)

1We use the summation convention and standard notations of linear elasticity.



SHAPE OPTIMIZATION IN CONTACT PROBLEMS 569

We shall suppose that ξ̂i ∈ Λκ for i = 1, . . . ,m. As usual, Vh(αh), Λκ, V̂h,
and X̂h|Γ̂ are isometrically isomorphic with R

n, R
m
+ , R

p, and R
d, respectively. Since

αh ∈ Uh
ad ⊆ X̂h|Γ̂, it can be identified with a vector ∈ R

d whose components are

given by the nodal values of αh, and the set Uh
ad itself can be identified with a compact

subset U ⊆ R
d. Let us note that d = p+ card (Γu(αh) ∩ Γ(αh)).

Let ∈ U , g ∈ R
m
+ be given. The algebraic form of (P(αh, gκ))h reads as follows:

(P( , g))

Find (u ,˘) ∈ R
n × R

m
+ such that

(A( )u , v − u)Rn − (B(vν − uν),˘)Rm + F(g ,B(|vτ | − |uτ |))Rm

≥ (�( ), v − u)Rn ∀v ∈ R
n,

(Buν ,¯ − ˘)Rm ≥ −(B̃ ,¯ − ˘)Rm ∀¯ ∈ R
m
+ ,




where A( ) ∈ L(Rn,Rn), B ∈ L(Rp,Rm), and B̃ ∈ L(Rd,Rm) are matrices with the
following elements:

aij( ) = aαh(ϕi, ϕj), i, j = 1, . . . , n,

bkl = 〈ξ̂k, π̂l〉, k = 1, . . . ,m; l = 1, . . . , p,

b̃kt = 〈ξ̂k, ω̂t〉, k = 1, . . . ,m; t = 1, . . . , d.

The symbols vτ and vν ∈ R
p stand for subvectors made of those components of

v ∈ R
n which correspond to the tangential and normal displacements, respectively, at

the contact nodes, and |z | := (|z1|, . . . , |zp|) for any z ∈ R
p. Finally, the components

of �( ) are given by

/i( ) = (F,ϕi)0,Ω(αh) + (P,ϕi)0,ΓP (αh).

Remark 2.2. From the construction of Vh(αh), αh ∈ Uh
ad, it easily follows that

the mappings A : → A( ), � : → �( ) are Lipschitzian in U .
We now present two types of Lκ satisfying condition (S ) of section 1.
Type I. Let N = {Ci}pi=1 be the set of all contact nodes of Th(αh), i.e., Ci =

(x̂i, αh(x̂i)), where {x̂i} are those nodes of ∆̂h such that Ci ∈ Γ(αh)\Γu(αh). With
any Ci ∈ N the Dirac distribution δi will be associated: 〈δi, ϕ̂〉 = ϕ̂(Ci) for all

ϕ̂ ∈ C(Γ̂). We define Lκ = {δ1, . . . , δp} and Λκ = {µκ ∈ Lκ | µκ = ¯ # , ¯ ∈ R
p
+},

where = (δ1, . . . , δp) and ¯ # := µiδi. It is readily seen that (S ) is satisfied and

Khκ(αh) := Kh(αh) = {vh ∈ Vh(αh) | vh2(Ci) ≥ −αh(x̂i), Ci ∈ N , ∀i = 1, . . . , p}
is the inner approximation of the set of kinematically admissible displacements.

Type II. Let ∆̂κ be another partition of [0, a] into q segments Si, i = 1, . . . , q,

generally different from ∆̂h, and let χi be the characteristic function of Si, i = 1, . . . , q.
We define

Lκ = {µκ ∈ L2(Γ̂) | µκ = µiχi, ¯ ∈ R
q},

Λκ = {µκ ∈ Lκ | µκ ≥ 0 a.e. on Γ̂},

〈µκ, ϕ̂h〉 :=
∫ a

0

µκϕ̂hdx1 ∀ϕ̂h ∈ X̂h|Γ̂.

One can show (see [8]) that for this type of Lκ, condition (S ) is satisfied, provided

that the ratio maxi |Si|/maxT̂∈T̂h diam T̂ is “sufficiently large.” In this case,

Khκ(αh) =

{
vh ∈ Vh(αh) |

∫
Si

vh2(x1, αh(x1))dx1 ≥ −
∫
Si

αh(x1)dx1 ∀i = 1, . . . , q

}
is the external approximation of the set of kinematically admissible displacements.
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Proposition 2.1 enables us to define the mapping Φhκ : Uh
ad × Λκ → Λκ by

Φhκ(αh, gκ) = λκ, (αh, gκ) ∈ Uh
ad × Λκ,

where λκ is the second component of the solution to (P(αh, gκ))h.
In what follows, we shall examine basic properties of Φhκ. We start with the

following result.
Proposition 2.2. The solutions (uh, λκ) of (P(αh, gκ))h are uniformly bounded

with respect to (αh, gκ) ∈ Uh
ad × Λκ and F ∈ R

1
+: There exists a constant c > 0 such

that

‖uh‖1,Ω(αh) ≤ c,
‖λκ‖−h,Γ̂ ≤ c ∀(αh, gκ) ∈ Uh

ad × Λκ, ∀F ∈ R
1
+.

(2.7)

Proof. Inserting 0 ∈ Khκ(αh) into (2.6), we obtain

aαh(uh, uh) ≤ /αh(uh)−F〈gκ,Πh(|ûh1|)〉 ≤ /αh(uh) ≤ c‖uh‖1,Ω(αh),(2.8)

where c := c(‖F‖0,Ω̂, ‖P‖0,Γ̂p) is a positive constant depending solely on the indicated

parameters. The energy norm on the left-hand side of (2.8) can be bounded from
below by using the Korn’s inequality:

β‖uh‖21,Ω(αh) ≤ aαh(uh, uh),(2.9)

where β > 0 is a constant which can be chosen independently of αh ∈ Uh
ad, owing to

the fact that Oh is the system of domains satisfying the uniform cone property (see
[9]). From (2.8) and (2.9), (2.7)1 follows.

Let vh ∈ Vh(αh) be of the form vh = (uh1, uh2 ± wh), wh ∈ Vh(αh), and define
zh := vh − uh = (0,±wh). Substitution of such vh into (P(αh, gκ))h yields

〈wh, λκ〉αh = aαh(uh, zh)− /αh(zh)
≤ c{‖uh‖1,Ω(αh) |wh|1,Ω(αh) + |wh|1,Ω(αh)},(2.10)

where c > 0 is a constant not depending on (αh, gκ) ∈ Uh
ad × Λκ and on F ∈ R

1
+.

(We have used the fact that the constant in the Friedrichs inequality and the norm of
the trace mapping from Vh(αh) to Vh(αh) can be chosen independently of αh ∈ Uh

ad.)
From (2.10) and (2.7)1 we obtain

‖λκ‖−h,αh = sup
wh∈Vh(αh)
wh �=0

〈wh, λκ〉αh
|wh|1,Ω(αh)

≤ c .(2.11)

This and Proposition 1.4 result in (2.7)2.
Remark 2.3. The constant c in (2.7) depends generally on the discretization

parameter h. Two additional assumptions—namely, a slope-type condition imposed
on αh ∈ Uh

ad, which is uniform with respect to h, and the Ladyzhenskaya–Babuška–

Brezzi condition satisfied by the couple {V̂h,Λκ}—ensure that (2.7) is uniform also
with respect to h→ 0+. In this case, the mesh dependent norm ‖ · ‖−h,Γ̂ is replaced

by the classical dual norm ‖ · ‖−1/2,Γ̂.

Corollary 2.3. There exists an r0 > 0 independent of (αh, gκ) ∈ Uh
ad × Λκ

and F ∈ R
1
+ such that Φhκ(U

h
ad × Λκ) ⊂ Λr0

κ = {µκ ∈ Λκ| ‖µκ‖−h,Γ̂ ≤ r0}. In the
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situation described in Remark 2.3, the radius r0 can also be chosen independently of
h→ 0+.

Proposition 2.4. The mapping Φhκ is continuous in Uh
ad × Λκ.

Proof. We use the algebraic form of (P(αh, gκ))h. Let {( k, gk)}, ( k, gk) ∈
U ×R

m
+ , be a convergent sequence: k → ∈ U , gk → g ∈ R

m
+ , k →∞. Denote by

(uk,˘k) the solution of (P( k, gk)). From Proposition 2.2 we know that {(uk,˘k)} is
bounded. Therefore one can pass to an appropriate subsequence tending to (u ,˘) ∈
R
n×R

m
+ . It is easy to show that (u ,˘) solves the limit problem (P( , g)), making use

of Remark 2.2. Since (P( , g)) has a unique solution, the whole sequence {(uk,˘k)}
tends to (u ,˘).

With this result at hand, we have the following.
Proposition 2.5. For any αh ∈ Uh

ad and any F ∈ R
1
+ there exists a fixed point

of Φhκ(αh, ·) in Λr0
κ .

Proof. The proof follows from Corollary 2.3, Proposition 2.4, and the Brouwer
fixed-point theorem.

The importance of fixed points of Φhκ(αh, ·) follows from the next definition.
Definition 2.6. By a solution to the discretized contact problem with Coulomb

friction we mean any solution to (P(αh, gκ))h, where gκ = Φhκ(αh, gκ), gκ ∈ Λκ.
Denote by G a subset of Uh

ad × Λκ defined as follows:

(αh, gκ) ∈ G ⇐⇒ αh ∈ Uh
ad , gκ is a fixed point of Φhκ(αh, ·) in Λr0

κ .

Using the same approach as in Proposition 2.4, one can prove the next result.
Proposition 2.7. G is a compact subset of Uh

ad × Λr0
κ .

Next we shall study under which conditions the mapping Φhκ(αh, ·) is contractive
in Λr0

κ .
Proposition 2.8. There exists some F0 > 0 such that for any F ∈ (0,F0) the

mapping Φhκ(αh, ·) is contractive in Λr0
κ uniformly with respect to αh ∈ Uh

ad:

∃q ∈ (0, 1) : ‖Φhκ(αh, gκ)− Φhκ(αh, gκ)‖−h,Γ̂ ≤ q‖gκ − gκ‖−h,Γ̂

holds for any αh ∈ Uh
ad and gκ, gκ ∈ Λr0

κ .
Proof. Let (uh, λκ), (uh, λκ) be solutions to (P(αh, gκ))h, (P(αh, gκ))h, respec-

tively, gκ, gκ ∈ Λr0
κ . From (2.6) it follows that

aαh(uh, vh − uh) + F〈gκ,Πh(|v̂h1| − |ûh1|)〉 ≥ /αh(vh − uh),
aαh(uh, vh − uh) + F〈gκ,Πh(|v̂h1| − |ûh1|)〉 ≥ /αh(vh − uh)

holds for any vh ∈ Khκ(αh). Inserting vh := uh and uh into the first and second
inequality, respectively, and summing them up, we obtain

β‖uh − uh‖21,Ω(αh) ≤ aαh(uh − uh, uh − uh)
≤ F〈gκ − gκ,Πh(|ûh1| − |ûh1|)〉
≤ F‖gκ − gκ‖−h,Γ̂‖ŵh‖h,Γ̂,(2.12)

where for brevity of notation we have defined ŵh := Πh(|ûh1| − |ûh1|) ∈ V̂h. From

Proposition 1.1 it follows that ‖ŵh‖h,Γ̂ = |ûh|1,Ω̂, where ûh ∈ V̂h solves∫
Ω̂

∇ûh · ∇v̂hdx̂ = 0 ∀v̂h ∈ X̂h0, ûh = ŵh on Γ̂ .(2.13)
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The solution ûh can be written as

ûh = ẑh + rhŵh, ẑh ∈ X̂h0,(2.14)

where rhŵh ∈ V̂h is the extension of ŵh from Γ̂ into Ω̂ satisfying (1.8). This, (2.13),
and (2.14) entail that

‖ûh‖1,Ω̂ ≤ c0h−1/2‖ŵh‖0,Γ̂.(2.15)

Πh being the piecewise linear Lagrange interpolation operator preserves the mono-
tonicity,

|wh| = |Πh(|ûh1| − |ûh1|)| ≤ Πh(|ûh1 − ûh1|) on Γ̂,

implying that

‖ŵh‖0,Γ̂ ≤ ‖Πh(|ûh1 − ûh1|)‖0,Γ̂ ≤ c‖uh − uh‖1,Ω(αh),

where c > 0 does not depend on αh ∈ Uh
ad and h > 0. This, together with (2.12) and

(2.15), yields

‖uh − uh‖1,Ω(αh) ≤ cFh−1/2‖gκ − gκ‖−h,Γ̂.(2.16)

As in (2.10), we have

〈wh, λκ − λκ〉αh = aαh(uh − uh, zh)
for any zh = (0,±wh), wh ∈ Vh(αh). Hence

c1‖λκ − λκ‖−h,Γ̂ ≤ ‖λκ − λκ‖−h,αh

≤ c‖uh − uh‖1,Ω(αh)

≤ cFh−1/2‖gκ − gκ‖−h,Γ̂,

taking into account Proposition 1.4 and (2.16). If q := cFh−1/2/c1 < 1, the mapping
Φhκ(αh, ·) is contractive in Λr0

κ uniformly with respect to Uh
ad, and, since c, c1 do

not depend on h > 0, in view of the regularity of {T̂h}, h → 0+, one has F0 =
O(h1/2).

Corollary 2.9. For any αh ∈ Uh
ad and F ∈ (0,F0), the fixed point of Φhκ(αh, ·)

is unique in Λr0
h and can be revealed by the method of successive approximations.

Remark 2.4. Observe that the contractivity of Φhκ(αh, ·) is mesh dependent, and
this dependency cannot be removed.

Proposition 2.10. The mapping Φhκ(·, gκ) is Lipschitzian in Uh
ad uniformly

with respect to gκ ∈ Λr0
κ and F ∈ R

1
+:

∃c > 0 such that ∀αh, αh ∈ Uh
ad, ∀gκ ∈ Λr0

κ , ∀F ∈ R
1
+

‖Φhκ(αh, gκ)− Φhκ(αh, gκ)‖−h,Γ̂ ≤ c‖αh − αh‖h,Γ̂.

Proof. We use the algebraic form of (2.6). The set Khκ(αh) can be identified
with the convex subset K( ) of R

n given by

K( ) = {v ∈ R
n | Bvν + B̃ ≥ 0},
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with the same meaning of symbols as in (P( , g)). Further, let K := K(0). If
(u( ),˘( )) solves (P( , g)), then u( ) ∈ K( ) and

(A( )u( ), v − u( ))Rn + F(g ,B(|vτ | − |uτ ( )|))Rm(2.17)

≥ (�( ), v − u( ))Rn ∀v ∈ K( ).

Let c ∈ R
p be such that B c = B̃ , and denote by ∼ ∈ R

n the vector such that

∼ ν
= c and the remaining components are equal to zero. Any vector v ∈ K( ) can

be written as v = z − ∼ , z ∈ K, and, in particular, u( ) = U ( ) − ∼ , U ( ) ∈ K.
Inserting these expressions into (2.17), we obtain the inequality for U ( ):

(A( )U ( ), z −U ( ))Rn + F(g ,B(|zτ | − |Uτ ( )|))Rm(2.18)

≥ (A( ) ∼ +�( ), z −U ( ))Rn ∀z ∈ K,

using that vτ = zτ and uτ ( ) = Uτ ( ). A similar inequality can be written for
another design vector fi ∈ U :

(A(fi )U (fi ), z −U (fi ))Rn + F(g ,B(|zτ | − |Uτ (fi )|))Rm(2.19)

≥ (A(fi )fi
∼
+�(fi ), z −U (fi ))Rn ∀z ∈ K.

Substituting z := U (fi ) and U ( ) into (2.18) and (2.19), respectively, and summing
both inequalities, we obtain

(A( )U ( )−A(fi )U (fi ),U (fi )−U ( ))Rn(2.20)

≥ (A( ) ∼ +�( )−A(fi )fi
∼
−�(fi ),U (fi )−U ( ))Rn .

Adding and subtracting the vector A( )U (fi ) to/from the left of (2.20), we arrive at

(A( )(U (fi )−U ( )),U (fi )−U ( ))Rn

≤ ((A( )−A(fi ))U (fi ),U (fi )−U ( ))Rn

+ (A(fi )fi
∼
+�(fi )−A( ) ∼ −�( ),U (fi )−U ( ))Rn .(2.21)

Since A( ) is positive definite uniformly in U (from the Korn’s inequality and defi-
nition of Vh(αh)), it follows from (2.21) that there exists a positive constant m0 such
that

m0‖U (fi )−U ( )‖2 ≤ ‖A( )−A(fi )‖ ‖U (fi )‖ ‖U (fi )−U ( )‖
+ {‖A(fi )fi

∼
−A( ) ∼ ‖+ ‖�(fi )− �( )‖}‖U (fi )−U ( )‖,

where m0 does not depend on ,fi ∈ U . Thus one can find constants c, c1 > 0 that
do not depend on F ∈ R

1
+, ,fi ∈ U , and g ∈ R

m
+ such that

‖U (fi )−U ( )‖ ≤ c{‖A( )−A(fi )‖+ ‖�( )− �(fi )‖
+ ‖A(fi )fi

∼
−A( ) ∼ ‖}

≤ c1‖ − fi‖,(2.22)



574 BEREMLIJSKI, HASLINGER, KOČVARA, AND OUTRATA

taking into account Remark 2.2 and the fact that ‖U (fi )‖ is bounded on U . Conse-
quently,

‖u(fi )− u( )‖ ≤ ‖U (fi )−U ( )‖+ ‖fi
∼
− ∼ ‖ ≤ c‖ − fi‖.(2.23)

Let v = u( )± z , where z = (0, zν) ∈ R
n, meaning that z is a vector with nonzero

components only at the positions corresponding to the normal displacements at the
contact nodes. Its substitution into the first inequality in (P( , g)) yields

(Bzν ,˘( ))Rm = (�( ), z )Rn − (A( )u( ), z )Rn .(2.24)

The same holds for the design variable fi ∈ U :
(Bzν ,˘(fi ))Rm = (�(fi ), z )Rn − (A(fi )u(fi ), z )Rn .(2.25)

From (2.24) and (2.25) we obtain

‖˘( )− ˘(fi )‖ = sup
z∈Rn

(˘( )− ˘(fi ),Bzν)Rm

‖z‖
≤ ‖�( )− �(fi )‖+ ‖A( )u( )−A(fi )u(fi )‖
≤ c‖ − fi‖,

where c > 0 is a constant which does not depend on F and g ∈ R
m
+ , making use of

condition (S ) of section 1, (2.23), and Remark 2.2.
The main result of this section is the following.
Proposition 2.11. Let F ∈ (0,F0), where F0 is the same as in Proposition 2.8.

Then the mapping λκ : Uh
ad → Λr0

κ associating with any αh ∈ Uh
ad the unique fixed

point λκ(αh) of Φhκ(αh, ·) is Lipschitzian in Uh
ad.

Proof. Since Φhκ(αh, ·) is contractive in Λr0
κ for any F ∈ (0,F0), αh ∈ Uh

ad, the
method of successive approximations is convergent for any αh ∈ Uh

ad and any initial
approximation from Λr0

κ . Let αh, αh ∈ Uh
ad, and g

∗
κ ∈ Λr0

κ be given, and consider the
iterative process:

g(k+1)
κ = Φhκ(αh, g

(k)
κ ), g(k+1)

κ = Φhκ(αh, g
(k)
κ ), k = 0, 1, . . . ,

with g(0)κ = g(0)κ = g∗κ.

Then

‖g(1)κ − g(1)κ ‖−h,Γ̂ = ‖Φhκ(αh, g
∗
κ)− Φhκ(αh, g

∗
κ)‖−h,Γ̂

≤ c‖αh − αh‖h,Γ̂,(2.26)

where c > 0 is a constant which does not depend on the choice of g∗κ, as follows from
Proposition 2.10. Similarly,

‖g(2)κ − g(2)κ ‖−h,Γ̂ = ‖Φhκ(αh, g
(1)
κ )− Φhκ(αh, g

(1)
κ )‖−h,Γ̂

≤ ‖Φhκ(αh, g
(1)
κ )− Φhκ(αh, g

(1)
κ )‖−h,Γ̂

+ ‖Φhκ(αh, g
(1)
κ )− Φhκ(αh, g

(1)
κ )‖−h,Γ̂

≤ c‖αh − αh‖h,Γ̂ + q‖g(1)κ − g(1)κ ‖
≤ (c+ cq)‖αh − αh‖h,Γ̂,
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where q ∈ (0, 1), as follows from Proposition 2.8 and (2.26). By induction we obtain
that

‖g(k+1)
κ − g(k+1)

κ ‖−h,Γ̂ ≤ (c+ cq + · · ·+ cqk)‖αh − αh‖h,Γ̂(2.27)

holds for any k. Passing to the limit with k →∞, we arrive at

‖λκ(αh)− λκ(αh)‖−h,Γ̂ ≤
c

1− q
‖αh − αh‖h,Γ̂.

Corollary 2.12. From Proposition 2.11 and Remark 2.2 it follows that the
mapping uh : Uh

ad → Vh(αh) associating with any αh ∈ Uh
ad the displacement field uh

corresponding to the fixed point λκ(αh) is also Lipschitzian in Uh
ad. Thus the control-

state mapping S : Uh
ad → Vh(αh)× Λr0

κ , S(αh) = (uh(αh), λκ(αh)) is Lipschitzian in
Uh
ad.

In the rest of this paper we restrict ourselves to the case in which S is Lipschitzian
in Uh

ad. Let J : Uh
ad×Vh(αh)×Λκ → R

1 be a cost functional, and define the following
optimal shape design problem:

(P) Find α∗
h ∈ Uh

ad such that

J(α∗
h,S(α∗

h)) ≤ J(αh,S(αh)) ∀αh ∈ Uh
ad.

}

If J is lower semicontinuous in Uh
ad ×Vh(αh)× Λκ, then (P) has a solution.

3. Sensitivity analysis. In the previous section we analyzed the mappings λκ
and uh and found conditions under which these mappings are single-valued and Lips-
chitzian in Uh

ad. From now on, we shall concentrate solely on the algebraic formulation
of contact problems with Coulomb friction. In particular, we will pay attention to the
computation of the Clarke generalized Jacobians of these maps at a reference control,
say ∈ U . For the sake of simplicity, we will work with the “reduced” displacement
field u = (uτ ,uν). Recall that uτ , uν , respectively, stand for subvectors of u that
correspond to the tangential and normal displacements at the contact nodes. Let
A( ) be the stiffness matrix and �( ) the right-hand side vector introduced in the
previous section. We introduce the partitioning (to simplify the notation, we skip the
argument alpha)

A =

[
Aii Aic

Aci Acc

]
, � =

[
�i
�c

]
,

corresponding to the nodes on the contact boundary (subscript c) and the others
(subscript i). We further introduce the restriction of A and � on the contact boundary
by elimination of the noncontact nodes:

Acont = Acc −AciA
−1
ii Aic, �cont = �c −AciA

−1
ii �i.

Finally, we use the partitioning of Acont and �cont to the tangential and normal
components, corresponding to vectors uτ and uν :

Acont =

[
Aττ Aτν

Aντ Aνν

]
, �cont =

[
�τ
�ν

]
.
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We choose Λκ of the type I so that ˘ belongs to the same space as the vectors
uτ , uν , namely R

p, and B is the unit matrix; then ∈ R
p. Let S[Rp → R

3p] denote
the map which associates with any ∈ U the triple (uτ ,uν ,˘), the solution of the
contact problem with Coulomb friction. Evidently, by virtue of Proposition 2.11 and
Corollary 2.12, S is Lipschitzian in U .

The next proposition shows that the contact problem with Coulomb friction can
be written in a compact form of a generalized equation. This will be used for the
stability and sensitivity investigations in the rest of this section.

Proposition 3.1. Let ∈ U be given. The triple (uτ ,uν ,˘) ∈ R
2p × R

p
+ is (a

part of) the solution of the discretized contact problem with Coulomb friction (in the
sense of Definition 2.6) if and only if it solves the following generalized equation:

0 ∈ Aττ ( )uτ +Aτν( )uν − �τ ( ) +Q(uτ ,˘),

0 = Aντ ( )uτ +Aνν( )uν − �ν( )− ˘ ,

0 ∈ uν + +NR
p
+
(˘),


(3.1)

where

Q(uτ ,˘) = ∂uτ j(uτ ,˘), j(uτ ,˘) = F
p∑

i=1

λi|uiτ |,

and NR
p
+
(·) is the standard normal-cone mapping in the sense of convex analysis.

Proof. Observe that the algebraic form of the contact problem with given friction
g can be written as the following generalized system of equations:

0 ∈ Aττ ( )uτ +Aτν( )uν − �τ ( ) +Q(uτ , g),

0 = Aντ ( )uτ +Aνν( )uν − �ν( )− ˘ ,

0 ∈ uν + +NR
p
+
(˘).

By substituting g = ˘ , we immediately get the assertion of the proposition.

Clearly, the multivalued part Q of the first line in (3.1) equals the Cartesian
product

p

X
i=1

Fλi∂|uiτ |,

and for a fixed i0 ∈ {1, 2, . . . , p} the respective set attains the form

Fλi0∂|ui0τ | =



Fλi0 if ui0τ > 0,
−Fλi0 if ui0τ < 0,
[−Fλi0 ,Fλi0 ] if ui0τ = 0.

Let Aτ ( ) := [Aττ ( ),Aτν( )], and let ( ,uτ ,uν ,˘) be a reference point satis-
fying the generalized equation (3.1). With this point we associate the following index
sets which play a crucial role in the further development:
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K+( ,uτ ,uν ,˘) := {i ∈ {1, 2, . . . , p} | uiτ > 0},
K−( ,uτ ,uν ,˘) := {i ∈ {1, 2, . . . , p} | uiτ < 0},
K0+( ,uτ ,uν ,˘) := {i ∈ {1, 2, . . . , p} | uiτ = 0, (−Aτ ( )u + �τ ( ))i = Fλi},
K0−( ,uτ ,uν ,˘) := {i ∈ {1, 2, . . . , p} | uiτ = 0, (−Aτ ( )u + �τ ( ))i = −Fλi},
K00( ,uτ ,uν ,˘) := {i ∈ {1, 2, . . . , p} | uiτ = 0, −Fλi < (−Aτ ( )u + �τ ( ))i < Fλi},
M( ,uτ ,uν ,˘) := {i ∈ {1, 2, . . . , p} | uiν + αi > 0},
I+( ,uτ ,uν ,˘) := {i ∈ {1, 2, . . . , p} | λi > 0},
I0( ,uτ ,uν ,˘) := {i ∈ {1, 2, . . . , p} | uiν + αi = 0, λ

i
= 0}.

Remark 3.1. We will often use the above index sets as vector and matrix sub-
scripts and skip the arguments.

From the results of the preceding section it follows that, if is sufficiently close
to , one has for (uτ ,uν ,˘) = S( ) that

K+( ,uτ ,uν ,˘) ⊃ K+( ,uτ ,uν ,˘), K−( ,uτ ,uν ,˘) ⊃ K−( ,uτ ,uν ,˘),

K00( ,uτ ,uν ,˘) ⊃ K00( ,uτ ,uν ,˘),

M( ,uτ ,uν ,˘) ⊃M( ,uτ ,uν ,˘), I+( ,uτ ,uν ,˘) ⊃ I+( ,uτ ,uν ,˘).

Therefore

K0+( ,uτ ,uν ,˘) ⊂ K0+( ,uτ ,uν ,˘), K0−( ,uτ ,uν ,˘) ⊂ K0−( ,uτ ,uν ,˘),

I0( ,uτ ,uν ,˘) ⊂ I0( ,uτ ,uν ,˘).

These inclusions imply that there is a neighborhood of ( ,uτ ,uν ,˘) where for
each i ∈ K0+( ,uτ ,uν ,˘) one of the following two possibilities occurs:

uiτ ≥ 0, (−Aτ ( )u + �τ ( ))i = Fλi,
uiτ = 0, (−Aτ ( )u + �τ ( ))i ≤ Fλi.

}
(3.2)

Further, for each i ∈ K0−( ,uτ ,uν ,˘) one of the following two possibilities occurs:

uiτ ≤ 0, (−Aτ ( )u + �τ ( ))i = −Fλi,
uiτ = 0, (−Aτ ( )u + �τ ( ))i ≥ −Fλi.

}
(3.3)

Analogously, there exists a neighborhood of ( ,uτ ,uν ,˘) where for each i ∈
I0( ,uτ ,uν ,˘) one of the following two possibilities occurs:

λi ≥ 0, uiν + α
i = 0,

λi = 0, uiν + α
i ≥ 0.

}
(3.4)

In this way, we get a decomposition ofK0+( ,uτ ,uν ,˘) into two subsets, sayK1,
K2, defined by relations (3.2); a decomposition of K0−( ,uτ ,uν ,˘) into two subsets,
say K3, K4, defined by relations (3.3); and a decomposition of I0( ,uτ ,uν ,˘) into
two subsets, say J1, J2, defined by relations (3.4). In the further development, we will
especially make use of the equality constraints appearing in these decompositions.
More precisely, we will neglect all inequalities in (3.2)–(3.4) and obtain from (3.1)
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the equation system (3.5) below, which is linear in variables uτ , uν , and ˘ and
nonlinear in the design variable . Furthermore, to simplify the notation, we set
β := K+ ∪ K1 ∪ K− ∪ K3, γ := K00 ∪ K2 ∪ K4 and denote by D a p × p diagonal
matrix given by

dii =




F for i ∈ K+ ∪K1,
−F for i ∈ K− ∪K3,
0 otherwise.

The announced system attains the form

0 = (Aττ ( ))βuτ + (Aτν( ))βuν − (�τ ( ))β +Dβ˘ ,

0 = Aντ ( )uτ +Aνν( )uν − �ν( )− ˘ ,

0 = uiτ for i ∈ γ,
0 = uiν + α

i for i ∈ I+ ∪ J1,

0 = λi for i ∈M ∪ J2.




(3.5)

To (3.5) one could apply the classic implicit function theorem, provided that the
regularity assumption is fulfilled. This is clarified in the next statement.

Proposition 3.2. Consider system (3.5) around the reference point ( ,uτ ,uν ,˘).
Assume that the matrix [

Aττ ( ) Aτν( )
Aντ ( ) Aνν( )

]
is positive definite. Then for each choice of the sets K1, K2, K3, K4, J1, J2 there
exist a neighborhood O of and a continuously differentiable operator S∗[O → R

3p],
defined implicitly by (3.5), such that (uτ ,uν ,˘) = S∗( ) and the points ( ,S∗( ))
satisfy (3.5) for all ∈ O, whenever the friction coefficient F is sufficiently small.

Proof. Let the index sets K1, K2, K3, K4, J1, J2 be chosen arbitrarily. We first
show that (uτ ,uν ,˘) ∈ S∗( ). It follows directly from (3.1) that (uτ ,uν ,˘) fulfills
all equations of (3.5) except the first one. To see that the first one also holds true,
consider a vector Ø ∈ Q(uτ ,˘). Then one has

χi = diiλ
i

for i ∈ β (no sum),

or, in other words,

Ø β = Dβ˘ .

Therefore (uτ ,uν ,˘) fulfills the whole system (3.5).
It remains to show that S∗ is in fact a differentiable single-valued map on a neigh-

borhood of . This will follow from the classic implicit function theorem, provided
that we succeed in verifying the respective regularity assumption.

Ignoring those components of (uτ ,uν ,˘) that are equal to zero, the reduced
partial Jacobian of the right-hand side of (3.5) at ( ,uτ ,uν ,˘) with respect to the
remaining components of (uτ ,uν ,˘) is

Π =



(Aττ ( ))β, β (Aτν( ))β Dβ,(I+∪J1)

β(Aντ ( )) Aνν( ) −ET
I+∪J1

0 EI+∪J1 0


 .(3.6)
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If Dβ,(I+∪J1) were a zero matrix, the matrix (3.6) would be nonsingular by the
assumptions imposed. Hence, Π is a sum of a nonsingular matrix and the matrix

Π =

[
0 Dβ,(I+∪J1)

0 0

]
.

The only nonzero entries of Π are equal to ±F , which can be chosen arbitrarily
small. Thus we can use the well-known perturbation lemma [17] and conclude that
Π is indeed nonsingular. Since our choice of K1, K2, K3, K4, J1, J2 was arbitrary,
the statement follows directly from the classic implicit function theorem.

From the above statement we infer that S is a PC1-map whose active pieces at the
reference control are given by combinations of index sets K1, K2, K3, K4, J1, J2.
Of course, not each of these active pieces is essentially active at (besides the trivial
situation of K0+ = K0− = I0 = ∅). To test the essential activeness of a piece, one
could verify the existence of a sequence i → such that the images S∗( i) fulfill the
respective inequalities in (3.2)–(3.4) with strict inequality signs. This can sometimes,
but not always (see [18, Example 7.3]), be performed by tools of first-order analysis.
Since the search for an essentially active piece can be really time-consuming, in our
computations we will use an upper approximation of ∂S( ) provided by the next
statement. To furnish it, we introduce a new index set L in such a way that there is a
one-to-one correspondence between the indices of L and the possible combinations of
the index sets K1, K2, K3, K4, J1, J2. By Πi, i ∈ L, we then denote that matrix of
the type (3.6) determined by the index sets K1, K2, K3, K4, J1, J2 associated with i.
Furthermore, with i ∈ L we associate also the (reduced) partial Jacobians Ξi of the
right-hand side of (3.5) at ( ,uτ ,uν ,˘) with respect to the (independent) variable
. These matrices attain the form

Ξi =


 ∇ ((Aττ ( ))β,β(uτ )β) +∇ ((Aτν( ))βuν)−∇(�τ ( ))β

∇ (β(Aντ ( ))(uτ )β) +∇ (Aνν( )uν)−∇�ν( )

EI+∪J1


 .(3.7)

Clearly, under the condition of Proposition 3.2, for each i ∈ L the matrix −Π−1
i Ξi

is equal to the derivative of the map

-→ ((uτ )β ,uν ,˘ I+∪J1)

defined by (3.5) and computed at the reference control . The derivative of the
complete map -→ (uτ ,uν ,˘) at , corresponding to i ∈ L, can thus be obtained
from−Π−1

i Ξi by inserting zero rows for the derivatives of ujτ , j ∈ γ, and λl, l ∈M∪J2.
Let us denote such “completed” [3p× p] matrices by Ri, i ∈ L.

Proposition 3.3. Under the assumptions of Proposition 3.2, one has

∂S( ) ⊂ conv{Ri | i ∈ L}.(3.8)

Proof. The proof follows readily from the above analysis and [23, Proposition
A.4.1].

In the real computations, however, it is not necessary to evaluate matrices from
∂S( ) explicitly. Our aim is to compute just one subgradient of the composite map
Θ( ) := J ( ,S( )), where J [Rp × R

3p → R] is the (discretized) objective in our
shape optimization problem.
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Theorem 3.4. Assume that J is continuously differentiable and all assumptions
from Proposition 2.11 and Corollary 2.12 are fulfilled. Let ∈ U be given, and suppose
that for i ∈ L

Ri ∈ ∂S( ).

Finally, let pi be the (unique) solution of the adjoint equation

ΠT
i pi + (∇2J ( ,S( )))i = 0,(3.9)

where Πi denotes the matrix (3.6) for which the index sets K1, K2, K3, K4, J1, J2 are
specified by i, and (∇2J ( ,S( )))i denotes the subvector of ∇2J ( ,S( )) in which
the components corresponding to the partial derivatives with respect to ujτ , j ∈ γ, and
with respect to λj, j ∈M ∪ J2, were omitted. Then one has

ξi = ∇1J ( ,S( )) +ΞT
i pi ∈ ∂Θ( ).

Proof. It suffices to apply [1, Theorem 2.3.10] in the same way as was done in
[18].

The above analysis enables one to apply a bundle method of nonsmooth op-
timization to the numerical solution of the discretized shape optimization problem
with equilibrium governed by (3.1). A detailed description of the resulting procedure
together with a number of test examples is given in the next section.

4. Numerical results. The results of the previous sections will now be used
for computation of numerical examples. We assume that the friction coefficient F
is small enough so that the solution of the contact problem with Coulomb friction
is unique. Then we can use the implicit programming approach [18] to solve the
shape optimization problem (P). Further, we assume that the cost functional J is
locally continuously differentiable, so that, by Proposition 2.11 and Corollary 2.12, the
composite map Θ(·) is locally Lipschitzian. Moreover, since S is a PC1-function, Θ is
semismooth as a composition of two semismooth mappings [14]. This implies that for
the minimization of Θ we have a choice between two classes of algorithms: derivative-
free methods (like pattern-search methods, genetic algorithms, etc.) and methods that
use (sub)gradient information (bundle, ellipsoid, cutting-plane, and other methods).
Since the subgradient information is available in our case, we opted for the second
class, and more specifically, for the most robust method, namely, the bundle algorithm.
The particular code of choice was the BT code [25] based on the bundle-truss algorithm
of Schramm and Zowe [24]. In every step of the iteration process, this code needs the
function value Θ( ) and one (arbitrary) Clarke subgradient of Θ at .

Assume that the cost functional J is continuously differentiable. Then we can
apply Theorem 3.4 to compute a subgradient ξ from the generalized Jacobian ∂Θ( ).
We should specify only the decomposition of the sets K0+, K0−, and I0. We have
chosen

K1 = K3 = ∅, K2 = K0+, K4 = K0−, J1 = ∅, J2 = I0.

To compute a function value J ( ,S( )), we have to solve the state problem, i.e.,
the Signorini problem with Coulomb friction formulated as a fixed-point problem.
For that, we use the splitting variant of the fixed-point method introduced in [6].
This is basically the method of successive approximations, where at each step we
solve the contact problem with given friction. The iterative process then updates
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the given friction gκ. The problem with given friction is solved using the so-called
reciprocal variational formulation (see [10, 12]), where the variables are the contact
stresses ˘ = (˘τ ,˘ν) on contact boundaries. This formulation leads to a quadratic
programming problem with simple box constraints imposed on normal and tangential
contact stresses, namely, to the minimization of a quadratic functionQ on R

p
[−1,1]×R

p
−.

For the solution of this quadratic program, we use the so-called splitting technique, a
version of the Gauss–Seidel algorithm: Instead of minimizing a function of 2p variables
(˘τ ,˘ν), the process is split into two separate minimizations with respect to the
normal (˘ν) and tangential (˘τ ) contact stress, respectively, keeping the remaining
stress component fixed. At each step we thus minimize just a function of p variables.
The convergence of this algorithm for contact problems with given friction was shown
in [4]. To solve the problem with Coulomb friction, we use an extended version of this
algorithm, introduced in [6]. In a sense, we combine the successive approximation
scheme with the splitting technique in one iterative algorithm.

For the solution of practical examples, we slightly modify the shape optimization
problem (P). The purpose of this modification is to work with a relatively small
number of control variables and, at the same time, to get a smooth shape of the
optimal boundary. Therefore, the contact boundary Γ is modelled by a Bezier curve
of order d, and the design variable is a vector of its control points. The Bezier
curve Fα(x) of order d in [0, a] is generated by a vector as

Fα(x) =

d∑
i=0

αiβid(x), βid(x) =
1

ad

(
d
i

)
xi(a− x)d−i, x ∈ [0, a],

where d is the dimension of . The end points of a Bezier curve are identical with
the first and last control point. The curve itself lies in the convex envelope of the
control points. This means that any upper and lower bounds on the control points
are automatically satisfied for the curve too.

The modified shape optimization problem is defined as follows:

(PB)
minimize J ( ,S( ))

subject to ∈ U ,

}

where U is given by

U =

{
∈ R

d | 0 ≤ αi ≤ C0, i = 0, 1, . . . , d;

|αi+1 − αi| ≤ C1

d
, i = 0, 1, . . . , d− 1;

d∑
i=0

αi = C2(d+ 1)

}

and C0, C1, C2 are given positive constants. The first set of constraints guarantees
that |Fα(x)| ≤ C0 for all x ∈ [0, a]. The second constraint set takes care of the
smoothness of the optimal shape. It is well known that if the control points satisfy
this condition, then |F ′

α(x)| ≤ C1 for all x ∈ [0, a]. The equality constraint is added
to control the volume of the domain by the control points of the Bezier curve. The
number (ab−C2) equals the area of Ω( ). Thus the equality constraint (working with
the control points) has a physical meaning of preserving the weight of the structure.

We will present the results of two examples solved by the proposed implicit pro-
gramming technique combined with the BT code. In both examples we use the same
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Fig. 4.1. The elastic body and applied loads.

data and change only the cost function J . The shape of the elastic body Ω( ), ∈ U ,
is defined through a Bezier curve Fα as follows:

Ω( ) = {(x1, x2) ∈ R
2 | x1 ∈ (0, a), Fα(x1) < x2 < b};

see Figure 4.1. This figure also shows the distribution of external loads on the bound-
ary ΓP , given as PI = −80 · 106(N/m2), PII = 50 · 106(N/m2). Further, Γu is the
part of the boundary with prescribed Dirichlet condition where both displacements
are fixed to zero.

The set of admissible designs U is determined by the choice a = 2, b = 1, C0 =
0.75, C1 = 0.5, and C2 = 0.1. The examples were solved with the Young modulus
E = 1 GPa, the Poisson constant σ = 0.3, and the friction coefficient F = 0.25.
In both examples, we discretized Ω( ) by a regular 29 × 9 mesh; i.e., we have 281
nodes and 562 unknowns in the state problem. The dimension of the control vector
, generating the Bezier curve and defining Ω( ), was set to 20.
Example 4.1. In the first example we try to smooth down peaks of the normal

contact stress distribution. To cut the peaks, we should minimize the infinity norm.
The objective function J , however, must be continuously differentiable, so we will use
the (p power of) p-norm with p = 4. (Higher values of p cause difficulties in the BT
code, due to ill-conditioning.) The shape optimization problem then reads as follows:

minimize ‖˘ν‖44
subject to ∈ U .

In Figure 4.2 we present the initial shape and its deformation. Figure 4.3 shows the
optimal shape and its deformation under given loads. Finally, Figure 4.4 compares the
contact normal stresses for the initial (left) and optimal (right) shapes, respectively.
The decrease in the peak stress is quite significant.

To see the importance of proper modelling of contact problems, let us compute
the same example, now without friction. Figure 4.5 shows the optimal shape before
and after deformation in this case. We can see that the optimal shape indeed differs
from that computed with Coulomb friction. Further, in Figure 4.6 we compare contact
stresses for the optimal design from Figure 4.5 computed by models without friction
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Fig. 4.2. Example 4.1, initial design.
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Fig. 4.3. Example 4.1, optimal design.
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Fig. 4.4. Example 4.1, normal stress for initial (left) and optimal (right) design.
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Fig. 4.5. Example 4.1, optimal design for the problem without friction.

(left-hand figure) and with Coulomb friction (right-hand figure). The peak stress in
the left-hand figure is 5.7 (about the same as in Figure 4.4 (right)), while it is 8.5
in the right-hand figure. This shows that it does not make much sense to replace
the Coulomb friction problem by a (much simpler) model without friction to get an
“approximate optimal design,” as is often done in the engineering praxis. This will
be even more significant in the following example.
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Fig. 4.6. Example 4.1, stress distribution computed without (left) and with (right) friction for
optimal design without friction.
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Fig. 4.7. Example 4.2, initial design.
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Fig. 4.8. Example 4.2, optimal design.

Example 4.2. Here we try to identify the contact normal stress with a prescribed
value. The shape optimization can be written as

minimize ‖˘ν − ˘ν‖22
subject to ∈ U ,

where ˘ν is a vector of prescribed normal stresses. This vector was chosen to model
a step function, depicted in Figure 4.9 by the dashed line.

The initial design and its deformation under load are presented in Figure 4.7,
while Figure 4.8 shows the optimal design before and after deformation. Finally,
Figure 4.9 compares the contact normal stresses with the prescribed values. While
the initial contact stresses are far from the prescribed values, the stresses for the
optimal shape follow the step function very closely.

We again solved this example for the case without friction. Figure 4.10 presents
the optimal shape before and after deformation. Again, the optimal shape differs
significantly from that computed with Coulomb friction, just as the normal stresses
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Fig. 4.9. Example 4.2, normal stress for initial (left) and optimal (right) design.
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Fig. 4.10. Example 4.2, optimal design for the problem without friction.
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Fig. 4.11. Example 4.2, stress distribution computed without (left) and with (right) friction for
optimal design without friction.

computed for the optimal design from Figure 4.10 but by a model with Coulomb
friction (Figure 4.11 (right)).

As soon as |L| ≥ 1, an arbitrary choice of an index from L does not necessarily
lead to a subgradient of the composite objective Θ. As thoroughly analyzed in [18] (in
a slightly less general context), the verification of the correctness of the subgradient
information is a time-consuming procedure that can hardly be performed during the
iteration process. Therefore it is reasonable to ask whether for such an arbitrary i ∈ L

the approximate solution, provided by the bundle algorithm, really approximates a
Clarke stationary point of the solved problem. To answer this question, one can test
whether the obtained solution satisfies first-order necessary optimality conditions of
the Clarke or Mordukhovich type (see, e.g., [19]). Such conditions were not specialized
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for the MPEC investigated in this paper, but, using the results of the preceding sec-
tion, their derivation does not present any serious difficulties. A plausible alternative
is to recompute the problem by a completely different approach, e.g., by a derivative-
free algorithm; this way was used in the case of the results presented in this section. If
no such testing is possible, we know from [2] that the applied approach leads to points
that are stationary in a weaker sense (in comparison with Clarke or Mordukhovich).
This holds for equilibria governed by standard variational inequalities, but we dare to
conjecture that an analogous statement can be proved in our case as well. Indeed, in
both cases we face the minimization of a PC1-function, whose essentially active pieces
cannot always be identified.

To conclude, from the user’s point of view it is not so important to know what
type of stationary point our procedure approximates but to get a relative decrease
(improvement) of the objective with respect to the initial design. Our test examples
can be viewed also in this way.

Acknowledgement. The authors would like to thank the anonymous referees
for their constructive comments.
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Abstract. In 1986, Irvine, Marin, and Smith proposed a Newton-type method for shape-
preserving interpolation and, based on numerical experience, conjectured its quadratic convergence.
In this paper, we prove local quadratic convergence of their method by viewing it as a semismooth
Newton method. We also present a modification of the method which has global quadratic conver-
gence. Numerical examples illustrate the results.
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1. Introduction. Given nodes a = t1 < t2 < · · · < tN+2 = b and values
yi = f(ti), i = 1, . . . , N + 2, N ≥ 3, of an unknown function f : [a, b] → R, the
standard interpolation problem consists of finding a function s from a given set S of
interpolants such that s(ti) = yi, i = 1, . . . , N +2. When S is the set of twice contin-
uously differentiable piecewise cubic polynomials across ti, we deal with cubic spline
interpolation. The problem of cubic spline interpolation can be viewed in various
ways; the closest to this paper is the classical Holladay variational characterization,
according to which the natural cubic interpolating spline can be defined as the unique
solution of the following optimization problem:

min ‖f ′′‖2 subject to f(ti) = yi, i = 1, . . . , N + 2,(1)

where ‖ · ‖ denotes the norm of L2[a, b]. With a simple transformation, this problem
can be written as a nearest point problem in L2[a, b]: find the projection of the origin
on the intersection of the hyperplanes{

u ∈ L2[a, b] |
∫ b

a

u(t)Bi(t)dt = di, i = 1, . . . , N

}
,

where Bi are the piecewise linear normalized B-splines with support [ti, ti+2] and di
are the second divided differences.
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Since the mid ’80s, after the ground-breaking paper of Micchelli et al. [15], the
attention of a number of researchers has been attracted to spline interpolation prob-
lems with constraints. For example, if we add to problem (1) the additional constraint
f ′′ ≥ 0, we obtain a convex interpolation problem; provided that the data are “con-
vex,” then a convex interpolant “preserves the shape” of the data. If we add the
constraint f ′ ≥ 0, we obtain a monotone interpolation problem. Central to our analy-
sis here is a subsequent paper by Irvine, Marin, and Smith [11], who rigorously defined
the problem of shape-preserving spline interpolation and laid the groundwork for its
numerical analysis. In particular, they proposed a Newton-type method and, based
on numerical examples, conjectured its fast (quadratic) theoretical convergence. In
the present paper we prove this conjecture.

We approach the problem of Irvine, Marin, and Smith [11] in a new way, by
using recent advances in optimization. It is now well understood that, in general,
the traditional methods based on standard calculus may not work for optimization
problems with constraints; however, such problems can be reformulated as nonsmooth
problems that need special treatment. The corresponding theory emerged already in
the ’70s, championed by the works of R. T. Rockafellar and his collaborators, and is
now becoming a standard tool for more and more theoretical and practical problems.
The present paper is an example of how nonsmooth analysis can be applied to solve
a problem from numerical analysis that hasn’t been solved for quite a while.

Before stating the problem of shape-preserving interpolation that we consider in
this paper, we briefly review the result of nonsmooth analysis which provides the basis
for this work.

For a locally Lipschitz continuous function G : Rn → Rn, the generalized Jaco-
bian ∂G(x) of G at x in the sense of Clarke [2] is the convex hull of all limits obtained
along sequences on which G is differentiable:

∂G(x) = co

{
lim
xj→x

∇G(xj) | G is differentiable at xj ∈ Rn

}
.

The generalized Newton method for the (nonsmooth) equation G(x) = 0 has the
following form:

xk+1 = xk − V −1
k G(xk), Vk ∈ ∂G(xk).(2)

A function G : Rn → Rm is strongly semismooth at x if it is locally Lipschitz and
directionally differentiable at x, and for all h → 0 and V ∈ ∂G(x + h) one has
G(x+ h)−G(x)− V h = O(‖h‖2).

The local convergence of the generalized Newton method for strongly semismooth
equations is summarized in the following fundamental result, which is a direct gener-
alization of the classical theorem of quadratic convergence of the Newton method.

Theorem 1.1 (see [16, Theorem 3.2]). Let G : Rn → Rn be strongly semismooth
at x∗ and let G(x∗) = 0. Assume that all elements V of the generalized Jacobian
∂G(x∗) are nonsingular matrices. Then every sequence generated by the method (2)
is q-quadratically convergent to x∗, provided that the starting point x0 is sufficiently
close to x∗.

In the remaining part of the introduction we review the method of Irvine, Marin,
and Smith [11] for shape-preserving cubic spline interpolation and also briefly discuss
the contents of this paper. Let {(ti, yi)}N+2

1 be given interpolation data and let
di, i = 1, 2, . . . , N , be the associated second divided differences. Throughout the
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paper we assume that di �= 0 for all i = 1, . . . , N ; we will discuss this assumption
later. Define the following subsets Ωi, i = 1, 2, 3, of [a, b]:

Ω1 := {[ti, ti+1]| di−1 > 0 and di > 0},
Ω2 := {[ti, ti+1]| di−1 < 0 and di < 0},
Ω3 := {[ti, ti+1]| di−1di < 0}.

Also, let

[t1, t2] ⊂
{
Ω1 if d1 > 0,
Ω2 if d1 < 0,

[tN+1, tN+2] ⊂
{
Ω1 if dN > 0,
Ω2 if dN < 0.

The problem of shape-preserving interpolation as stated by Micchelli et al. [15] is as
follows:

minimize ‖f ′′‖2(3)

subject to f(ti) = yi, i = 1, 2, . . . , N + 2,

f ′′(t) ≥ 0, t ∈ Ω1, f ′′(t) ≤ 0, t ∈ Ω2,

f ∈W 2,2[a, b].

HereW 2,2[a, b] denotes the Sobolev space of functions with absolutely continuous first
derivatives and second derivatives in L2[a, b]. The inequality constraint on the set Ω1

(resp., Ω2) means that the interpolant preserves the convexity (resp., concavity) of
the data; for more details, see [11, p. 137].

Micchelli et al. [15, Theorem 4.3] showed that the solution of the problem (3)
exists and is unique, and its second derivative has the following form:

f ′′(t) =

(
N∑
i=1

λiBi(t)

)
+

XΩ1(t)−
(

N∑
i=1

λiBi(t)

)
−
XΩ2(t)(4)

+

(
N∑
i=1

λiBi(t)

)
XΩ3(t),

where λ = (λ1, . . . , λN )
T is a vector in RN , a+ = max{0, a}, (a)− = (−a)+, and

XΩ is the characteristic function of the set Ω. This result can also be deduced, as
shown first in [4], from duality in optimization; specifically, here λ is the vector of
the Lagrange multipliers associated with the equality (interpolation) constraints. For
more on duality in this context, see the discussion in our previous paper [5]. In short,
the optimality condition of the problem dual to (3) has the form of the nonlinear
equation

F (λ) = d,(5)

where d = (d1, . . . , dN )
T and the vector function F : RN → RN has components

Fi(λ) =

∫
[ti,ti+2]∩Ω1

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt−
∫

[ti,ti+2]∩Ω2

(
N∑
l=1

λlBl(t)

)
−
Bi(t)dt
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+

∫
[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt, i = 1, 2, . . . , N.(6)

Irvine, Marin, and Smith [11] proposed the following method for solving equation
(5): Given λ0 ∈ RN , λk+1 is a solution of the linear system

M(λk)(λk+1 − λk) = −F (λk) + d,(7)

where M(λ) ∈ RN×N is the tridiagonal symmetric matrix with components

(M(λ))ij =

∫ b

a

P (λ, t)Bi(t)Bj(t)dt.

Here

P (λ, t) :=

(
N∑
l=1

λlBl(t)

)0

+

XΩ1(t) +

(
N∑
l=1

λlBl(t)

)0

−
XΩ2

(t) + XΩ3
(t),(8)

where

(τ)0+ :=

{
1 if τ > 0,
0 otherwise,

(τ)0− := (−τ)0+.

Since the matrix M resembles the Jacobian of F (which may not exist for some λ,
and then M is a kind of “directional Jacobian,” more precisely, as we will see later,
an element of the generalized Jacobian), the method (7) has been named the Newton
method. It was also observed in [11] that the Newton-type iteration (7) reduces to
M(λk)λk+1 = d; that is, no evaluations of the function F are needed during iterations.

In our previous paper [5], we considered the problem of convex spline interpola-
tion, that is, with Ω1 = [a, b], and proved local superlinear convergence of the corre-
sponding version of the Newton method (7). In a subsequent paper [6], by a more
detailed analysis of the geometry of the dual problem, we obtained local quadratic
convergence of the Newton method, again for convex interpolation. In this paper, we
consider the shape-preserving interpolation problem originally stated in Irvine, Marin,
and Smith [11] and prove their conjecture that the method is locally quadratically
convergent. As a side result, we observe that the solution of the problem considered
is Lipschitz continuous with respect to the interpolation values. In section 3 we give
a modification of the method which has global quadratic convergence. Results of
extensive numerical experiments are presented in section 4.

As for related results, the conjecture of Irvine, Marin, and Smith [11] was proved
in [1] under an additional condition which turned out to be equivalent to smoothness
of the function F in (5). Also, a positive answer to this conjecture without additional
assumptions was announced in [10], but a proof was never made available to us.

2. Local quadratic convergence. For notational convenience, we introduce a
“dummy” node t0 with corresponding λ0 = 0 and B0(t) = 0; then, for every i, the

sum
∑N
l=1 λlBl(t) restricted to [ti, ti+1] has the form λi−1Bi−1(t)+λiBi(t). Our first

result concerns continuity and differentiability properties of the function F defined in
(6).

Lemma 2.1. The function F with components defined in (6) is strongly semi-
smooth.
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Proof. The claim is merely an extension of [6, Proposition 2.4], where it is proved
that the functions∫ ti+1

ti

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt,

∫ ti+2

ti+1

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt,

and ∫ ti+2

ti

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt

are strongly semismooth. Hence the function∫
[ti,ti+2]∩Ω1

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt

is strongly semismooth by noticing that

[ti, ti+2] ∩ Ω1 ∈ {[ti, ti+1], [ti+1, ti+2], [ti, ti+2], ∅} .
We note that the function∫

[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt

is linear and therefore is strongly semismooth. Since either [ti, ti+2] ∩ Ω1 = ∅ or
[ti, ti+2] ∩ Ω2 = ∅, Fi is given either by

Fi(λ) =

∫
[ti,ti+2]∩Ω1

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt(9)

+

∫
[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt

or by

Fi(λ) = −
∫

[ti,ti+2]∩Ω2

(
N∑
l=1

λlBl(t)

)
−
Bi(t)dt(10)

+

∫
[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt.

A composite of strongly semismooth functions is strongly semismooth [8, Theorem
19]. Hence the function Fi by (9) is strongly semismooth. If Fi is given by (10), then

Fi(λ) = −
∫

[ti,ti+2]∩Ω2

(
−

N∑
l=1

λlBl(t)

)
+

Bi(t)dt+

∫
[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt.

Again from [8, Theorem 19], the first part of Fi is strongly semismooth, which in turn
implies the strong semismoothness of Fi. We conclude that F is strongly semismooth
since each component of F is strongly semismooth.
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If the integral over [a, b] of the piecewise linear function (
∑N
l=1 λlBl(t))+ in λ were

piecewise smooth, then one would automatically obtain that F is strongly semismooth.
Furthermore, in this case quadratic convergence of the Newton method would follow
directly from [13]. The following example of dimension 2 shows that such an argument
does not work. Let

f(λ1, λ2) =

∫ 1

0

((1− t)λ1 + tλ2)+ dt.

Direct calculation shows that f is continuously differentiable everywhere except at
the origin (0, 0). A result due to Rockafellar [17] says that any function from Rn to
R with n ≥ 2, which is continuously differentiable everywhere but one point, could
not be piecewise smooth. Hence the function above is not piecewise smooth.

In order to apply Theorem 1.1, we next prove thatM(λ) ∈ ∂F (λ) for any λ ∈ RN

and that V is nonsingular for any V ∈ ∂F (λ∗), where λ∗ is the unique solution of (5).
Lemma 2.2. For any λ ∈ RN , M(λ) ∈ ∂F (λ).
Proof. Let λ ∈ RN be arbitrarily chosen (but fixed) and let

T (λ) :=

{
t ∈ Ω1 ∪ Ω2 |

N∑
l=1

λlBl(t) = 0

}
, T̄ (λ) := (Ω1 ∪ Ω2) \ T (λ).

Suppose [ti, ti+1] ⊂ Ω1 ∪ Ω2 for some i. Due to the form of Bi, the restriction of

(
∑N
l=1 λlBl(t)) to [ti, ti+1] becomes (λi−1Bi−1(t) + λiBi(t)), i.e.,

N∑
l=1

λlBl(t)
∣∣
[ti,ti+1] = λi−1Bi−1(t) + λiBi(t).

Then

T (λ)
∣∣
[ti,ti+1] =

{
[ti, ti+1] if λi−1 = λi = 0,
t∗i otherwise,

(11)

where t∗i is a point in [ti, ti+1]. Hence T (λ) contains closed intervals of the form
[ti, ti+1] and finitely many isolated points. For i = 1, . . . , N , define

F−
i (ξ) :=

∫
T (λ)∩Ω1

(
N∑
l=1

ξlBl(t)

)
+

Bi(t)dt−
∫
T (λ)∩Ω2

(
N∑
l=1

ξlBl(t)

)
−
Bi(t)dt,

F+
i (ξ) :=

∫
T̄ (λ)∩Ω1

(
N∑
l=1

ξlBl(t)

)
+

Bi(t)dt−
∫
T̄ (λ)∩Ω2

(
N∑
l=1

ξlBl(t)

)
−
Bi(t)dt

+

∫
Ω3

(
N∑
l=1

ξlBl(t)

)
Bi(t)dt,

and let F−(ξ) := (F−
1 (ξ), . . . , F

−
N (ξ))

T , F+(ξ) := (F+
1 (ξ), . . . , F

+
N (ξ))

T . Then for any
ξ ∈ RN , we have

F (ξ) = F−(ξ) + F+(ξ),

and it follows from (11) that F+ is continuously differentiable in a neighborhood of
λ, say U(λ). From the definition of the generalized Jacobian we obtain that for any
ξ ∈ U(λ),

∂F (ξ) = ∂F−(ξ) +∇F+(ξ),(12)
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where ∇F+(ξ) is the Jacobian of F+ at ξ ∈ U(λ) given by

(∇F+(ξ)
)
ij
=

∫
T̄ (λ)


( N∑

l=1

ξlBl(t)

)0

+

XΩ1(t) +

(
N∑
l=1

ξlBl(t)

)0

−
XΩ2(t)


Bi(t)Bj(t)dt

+

∫ b

a

Bi(t)Bj(t)XΩ3(t)dt.(13)

Since

N∑
l=1

λlBl(t) = 0 for all t ∈ T (λ),

(13) becomes

(∇F+(λ)
)
ij
=

∫ b

a

P (λ, t)Bi(t)Bj(t)dt.(14)

We will next prove that every element in ∂F−(λ) is positive semidefinite. In
particular, the zero matrix belongs to ∂F−(λ). Define θ : RN → R as

θ(ξ) :=
1

2

∫
T (λ)∩Ω1

(
N∑
l=1

ξlBl(t)

)2

+

dt+
1

2

∫
T (λ)∩Ω2

(
N∑
l=1

ξlBl(t)

)2

−
dt.

The function θ is a continuously differentiable convex function, and its gradient is
equal to F−(ξ). Then the positive semidefiniteness of the elements of ∂F−(λ) follows
from the fact that any matrix in the generalized Jacobian of the gradient of a convex
function must be symmetric and positive semidefinite. Because isolated points make
no contribution to θ(ξ), we assume without loss of generality that T (λ) contains only
intervals of the form [ti, ti+1]. Let

I1 := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ T (λ) ∩ Ω1},
I2 := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ T (λ) ∩ Ω2}.

Then

θ(ξ) =
1

2

∑
i∈I1

∫ ti+1

ti

(ξi−1Bi−1(t)+ξiBi(t))
2
+dt+

1

2

∑
i∈I2

∫ ti+1

ti

(ξi−1Bi−1(t)+ξiBi(t))
2
−dt.

Now define e = (e1, . . . , eN )
T by

ei−1 = ei = 1 for i ∈ I1, ei−1 = ei = −1 for i ∈ I2,
and zero for the remaining components. We note that e is well defined since for any
i ∈ {1, . . . , N}, [ti, ti+2]∩Ω1 = ∅ or [ti, ti+2]∩Ω2 = ∅. Then F−(λ−τe) is differentiable
for all τ > 0 because

N∑
l=1

(λ− τe)lBl(t)

{
< 0 for t ∈ T (λ) ∩ Ω1 and τ > 0,
> 0 for t ∈ T (λ) ∩ Ω2 and τ > 0.
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Hence

lim
τ→0
∇F−(λ− τe) = 0 ∈ ∂F−(λ).

We are ready to complete the proof of the lemma. From (14) we have ∇F+(λ) =
M(λ). Since the zero matrix belongs to ∂F−(λ), we get M(λ) ∈ ∂F (λ) from
(12).

If λ∗ is the solution of (5), we are able to show a stronger result about the
generalized Jacobian of F at λ∗.

Lemma 2.3. If λ∗ is the solution of (5), then every element of ∂F (λ∗) is positive
definite.

Proof. We have already shown in the preceding proof that

∂F (λ∗) = ∂F−(λ∗) +∇F+(λ∗),

and every element in ∂F−(λ∗) is positive semidefinite. Thus, it is sufficient to prove
that ∇F+(λ∗) is positive definite; that is, M(λ∗) is positive definite. We use a result
from [11, p. 138] which says that if P (λ) does not vanish identically on any [ti, ti+2],
i = 1, . . . , N , then M(λ) is positive definite. On the contrary, suppose that P (λ∗)
vanishes on, say, [ti, ti+2]. Then [ti, ti+2] ∩ Ω3 = ∅ and

0 �= di = Fi(λ
∗) =

∫
[ti,ti+2]∩Ω1

(
N∑
l=1

λ∗lBl(t)

)
+

Bi(t)dt

−
∫

[ti,ti+2]∩Ω2

(
N∑
l=1

λ∗lBl(t)

)
−
Bi(t)dt = 0.

The obtained contradiction completes the proof.
By combining the above lemmas and applying Theorem 1.1, we obtain the main

result of this paper which settles the question posed in [11].
Theorem 2.4. Let λ∗ be the solution of (5), and let all second divided differences

di be nonzero. Then the method (7) is well defined, and the sequence generated by
this method converges quadratically to λ∗ if the starting point λ0 is sufficiently close
to λ∗.

Proof. The method (7) is a particular case of the generalized Newton method (2)
for (5) inasmuch asM(λ) ∈ ∂F (λ) (Lemma 2.2). Moreover, F is strongly semismooth
at λ∗ (Lemma 2.1), and every element in ∂F (λ∗) is nonsingular (Lemma 2.3). Hence
all conditions in Theorem 1.1 are satisfied, and we obtain the claim.

Remark 2.5. As a side result, from Lemma 2.3 and the Clarke inverse function
theorem [2, Theorem 7.1.1], we obtain that the solution of the problem (3) is a Lip-
schitz continuous function of the interpolation values yi. Indeed, since the generalized
Jacobian ∂F (λ∗) is nonsingular, where λ∗ is the optimal multiplier associated with the
solution f∗, the map F−1 is, locally around d∗ = F (λ∗), single-valued and Lipschitz
continuous. Thus for d close to d∗ there exists a unique solution λ(d) to (5), and the
function d �→ λ(d) is Lipschitz continuous. It remains to observe that d is linear in
y and, from (4), f ′′ is a Lipschitz continuous function of λ in the supremum norm of
C[a, b]. Thus the mapping “interpolation values y �→ solution of (3)” is a Lipschitz
continuous function from y ∈ RN+2 to the space C2[a, b] equipped with the supremum
norm. This result could be further strengthened with respect to differentiability of
the solution, but we shall not go into this here.
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3. Global convergence. In this section we give a damped version of algorithm
(7) by using the following merit function:

L(λ) =
1

2

∫ b

a

(
N∑
l=1

λlBl(t)

)2

+

XΩ1(t)dt+
1

2

∫ b

a

(
N∑
l=1

λlBl(t)

)2

−
XΩ2(t)dt(15)

+
1

2

∫ b

a

(
N∑
l=1

λlBl(t)

)2

XΩ3(t)dt−
N∑
l=1

λldl.

From the very definition, this function is convex and continuously differentiable, with
∇L(λ) = F (λ)− d.

Recall that a function ϕ : RN → R is coercive (also called inf-compact) if for
every c ∈ R its level set

Lϕ(c) = {x ∈ RN | ϕ(x) ≤ c}

is bounded. In the proposition below we will show that the function L in (15) is
coercive. To begin with, we define three index sets

I+ := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ Ω1},
I− := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ Ω2},
I0 := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ Ω3}

and associate with them the following function:

L̂(λ) :=
1

2

∑
i∈I+

∫ ti+1

ti

(
N∑
l=1

λlBl(t)

)2

+

dt+
1

2

∑
i∈I−

∫ ti+1

ti

(
N∑
l=1

λlBl(t)

)2

−
dt

+
1

2

∑
i∈I0

∫ ti+1

ti

(
N∑
l=1

λlBl(t)

)2

dt−
N∑
l=1

λldl.

Observe that, from the definition of the sets Ωi, i = 1, 2, 3, for any i ∈ {1, . . . , N}, we
have [ti, ti+2] ∩ Ω1 = ∅ or [ti, ti+2] ∩ Ω2 = ∅. For a fixed i this implies

i ∈ I+ =⇒
{

i− 1 ∈ I+ or i− 1 ∈ I0,
i+ 1 ∈ I+ or i+ 1 ∈ I0(16)

and

i ∈ I− =⇒
{

i− 1 ∈ I− or i− 1 ∈ I0,
i+ 1 ∈ I− or i+ 1 ∈ I0.(17)

Also, observe that

L̂(λ) =
1

2

∫ tN+1

a

(
N∑
l=1

λlBl(t)

)2

+

XΩ1
(t)dt+

1

2

∫ tN+1

a

(
N∑
l=1

λlBl(t)

)2

−
XΩ2

(t)dt

+
1

2

∫ tN+1

a

(
N∑
l=1

λlBl(t)

)2

XΩ3(t)dt−
N∑
l=1

λldl ≤ L(λ).
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Thus, if we show the coercivity of L̂, the coercivity of L will follow. In the proposition
below we use the index set

Ī0 := {1, . . . , N} \ ∪i∈I0{i− 1, i}
and the following four sets in RN :

V0 := {v ∈ RN | vi−1 = vi = 0 for all i ∈ I0},
V+ := {v ∈ RN | vi ≤ 0 for all i ∈ I+ ∩ Ī0},
V− := {v ∈ RN | vi ≥ 0 for all i ∈ I− ∩ Ī0}, V := V0 ∩ V+ ∩ V− .

Proposition 3.1. The function L is coercive.
Proof. In view of the above, it is sufficient to prove that the level sets

L(c) := {λ ∈ RN | L̂(λ) ≤ c}
are bounded for every c ∈ R. Note that, for every c ∈ R, the set L(c) is closed and
convex. Assume on the contrary that L(c0) is unbounded for some c0 ∈ R and let,
without loss of generality, c0 > 0. We first show that there exists a vector s ∈ RN ,
s �= 0, such that βs ∈ L(c0) for every β ≥ 0. Suppose that for every s ∈ RN there
exists βs ≥ 0 such that βss �∈ L(c0). From the convexity of L(c0) and 0 ∈ L(c0), it
follows that βs �∈ L(c0) whenever β ≥ βs. Let

β(s) := max{β | β ≥ 0, βs ∈ L(c0)}.
Then β(s) < ∞ since L(c0) is closed and β(·) is an upper semicontinuous function
over RN . Then

β∗ := sup{β(s) : ‖s‖ = 1} <∞.

Hence L(c0) is contained in a ball centered at the origin with radius β∗ + 1. This
contradiction establishes the existence of a vector s ∈ RN , s �= 0, such that βs ∈ L(c0)
for all β ≥ 0. Now for such s we define

κ(β) := L̂(βs) =
1

2

∑
i∈I+

∫ ti+1

ti

β2

(
N∑
l=1

slBl(t)

)2

+

dt+
1

2

∑
i∈I−

∫ ti+1

ti

β2

(
N∑
l=1

slBl(t)

)2

−
dt

+
1

2

∑
i∈I0

∫ ti+1

ti

β2

(
N∑
i=1

slBl(t)

)2

dt− β

N∑
l=1

sldl.

A more explicit form of κ(β) is

κ(β) =
1

2

∑
i∈I+

∫ ti+1

ti

β2(si−1Bi−1 + siBi)
2
+dt+

1

2

∑
i∈I−

∫ ti+1

ti

β2(si−1Bi−1 + siBi)
2
−dt

+
1

2

∑
i∈I0

∫ ti+1

ti

β2(si−1Bi−1 + siBi)
2dt− β

N∑
l=1

sldl.

Now we consider the following cases.
Case 1. s ∈ V . Consider three subcases corresponding to the three quadratic

terms of κ(β), respectively.
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Subcase 1.1. i ∈ I0. By the definition of V0, we have si−1 = 0, si = 0.
Subcase 1.2. i ∈ I+. It follows from (16) that (i − 1) ∈ I+ or (i − 1) ∈ I0, and

(i+ 1) ∈ I+ or (i+ 1) ∈ I0. In particular, we have from s ∈ V and the definitions of
V0 and V+ that

i− 1 ∈ I0 =⇒



si−1 = 0,
i ∈ I+ ∩ Ī0 =⇒ si ≤ 0 if i+ 1 ∈ I+,
si = 0 if i+ 1 ∈ I0

and

i− 1 ∈ I+ =⇒



i− 1 ∈ I+ ∩ Ī0 =⇒ si−1 ≤ 0,
i ∈ I+ ∩ Ī0 =⇒ si ≤ 0 if i+ 1 ∈ I+,
si = 0 if i+ 1 ∈ I0.

Hence for this subcase we have si−1 ≤ 0, si ≤ 0.
Subcase 1.3. i ∈ I−. Then it follows from (17) that (i − 1) ∈ I− or (i − 1) ∈ I0

and (i + 1) ∈ I− or (i + 1) ∈ I0. In particular, we have again from s ∈ V and the
definitions of V0 and V− that

i− 1 ∈ I0 =⇒



si−1 = 0,
i ∈ I− ∩ Ī0 =⇒ si ≥ 0 if i+ 1 ∈ I−,
si = 0 if i+ 1 ∈ I0

and

i− 1 ∈ I− =⇒



i− 1 ∈ I− ∩ Ī0 =⇒ si−1 ≥ 0,
i ∈ I− ∩ Ī0 =⇒ si ≥ 0 if i+ 1 ∈ I−,
si = 0 if i+ 1 ∈ I0.

Hence for this case we have si−1 ≥ 0, si ≥ 0.
It follows from the three subcases that the first three terms of κ(β) (the quadratic

part) vanish. Taking s ∈ V into account, we have

κ(β) = −β
N∑
l=1

sldl = −β
∑

l∈I+∩Ī0

sldl − β
∑

l∈I−∩Ī0

sldl.

Note that dl > 0, sl ≤ 0 for any l ∈ I+ ∩ Ī0, and dl < 0, sl ≥ 0 for any l ∈ I− ∩ Ī0.
Hence the fact that there exists at least one sl �= 0 (this l must belong to I+ ∩ Ī0 or
I− ∩ Ī0) implies κ(β)→ +∞ as β → +∞, contradicting L̂(βs) ≤ c0.

Case 2. s �∈ V .
From the analysis of Case 1, for each i, at least one of the conditions si−1si = 0

for i ∈ I0, (si−1 ≤ 0, si ≤ 0) for i ∈ I+, and (si−1 ≥ 0, si ≥ 0) for i ∈ I− is violated.
Hence

r :=
1

2

∑
i∈I+

∫ ti+1

ti

(si−1Bi−1(t) + siBi(t))
2
+dt+

1

2

∑
i∈I−

∫ ti+1

ti

(si−1Bi−1(t) + siBi(t))
2
−dt

+
1

2

∑
i∈I0

∫ ti+1

ti

(si−1Bi−1(t) + siBi(t))
2dt > 0.

Then, κ(β) = rβ2 − β
∑N
l=1 sldl → +∞ as β → +∞, contradicting L̂(βs) ≤ c0. This

completes the proof.
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Since L(λ) is convex and coercive and ∇L(λ) = F (λ) − d, finding a solution of
(5) is equivalent to solving the following unconstrained optimization problem:

min
λ∈RN

L(λ).(18)

Now we apply the following damped Newton method to the problem (18), which uses
the Newton direction given by (7).

Algorithm 3.2.
(S.0) Choose λ0 ∈ RN , ρ ∈ (0, 1), σ ∈ (0, 1/2), and tolerance tol > 0. k := 0.
(S.1) If εk = ‖F (λk)− d‖ ≤ tol, then stop. Otherwise, go to (S.2).
(S.2) Let sk be a solution of the linear system

(M(λk) + εkI)s = −∇L(λk).(19)

(S.3) Choose mk as the smallest nonnegative integer m satisfying

L(λk + ρmsk)− L(λk) ≤ σρm∇L(λk)T sk.(20)

(S.4) Set λk+1 = λk + ρmksk, k := k + 1; return to step (S.1).
Assume that tol = 0 and Algorithm 3.2 never stops at (S.1) (otherwise, λk would

be the solution of (5)). The matrix M(λk) is always positive semidefinite because
M(λk) ∈ ∂F (λk), F is monotone, and every element of the generalized Jacobian
of the monotone function is positive semidefinite [12, Proposition 2.3(a)]. Hence
M(λk) + εkI is always positive definite for εk > 0, and therefore the linear system
(19) is uniquely solvable and sk �= 0. Moreover,

(sk)T∇L(λk) = −(sk)T (M(λk) + εkI)s
k ≤ −εk‖sk‖2 < 0;

that is, sk provides a descent direction for the function L. Hence the line search
criterion (20) is always satisfied for some integer m. Since L is coercive, the sequence
generated by the algorithm is bounded and therefore converges quadratically to the
solution of (18). The proof of the latter is in line with the standard argument in
these circumstances. Specifically, since locally the unit steplength is accepted, our
algorithm eventually reduces to the following iteration:

M(λk)sk = −(F (λk)− d) + rk, λk+1 = λk + sk,

where rk = −εksk is the residual which measures the inaccuracy in the Newton
equation

M(λk)∆λk = −(F (λk)− d).

Using the uniform nonsingularity of M(λk) near solution λ∗, it is easy to see that

sk = O(‖F (λk)− d‖).
According to [3, Theorem 2.2], the accuracy ‖rk‖ = O(‖F (λk)− d‖2) is sufficient for
the local quadratic convergence of the inexact Newton method. Since εk = ‖F (λk)−
d‖, we have

‖rk‖ = εk‖sk‖ = O(‖F (λk)− d‖2).
For more discussion of the inexact Newton method, we refer to [3, 7, 14].

Summarizing, we have the following theorem.
Theorem 3.3. Let the sequence {λk} be generated by Algorithm 3.2 starting

from an arbitrary λ0 ∈ RN . Then the sequence {λk} converges quadratically to the
solution λ∗.
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4. Numerical results. In this section, we report on some numerical experience
with Algorithm 3.2 and demonstrate its global convergence from arbitrary starting
points. The typical starting point in shape-preserving algorithms is sign(d), the sign
vector of d; see [11]. We report results with the starting point e, the vector of all ones
in RN , which is commonly selected as a starting point in algorithms for convex best
interpolations; see [11, 6]. We also test the influence on Algorithm 3.2 of the standing
assumption di �= 0, i = 1, . . . , N .

We implemented Algorithm 3.2 in MATLAB and tested it on a DEC George
Server 8200 with the termination criterion ‖F (λk)−d‖ ≤ tol and the following values
of the parameters: ρ = 0.5, σ = 0.1, tol = 10−12. In our implementation, εk =
min{δ, ‖F (λk) − d‖} with δ = 0.01. The integrals involved are evaluated exactly
using Simpson’s rule. The testing problems are collected from the literature and are
described in details as follows.

Example 4.1. This problem is from [11] and has the following data:

ti = 0.0 0.05 0.1 0.2 0.8 0.85 0.9 1.0.
yi = 0.0 0.7 1.0 1.0 0.3 0.05 0.1 1.0.

Example 4.2. This problem is again from [11] and has the following data:

ti = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0.
yi = 0.0 0.9 0.95 0.9 0.1 0.05 0.05 0.2 1.0.

Example 4.3. This problem is from [9] and has the following data:

ti = 0 4 6 10 12 14 18 20.
yi = 3 4 9 10 9 5 4 3.

Example 4.4. This problem is from [4]: t1 = 0, t2 = 0.1, t3 = 0.4, t5 = 0.8, t6 = 1,
t7 = 1.166, t8 = 1.333, t9 = 1.5, t10 = 1.666. yi = 1/((0.05+ti)(1.05−ti)), i = 1, . . . , 4,
y5 = 10, y6 = 5, y7 = y8 = y9 = 4, y10 = 10.

In Figures 1–5, the dashed line is for the resulting shape-preserving cubic spline
(using the data obtained with the starting point λ0 = sign(d)); the solid line is for
the natural spline (using the MATLAB SPLINE function), and “o” stands for the
original given data. In Table 1 for results of the numerical experiments we use the
following notation:
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Table 1
Numerical results with Algorithm 3.2.

Problem λ0 It Nf ‖F (λf )− d‖
4.1 e 11 17 8.57e-15

sign(d) 9 10 1.06e-14

4.2 e 11 15 3.02e-14
sign(d) 10 11 1.03e-14

4.3 e 8 11 4.59e-16
sign(d) 7 8 2.91e-16

4.4 e 30 31 1.43e-01
(y9 = 4) sign(d) 30 31 1.43e-01

4.4 e 24 44 2.39e-13
(y9 = 4.1) sign(d) 23 39 1.95e-13

4.4 e 12 13 1.01e-13
(y9 = 5) sign(d) 12 13 1.43e-13

Problem: name of the test problem.
λ0: starting point.
It : number of iterations.
Nf : number of evaluations of the function f(λ).
‖F (λf )− d‖: value of ‖F (λ)− d‖ at the last iteration.
From Table 1, we observe that Algorithm 3.2 converges rapidly to the solution
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from both starting points for all problems except Example 4.4 (y9 = 4), to which the
algorithm within 30 iterations failed to produce an approximate solution meeting the
required accuracy. A close look at the example shows that d7 = 0, which violates our
theoretical assumption di �= 0, i = 1, . . . , N . To avoid such a degeneracy in Example
4.4, we increase the value y9 from 4 to 4.1; Algorithm 3.2 now finds an approximate
solution within accuracy 10−13, but using a relatively large number of Newton steps
(≥ 20). When we further increase the value y9 to 5, the number of Newton steps
needed for the assumed tolerance is reduced considerably. These observations indicate
that how far away from zero each divided difference is may make a big difference in
the numerical performance of the algorithm. This is perhaps related to a property
that can be regarded as conditioning. The problem is, however, nonsmooth, and here
we are entering a new territory.
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Abstract. The paper deals with the calmness of a class of multifunctions in finite dimensions. Its
first part is devoted to various conditions for calmness, which are derived in terms of coderivatives
and subdifferentials. The second part demonstrates the importance of calmness in several areas
of nonsmooth analysis. In particular, we focus on nonsmooth calculus and solution stability in
mathematical programming and in equilibrium problems. The derived conditions find a number of
applications there.

Key words. calmness, multifunctions, constraint qualifications, nonsmooth calculus, solution
stability, equilibrium problems, weak sharp minima

AMS subject classifications. 90C31, 26E25, 49J52

PII. S1052623401395553

1. Introduction. The concept of calmness plays a key role in the analysis of
Lipschitz properties for multifunctions. It is closely related to issues from optimization
theory like nondegenerate multiplier rules (e.g., [10], [2], [4]), existence of error bounds
(e.g., [5], [18], [24]), or sensitivity analysis of generalized equations (e.g., [13], [17]).
The aim of this paper is to provide subdifferential conditions for ensuring the calmness
of constraint systems in finite dimensions and to consider calmness in the context of
different applications like nonsmooth calculus or solutions to parametric optimization
or equilibrium problems.

We start by recalling some of the prominent Lipschitz properties formulated for
multifunctions. Let M : Y ⇒ X be a multifunction between metric spaces. M is said
to have the Aubin property around some (ȳ, x̄) ∈ GphM (graph of M) if there exist
neighborhoods V and U of ȳ and x̄ as well as some L > 0 such that

d(x,M(y2)) ≤ Ld(y1, y2) ∀y1, y2 ∈ V, ∀x ∈M(y1) ∩ U .
It is well known that M has the Aubin property around (ȳ, x̄) if and only if its inverse
M−1 is metrically regular around (x̄, ȳ) (e.g., [27, Theorem 9.43]). Fixing one of the
y-parameters as ȳ in the definition of the Aubin property yields the calmness of M
at (ȳ, x̄):

d(x,M(ȳ)) ≤ Ld(y, ȳ) ∀y ∈ V, ∀x ∈M(y) ∩ U .
Obviously, the Aubin property implies calmness, whereas the converse is not true (e.g.,
M(y) = {x|x2 ≥ y} at (0, 0)). If one may choose U = X in this last definition, then
the calmness becomes the slightly stronger local upper Lipschitz property introduced
in [25].
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A restricted version of calmness, namely, calmness on selections, has been studied
in the context of sensitivity analysis for generalized equations [13], [15], [6]. Here it is
required that U ∩M(ȳ) = {x̄} in the general definition of calmness, i.e., x̄ is isolated
in M(ȳ). Such an assumption is relevant, for instance, when analyzing solutions to
nonlinear optimization problems. Moreover, one may even further restrict calmness
by combining it with the local uniqueness of M at (ȳ, x̄). Then, locally around (ȳ, x̄),
M is just a usual function satisfying the condition

d(M(y),M(ȳ)) ≤ Ld(y, ȳ).

This situation was studied, for instance, in [16].
For the purpose of verifying the Lipschitz properties of multifunctions, it is use-

ful to have suitable criteria from nonsmooth calculus. Such criteria have proven to
be particularly efficient in finite dimensions. For instance, X and Y being finite-
dimensional, the Aubin property of a closed graph multifunction M is equivalent to
the condition (see [21])

D∗M(ȳ, x̄)(0) = {0}.(1.1)

Here, D∗ refers to Mordukhovich’s coderivative (see section 2). This is a dual criterion
that relies on a normal cone construction to the graph of M . Similar dual conditions
were given in [20, Theorem 5.4] for a property related to but different from calmness.

An equivalent primal criterion for the Aubin property can be formulated in terms
of the contingent derivative D, based on the contingent cone to GphM (see [1, Theo-
rem 4, p. 431] for sufficiency in arbitrary Banach spaces and, e.g., [7, Corollary 1.19]
for necessity in the case of finite-dimensional X):

∃ α > 0, β > 0 : B(0, 1) ⊆ [DM(y, x)]−1(B(0, α)) ∀(y, x) ∈ GphM ∩B((ȳ, x̄), β).

Here, B(z, r) refers to the closed ball around z with radius r. As far as corresponding
criteria for calmness are concerned, the following primal condition was found to be
sufficient in [13, Proposition 2.1] and necessary in [15, Proposition 4.1] for calmness
on selections in finite dimensions:

DM(ȳ, x̄)(0) = {0}.(1.2)

Note that this condition immediately enforces the isolatedness of x̄ in M(ȳ) because
a sequence xn → x̄, xn ∈ M(ȳ), xn �= x̄ would generate a nontrivial tangent vector
(0, ξ) to GphM at (ȳ, x̄), whence a contradiction 0 �= ξ ∈ DM(ȳ, x̄)(0) to the above
condition.

Calmness in the broader sense introduced above is closely related to the regularity
concept of Ioffe studied in [10], [11], even in a Banach space setting. In fact, in [11] a
sufficient condition for calmness has been derived for multifunctions of the type

M(y) = {x ∈ C|g(x) = y}(1.3)

in terms of Clarke’s subdifferential. Another sufficient condition for calmness in the
broader sense was given in [8] for multifunctions of the type

M(y) = {x ∈ C|g(x) + y ∈ D},(1.4)

where g : R
k → R

m is locally Lipschitz and C ⊆ R
k, D ⊆ R

m are closed. It was shown
there that under mild assumptions the calmness of M is implied by the condition⋃

y∗∈ND(g(x̄))\{0}
D∗g(x̄)(y∗) ∩ (−bdNC(x̄)) = ∅,(1.5)
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where “bd” refers to the topological boundary. Recalling that the criterion (1.1) for
the Aubin property reduces in the special setting of (1.4) to the sufficient condition⋃

y∗∈ND(g(x̄))\{0}
D∗g(x̄)(y∗) ∩ (−NC(x̄)) = ∅,(1.6)

the reduction from the stronger Aubin to the weaker calmness property in (1.4) is
reflected by a transition from a normal cone to its boundary in the criteria (1.5)
and (1.6), respectively. Under some additional regularity assumptions, one may even
pass to the boundary in the left part of (1.6). In [9], attempts were made to extend
these ideas to the infinite-dimensional case, but it seems to be difficult to pass beyond
convex or differentiable structures in this framework. For instance, if f is a locally
Lipschitz function, regular in the sense of Clarke and satisfying f(0) = 0, then the
condition 0 /∈ bd ∂f(0) guarantees calmness of the parametric inequality f(x) ≤ y
at (0, 0) as long as either f is defined on a finite-dimensional space [8, Theorem 4.2]
or f is convex on a Banach space [9, Corollary 3.4]. In contrast, one may construct
a locally Lipschitz f defined on the sequence space l1 which is Clarke regular and
nonconvex such that the mentioned condition is satisfied but calmness fails to hold.

The paper is organized as follows: first, subdifferential criteria for calmness in
finite dimensions are developed which extend those given in [8]. In particular, the
multifunction M in (1.4) gets the more general form M(y) = S(y)∩C, with a purely
parametric contribution by S and a nonparametric contribution by C. In a second
part, calmness (as a condition by itself or implied by the previously derived subdif-
ferential criteria) is studied in several applications like nonsmooth calculus, stability
of solutions to nonsmooth optimization problems, and equilibrium problems.

2. Notation and basic concepts. In the following, we denote by ∂f(x) and
NC(x), respectively, the subdifferential of a function f at some x and the normal cone
to some closed set C at some x ∈ C, both in the sense of Mordukhovich. In contrast,
TC(x) refers to the contingent cone. Note that if f is regular in the sense of Clarke,
then ∂f(x) coincides with Clarke’s subdifferential. Similarly, if C is a regular set at x,
then TC(x) and NC(x) coincide with Clarke’s tangent and normal cone, respectively.
In that case it also holds true that each one of these cones is the (negative) polar
cone of the other. With a multifunction Z : R

p ⇒ R
k and some (ū, v̄) ∈ GphZ we

associate Mordukhovich’s coderivative D∗Z(ū, v̄) : R
k ⇒ R

p defined by

D∗Z(ū, v̄)(v∗) = {u∗ ∈ R
p|(u∗,−v∗) ∈ NGphZ(ū, v̄)}.

If Z is single-valued, we simply write D∗Z(ū) instead of D∗Z(ū, Z(ū)). For single-
valued, locally Lipschitz mappings Z it holds that

D∗Z(ū)(v∗) = ∂ 〈v∗, Z〉 (ū).

For a detailed presentation of these concepts, we refer to [20], [22], [27] and [4].
By B(x, r), B, and S we shall denote a closed ball centered at x with radius r, the

closed unit ball, and the unit sphere in corresponding spaces, respectively. By d(x,C)
we denote the point-to-set distance between x and C induced by a corresponding
norm on R

n, whereas deC(x) represents the particular case of the Euclidean distance
function.

A basic concept which we shall use in the derivation of subdifferential criteria for
calmness is semismoothness as introduced in [19].
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Definition 2.1. A function ψ : R
k → R is called semismooth at x̄ ∈ R

k if it
is locally Lipschitz around x̄ and the following property holds true: for each d ∈ R

k

and for any sequences tn ↓ 0, dn → d, x∗n ∈ ∂ψ(x̄ + tndn), the limit limn→∞ 〈x∗n, d〉
exists.

It has to be noted that in the original definition of [19], the corresponding property
was required for Clarke’s subdifferential of ψ. However, exploiting the well-known
fact that Clarke’s subdifferential is the closed convex hull of Mordukhovich’s, it easily
follows that both definitions of semismoothness are equivalent. As a consequence
of Definition 2.1, a semismooth function ψ has a conventional directional derivative
ψ′(x̄;h) at x̄ in direction d which coincides with the common limit in Definition 2.1.

As with Clarke regularity, semismoothness of functions can be carried over to
sets.

Definition 2.2. A set A ⊆ R
k is called semismooth at x̄ ∈ clA if for any

sequence xn → x̄ with xn ∈ A and ‖xn − x̄‖−1
(xn − x̄)→ d it holds that 〈x∗n, d〉 → 0

for all selections of subgradients x∗n ∈ ∂deA(xn).
If A is closed and deA is semismooth in the sense of Definition 2.1, then A is

semismooth in the sense of Definition 2.2 (see [8, Proposition 2.4]).

3. Subdifferential characterization of calmness. We start with an auxiliary
result which is crucial for passing to the boundary of the normal cone in (1.5) and in
the corresponding generalization we have in mind.

Proposition 3.1. Let C ⊆ R
k be regular (in the sense of Clarke) and semismooth

at x̄ ∈ C. Consider a sequence xn → x̄ such that xn ∈ C and ‖xn−x̄‖−1
(xn−x̄)→ h

with ‖h‖ = 1. Then each accumulation point x∗ of a sequence x∗n ∈ ∂deC(xn) belongs
to bdNC(x̄).

Proof. By virtue of the semismoothness of C at x̄, one has 〈x∗, h〉 = 0. From
∂deC(xn) ⊆ NC(xn) and from the closedness of the mapping NC(·), it follows that
x∗ ∈ NC(x̄). By construction, h ∈ TC(x̄); hence regularity of C at x̄ implies that
〈y∗, h〉 ≤ 0 for all y∗ ∈ NC(x̄). For arbitrary ε > 0, one has 〈x∗ + εh, h〉 = ε > 0,
whence x∗ + εh /∈ NC(x̄). Along with x∗ ∈ NC(x̄), this means that x∗ ∈ bdNC(x̄).

Consider now a multifunction M : R
p ⇒ R

k defined as the intersection M(y) =
S(y) ∩ C, where S : R

p ⇒ R
k is a multifunction with closed graph and C ⊆ R

k is
closed. As a consequence, M has closed graph as well. The following theorem is the
main result of this section.

Theorem 3.2. Consider some (ȳ, x̄) ∈ GphM . Assume that C is regular and
semismooth at x̄. If for all y∗ ∈ R

p it holds that

D∗S−1(x̄, ȳ)(y∗) ∩ −bdNC(x̄) =
{ ∅ or
{0} if y∗ = 0,

(3.1)

then M is calm at (ȳ, x̄). (Note that the case D∗S−1(x̄, ȳ)(0) ∩ −bdNC(x̄) = ∅ is
formally included in (3.1).)

Proof. Assume by contradiction that M is not calm at (ȳ, x̄). By definition, there
exist sequences xn → x̄, yn → ȳ, xn ∈ M(yn) such that d(xn,M(ȳ)) > n‖yn − ȳ‖.
Now, set h(y, x) := ‖y− ȳ‖ so that each pair (yn, xn) is an ε-minimizer of h(y, x) over
GphM with ε = ‖yn − ȳ‖. The application of the Ekeland variational principle with
ε and λ := nε to the minimization of h over GphM yields for each n the existence of
a pair (ỹn, x̃n) ∈ GphM such that for all (y, x) ∈ GphM

‖(ỹn, x̃n)− (yn, xn)‖ ≤ n‖yn − ȳ‖,(3.2)
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‖ỹn − ȳ‖ ≤ ‖y − ȳ‖+ n−1‖(y, x)− (ỹn, x̃n)‖.(3.3)

From (3.2) we infer that

‖(ỹn, x̃n)−(ȳ, x̄)‖ ≤ n‖yn− ȳ‖+‖(yn, xn)−(ȳ, x̄)‖ < d(xn,M(ȳ))+‖(yn, xn)−(ȳ, x̄)‖
so that (ỹn, x̃n) → (ȳ, x̄). Furthermore, ỹn �= ȳ and x̃n �= x̄, because otherwise x̃n
∈M(ȳ), whence the contradiction

n‖yn − ȳ‖ < d(xn,M(ȳ)) ≤ ‖xn − x̃n‖ ≤ n‖yn − ȳ‖,
using (3.2). Now, (3.3) means that (ỹn, x̃n) is a (global) solution of the problem

min{‖y − ȳ‖+ n−1‖(y, x)− (ỹn, x̃n)‖ |(y, x) ∈ GphM}.(3.4)

Since GphM = GphS ∩ (Rp × C), it follows that exactly one of the following cases
occurs (with S denoting the unit sphere):

{0} = NGphS(ỹn, x̃n) ∩ [{0} × (−NC(x̃n))] ,(3.5)

∃ ξn ∈ S ∩NGphS(ỹn, x̃n) ∩ [{0} × (−NC(x̃n))] .(3.6)

At least one of these two cases must apply for infinitely many n. Suppose first that
this is true for (3.5). Without loss of generality, we assume that (3.5) is valid for all
n. Then (see [27, Theorem 6.4.2])

NGphM (ỹn, x̃n) ⊆ NGphS(ỹn, x̃n) + [{0} ×NC(x̃n)] .

Application of the necessary optimality conditions to the solution (ỹn, x̃n) of the
constrained problem (3.4) then yields

0 ∈ [Sy × {0}] + n−1
B +NGphS(ỹn, x̃n) + [{0} ×NC(x̃n)] ,

where Sy refers to the unit sphere in R
p (and occurs due to ỹn �= ȳ) and B is the unit

ball in R
p × R

k. Without loss of generality, B is taken with respect to the maximum
norm; hence B = By × Bx. Accordingly, there exist (y∗n, z

∗
n) ∈ NGphS(ỹn, x̃n) and

x∗n ∈ −NC(x̃n) such that

0 ∈ Sy + n−1
By + y∗n and ‖x∗n − z∗n‖ ≤ n−1.

By the boundedness of y∗n we may assume that y∗n → y∗ ∈ Sy.

If {x∗n} is unbounded, then for x̂∗n := ‖x∗n‖−1
x∗n we may assume that x̂∗n → x∗

for some x∗ ∈ Sx. Furthermore, x̂∗n ∈ −NC(x̃n) and

deNGphS(ỹn,x̃n)(‖x∗n‖−1
y∗n, x̂

∗
n) ≤ deNGphS(ỹn,x̃n)(y

∗
n, x

∗
n) ≤ ρ ‖x∗n − z∗n‖ ≤ ρn−1,

where de denotes the Euclidean distance function and ρ > 0 is some modulus relating
the Euclidean and maximum norms. Since, without loss of generality, ‖x∗n‖−1

y∗n → 0,
the closedness of the coderivative mapping implies that x∗ ∈ D∗S−1(x̄, ȳ)(0). On the
other hand, x̂∗n ∈ −NC(x̃n) ∩ Bx = −∂deC(x̃n) (see [27, Example 8.5.3]). Recalling
that x̃n �= x̄ and x̃n ∈ C, Proposition 3.1 provides that x∗ ∈ −bdNC(x̄), whence the
contradiction x∗ ∈ Sx ∩D∗S−1(x̄, ȳ)(0) ∩ −bdNC(x̄) with (3.1).

Assuming that {x∗n} is bounded instead, one has without loss of generality that

x∗n → x∗ ∈ D∗S−1(x̄, ȳ)(y∗) ∩ −NC(x̄)
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(again by closedness of the coderivative and of the normal cone mapping). Due to
x̃n �= x̄ we have that TC(x̄) �= {0}, whence NC(x̄) �= R

k and 0 ∈ −bdNC(x̄). Now,
the case x∗ = 0 leads to an immediate contradiction with (3.1) due to y∗ �= 0. If
x∗ �= 0, then set

x̂∗n := ‖x∗n‖−1
x∗n → x̂∗ := ‖x∗‖−1

x∗,

as before. Invoking Proposition 3.1 in the same way as above, one arrives at x̂∗ ∈
Sx∩D∗S−1(x̄, ȳ)(‖x∗‖−1

y∗)∩−bdNC(x̄) by positive homogeneity of the coderivative
mapping. This again is a contradiction with (3.1).

Finally, suppose instead that (3.6) applies for infinitely many n. Again, we do
not relabel the corresponding subsequence. Then, defining ξn = (ξyn, ξ

x
n), we may

assume without loss of generality that ξn = (0, ξxn) → (0, ξx), where ξxn, ξ
x ∈ Sx and,

according to (3.6),

ξxn ∈ D∗S−1(x̃n, ỹn)(0) ∩ −NC(x̃n).

Consequently, ξxn ∈ −∂deC(x̃n), and we may invoke Proposition 3.1 again to obtain
that ξx ∈ −bdNC(x̄). Summarizing, we arrive at the contradiction

ξx ∈ D∗S−1(x̄, ȳ)(0) ∩ −bdNC(x̄)

with (3.1).

Remark 3.3. The assumptions of (Clarke-) regularity and semismoothness for
C in Theorem 3.2 are completely independent (see Example 3.5 in [8]). Their joint
validity is guaranteed for a sufficiently broad class of closed sets, like convex sets or
sets defined by C1-inequalities and satisfying the Mangasarian–Fromovitz constraint
qualification (cf. Lemma 3.6 in [8]).

Now, we specialize the above theorem to the parametrized constraint system
x ∈ C, g(x, y) ∈ D, where g : R

k×R
p → R

m is locally Lipschitz and C ⊆ R
k, D ⊆ R

m

are closed. We associate with this system the multifunction M : R
p ⇒ R

k defined by

M(y) := {x ∈ C | g(x, y) ∈ D}.(3.7)

Corollary 3.4. In (3.7), let (ȳ, x̄) ∈ GphM and C be regular and semismooth
at x̄. Further, assume the qualification condition⋃

y∗∈ND(g(x̄,ȳ))\{0}
[∂〈y∗, g〉(x̄, ȳ)]x ∩ −bdNC(x̄) = ∅,(3.8)

where [ ]x denotes projection onto the x-component. Then M is calm at (ȳ, x̄).

Proof. The case in which 0 /∈ bdNC(x̄) is trivial, so assume that 0 ∈ bdNC(x̄).
Consider the map S : R

p ⇒ R
k defined by

S(y) := {x ∈ R
k | g(x, y) ∈ D}.

To compute D∗S−1(x̄, ȳ), we invoke a result from [22]. Since 0 ∈ bdNC(x̄), (3.8)
yields in particular the implication

D∗g(x̄, ȳ)(v∗) = 0, v∗ ∈ ND(g(x̄, ȳ)) =⇒ v∗ = 0.
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This is, however, the qualification condition from [22, Theorem 6.10], and so one has
for each v∗ ∈ R

p the inclusion

D∗S−1(x̄, ȳ)(v∗)(3.9)

⊆ {x∗ ∈ R
k | (x∗,−v∗) ∈ ∂〈y∗, g〉(x̄, ȳ), y∗ ∈ ND(g(x̄, ȳ))}

⊆ {x∗ ∈ [∂〈y∗, g〉(x̄, ȳ)]x | y∗ ∈ ND(g(x̄, ȳ))}.

Let us write (3.8) in the form

[∂〈y∗, g〉(x̄, ȳ)]x ∩ −bdNC(x̄) �= ∅, y∗ ∈ ND(g(x̄, ȳ)) =⇒ y∗ = 0.(3.10)

By combining (3.9) and (3.10), one obtains that

D∗S−1(x̄, ȳ)(0) ∩ −bdNC(x̄) = {0}

and

D∗S−1(x̄, ȳ)(v∗) ∩ −bdNC(x̄) �= ∅ =⇒ v∗ = 0.

These two conditions amount, however, to (3.1), and thus Theorem 3.2 can be applied
to finish the proof.

The following example illustrates the application of Theorem 3.2 in the specific
situation of Corollary 3.4.

Example 3.5. Define M in (3.7) by C = {(x1, x2)|x2 ≥ |x1|}, D = R−,
g(x, y) = min{x1, x2}− y. Then, all data assumptions of Theorem 3.2 are satisfied at
(x̄1, x̄2, ȳ) = (0, 0, 0) ∈ GphM , and also (3.1) holds true:⋃

y∗∈ND(g(x̄,ȳ))\{0}
[∂〈y∗, g〉(x̄, ȳ)]x ∩ −bdNC(x̄)

=
⋃
y∗>0

y∗∂min{·, ·}(0, 0) ∩ bdC

= {(x1, x2)|x1 + x2 > 0, x1 · x2 = 0} ∩Gph | · | = ∅.

Consequently, the calmness of M in (3.7) can be derived. Note that the stronger
criterion (1.6) ensuring the Aubin property of M fails to apply here due to

{(x1, x2)|x1 + x2 > 0, x1 · x2 = 0} ∩ −NC(x̄) = {(0, x2)|x2 > 0} �= ∅.

At the same time, the contingent derivative criterion (1.2) for calmness on selections
does not apply either, due to M(0) = {(x1, x2)|x2 ≥ −x1 ≥ 0} not being single-
valued.

The following theorem provides a calmness result for the system (1.4) of functional
constraints with canonical perturbations. In contrast to Theorem 3.2, no regularity
or semismoothness assumption on C will be made. Rather, the regularity assumption
is shifted to the perturbed part of the constraints.

Theorem 3.6. In (1.4) let g be Lipschitz near x̄ ∈ M(0), and D be regular at
g(x̄). Further assume that the function 〈y∗, g〉 (·) is regular at x̄ for all y∗ ∈ ∂deD(g(x̄))
and that the qualification condition

int
⋃

y∗∈ND(g(x̄))∩B

∂〈y∗, g〉 (x̄) ∩ − [TC(x̄)]
0 �= ∅(3.11)
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holds true. Then M is calm at (0, x̄).
Proof. Consider the composite function π(x) = deD(g(x̄)), which is evidently

Lipschitz near x̄ and for which one has π(x̄) = 0. From [27, Theorem 10.49] we know
that under our assumptions π is even regular at x̄ and

∂π(x̄) =
⋃

y∗∈ND(g(x̄))∩B

∂〈y∗, g〉 (x̄).(3.12)

From (3.11) and (3.12) we infer the existence of some z̃∗ ∈ − [TC(x̄)]
0
and of some α >

0 such that B(z̃∗, α) ⊆ ∂π(x̄). Then, regularity of π at x̄ implies that 〈z̃∗ + αp∗, h〉 ≤
π′(x̄;h) for all p∗ ∈ B and all h ∈ R

k, where π′(x̄;h) refers to the conventional
directional derivative of π taken at x̄ in direction h. Consequently,

α 〈p∗, h〉 ≤ π′(x̄;h)− 〈z̃∗, h〉 ≤ π′(x̄;h) ∀p∗ ∈ B, ∀h ∈ TC(x̄).
For arbitrary h ∈ TC(x̄) ∩ S we set p∗ := h and derive from the last relation that

π′(x̄;h) ≥ α > 0 ∀h ∈ TC(x̄) ∩ S.(3.13)

Assume that M fails to be calm at (0, x̄). Then, as in the proof of Theorem 3.2, there
exist sequences xn → x̄, yn → 0, xn ∈ M(yn) such that d(xn,M(0)) > n‖yn‖. From
here we deduce that xn �= x̄, xn ∈ C, and ‖xn − x̄‖ > n(π(xn)− π(x̄)) for all n. This
amounts to ‖xn− x̄‖−1(π(xn)−π(x̄)) < n−1. It suffices now to pass to an appropriate
subsequence {xn′} such that ‖xn′ − x̄‖−1(xn′ − x̄)→ h for some h ∈ TC(x̄)∩S. Local
Lipschitz continuity of π yields that π′(x̄;h) = 0, which contradicts (3.13) and thus
proves the calmness of M at (0, x̄).

Remark 3.7. From (3.13) it immediately follows that (3.11) implies not only the
calmness of M at (0, x̄) but also the isolatedness of x̄ in M(0), i.e., U∩M(0) = {x̄}
for some neighborhood U of x̄.

Example 3.5 shows that the last remark does not apply to the setting of Theorem
3.2 or Corollary 3.4, where no regularity assumptions are made with respect to S or
g.

4. Calmness in applications.

4.1. Nonsmooth calculus. As shown, e.g., in [2], [4], [28], calmness plays an
important role in deriving optimality conditions and in construction of local Lipschitz
error bounds. It enables us, among other things, to replace the constraint system

g(x) ∈ D, x ∈ C,(4.1)

by a more easily tractable constraint

(y, x) ∈ GphM,

where M is given by (3.7), and the new variable y enters the objective via a suit-
able penalty term. Clearly, the feasible set given by (4.1) amounts to M(0). For
the evaluation of the normal cone to M(0) at a given point x̄, one usually employs
various constraint qualifications. A prominent place is occupied by the Mangasarian–
Fromovitz constraint qualification, which in case of (4.1) becomes (1.6). Condition
(1.6) ensures the Aubin property of M around (0, x̄) and, a fortiori, the inclusion

NM(0)(x̄) ⊂
⋃

y∗∈ND(g(x̄))

D∗g(x̄) (y∗) +NC(x̄).(4.2)



ON THE CALMNESS OF A CLASS OF MULTIFUNCTIONS 611

It turns out, however, that the calmness ofM at (0, x̄) also implies (4.2), and therefore,
at least in some cases, condition (1.6) can be weakened.

Theorem 4.1. Consider the multifunction M given by (1.4) and a pair (0, x̄) ∈
GphM . Assume that g is Lipschitz near x̄ and that M is calm at (0, x̄). Then
inclusion (4.2) holds true.

Proof. We start with the observation that (see [22, Theorem 6.10])

NGphM (0, x̄) ⊂ {(y∗, x∗)|y∗ ∈ ND(g(x̄)), x∗ ∈ ∂〈y∗, g〉 (x̄) +NC(x̄)}.(4.3)

Let L be the modulus of calmness of M at (0, x̄). We claim that

∀x∗ ∈ ∂deM(0)(x̄) ∃y∗ ∈ LB : (y∗, x∗) ∈ NGphM (0, x̄).(4.4)

To see this, note that x∗ ∈ ∂deM(0)(x̄) means the existence of sequences xn → x̄

(xn ∈M(0)), rn ↓ 0, x∗n → x∗, and εn ↓ 0 such that

deM(0)(x)− deM(0)(x̄) ≥ 〈x∗n, x− xn〉 − εn‖x− xn‖ ∀x ∈ B(xn, rn).

Since M is calm at (0, x̄), along with L > 0 there exists some r > 0 such that

deM(0)(x) ≤ L‖y‖ ∀x ∈ B(x̄, r) ∩M(y), ∀y ∈ B(0, r).(4.5)

This implies that

L‖y‖ − 〈x∗n, x− xn〉+ εn‖x− xn‖ ≥ 0(4.6)

∀(y, x) ∈ GphM ∩ (B(0, r)×B(xn, rn))

for sufficiently large n. The function of (y, x) on the left-hand side of (4.6) attains a
constrained minimum at (0, xn). According to Proposition 4.3.4 in [4], the function

L‖y‖ − 〈x∗n, x− xn〉+ εn‖x− xn‖+KdeGphM (y, x)

attains an unconstrained local minimum at (0, xn) for sufficiently large penalty pa-
rameter K. The respective optimality conditions imply the existence of some y∗n ∈ LB

such that

0 ∈ {−y∗n} × ({−x∗n}+ εnB) +NGphM (0, xn).

We now let n tend to infinity and, passing to a subsequence {y∗n′}, establish the
existence of a limit vector y∗ ∈ LB such that (y∗, x∗) ∈ NGphM (0, x̄). This proves
(4.4). It remains to observe that for each ξ ∈ NM(0)(x̄) there is some x∗ ∈ ∂deM(0)(x̄) =

NM(0)(x̄) ∩ B such that ξ = ‖ξ‖x∗. Since g is Lipschitz, the result follows from (4.3)
and (4.4).

Corollary 4.2. In (1.4), let k = m and x̄ ∈ C ∩D. Assume that the map

M̃(y) := {x ∈ C |x+ y ∈ D}
is calm at (0, x̄). Then one has

NC∩D(x̄) ⊂ NC(x̄) +ND(x̄).(4.7)

Proof. It suffices to specialize the statement of Theorem 4.1 for g being the
identity mapping.
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Remark 4.3. The calmness of M̃ at (0, x̄) is closely related to the so-called
metric inequality for the sets C,D at x̄ [12], which also implies inclusion (4.7).

In the literature (e.g., [20], [22]) one usually requires the qualification condition

ND(x̄) ∩ −NC(x̄) = {0}(4.8)

to ensure the validity of inclusion (4.7). However, condition (4.8) implies the Aubin
property of M̃ around (0, x̄) and is thus clearly more demanding than the calmness
required in Corollary 4.2.

By combining Theorem 3.2 and the above corollary, we immediately conclude
that, to ensure inclusion (4.7), it suffices to replace (4.8) by a weaker condition

ND(x̄) ∩ −bdNC(x̄) = {0}(4.9)

whenever C is regular and semismooth at x̄. Moreover, as observed by Kruger [14],
condition (4.9) alone (without regularity or semismoothness assumptions) implies in-
clusion (4.7). The respective statement can be formulated even for a general mapping
M permitting noncanonical perturbations.

Proposition 4.4 (adapted from [14]). Consider the map M given by (3.7), where
g is Lipschitz around a reference pair (ȳ, x̄) ∈ GphM and C, D are closed subsets
of the respective spaces. Assume that (3.8) is fulfilled. Then either M possesses the
Aubin property around (ȳ, x̄) or⋃

y∗∈ND(g(x̄,ȳ))\{0}
[∂〈y∗, g〉(x̄, ȳ)]x +NC(x̄) = R

p.(4.10)

Proof. If ⋃
y∗∈ND(g(x̄,ȳ))\{0}

[∂〈y∗, g〉(x̄, ȳ)]x ∩ −NC(x̄) = ∅,(4.11)

then it follows from [22, Theorem 6.10] that

D∗M(ȳ, x̄) (x∗) ⊂ {y∗ ∈ R
m | (y∗,−x∗) ∈ D∗g(x̄, ȳ) ◦ND(g(x̄, ȳ))(4.12)

+ (0×NC(x̄))}.
Combining (4.11) and (4.12) provides D∗M(ȳ, x̄) (0) = {0}, whence the Aubin prop-
erty of M at (ȳ, x̄) (see (1.1)). According to (3.8), assume therefore that⋃

y∗∈ND(g(x̄,ȳ))\{0}
[∂〈y∗, g〉(x̄, ȳ)]x ∩ −intNC(x̄) �= ∅.(4.13)

Then

∃y∗ ∈ ND(g(x̄, ȳ)) \ {0}, ∃x∗ ∈ [∂〈y∗, g〉(x̄, ȳ)]x , ∃α > 0 : B(x∗, α) ⊂ −NC(x̄).
This implies for each p∗ ∈ B(0, α) that

p∗ ∈
⋃

y∗∈ND(g(x̄,ȳ))\{0}
[∂〈y∗, g〉(x̄, ȳ)]x +NC(x̄).

Now, the result follows.
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Corollary 4.5. Let C,D ⊆ R
k be arbitrary closed sets with x̄ ∈ C ∩D. Then

(4.9) ensures inclusion (4.7).
Proof. Apply Proposition 4.4 with g(x, y) := x.
According to the proof of Proposition 4.4, the difference between (3.8) and the

classical Mangasarian–Fromovitz constraint qualification (4.11) reduces to the case
(4.13), for which the argument from Remark 3.7 implies the local isolatedness of the
feasible points of M(0) (under the additional assumptions of Theorem 3.6). This fact
is easily interpreted for mathematical programs of the form

min{f(x)|x ∈M(0)}.(4.14)

Evidently, isolated points of M(0) are automatically local minima; hence, in this
context (3.8) goes beyond the Mangasarian–Fromovitz constraint qualification as a
condition providing nondegenerate Lagrange multipliers, in that it identifies local
minima given by isolated feasible points.

Another observation is the following: Since polyhedral mappings are automati-
cally calm (cf. [26]), we derive from Theorem 4.1 that a nonsmooth calculus rule like
(4.2) can be obtained under no constraint qualifications for polyhedral data.

4.2. First-order growth (weak sharp minima), local uniqueness, and
stability of solutions. Consider the problem

(P ) min{f(x)|x ∈ C},
where f : R

k → R is a continuous function and C ⊆ R
k a closed subset. Denote the

solution set of (P ) by S. Recall the following definition.
Definition 4.6. In (P ), the objective function f is said to satisfy a first-order

growth condition if there exist a constant c > 0 and a neighborhood N of S such that

f(x) ≥ f∗ + cd(x, S) ∀x ∈ C ∩N ,
where f∗ = inf{f(x)|x ∈ C}. Equivalently, f is said to have a set S of weak sharp
minima with respect to C ∩N (cf. [3]).

Lemma 4.7. Let the solution set S of (P ) be nonempty and bounded, and suppose
that the multifunction M(y) := {x ∈ C|f(x) ≤ y} is calm on {f∗} × S (i.e., calm at
all (f∗, x) with x ∈ S). Then, f satisfies a first-order growth condition in (P ).

Proof. Fix an arbitrary x0 ∈ S. Obviously, f(x0) = f∗; hence the calmness of M
at (f(x0), x0) implies the existence of ε, δ, L > 0 such that

d(x,M(f(x0))) ≤ L|y − f(x0)| ∀y : |y − f(x0)| < δ, ∀x ∈M(y) ∩B(x0, ε).

Choose ε > 0 small enough to meet |f(x)− f(x0)| < δ for all x ∈ B(x0, ε). Now, one
may put y := f(x) in the above estimation and derive from M(f(x0)) = S that

d(x, S) ≤ L|f(x)− f(x0)| ∀x ∈ C ∩B(x0, ε).

From f(x) ≥ f(x0) for all x ∈ C, it follows that

f(x) ≥ f∗ + L−1d(x, S) ∀x ∈ C ∩B(x0, ε).

By our assumptions, S is compact. Hence, a finite number of xi ∈ S, εi > 0, and
Li > 0 exists such that S ⊆ ∪iB(xi, εi) and

f(x) ≥ f∗ + L−1
i d(x, S) ∀x ∈ C ∩B(x∀i, εi).
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This, however, implies that f satisfies a first-order growth condition with c := (maxLi)
−1

and N := ∪iB(xi, εi).
Corollary 4.8. In (P ) let f be locally Lipschitz and C be regular and semis-

mooth. Then f satisfies a first-order growth condition if the solution set S is nonempty
and bounded and, moreover, the condition

∂f(x) ∩ −bdNC(x) = ∅ ∀x ∈ S
holds true.

Proof. Combine Lemma 4.7 with Corollary 3.4 (setting g(x, y) := f(x) + y and
D := R− there).

A consequence of the constraint qualification in the last corollary is that solutions
are locally isolated, as described in the following.

Proposition 4.9. Let f : R
k → R be Lipschitz near x̄ ∈ S, and C ⊆ R

k be
regular at x̄. If, in addition, C or f is semismooth at x̄, then the condition ∂f(x̄) ∩
−bdNC(x̄) = ∅ entails that U ∩ S = {x̄} for some neighborhood U of x̄.

Proof. Assume, by contradiction, that xn → x̄ for some sequence xn ∈ S\{x̄}.
Then, without loss of generality, ‖xn − x̄‖−1

(xn − x̄) → h ∈ TC(x̄). On the other
hand, as xn ∈ S, it follows that f(xn) = f(x̄) and 0 ∈ ∂f(xn)+NC(xn). Accordingly,
we may extract a sequence y∗n ∈ ∂f(xn) ∩ −NC(xn). This sequence is bounded
because f is Lipschitz around x̄. Hence, without loss of generality, y∗n → y∗ for some
y∗ ∈ ∂f(x̄)∩−NC(x̄). We claim that y∗ ∈ −bdNC(x̄), whence a contradiction to the
assumed condition ∂f(x̄)∩−bdNC(x̄) = ∅. Indeed, if C is semismooth at x̄, this is an
immediate consequence of Proposition 3.1. In the opposite case, the semismoothness
of f at x̄ provides that

〈y∗n, h〉 → 〈y∗, h〉 = f ′(x̄;h) = lim
n→∞ ‖xn − x̄‖−1

(f(xn)− f(x̄)) = 0.

Now the same reasoning as in the proof of Proposition 3.1 allows us to derive that
y∗ ∈ −bdNC(x̄).

Evidently, Proposition 4.9 may be taken as a subdifferential condition for the local
uniqueness of solutions. Now we are in a position to state a subdifferential condition
for upper Lipschitz stability of solution sets. Consider the parametric optimization
problem

P (y) min{f(x)|g(x) ≤ y },
where f : R

k → R and g : R
k → R

m are locally Lipschitz, and M(y) and S(y) denote
the parameter-dependent sets of feasible points and solutions, respectively. The set
of active indices at x in the relation g(x) ≤ y will be denoted by I(x).

Theorem 4.10. Let S(0) be nonempty and bounded, and assume the following
conditions to hold true for all x ∈ S(0) :

(1) All components gi of g are regular and semismooth at x.
(2) ∂f(x) ∩ −bdNg−1(Rm− )(x) = ∅.
(3) 0 /∈ bd conv {∂gi(x)}|i ∈ I(x)} (“conv”= convex hull).

Then, there exist some neighborhood U of S(0) and constants ε, L > 0 such that

d(x, S(0)) ≤ L ‖y‖ ∀y ∈ B(0, ε), ∀x ∈ U ∩ S(y).
Proof. We shall show that S is calm at (0, x) for all x ∈ S(0) and that S(0)

consists just of isolated points. Given this fact, our compactness assumption ensures
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that S(0) will consist of only finitely many points, say S(0) = {x1, . . . , xN}. The
calmness property then means the existence of constants Li, εi, δi such that

d(x, S(0)) ≤ Li ‖y‖ ∀y ∈ B(0, εi), ∀x ∈ B(xi, δi) ∩ S(y) (i = 1, . . . , N).

Setting L := max Li, ε := min εi, and U := ∪B(xi, δi), the assertion of the theorem
follows.

In order to prove the stated facts, let x̄ ∈ S(0) be arbitrarily given. Note that our
constraint system M(y) = {x|g(x) ≤ y } is a special case of (1.4) with D := R

m
− and

C := R
k. It is easily checked that assumption (1) implies the setting considered in

Theorem 3.6. Indeed, regularity of the gi implies regularity of any function
∑m
i=1 y

∗
i gi

with y∗i ≥ 0; hence 〈y∗, g〉 is regular at x̄ for all

y∗ ∈ ∂deD(g(x̄)) = ND(g(x̄)) ∩ B = {y∗ ∈ R
m
+ | ‖y∗‖ ≤ 1, y∗i = 0 (i /∈ I(x̄))},

as required in Theorem 3.6.
Suppose first that 0 ∈ intH, where H := conv {∂gi(x̄)}|i ∈ I(x̄)}. By regularity

of the gi, the subdifferentials ∂gi(x̄) are convex; hence

H =


 ∑
i∈I(x̄)

y∗i ∂gi(x̄)

∣∣∣∣∣∣
∑
i∈I(x̄)

y∗i = 1, y∗i ≥ 0


 .

Therefore

H ⊆
⋃

y∗∈ND(g(x̄))∩B

∂〈y∗, g〉 (x̄),

which along with [TC(x̄)]
0
= {0} implies that (3.11) holds. Hence, by Remark 3.7,

M(0) is locally isolated at x̄. Then, S(0) is isolated at x̄ as well due to S(0) ⊆M(0).
Furthermore, Theorem 3.6 allows us to derive the calmness of M at (0, x̄), i.e.,

d(x,M(0)) ≤ L ‖y‖ ∀y ∈ B(0, ε), ∀x ∈ V ∩M(y)

for some neighborhood V of x̄ and some ε, L > 0. Choosing V small enough to meet
d(x, S(0)) = ‖x− x̄‖ (by the local isolatedness of S(0)), one may conclude that

d(x, S(0)) ≤ d(x,M(0)) ≤ L ‖y‖ ∀y ∈ B(0, ε), ∀x ∈ V ∩ S(y),

where we used once more that S(y) ⊆M(y). This, however, is calmness of S at x̄.
In the opposite case, 0 /∈ intH, assumption (3) entails that 0 /∈ H. This condi-

tion along with assumption (1) implies the regularity and semismoothness of the set
g−1(Rm− ) at x̄ (see [8, Lemma 3.6]). Then, in view of our assumptions, Proposition 4.9
may be invoked to show the local isolatedness of S(0) at x̄ again. Furthermore, the
condition 0 /∈ H is nothing but the Mangasarian–Fromovitz constraint qualification
for a finite set of locally Lipschitz inequalities. It is well known that then the con-
straint mapping M has even the Aubin property around (0, x̄), which is stronger than
calmness. Hence, exactly the same argument as in the previous case can be applied
to derive the calmness of S at (0, x̄).

Concerning the first assumption in Theorem 4.10, an analogous statement to
that of Remark 3.3 applies. In particular, convex and C1-functions are regular and
semismooth (even a maximum of such functions).
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The next example illustrates the application of Theorem 4.10 in a smooth setting
and, along the way, demonstrates how the upper Lipschitz stability of solutions can be
established despite violation of the Mangasarian–Fromovitz constraint qualification.

Example 4.11. Consider the parametric optimization problem

min{(x1 − 1/2)2| − x1 − x2 ≤ y1; x2 ≤ y2; x1(1− x1)− x2 ≤ y3}.

Then S(0) = {xa, xb} with xa = (0, 0), xb = (1, 0). Obviously, S(0) is nonempty
and bounded, and the constraint functions satisfy assumption (1) of Theorem 4.10
by smoothness. At xa all unperturbed constraints are binding; hence the set H from
assumption (3) is given as the convex hull of the three gradients:

H = conv {(−1,−1), (0, 1), (1,−1)}.

Obviously, 0 ∈ intH; hence the Mangasarian–Fromovitz constraint qualification is
violated at xa. In contrast, the condition 0 /∈ bdH of assumption (3) is fulfilled. Fur-
thermore, 0 ∈ intH implies that the unperturbed constraint set M(0) = g−1(R3

−) is
locally isolated at xa (see the proof of Theorem 4.10). Therefore, Ng−1(R3

−)(x
a) = R

2,
and assumption (2) holds trivially. Concerning xb, only the second and third con-
straint are binding, so H = conv {(0, 1), (−1,−1)} and 0 /∈ H. Again, assumption (3)
is satisfied. Moreover, Ng−1(R3

−)(x
b) is the convex cone generated by the two active

gradients (0, 1) and (−1,−1), so its negative boundary is (R+ · (0,−1))∪ (R+ · (1, 1)).
Again, assumption (2) is fulfilled. Summarizing, the upper Lipschitz behavior of solu-
tions to the above parametric problem can be derived.

4.3. Equilibrium mappings. In [23] and [6] the authors study various stability
properties of parametrized equilibria governed by the generalized equations

0 ∈ f(x, y) +Q(x),(4.15)

where x ∈ R
k is the decision variable, y ∈ R

p is the parameter, f : R
k × R

p → R
k

is continuously differentiable, and Q : R
k ⇒ R

k is a closed-valued multifunction. If
one considers an optimization problem with (4.15) as a constraint, and an additional
abstract constraint (x, y) ∈ C, then it is important to verify the calmness of the
mapping H : R

k ⇒ R
k × R

p defined by

H(z) := {(x, y) ∈ C|z ∈ f(x, y) +Q(x)} .

H can easily be converted to the form (3.7), and so Corollary 3.4 can be applied. In
fact, this procedure is illustrated in [8] by a parameterized equilibrium governed by
a nonlinear complementarity problem. In this section we concentrate on a different
mapping associated with parameterized equilibria, namely, the intersection

Θ(y) := S(y) ∩ C,

where S is the so-called solution mapping defined by

S(y) = {x ∈ R
k | 0 ∈ f(x, y) +Q(x, y)},(4.16)

and C is a closed subset of R
k specifying the feasible decision variables. In (4.16) we

admit that Q also depends on the parameter y, which extends the class of considered
equilibria. Calmness of S (with Q depending only on x) has been investigated in [6],
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but in the narrower sense of calmness on selections (see the introduction) where, for
a reference pair (ȳ, x̄), one requires x̄ to be an isolated point of S(ȳ).

The mapping S can be written in the form S(y) = {x ∈ R
k|g(x, y) ∈ D}, where

g(x, y) = (x, y,−f(x, y))T and D = GphQ. Therefore, Θ has exactly the structure
of the multifunction M in (3.7), and we immediately obtain the following statement
from Corollary 3.4.

Theorem 4.12. Let C be regular and semismooth at x̄ ∈ Θ(ȳ). Further assume
that the qualification condition

0 ∈ w − (∇xf(x̄, ȳ))T z + bdNC(x̄),
(w, v, z) ∈ NGphQ(x̄, ȳ,−f(x̄, ȳ))

}
implies




w = 0,
v = 0,
z = 0,

(4.17)

holds true. Then Θ is calm at (ȳ, x̄).
If Q depends just on x, then g(x, y) = (x,−f(x, y))T , and the qualification con-

dition (4.17) reduces to

0 ∈ w − (∇xf(x̄, ȳ))T z + bdNC(x̄),
(w, z) ∈ NGphQ(x̄,−f(x̄, ȳ))

}
implies

{
w = 0,
z = 0.

(4.18)

The following example shows that the qualification conditions (4.17), (4.18) may
well be violated even when Θ is calm at (ȳ, x̄).

Example 4.13. In (4.16) let k = p = 1, f ≡ 0, and

Q(x, y) = ∂ϕ(x) +Ny+R−(x), ϕ(x) =

{ −x for x ≤ 0,
0 for x > 0.

Clearly,

S(y) =

{
y for y ≤ 0,
[0, y] otherwise.

Let (ȳ, x̄) = (0, 0). It is easily seen that with C = R+ or C = R− the mapping Θ is
calm at (ȳ, x̄). Nevertheless, condition (4.17) is not fulfilled.

The reason for the failure of (4.17) in the last example is that this condition works
with a too large upper approximation of D∗S(ȳ, x̄). In such cases it makes sense to
directly apply Theorem 3.2: In Example 4.13 one calculates

D∗S−1(ȳ, x̄) (y∗) =
{

y∗ if y∗ �= 0,
R− if y∗ = 0.

Both for C = R+ and C = R−, it is easily verified that (3.1) holds true, and hence,
calmness of Θ can be derived. Observe that this result could not be obtained when
considering the whole cone NC(x̄) instead of its boundary.

Remark 4.14. The calmness of Θ in the above example follows directly from
its polyhedral nature. Nevertheless, it illustrates well the need to weaken the standard
criteria ensuring the Aubin property when analyzing calmness.
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Abstract. It is well known that a local minimizer of a constrained optimization problem with
Lipschitzian objective is a free local minimizer of an assigned penalty function if the constraints
satisfy an appropriate regularity condition. We use an upper Lipschitz property (L1) as regularity
concept and present locally Lipschitz penalty functions defined on the whole space for arbitrary
constraint maps of this type. We give conditions under which the maximum of the penalties of
finitely many multifunctions is a valid penalty function for the intersection of these multifunctions.

Further, the same statements will be derived under other regularity assumptions, namely, for
calm or pseudo-Lipschitz constraints which violate (L1), by showing that some submapping of a
calm map always has property (L1) and possesses (locally) the same penalties. In this way our
penalizations induce in a unified manner, via known properties of free local minimizers for Lipschitz
functions only, primal and dual necessary conditions for these basic notions of regularity.

Key words. constrained optimization, exact penalty functions, upper Lipschitz property, calm-
ness, pseudoregularity
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1. Introduction. Given metric spaces X and Y , our basic model is the opti-
mization problem

min f(x) s.t. x ∈ X0,(1)

where X0 �= ∅ is a fixed subset of X and f : X → R is locally Lipschitz, along with
any parametric embedding of (1)

min f(x) s.t. x ∈ S(y)(2)

such that S : Y ⇒ X is a multifunction and X0 ⊂ S(y0). Here, y0 is any fixed
element of Y , and no particular structure on S is required. For instance, S(y) may
be a solution set of a generalized equation

z0 ∈ H(x, y), where H : X × Y ⇒ Z,

or one may assume that X,Y are Banach spaces, y0 = 0, and

S(y) = {x ∈ X | g(x) ∈ y +K}, X0 = S(0),(3)

where a function g : X → Y and a nonempty set K ⊂ Y are given.
The model (3) is of fundamental importance and has been studied extensively and

under various assumptions in the optimization literature; for basic results we refer,
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e.g., to [39, 17, 40, 21, 20, 25, 41, 2, 4, 10]. These studies tell us that, under various
Lipschitz-type conditions on the map S near (y0, X0) or near (y0, x0), the following
basic statement holds:

If x0 is a local minimizer of (1), then x0 locally minimizes
a function P (x) = f(x) +RS(x) w.r.t. x ∈ X,

(4)

where RS depends on the (analytical) description of S and can be defined by means
of Lagrange multipliers or directly by some (exact) penalty term, e.g., for (3),

RS(x) = α dist (g(x),K), α large.(5)

Clearly, RS is not unique and may be more or less complicated. In particular, its
continuity depends on the continuity of g. An alternative classical approach to exact
penalization consists in defining a (globally Lipschitz) penalty term depending only
on X0:

RS(x) = α dist (x,X0), α large.(6)

The regularity notion of calmness allows a connection between dist (x,X0) and S for
specific mappings S in problem (1)–(2); see, e.g., [13, 10, 6]. As a basic reference to
these penalization techniques of constrained optimization, we refer to the survey [7],
which also gives a historical overview including the basic early work (e.g., [15, 47, 13,
18, 20, 16]) devoted to this subject.

The main purpose of the present paper is to demonstrate how one and the same
simple construction of penalty terms (which are everywhere defined and globally Lip-
schitz) can be applied under different regularity conditions (locally upper Lipschitz,
pseudo-Lipschitz, calm) and for arbitrary constraint maps S, which may be defined
even discontinuously or via multifunctions.

The required regularity properties are defined and discussed in section 2. In
section 3, we show that under Robinson’s upper Lipschitz condition (L1) for S, there
is a special graph-distance function RS satisfying (4) and locally Lipschitz on X even
if S in (2) has been arbitrarily defined (see Lemmas 3.1, 3.2).

Moreover, for calm intersection maps Σ(y, z) = S(y) ∩ T (z) (which describe two
constraints), the maximum function max{RS , RT } at the place of RΣ satisfies (4)
again; i.e., x0 minimizes f(x)+max{RS , RT } whenever S−1 is pseudo-Lipschitz (The-
orem 3.5). The latter turns out to be a trivial condition for equations g(x) = y or
“inequalities” (3) if g is locally Lipschitz, since S−1(x) = {y ∈ Y | y ∈ g(x) −K} is
only a Lipschitzian translation of a fixed set. In addition, we demonstrate that this
pseudo-Lipschitz condition permits us to replace the mapping T by the fixed set T (z0)
for showing calmness of Σ.

In section 4, we illustrate some ideas for deriving dual optimality conditions from
Lipschitzian penalties.

Finally, we show in section 5 that (and how) RS can be constructed in the same
way under other Lipschitz assumptions, namely, for calm or pseudo-Lipschitz map-
pings S, though S does not necessarily satisfy the initial supposition (L1) in these
cases. For the construction in Theorem 5.1, we assign to S an appropriate submapping
Γ ⊂ S that is again upper Lipschitz and defines locally the same residuals RΓ = RS .
This construction is one reason why we allow X0 to be an arbitrary subset of S(y0)
in (2). Another reason is to emphasize the point that only the behavior of f and S
near X0 := S(y0) ∩ (x0 + εB) plays a role in characterizing a local minimizer x0 of f
on S(y0).
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To indicate that our penalties and the key interrelations do not depend on any
linear structure of the assigned spaces, we use metric spaces, although, of course, dual
conditions cannot be obtained in this general setting.

2. Preliminaries.

Lipschitz conditions for the constraint map. Let X and Y be metric spaces,
S : Y ⇒ X, and (y0, x0) ∈ gphS. Further, let ∅ �= X0 ⊂ S(y0). We write X0 +
εBX := {x | dist (x,X0) ≤ ε} with the usual point-to-set distance dist (x,X0) =
infx′∈X0 d(x, x′), based on the metric d of X. The expression y0 + εBY is defined
analogously.

In what follows, we need three Lipschitz properties of S. The map S is called
(L1) locally upper Lipschitz at (y0, X0) if there are positive constants L and ε such

that

S(y) ∩ (X0 + εBX) ⊂ X0 + Ld(y, y0)BX ∀y ∈ y0 + εBY ;(7)

(L2) pseudo-Lipschitz at (y0, x0) if there are positive constants L and ε such that

S(y) ∩ (x0 + εBX) ⊂ S(y′) + Ld(y, y′)BX ∀y, y′ ∈ y0 + εBY ;(8)

(L3) calm at (y0, x0) if there are positive constants L and ε such that

S(y) ∩ (x0 + εBX) ⊂ S(y0) + Ld(y, y0)BX ∀y ∈ y0 + εBY .(9)

In every case we call L a rank of the related Lipschitz property.
If S is a function, then (L2) simply claims the Lipschitz continuity of S on some

neighborhood of y0. Trivially, if x0 ∈ X0, then (L1) implies (L3) since X0 ⊂ S(y0).
Further, with y′ = y0, condition (L2) implies (L3). However, the implications
(L2) ⇒ (L1), (L3) ⇒ (L1), and (L3) ⇒ (L2) are not valid in general (cf. Exam-
ples 1, 2 below).

Property (L1) has been taken from Robinson [38]. There, X0 coincided with
S(y0) or with some closed, connected component of S(y0). In fact, these are the
most important situations for applications of (L1). Nevertheless, we allow X0 to
be an arbitrary subset of S(y0), in view of our construction of the mapping Γ in
Theorem 5.1 below; see the remark at the end of the introductory section.

For X0 = {x0}, (L1) was called locally upper Lipschitz property at (y0, x0) in
[14]. In this case, x0 is necessarily isolated in S(y0).

Property (L2) (also called the Aubin property in various papers) is a basic stability
condition (cf., e.g., [1, 43]), and the calmness property (L3) has been applied and
investigated, e.g., in [10, 42, 6, 7, 43], for deriving optimality conditions.

It is a consequence of Theorem 5.1 below that calmness can be used in a way
similar to the upper Lipschitz property (L1) for the definition of exact penalties. An
interesting recent calmness condition for multifunctions can be found in [19]. It uses
a so-called semismoothness property [30] and can be applied to the models in [34] and
many models in [28].

It is well known from Robinson’s [36] work that a finite-dimensional constraint
map

S(y, z) = {x | g(x) ≤ y, h(x) = z},(10)

with (g, h) ∈ C1(Rn,Rm+k), is pseudo-Lipschitz at (y0, z0, x0) iff the Mangasarian–
Fromovitz condition (MFCQ) [29] is satisfied:

(MFCQ)
Dh(x0) has full rank and there is some u such that
Dh(x0)u = 0 and g(x0) +Dg(x0)u < y0.
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In the setting (3) with closed convex set K and continuously Fréchet differentiable
function g, the pseudo-Lipschitz property of S is characterized by Robinson’s con-
straint qualification; see, e.g., [37, 11] for details.

Example 1 (pseudo-Lipschitz but not locally upper Lipschitz). Let s(y) = 1 +√|y| and S(y) be the interval [−s(y), s(y)] for real y.
Then, if ∅ �= X0 ⊂ S(0), the mapping S is not locally upper Lipschitz at (0, X0)

because, for each set U = X0 + εB (for some fixed ε > 0) and any L > 0, one finds
points x(y) ∈ S(y) ∩ U such that dist (x(y), X0) > L|y| and |y| < 1/L. Further, S
is not calm at the point (0, 1). On the other hand, S is pseudo-Lipschitz (hence also
calm) at each point (0, x0), x0 ∈ intS(0).

Example 2 (the inverse of Dirichlet’s function). For the real function

h(x) = 0 if x is rational, h(x) = 1 otherwise,

the inverse multifunction h−1 is calm at (y0, x0) = (0, 0) and locally upper Lipschitz
at (0, h−1(0)) since clh−1(0) = R. The mapping S(y) = {x | h(x) ≥ y} is even
pseudo-Lipschitz at (0, 0), since h(x) = 1 ≥ y holds for all irrational x and all y
near 0.

The latter example indicates that the usual construction of penalties for calm
equations, P (x) = f(x)+α‖h(x)‖, may lead to terrible auxiliary functions P , whereas
our subsequent definition of P via (13) always generates a locally Lipschitz function.

3. Characterizing the upper Lipschitz property by functions. As in sec-
tion 2, let X,Y be metric spaces, S : Y ⇒ X, y0 ∈ Y , and ∅ �= X0 ⊂ S(y0). Further,
let p : X → R. We call p Lipschitzian increasing near X0 if p ≡ 0 on X0 and there
are constants c > 0, δ > 0 such that

p(x) ≥ cdist (x,X0) whenever dist (x,X0) < δ.(11)

3.1. Describing functions. We say that p is a describing function for S near
(y0, X0), briefly p � S(y0, X0), if the statement

S is locally upper Lipschitz at (y0, X0)
⇔ p is Lipschitzian increasing near X0

holds true.
Notice that this definition tacitly assumes that a describing function is defined

in terms of the multifunction S or its describing data. For example, let h : X → Y
be any function and S = h−1. Then one easily sees that p(x) = d(h(x), y0) fulfills
p � S(y0, X0) for each fixed pair y0 and ∅ �= X0 ⊂ S(y0). On the other hand, for any
real C1 function h, the function p(x) = d(h(x), y0)2 increases too slowly near X0 and
does not satisfy p � S(y0, X0).

Generally, for getting p � S(y0, X0), the function p must be assigned to the map S
near (y0, X0) in some reasonable way. However, if we already know that p � S(y0, X0)
holds true, then checking the locally upper Lipschitz property at (y0, X0) is reduced
to the often simpler question of whether the function p is Lipschitzian increasing
near X0.

In addition, property (L1) for feasible-set maps S now allows the derivation of
optimality conditions for constrained minimization in terms of free local minimizers
of an auxiliary function involving p. This is stated in the next lemma, which applies
basically the same arguments as the related propositions in [10, 6] and many other
papers for calm constraints and is a consequence of the following basic argument: If
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x0 locally minimizes a locally Lipschitz function f on X0, then x0 locally minimizes
the function f(x) + kdist (x,X0) on X for sufficiently large k. Hence, for p satisfying
p(x0) = 0 and (11), x0 is also a (free) local minimizer of

P (x) := f(x) + αp(x)(12)

if α ≥ k/c.
We shall prove the following lemma only for completeness and in order to demon-

strate that additional assumptions like the closeness or compactness of X0, which we
cannot guarantee for our application in Theorem 5.1 below, are indeed not needed in
this context.

Lemma 3.1 (local minima under upper Lipschitzian constraints). Let S be locally
upper Lipschitz at (y0, X0) with rank L, and let f : X → R be Lipschitz near x0 with
rank K. Further, let x0 be a local minimizer of f on X0 and p � S(y0, X0). Then x0

is a local minimizer of P in (12) whenever α > Kc−1 with c from (11).
Proof. Let µ > 0 and U = X0 + εBX be the set in (7). Given x ∈ U , select some

πx ∈ X0 with

d(x, πx) ≤ dist (x,X0) + µ.

Then, d(x, πx) ≤ d(x, x0) + µ. For d(x, x0) < δ and small δ and µ, we know that
d(πx, x

0) ≤ d(πx, x)+d(x, x0) is small enough to apply the Lipschitz estimate f(x) ≥
f(πx)−Kd(x, πx) and f(πx) ≥ f(x0). Further, since p � S(y0, X0), we have −p(x) ≤
−c dist (x,X0). Therefore,

f(x) ≥ f(πx)−Kd(x, πx)

≥ f(x0)−Kd(x, πx)

≥ f(x0)−K [dist (x,X0) + µ]

≥ f(x0)−K c−1p(x)−Kµ.

After passing to the limit µ ↓ 0, we obtain the assertion since

P (x) ≥ f(x) + αp(x) ≥ P (x0) = f(x0) if α > Kc−1.

Having the penalization (12) in mind, the structure and continuity of possible
“candidates” p are interesting issues. Often, a describing function can be defined
quite naturally.

For instance, given the usual system of equations and inequalities (10), with
(y0, z0) = (0, 0) and X0 = S(0, 0), one may set

p(x) = ‖h(x)‖+max
i
{0, gi(x)}.

As long as h and g are locally Lipschitz, then so is p, and one obtains a locally
Lipschitz penalty term RS(x) = α p(x).

However, if h and g are not locally Lipschitz or if S is an arbitrary multifunction,
the construction of a locally Lipschitz function p � S(y0, X0) is desirable (for analyt-
ical reasons) and less obvious. For S, y0 and X0 = S(y0) from Example 2, one easily
finds two describing functions, namely, p1(x) = h(x) and p2(x) ≡ 0.

By the next basic lemma, there is always a describing Lipschitz function p, glob-
ally defined with rank 1 and not depending on X0. We assume that the metric in
product spaces Y ×X is defined as

d((y, x), (y′, x′)) = max{dY (y, y′), dX(x, x
′)}.
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Lemma 3.2 (describing Lipschitz function). Given any multifunction

S : Y ⇒ X and ∅ �= X0 ⊂ S(y0),

the distance function

pS(x) = dist ((y0, x), gphS) (≤ dist (x,X0))(13)

satisfies pS � S(y0, X0). Thus S is locally upper Lipschitz at (y0, X0) iff pS is
Lipschitzian increasing near X0.

Proof. For simplicity, we write d(·, ·) both for dX(·, ·) and dY (·, ·). Evidently, pS
vanishes on X0. Let pS be Lipschitzian increasing near X0. Then S is locally upper
Lipschitz with rank L = c−1, since, for dist (x,X0) < δ,

x ∈ S(y)⇒ c d(x,X0) ≤ pS(x) ≤ d((y0, x), (y, x)) = d(y0, y).

Conversely, suppose pS is not Lipschitzian increasing near X0. Then for each ε > 0
there is some x such that

dist (x,X0) < ε and dist ((y0, x), gphS) = pS(x) < εdist (x,X0).

Select any (yt, xt) ∈ gphS with

d((y0, x), (yt, xt)) = max{d(x, xt), d(y0, yt)} < t := ε dist (x,X0).

Then,

ε+ t > dist (xt, X
0) ≥ dist (x,X0)− t = (1− ε) dist (x,X0)

and d(y0, yt) < εdist (x,X0).

Thus, both

dist (xt, X
0) < ε+ t and

d(y0, yt)

dist (xt, X0)
<

ε

(1− ε)

vanish (as ε ↓ 0); thus S is not locally upper Lipschitz at (y0, X0).
It is trivial but useful to note that functions p � S(y0, X0) may be replaced, in

Lemma 3.1, by any function p+ satisfying p+ ≥ p and p+(x0) = 0. Applying the
function p = pS of Lemma 3.2, the new objective P turns out to be even locally
Lipschitz.

3.2. More examples of describing functions. The distance function pS of
(13) will play a crucial role in the remainder of this paper. Before we proceed, however,
we provide further examples of useful describing functions in this section.

3.2.1. Cone constraints. Let Y be a linear normed space, X be a metric space,
g : X → Y , K ⊂ Y be a convex cone, η ∈ intK\{0}, and S(y) = {x ∈ X | g(x) ∈
y +K}.

Lemma 3.3 (cone constraints). Let ∅ �= X0 ⊂ S(0) and Xr = X0 + rB. Then,
if g is Lipschitz on Xβ for some β > 0, the function

p(x) = inf{λ > 0 | g(x) + λη ∈ K}(14)

satisfies

c1 pS(x) ≤ p(x) ≤ c2 pS(x) ∀x ∈ Xr(15)
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for certain constants 0 < c1 ≤ c2 and r = β/3. Hence p � S(0, X0).
Proof. Let Lg be some Lipschitz rank of g on Xβ and η + αBY ⊂ K, α > 0.

Then, one obtains, for all λ > 0 and x ∈ Xβ ,

λη + g(x) ∈ K if ‖g(x)‖ ≤ λα.

Hence p(x) ≤ α−1‖g(x)‖ and

pS(x) = dist ((0Y , x), gphS)

≤ inf
λ>p(x)

dist ((0Y , x), (λη, x))

= p(x)‖η‖.
(16)

Next, fix any r ∈ (0, 1
2β). We verify

p(x) ≤ (1 + Lg)α
−1pS(x) ∀x ∈ Xr.(17)

Since (0Y , X0) ⊂ gphS, the inequality pS(x) ≤ dist (x,X0) ≤ r < 1
2β holds. Thus

one finds some ε satisfying pS(x) < ε < 1
2β as well as some (y′, x′) such that

g(x′) ∈ y′ +K, ‖y′‖ < ε, and d(x′, x) < ε.

From g(x′)− y′ ∈ K we conclude (by adding points of a convex cone) that

g(x′)− y′ + λη + λαBY ⊂ K ∀λ > 0.

Therefore, the inclusion

g(x) + λη ∈ K(18)

holds whenever

g(x) ∈ g(x′)− y′ + λαBY .

Because of ‖y′‖ < ε, the latter can be guaranteed by ‖g(x)− g(x′)‖+ ε ≤ λα. Now,
by the choice of r, x and x′ belong to Xβ and satisfy ‖g(x) − g(x′)‖ ≤ Lgε; hence
(18) is ensured whenever (Lg + 1)ε ≤ λα. Considering inf λ, this yields

p(x) ≤ α−1(1 + Lg)pS(x) via ε→ pS(x).

The assertion now follows from (16), (17), and Lemma 3.2.
Notice that we did not need to require that the convex cone K be closed. Also,

if X is a linear normed space and g is linear and continuous, then one easily shows
that p is convex. In addition, p is bounded on some neighborhood of x ∈ intXr due
to (15). So it is also locally Lipschitz on intXr. Needless to say, p is simpler than pS
from a computational point of view.

For Y = R
m, K = {y ∈ Y | yi ≤ 0 ∀i}, and η = −(1, . . . , 1), one obtains the

usual penalty term p(x) = maxi{0, gi(x)}.
If Y is the space of real, symmetric (n, n) matrices, K ⊂ Y the cone of all positive

semidefinite symmetric (n, n) matrices, and η = E, one has p(x) = inf{λ > 0 |
g(x) + λE ∈ K}. Thus −p(x) is the smallest eigenvalue of g(x), provided that
g(x) /∈ K.
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3.2.2. Cone constraints and equations. Let

Σ(y, z) = S(y) ∩ T (z),

where S satisfies the assumptions of Lemma 3.3, h : X → Z sends X into a linear
normed space Z, T (z) = h−1(z), and ∅ �= X0 ⊂ Σ(0Y×Z).

If we write Σ as a cone constraint with the cone K ′ = (K, {0Z}) in the product
space, the interior of K ′ is empty and Lemma 3.3 cannot be applied. In addition, the
describing distance function pΣ according to Lemma 3.2 satisfies only

pΣ(x) = inf
(y′,z′,x′)∈ gph Σ

max{d((0Y , x), (y′, x′)), d((0Z , x), (z
′, x′))}

≥ max
{

inf
(y′,x′)∈ gphS

d((0Y , x), (y′, x′)), inf
(z′′,x′′)∈ gphT

d((0Z , x), (z
′′, x′′))

}
= max{pS(x), pT (x)}.

Thus we know, by the previous statements, only that the maximum function

q(x) = max{pS(x), pT (x)}, T = h−1,(19)

fulfills

pΣ(x) ≥ q(x),(20)

and that q is Lipschitzian increasing near X0 iff so is

Q(x) = max{p(x), ‖h(x)‖}, p from Lemma 3.3.

However, due to the gap between pΣ(x) and q(x), the function pΣ may Lipschitzian
increase near X0 while q does not. (Then S and h−1 violate (L1), but Σ does not.)
In this situation, q and Q are not describing functions for Σ.

On the other hand, the maximum q turns out to be a describing function under
all classical regularity assumptions that ensure, as in the subsequent lemma, that Σ
is pseudo-Lipschitzian (or only calm) at (0Y , 0Z , x

0).
Lemma 3.4 (the max-form under calmness). Suppose that X,Y, Z are Ba-

nach spaces, g, h ∈ C1, Dh(x0)X = Z, some u satisfies Dh(x0)u = 0 and g(x0) +
Dg(x0)u ∈ intK, and x0 ∈ X0 ⊂ Σ(0Y , 0Z). Moreover, let X0 be contained in a
sufficiently small (by diameter) neighborhood Ω of x0. Then, q in (19) is a describing
function for Σ near (0Y , 0Z , X

0).
Proof. Our suppositions are nothing but well-known regularity conditions for

optimization problems in Banach spaces (cf. [37, 36, 48]), which ensure that the map Σ
is pseudo-Lipschitz at (0Y , 0Z , x

0); for the pseudo-Lipschitz property of more general
intersection maps, we refer to [26]. Thus the lemma will follow from our Theorem 3.5
below because T−1 = h is locally Lipschitz.

3.2.3. Arbitrary intersections. More generally, let X,Y, Z be metric spaces,
S : Y ⇒ X, T : Z ⇒ X, and Σ(y, z) = S(y) ∩ T (z).

Theorem 3.5 (the max-form for intersections). Let x0 ∈ X0 ⊂ Σ(y0, z0), Σ be
calm at (y0, z0, x0), and T−1 be pseudo-Lipschitz at (x0, z0). Moreover, suppose that
X0 is contained in a sufficiently small (by diameter) neighborhood Ω of x0. Then,
the function

q(x) = max{pS(x), pT (x)}(21)
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fulfills q � Σ(y0, z0, X0).
Proof. The inequality (20) follows as above without any assumptions. We estimate

q in the opposite direction. First notice that q is Lipschitz, so q(x) ↓ 0 as x → x0.
Consequently, for sufficiently small neighborhoods Ω we find arbitrarily small δ > q(x).
Now, for x near X0 ⊂ Ω and (small) δ > q(x), there are (by definition of pS and pT )
points (y′, x′) ∈ gphS and (z′′, x′′) ∈ gphT such that

max{d(x′, x), d(y′, y0)} < δ and max{d(x′′, x), d(z′′, z0)} < δ.(22)

Next we apply that T−1 is pseudo-Lipschitz at (x0, z0), say with rank K. Since
z′′ ∈ T−1(x′′), there exists, for small δ and Ω, some z′ ∈ T−1(x′) satisfying

d(z′, z′′) ≤ Kd(x′′, x′) ≤ 2Kδ.(23)

We thus obtain (y′, z′, x′) ∈ gphΣ and

d((y′, z′, x′), (y0, z0, x0)) ≤ max{δ, δ + 2Kδ, δ + d(x, x0)}.
Therefore, since (y′, z′, x′) is close to (y0, z0, x0), we may use the calmness of Σ, say
with rank L at (y0, z0, x0). By (22) and (23), this ensures the existence of some
ξ ∈ Σ(y0, z0) such that

d(ξ, x′) ≤ Lmax{d(y′, y0), d(z′, z0)} ≤ L(1 + 2K)δ.

Finally, pΣ(x) ≤ d(ξ, x) implies the upper estimate

pΣ(x) ≤ d(ξ, x) ≤ d(ξ, x′) + d(x′, x) ≤ L(1 + 2K)δ + δ

and yields (as δ ↓ q(x)) pΣ(x) ≤ (L(1+2K)+1) q(x). Recalling (20) and Lemma 3.2,
the latter tells us that q is a describing function for Σ near (y0, z0, X0) because so
is pΣ.

Notice that neither Lemma 3.4 nor Theorem 3.5 asserts the upper Lipschitz prop-
erty of Σ at (y0, z0, X0), itself. The relation between the upper and pseudo-Lipschitz
properties as well as calmness will be investigated under Theorem 5.1. Next, we in-
spect the hypothesis that Σ is calm in the previous theorem and reduce the calmness
of the intersection of two mappings to the intersection of one mapping with a constant
set (a new space X) only.

Theorem 3.6 (calm intersections). Let S be calm at (y0, x0), T be calm at
(z0, x0), and T−1 be pseudo-Lipschitz at (x0, z0). Moreover, let H(z) = T (z)∩ S(y0)
be calm at (z0, x0). Then Σ(y, z) = S(y) ∩ T (z) is calm at (y0, z0, x0).

Proof. Let (y, z, x) ∈ gphΣ be close to (y0, z0, x0). Since S and T are calm (say,
with rank L), there are x′ ∈ S(y0) and x′′ ∈ T (z0) such that

max{d(x, x′), d(x, x′′)} ≤ Lmax{d(y, y0), d(z, z0)}.
Since T−1 is pseudo-Lipschitz (rank K), z0 ∈ T−1(x′′), and x′, x′′ are close to x0, we
find z′ such that

z′ ∈ T−1(x′) and d(z′, z0) ≤ Kd(x′, x′′).

Next observe that x′ ∈ H(z′). Therefore, there also exists some ξ ∈ H(z0) satisfying

d(ξ, x′) ≤ LH d(z′, z0).
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Using these inequalities, we directly obtain the required Lipschitz estimate

d(x, ξ) ≤ d(x, x′) + d(x′, ξ)
≤ Lmax{d(y, y0), d(z, z0)}+ LH d(z′, z0)

≤ Lmax{d(y, y0), d(z, z0)}+ LH K d(x′, x′′)
≤ Lmax{d(y, y0), d(z, z0)}+ 2LH K L max{d(y, y0), d(z, z0)}.

3.2.4. Fixed set-constraints. Assume that

Σ(y) = S(y) ∩M and M is a fixed, closed subset of X.

Clearly, then, one may study S on the new metric space X := M , which leads us to
a new function pS . Nevertheless, let us also regard two usual descriptions of x ∈ M
via functions from the viewpoint of the pseudo-Lipschitz assumption for T−1 in the
theorem.

(a) If h(x) = dist (x,M), Z = R
+, z0 = 0, and T = h−1, the mapping T−1 = h

is pseudo-Lipschitz and pT (x) = inf{max{z′, d(x′, x)} | dist (x′,M) = z′}. If
S is already calm (w.r.t. the space X), then Theorem 3.6 allows us to study,
instead of S(y) ∩ T (z), the calmness of the mapping

H(z) = S(y0) ∩ T (z) = S(y0) ∩ h−1(z).

If H is calm at (0, x0), then so is S ∩ T at (y0, 0, x0); hence the original map
Σ(y) = S(y)∩M at (y0, x0) is also calm. This way, one may replace (for the
calmness investigation) the fixed set M by S(y0), and the mapping S by h−1.

(b) If h(x) = 0 for x ∈ M , h(x) = 1 otherwise, and Z, z0, and T are as above,
the function T−1 = h is discontinuous and it holds that pT (x) = dist (x,M)
for dist (x,M) < 1. The theorem cannot be applied. Indeed, for small z > 0,
we would obtain the trivial constant map

H(z) = S(y0) ∩ T (z) = ∅,

which tells us nothing about Σ.

4. Dual optimality conditions. Provided that X and Y are linear normed
spaces, now all necessary optimality conditions for free local minimizers x0 of P =
f +αp in (12) induce necessary conditions for the originally constrained problem (1).
In particular, if directional derivatives P ′(x0;u) of P at x0 in direction u exist, then

P ′(x0;u) ≥ 0 ∀u ∈ X(24)

must hold. On the other hand,

0 ∈ ∂gP (x0)(25)

holds for every (generalized) subdifferential ∂g of P at x0, at least after restricting
f, p to the set Xε = x0 + εB, ε > 0 sufficiently small.

Let us mention only two basic approaches for obtaining dual conditions in terms
of f and p. Various other approaches and more involved results can be found in
[39, 17, 40, 21, 27, 46, 20, 3, 25, 41, 2, 4, 35, 10, 45, 31, 8, 44, 5]; for some unification
of several approaches, we refer again to [7].
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4.1. Dual conditions via directional derivatives. If f and p are directionally
differentiable, then (f + αp)′(x0;u) = f ′(x0;u) + αp′(x0;u); hence also

(f + αp)′(x0;u) ≤ f ′(x0;u) + αp′(x0;u),(26)

which is the crucial requirement when the directional derivatives are generalized. Now,
(26) and (24) yield a condition for the sum

inf
u

(f ′(x0;u) + αp′(x0;u)) ≥ 0.(27)

Let, in addition, the directional derivatives be continuous and sublinear in u (which
is evident for locally Lipschitz convex functions).

Then, applying the Hahn–Banach theorem (see, e.g., [22]) to the sublinear func-
tion

Q(u, v) := f ′(x0;u) + αp′(x0, v) in the product space Π = X ×X,

the supporting functional L0(u, v) = 0 of Q on the subspace Π0 = {(u, v) | u = v}
can be extended to an additive and homogeneous functional L(u, v) = L1(u) + L2(v)
on Π that supports Q everywhere. Thus,

L1(u) + L2(u) = 0 and Q(u, v) ≥ L1(u) + L2(v)

hold for all u, v ∈ X. The latter implies (since Q is continuous by assumption) that
L1, L2 are bounded, and

inf
u

(f ′(x0;u)− L1(u)) + inf
v

(αp′(x0, v)− L2(v)) ≥ 0.

Thus one obtains the existence of some x∗ = L1 ∈ X∗ satisfying the (conjugate
duality) inequality

inf
u

(f ′(x0;u)− x∗(u)) + inf
u

(x∗(u) + αp′(x0;u)) ≥ 0.

Since the involved directional derivatives are positively homogeneous, the infima
are zero, and x∗ belongs (by definition) just to the usual, convex subdifferential
∂f ′(x0; ·)(0). Similarly, one obtains −x∗ ∈ ∂(αp′)(x0; ·)(0).

In other words, after defining a new subdifferential ∂n for the nonconvex function
f at x0 as

∂nf(x
0) = ∂f ′(x0; ·)(0)(28)

(and applying it to αp, too), some x∗ ∈ X∗ satisfies the inclusions

x∗ ∈ ∂nf(x
0) and −x∗ ∈ ∂n(αp)(x

0) = α∂np(x
0),

which is the generalized Lagrange condition

0 ∈ ∂nf(x
0) + α∂np(x

0),(29)

or simply Df(x0) + αDp(x0) = 0 for Fréchet differentiable functions.
Recalling the form of q in Theorem 3.5, one sees that directional derivatives of

maximum functions play a crucial role in this context. Further, one observes that
several concepts of directional derivatives f ′ may be applied to derive (29) for the
subdifferential (28) in the above way, provided that
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(i) condition (27) remains valid for local minimizers x0 of P , and
(ii) the existence of directional derivatives as well as sublinearity and continuity

w.r.t. the directions u can be guaranteed.

For locally Lipschitz functions f : X → R on linear normed spacesX, these hypotheses
are satisfied by Clarke’s directional derivatives

fc(x0;u) = lim sup
x→x0, t↓0

t−1[f(x+ tu)− f(x)]

and his subdifferential ∂cf(x
0), which coincides with ∂nf(x

0) after identifying f ′ and
fc; cf. [10]. For X = R

n, the equation ∂cf(x
0) = ∂f(x0) in terms of generalized

Jacobians ∂f(x0) (cf. [9]) increases the analytical tools for computing the derivatives
in question.

4.2. Dual conditions via generalized subdifferentials. Without applying
directional derivatives, one may use that (25) holds true for the minimizer x0 and
some generalized subdifferentials ∂g. Then, provided that a chain rule

∂g(f + αp)(x0) ⊂ ∂gf(x
0) + ∂g(αp)(x

0)(30)

is valid, one directly obtains (29) w.r.t. the subdifferential under consideration. We
refer the reader who is interested in recent results on inclusion (30) for particular
subdifferentials to [12, 32, 23, 33, 24]. For the related theory (mainly of certain
limiting Fréchet subdifferentials), the Lipschitz property of f and p as well as the fact
that X is an Asplund space play an important role.

However, the calculus becomes simpler if we may start with inequality

f(x) + αp(x) ≥ f(x0) + αp(x0) (x near x0)

instead of (25), since now

α(p(x)− p(x0)) ≥ −(f(x)− f(x0)) (x near x0)

directly shows that x∗ ∈ ∂g(−f)(x0) yields x∗ ∈ α∂gp(x
0) for all subdifferentials ∂g.

5. Relations between regularity conditions. Having only calmness (or the
pseudo-Lipschitz property) of S at (y0, x0), our Example 1 indicates that the local
upper Lipschitz condition at (y0, X0) may fail to hold even if X0 is replaced by
X0 ∩ (x0 + εB), which would be enough to see that x0 minimizes P locally. So the
optimality condition of Lemma 3.1 (which is, in fact, true) needs another proof.

For this reason, we establish a general connection between calm, upper Lipschitz,
and pseudo-Lipschitz maps S by verifying that, supposing calmness (L3) at (y0, x0),
there exists a submapping Γ of S that satisfies (L1) at (y0,Γ(y0)) and (in addition)

x0 ∈ S(y0) ∩ (x0 + 1
2
εB) ⊂ Γ(y0). This submapping, defined as the intersection of

S(y) with (open) balls of different radii, will replace S in Lemma 3.1 in such a way
that pS = pΓ still holds on some neighborhood of x0.

Theorem 5.1 (selection maps and optimality condition). Let S : Y ⇒ X be
calm at (y0, x0) with rank L and constant ε. Then, the submapping

Γ(y) = S(y) ∩ {x | d(x, x0) < ε− Ld(y, y0)}
has the following properties:

(i) Γ is locally upper Lipschitz at (y0,Γ(y0)) with rank L and also constant ε;
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(ii) the functions

pS(x) = dist ((y0, x), gphS) and pΓ(x) = dist ((y0, x), gphΓ)

coincide for x near x0;
(iii) if f : X → R is locally Lipschitz and x0 (locally) minimizes f on S(y0),

then x0 is a free local minimizer of P (x) := f(x) + αpS(x) whenever α is
sufficiently large.

Proof. We set U = x0 + εBX , V = y0 + εBY .
(i) Let x ∈ Γ(y), y ∈ V . Then we have d(x, x0) < ε − Ld(y, y0), and, due to the

calmness of S, there exists x′ ∈ S(y0) with d(x′, x) ≤ Ld(y, y0). Moreover, since

d(x′, x0) ≤ d(x′, x) + d(x, x0) < Ld(y, y0) + (ε− Ld(y, y0)) = ε,

we obtain x′ ∈ Γ(y0). Thus dist (x,Γ(y0)) ≤ Ld(y, y0).
(ii) Clearly, pS(x

0) = pΓ(x
0) is evident, and pS ≤ pΓ follows from gphΓ ⊂ gphS.

To verify pΓ(x) ≤ pS(x) for x near x0, we consider any x ∈ U such that x �= x0 and

(3 + 2L) d(x, x0) < ε.(31)

Let (y′, x′) ∈ gphS realize the distance pS(x) up to an error λd(x, x0), 0 < λ < 1.
We show that (y′, x′) ∈ gphΓ. Indeed, since (y0,Γ(y0)) ⊂ gphS, we obtain

max{d(x′, x), d(y′, y0)} ≤ pS(x) + λd(x, x0)

≤ dist (x,Γ(y0)) + λd(x, x0)

≤ (1 + λ)d(x, x0)

< 2d(x, x0).

Thus, the inequalities

d(x′, x0) ≤ d(x′, x) + d(x, x0) < 3d(x, x0) and d(y′, y0) < 2d(x, x0)

hold. From (31), we further have 3d(x, x0) < ε − 2Ld(x, x0). Therefore, we can
estimate

d(x′, x0) < 3d(x, x0) < ε− 2Ld(x, x0) ≤ ε− Ld(y′, y0)

in order to obtain that (y′, x′) ∈ gphS also belongs to gphΓ. The latter yields, by
the choice of (y′, x′),

pΓ(x) ≤ pS(x) + λd(x, x0)

as well as pΓ(x) ≤ pS(x) via λ ↓ 0. Summarizing, pΓ(x) = pS(x) holds for all x
satisfying (31).

(iii) For sufficiently small δ > 0, x0 minimizes f on Γ(y0) = S(y0) ∩ (x0 + δB).
Decreasing ε if necessary, we have 0 < ε < δ, and (i) ensures that Γ is locally
upper Lipschitz. Thus x0 is, by Lemma 3.2 and Lemma 3.1, a local minimizer of
P (x) := f(x) + αpΓ(x). The assertion thus follows from (ii).

In the theorem, calmness and the pseudo-Lipschitz property of S may replace
each other, and the form of the function P (by applying pS) remains the same under
each of the Lipschitz conditions (L1), (L2), and (L3). Once again, we emphasize
that P is locally Lipschitz on X without any hypothesis concerning the metric spaces
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X and Y or the structure of S. For linear normed spaces and convex sets gphS, one
easily sees that pS is convex, too.

Finally, we note that the definition of Γ(y) via intersection with the open balls

B0(x0, ε− Ld(y, y0)) = {x | d(x, x0) < ε− Ld(y, y0)}
preserves the properties of lower semicontinuity of S; in contrast, the intersection with
closed balls

B(x0, ε− Ld(y, y0)) = {x | d(x, x0) ≤ ε− Ld(y, y0)}
does not (although the theorem remains true by the same arguments). However, if we
define Γ(y) as the intersection of S(y) with the fixed open ball B0(x0, ε), the theorem
fails to hold.

Example 3 (intersection with B0(x0, ε)). Take the mapping S : R
2 ⇒ R

2 defined

as S(y) = {x | ‖x − y‖ ≥ 1
2
‖y‖} with maximum norm, and set y0 = (0, 2

3ε) and

x0 = (0, 0) ∈ S(y0). Notice that S is pseudo-Lipschitz at (y0, x0), with rank L = 1
and constant ε. Next define Γ(y) = S(y) ∩ B0(x0, ε). Then, the point x′ = (0, ε)
has distance 0 < d ≤ ε to the set Γ(y0). On the other hand, x′ ∈ Γ(y(t)) for all
y(t) = y0 − t(0, 1), t > 0. Thus, we observe that Γ is not locally upper Lipschitz
(with rank L and constant ε) at (y0,Γ(y0)), since x′ ∈ Γ(y(t)) ∩ (Γ(y0) + εB) and
x′ �∈ Γ(y0) + Ld(y(t), y0)B for sufficiently small t > 0.

Acknowledgments. We are most grateful to the referees for their detailed and
constructive comments. Also, we would like to thank Stefan Scholtes for his editorial
help and many valuable suggestions.

REFERENCES

[1] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
[2] A. Ben-Israel, A. Ben-Tal, and S. Zlobec, Optimality in Nonlinear Programming: A Fea-

sible Direction Approach, Wiley, New York, 1981.
[3] A. Ben-Tal, Second-order and related extremality conditions in nonlinear programming, J.

Optim. Theory Appl., 31 (1980), pp. 143–165.
[4] A. Ben-Tal and J. Zowe, A unified theory of first and second order conditions for extremum

problems in topological vector spaces, Math. Program. Study, 19 (1982), pp. 39–76.
[5] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer,

New York, 2000.
[6] J. V. Burke, Calmness and exact penalization, SIAM J. Control Optim., 29 (1991), pp. 493–

497.
[7] J. V. Burke, An exact penalization viewpoint of constrained optimization, SIAM J. Control

Optim., 29 (1991), pp. 968–998.
[8] R. W. Chaney, Optimality conditions for piecewise C2 nonlinear programming, J. Optim.

Theory Appl., 61 (1989), pp. 179–202.
[9] F. H. Clarke, On the inverse function theorem, Pacific J. Math., 64 (1976), pp. 97–102.
[10] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[11] R. Cominetti, Metric regularity, tangent sets and second-order optimality conditions, Appl.

Math. Optim., 21 (1990), pp. 265–287.
[12] R. Deville and E. M. E. Haddad, The subdifferential of the sum of two functions in Banach

spaces. I. First order case, J. Convex Anal., 3 (1996), pp. 295–308.
[13] S. Dolecki and S. Rolewicz, Exact penalties for local minima, SIAM J. Control Optim., 17

(1979), pp. 596–606.
[14] A. Dontchev, Characterizations of Lipschitz stability in optimization, in Recent Developments

in Well-Posed Variational Problems, R. Lucchetti and J. Revalski, eds., Kluwer, Dordrecht,
The Netherlands, 1995, pp. 95–116.

[15] I. I. Eremin, The penalty method in convex programming, Soviet Math. Dokl., 8 (1966),
pp. 459–462.

[16] R. Fletcher, Practical Methods of Optimization, Vol. 2: Constrained Optimization, Wiley,
New York, 1981.



CONSTRAINED MINIMA AND LIPSCHITZIAN PENALTIES 633

[17] E. G. Golstein, Theory of Convex Programming, Transl. Math. Monogr. 36, AMS, Providence,
RI, 1972.

[18] S.-P. Han and O. L. Mangasarian, Exact penalty functions in nonlinear programming, Math.
Programming, 17 (1979), pp. 251–269.

[19] R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions, J.
Math. Anal. Appl., 258 (2001), pp. 110–130.

[20] A. D. Ioffe, Necessary and sufficient conditions for a local minimum. 3: Second order condi-
tions and augmented duality, SIAM J. Control Optim., 17 (1979), pp. 266–288.

[21] A. D. Ioffe and V. M. Tichomirov, Theory of Extremal Problems, Nauka, Moscow, 1974 (in
Russian).

[22] L. W. Kantorovich and G. P. Akilov, Funktionalanalysis in normierten Räumen, Akademie
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GLOBAL CONVERGENCE OF A TRUST-REGION SQP-FILTER
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Abstract. A trust-region SQP-filter algorithm of the type introduced by Fletcher and Leyffer
[Math. Program., 91 (2002), pp. 239–269] that decomposes the step into its normal and tangential
components allows for an approximate solution of the quadratic subproblem and incorporates the
safeguarding tests described in Fletcher, Leyffer, and Toint [On the Global Convergence of an SLP-
Filter Algorithm, Technical Report 98/13, Department of Mathematics, University of Namur, Namur,
Belgium, 1998; On the Global Convergence of a Filter-SQP Algorithm, Technical Report 00/15,
Department of Mathematics, University of Namur, Namur, Belgium, 2000] is considered. It is proved
that, under reasonable conditions and for every possible choice of the starting point, the sequence of
iterates has at least one first-order critical accumulation point.

Key words. nonlinear optimization, sequential quadratic programming, filter methods, conver-
gence theory
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1. Introduction. We analyze an algorithm for solving optimization problems
where a smooth objective function is to be minimized subject to smooth nonlinear
constraints. No convexity assumption is made. More formally, we consider the prob-
lem

minimize f(x)
subject to cE(x) = 0,

cI(x) ≥ 0,
(1.1)

where f is a twice continuously differentiable real valued function of the variables
x ∈ R

n and cE(x) and cI(x) are twice continuously differentiable functions from R
n

into R
m and from R

n into R
p, respectively. Let c(x)T = (cE(x)T cI(x)T ).

The class of algorithms that we discuss belongs to the class of trust-region methods
and, more specifically, to that of filter methods introduced by Fletcher and Leyffer [18],
in which the use of a penalty function, a common feature of the large majority of the
algorithms for constrained optimization, is replaced by the introduction of a so-called
filter.

A global convergence theory for an algorithm of this class is proposed by Fletcher,
Leyffer, and Toint in [19], in which the objective function is locally approximated by a
linear function, leading, at each iteration, to the (exact) solution of a linear program.
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This algorithm therefore mixes the use of the filter with sequential linear program-
ming (SLP). This approach was generalized by the same authors in [20], where the
objective function is approximated by a quadratic model, which results in a sequential
quadratic programming (SQP) technique in which each quadratic program must be
solved globally. In this paper, we again consider approximating the objective function
by a quadratic model, but, at variance with the latter reference, the method discussed
here does not require the global solution of the associated nonconvex quadratic pro-
gramming (QP) subproblem, which is known to be a theoretically difficult process—it
is known to be NP hard (see Murty and Kabadi [26]). The algorithm analyzed here
also has a different mechanism for deciding on the compatibility of this subproblem
and allows for an approximate subproblem solution.

2. A class of trust-region SQP-filter algorithms.

2.1. An approximate SQP framework. SQP methods are iterative. At a
given iterate xk, they implicitly apply Newton’s method to solve (a local version of)
the first-order necessary optimality conditions by solving the QP subproblem QP(xk)
given by

minimize fk + 〈gk, s〉+ 1
2 〈s,Hks〉

subject to cE(xk) +AE(xk)s = 0,
cI(xk) +AI(xk)s ≥ 0,

(2.1)

where fk = f(xk), gk = g(xk)
def
= ∇xf(xk), where AE(xk) and AI(xk) are the Ja-

cobians of the constraint functions cE and cI at xk, and where Hk is a symmetric
matrix. We will not immediately be concerned about how Hk is obtained, but we will
return to this point in section 3. Assuming that a suitable matrix Hk can be found,
the solution of QP(xk) then yields a step sk. If sk = 0, then xk is first-order critical
for problem (1.1).

Unfortunately, due to the locally convergent nature of Newton’s iteration, the
step sk may not always be very good. One possible way to cope with this difficulty
is to define an appropriate merit function whose value decreases with the goodness
of sk, which is where penalty functions typically play a role. A trust-region or a
linesearch method is then applied to minimize this merit function, ensuring global
convergence under reasonable assumptions. However, as one of our objectives is to
avoid penalty functions (and the need to update the associated penalty parameter),
we instead consider a trust-region approach that will not use any penalty function.1

In such an approach, the objective function of QP(xk) is intended to be only of local
interest; that is, we restrict the step sk in the norm to ensure that xk + sk remains in
a trust-region centered at xk. In other words, we replace QP(xk) by the subproblem
TRQP(xk,∆k) given by

minimize mk(xk + s)
subject to cE(xk) +AE(xk)s = 0,

cI(xk) +AI(xk)s ≥ 0,
and ‖s‖ ≤ ∆k

(2.2)

for some (positive) value of the trust-region radius ∆k, where we have defined

mk(xk + s) = fk + 〈gk, s〉+ 1

2
〈s,Hks〉(2.3)

1Recently, Wächter and Biegler [31] have proposed a linesearch variant of the ideas described in
this paper.
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and where ‖ · ‖ denotes the Euclidean norm. This latter choice is purely for ease
of exposition. We could equally use a family of iteration-dependent norms ‖ · ‖k, so
long as we require that all members of the family are uniformly equivalent to the
Euclidean norm. The interested reader may verify that all subsequent developments
can be adapted to this more general case by introducing the constants implied by this
uniform equivalence wherever needed.

Remarkably, most early SQP algorithms assume that an exact local solution of
QP(xk) or TRQP(xk,∆k) is found, although attempts have been made by Dembo
and Tulowitzki [8] and Murray and Prieto [25] to design conditions under which
an approximate solution of the subproblem is acceptable. We revisit this issue in
what follows, and start by noting that the step sk may be viewed as the sum of two
distinct components, a normal step nk, such that xk + nk satisfies the constraints
of TRQP(xk,∆k), and a tangential step tk, whose purpose is to obtain reduction of
the objective function’s model while continuing to satisfy those constraints. This
framework is therefore similar in spirit to the composite-step SQP methods pioneered
by Vardi [30], Byrd, Schnabel, and Shultz [5], and Omojokun [27], and later developed
by several authors, including Biegler, Nocedal, and Schmid [1], El-Alem [12, 13], Byrd,
Gilbert, and Nocedal [3], Byrd, Hribar, and Nocedal [4], Bielschowsky and Gomes [2],
Liu and Yuan [23], and Lalee, Nocedal, and Plantenga [22]. More formally, we write

sk = nk + tk(2.4)

and assume that

cE(xk) +AE(xk)nk = 0, cI(xk) +AI(xk)nk ≥ 0,(2.5)

‖sk‖ ≤ ∆k,(2.6)

and

cE(xk) +AE(xk)sk = 0, cI(xk) +AI(xk)sk ≥ 0.(2.7)

Of course, this is a strong assumption, since in particular (2.5) or (2.6)/(2.7) may not
have a solution. We shall return to this possibility shortly. Given our assumption,
there are many ways to compute nk and tk. For instance, we could compute nk from

nk = Pk[xk]− xk,(2.8)

where Pk is the orthogonal projector onto the feasible set of QP(xk). In what follows,
we do not make any specific choice for nk, but we shall make the assumptions that
nk exists when the maximum violation of the nonlinear constraints at the kth iterate

θk
def
= θ(xk), where

θ(x) = max

[
0,max

i∈E
|ci(x)|,max

i∈I
−ci(x)

]
(2.9)

is sufficiently small, and that nk is then reasonably scaled with respect to the values
of the constraints. In other words, we assume that

nk exists and ‖nk‖ ≤ κuscθk whenever θk ≤ δn(2.10)

for some constants κusc > 0 and δn > 0. This assumption is also used by Dennis,
El-Alem, and Maciel [9] and Dennis and Vicente [11] in the context of problems only
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involving equality constraints. We can interpret it in terms of the constraint functions
themselves and the geometry of the boundary of the feasible set. For instance, if we
define the linearized feasible set at x by

L(x) def
= {v ∈ R

n | cE(x) +AE(x)(v − x) = 0, cI(x) +AI(x)(v − x) ≥ 0}

and assume that, at every limit point x∗ of the sequence of iterates, the relative
interior of the linearized constraints ri{L(x∗)} is nonempty and that the active set
settles, in that A(xki) = A(x∗) for sufficiently large ki with limi xki = x∗, we know,
by applying a continuity argument, that the feasible set of QP(xk) is nonempty for
such a k, which implies that Pk is well defined and that a normal step nk of the form
(2.8) exists. Furthermore, if the singular values of the Jacobian of constraints active
at x∗, AA(x∗)(x∗), are nonzero, those of AA(x∗)(xk) must be bounded away from zero
by continuity in a neighborhood of x∗. Since only the constraints active at x∗ can be
active in a sufficiently small neighborhood of this limit point, this in turn guarantees
that (2.10) holds for the normal step

−ATA(x∗)(xk)
[
AA(x∗)(xk)A

T
A(x∗)(xk)

]−1
cA(x∗)(xk)

for all k sufficiently large, provided that the sequence of iterates remains bounded,
because this latter assumption ensures that xk must be arbitrarily close to a least one
limit point of the sequence {xk} for such k. Thus we see that (2.10) does not impose
conditions on the constraints or the normal step itself that are unduly restrictive.

Having defined the normal step, we are in position to use it if it falls within the
trust-region, that is, if ‖nk‖ ≤ ∆k. In this case, we write

xN

k = xk + nk(2.11)

and observe that nk satisfies the constraints of TRQP(xk,∆k) and thus also of QP(xk).
It is crucial to note, at this stage, that such an nk may fail to exist because the
constraints of QP(xk) may be incompatible, in which case Pk is undefined, or because
all feasible points for QP (xk) may lie outside the trust-region.

Let us continue to consider the case where this problem does not arise, and a
normal step nk has been found with ‖nk‖ ≤ ∆k. We then have to find a tangential
step tk, starting from xN

k and satisfying (2.6) and (2.7), with the aim of decreasing the
value of the objective function. As always in trust-region methods, this is achieved by
computing a step that produces a sufficient decrease in mk, which is to say that we
wish mk(x

N

k)−mk(xk + sk) to be “sufficiently large.” Of course, this is only possible
if the maximum size of tk is not too small, which is to say that xN

k is not too close to
the trust-region boundary. We formalize this supposition by replacing our condition
that ‖nk‖ ≤ ∆k with the stronger requirement that

‖nk‖ ≤ κ∆∆k min[1, κµ∆
µ
k ](2.12)

for some κ∆ ∈ (0, 1], some κµ > 0, and some µ ∈ (0, 1). If condition (2.12) does
not hold, we assume that the computation of tk is unlikely to produce a satisfactory
decrease in mk, and proceed just as if the feasible set of TRQP(xk,∆k) were empty. If
nk can be computed and (2.12) holds, we shall say that TRQP(xk,∆k) is compatible.
In this case at least a sufficient model decrease seems possible, which we state in the
form of a familiar Cauchy-point condition. In order to formalize what we mean, we



CONVERGENCE OF A TRUST-REGION SQP-FILTER METHOD 639

recall that the feasible set of QP(xk) is convex, and we can therefore introduce the
measure

χk =

∣∣∣∣∣∣∣∣∣∣
min

AE(xk)t=0

cI(xk)+AI(xk)(nk+t)≥0
‖t‖≤1

〈gk +Hknk, t〉

∣∣∣∣∣∣∣∣∣∣
(2.13)

(see Conn et al. [6]), which we will use to deduce first-order criticality for our problem
(see Lemma 3.2). Note that this function is zero if the origin is a first-order critical
point of the “tangential” problem

minimize 〈gk +Hknk, t〉+ 1
2 〈Hkt, t〉

subject to AE(xk)t = 0,
cI(xk) +AI(xk)(nk + t) ≥ 0,

(2.14)

which is, up to the constant term 1
2 〈nk, Hknk〉, equivalent to QP(xk) with s = nk+ t.

Our sufficient decrease condition is then to require that, whenever TRQP(xk,∆k) is
compatible,

mk(x
N

k)−mk(x
N

k + tk) ≥ κtmdχk min

[
χk
βk
,∆k

]
(2.15)

for some constant κtmd > 0, where βk = 1 + ‖Hk‖. We know from Toint [29] and
Conn et al. [6] that this condition holds if the model reduction exceeds that which
would be obtained at the generalized Cauchy point, that is, the point resulting from
a backtracking curvilinear search along the projected gradient path from xN

k , that is,

xk(α) = Pk[x
N

k − α∇xmk(x
N

k)].

This technique therefore provides an implementable algorithm for computing a step
that satisfies (2.15) (see Gould, Hribar, and Nocedal [21] for an example in the case
where c(x) = cE(x), or Toint [29] and Moré and Toraldo [24] for the case of bound
constraints), but, of course, reduction of mk beyond that imposed by (2.15) is often
possible and desirable if fast convergence is sought. Also note that the minimization
problem of the right-hand side of (2.13) would reduce to a linear programming problem
if we had chosen to use a polyhedral norm in its definition at iteration k.

Let us now return to the case where TRQP(xk,∆k) is not compatible, that is,
when the feasible set determined by the constraints of QP(xk) is empty, or the freedom
left to reduce mk within the trust-region is too small in the sense that (2.12) fails. In
this situation, solving TRQP(xk,∆k) is most likely pointless, and we must consider an
alternative. We base this on the intuitive observation that, if θ(xk) is sufficiently small
and the true nonlinear constraints are locally compatible, the linearized constraints
should also be compatible, since they approximate the nonlinear constraints (locally)
correctly. Furthermore, the feasible region for the linearized constraints should then
be close enough to xk for there to be some room to reduce mk, at least if ∆k is
large enough. If the nonlinear constraints are locally incompatible, we have to find
a neighborhood where this is not the case, since the problem (1.1) does not make
sense in the current one. We thus rely on a restoration procedure, whose aim is to
produce a new point xk + rk for which TRQP(xk + rk,∆k+1) is compatible for some
∆k+1 > 0—we will actually need another condition which we will discuss shortly.
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The idea of the restoration procedure is to (approximately) solve

min
x∈R

n
θ(x),(2.16)

perhaps starting from xk, the current iterate. This is a nonsmooth problem, but we
know that there exist methods, possibly of trust-region type (such as that suggested
by Yuan [32]), which can be successfully applied to solve it. Thus we will not describe
the restoration procedure in detail. Note that we have chosen here to reduce the
infinity norm of the constraint violation, but we could equally well consider other
norms, such as �1 or �2, in which case the methods of Fletcher and Leyffer [17] or
of El-Hallabi and Tapia [14] and Dennis, El-Alem, and Williamson [10], respectively,
can be considered. Of course, this technique only guarantees convergence to a first-
order critical point of the chosen measure of constraint violation, which means that,
in fact, the restoration procedure may fail as this critical point may not be feasible
for the constraints of (1.1). However, even in this case, the result of the procedure
is of interest because it typically produces a local minimizer of θ(x), or of whatever
other measure of constraint violation we choose for the restoration, yielding a point
of locally least infeasibility.

There is no easy way to circumvent this drawback, as it is known that finding a
feasible point or proving that no such point exists is a global optimization problem
and can be as difficult as the optimization problem (1.1) itself. We therefore accept
two possible outcomes of the restoration procedure: either the procedure fails in that
it does not produce a sequence of iterates converging to feasibility, or a point xk + rk
is produced such that θ(xk + rk) is as small as we wish. We will shortly see that this
is all we need.

2.2. The notion of a filter. Having computed a step sk = nk + tk (or rk), we
still need to decide whether the trial point xk + sk (or xk + rk) is any better than
xk as an approximate solution to our original problem (1.1). We shall use a concept
borrowed from multicriteria optimization. We say that a point x1 dominates a point
x2 whenever

θ(x1) ≤ θ(x2) and f(x1) ≤ f(x2).

Thus, if iterate xk dominates iterate xj , the latter is of no real interest to us since xk
is at least as good as xj on account of both feasibility and optimality. All we need to
do now is to remember iterates that are not dominated by any other iterates using a
structure called a filter. A filter is a list F of pairs of the form (θi, fi) such that either

θi < θj or fi < fj

for i �= j. We thus aim to accept a new iterate xi only if it is not dominated by
any other iterate in the filter. In the vocabulary of multicriteria optimization, this
amounts to building elements of the efficient frontier associated with the bicriteria
problem of reducing infeasibility and the objective function value.

Figure 2.1 illustrates the concept of a filter by showing the pairs (θk, fk) as black
dots in the (θ, f)-space. Each such pair is called the (θ, f)-pair associated with xk.
The lines radiating from each (θ, f)-pair indicate that any iterate whose associated
(θ, f)-pair occurs above and to the right of that of a given filter point is dominated
by this (θ, f)-pair.

While the idea of not accepting dominated trial points is simple and elegant,
it needs to be refined a little in order to provide an efficient algorithmic tool. In
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Fig. 2.1. A filter with four pairs.

particular, we do not wish to accept xk+sk if its (θ, f)-pair is arbitrarily close to that
of xk or that of a point already in the filter. Thus we set a small “margin” around
the border of the dominated part of the (θ, f)-space in which we shall also reject trial
points. Formally, we say that a point x is acceptable for the filter if and only if

θ(x) ≤ (1− γθ)θj or f(x) ≤ fj − γθθj for all (θj , fj) ∈ F(2.17)

for some γθ ∈ (0, 1). In Figure 2.1, the set of acceptable points corresponds to the set
of (θ, f)-pairs below the thin line. We also say that x is “acceptable for the filter and
xk” if (2.17) holds with F replaced by F ∪ (θk, fk). We thus consider moving from
xk to xk + sk only if xk + sk is acceptable for the filter and xk.

As the algorithm progresses, we may want to add a (θ, f)-pair to the filter. If an
iterate xk is acceptable for F , we do this by adding the pair (θk, fk) to the filter and
by removing from it every other pair (θj , fj) such that both

θj ≥ θk and fj − γθθj ≥ fk − γθθk.(2.18)

Only entries whose envelope is dominated by a new entry are thus removed from
the filter. As a consequence, the margin of the filter never decreases, and it can be
shown that, for all infinite subsequences of points added to the filter, lim θki = 0 (see
Lemma 3.3). We also refer to this operation as “adding xk to the filter,” although,
strictly speaking, it is the (θ, f)-pair which is added.

We conclude this section by noting that, if a point xk is in the filter or is acceptable
for the filter, then any other point x such that

θ(x) ≤ (1− γθ)θk and f(x) ≤ fk − γθθk
is also acceptable for the filter and xk.
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2.3. An SQP-filter algorithm. We have now discussed the main ingredients of
the class of algorithms we wish to consider, and we are now ready to define it formally
as Algorithm 2.1 below. A flowchart of the algorithm is given as an appendix; see
Figure A.1.

Algorithm 2.1: SQP-Filter Algorithm.

Step 0: Initialization. Let an initial point x0, an initial trust-region radius
∆0 > 0, and an initial symmetric matrix H0 be given, as well as constants
0 < γ0 < γ1 ≤ 1 ≤ γ2, 0 < η1 ≤ η2 < 1, γθ ∈ (0, 1), κθ ∈ (0, 1),
κ∆ ∈ (0, 1], κµ > 0, µ ∈ (0, 1), ψ > 1/(1+µ), and κtmd ∈ (0, 1]. Compute
f(x0) and c(x0). Set F = ∅ and k = 0.

Step 1: Test for optimality. If θk = χk = 0, stop.
Step 2: Ensure compatibility. Attempt to compute a step nk. If TRQP

(xk,∆k) is compatible, go to Step 3. Otherwise, include xk in the fil-
ter and compute a restoration step rk for which TRQP(xk + rk,∆k+1) is
compatible for some ∆k+1 > 0, and xk+ rk is acceptable for the filter. If
this proves impossible, stop. Otherwise, define xk+1 = xk + rk and go to
Step 7.

Step 3: Determine a trial step. Compute a step tk and set sk = nk + tk.
Step 4: Tests to accept the trial step.

• Evaluate c(xk + sk) and f(xk + sk).
• If xk + sk is not acceptable for the filter and xk, set xk+1 = xk,

choose ∆k+1 ∈ [γ0∆k, γ1∆k], set nk+1 = nk, increment k by one,
and go to Step 2.
• If

mk(xk)−mk(xk + sk) ≥ κθθψk(2.19)

and

ρk
def
=

f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
< η1,(2.20)

again set xk+1 = xk, choose ∆k+1 ∈ [γ0∆k, γ1∆k], set nk+1 = nk,
increment k by one, and go to Step 2.

Step 5: Test to include the current iterate in the filter. If (2.19) fails,
include xk in the filter F .

Step 6: Move to the new iterate. Set xk+1 = xk+ sk and choose ∆k+1 such
that

∆k+1 ∈ [∆k, γ2∆k] if ρk ≥ η2 and (2.19) holds.

Step 7: Update the Hessian approximation. Determine Hk+1. Increment
k by one and go to Step 1.

As in Fletcher and Leyffer [18, 17], one may choose ψ = 2. (Note that the choice
ψ = 1 is always possible because µ > 0.) Reasonable values for the constants might
then be

γ0 = 0.1, γ1 = 0.5, γ2 = 2, η1 = 0.01, η2 = 0.9,
γθ = 10−4, κ∆ = 0.7, κµ = 100, µ = 0.01, κθ = 10−4, and κtmd = 0.01,

but it is too early to know if these are even close to the best possible choices.
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Observe first that, by construction, every iterate xk must be acceptable for the
filter at the beginning of iteration k, irrespective of the possibility that it might be
added to the filter later. Also note that the restoration step rk cannot be zero, that
is, restoration cannot simply entail enlarging the trust-region radius to ensure (2.12),
even if nk exists. This is because xk is added to the filter before rk is computed,
and xk + rk must be acceptable for the filter which now contains xk. Also note
that the restoration procedure cannot be applied on two successive iterations, since
the iterate xk + rk produced by the first of these iterations leads to a compatible
TRQP(xk+1,∆k+1) and is acceptable for the filter.

For the restoration procedure in Step 2 to succeed, we have to evaluate whether
TRQP(xk+rk,∆k+1) is compatible for a suitable value of ∆k+1. This requires that a
suitable normal step be computed which successfully passes the test (2.12). Of course,
once this is achieved, this normal step may be reused at iteration k+1. Thus we shall
require that the normal step calculated to verify compatibility of TRQP(xk+rk,∆k+1)
should actually be used as nk+1.

As it stands, the algorithm is not specific about how to choose ∆k+1 during
a restoration iteration. On one hand, there is an advantage to choosing a large
∆k+1, since this allows a large step and, one hopes, good progress. On the other
hand, it may be unwise to choose it to be too large, as this may possibly result in
a large number of unsuccessful iterations, during which the radius is reduced, before
the algorithm can make any progress. A possible choice might be to restart from
the radius obtained during the restoration iteration itself, if it uses a trust-region
method. Reasonable alternatives would be to use the average radius observed during
past successful iterations, or to apply the internal doubling strategy of Byrd, Schnabel,
and Shultz [5] to increase the new radius, or even to consider the technique described
by Sartenaer [28]. However, we recognize that numerical experience with the algorithm
is too limited at this stage to make definite recommendations.

The role of condition (2.19) may be interpreted as follows. If this condition fails,
then one may think that the constraint violation is significant and that one should
aim to improve on this situation in the future by inserting the current point into the
filter. Fletcher, Leyffer, and Toint [19] use the term of “θ-step” in such circumstances
to indicate that the main preoccupation is to improve feasibility. On the other hand,
if condition (2.19) holds, then the reduction in the objective function predicted by the
model is more significant than the current constraint violation, and it is thus appealing
to let the algorithm behave as if it were unconstrained. Fletcher and Leyffer [18] use
the term “f -step” to denote the step generated, in order to reflect the dominant role
of the objective function f . In this case, it is important that the predicted decrease
in the model be realized by the actual decrease in the function, which is why we also
require that (2.20) not hold. In particular, if the iterate xk is feasible, then (2.10)
implies that xk = xN

k , and we obtain that

κθθ
ψ
k = 0 ≤ mk(x

N

k)−mk(xk + sk) = mk(xk)−mk(xk + sk).(2.21)

As a consequence, the filter mechanism is irrelevant if all iterates are feasible, and
the algorithm reduces to a classical unconstrained trust-region method. Another
consequence of (2.21) is that no feasible iterate is ever included in the filter, which
is crucial in allowing finite termination of the restoration procedure. Indeed, if the
restoration procedure is required at iteration k of the filter algorithm and produces a
sequence of points {xk,j} converging to feasibility, there must be an iterate xk,j for
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which

θk,j
def
= θ(xk,j) ≤ min

[
(1− γθ)θmin

k ,
κ∆

κusc

∆k+1 min[1, κµ∆
µ
k+1]

]
for any given ∆k+1 > 0, where

θmin

k = min
i∈Z, i≤k

θi > 0

and

Z = {k | xk is added to the filter}.
Moreover, θk,j must eventually be small enough to ensure, using our assumption on
the normal step, the existence of a normal step nk,j from xk,j . In other words, the
restoration iteration must eventually find an iterate xk,j which is acceptable for the
filter and for which the normal step exists and satisfies (2.12), i.e., an iterate xj which
is both acceptable and compatible. As a consequence, the restoration procedure will
terminate in a finite number of steps, and the filter algorithm may then proceed. Note
that the restoration step may not terminate in a finite number of iterations if we do
not assume the existence of the normal step when the constraint violation is small
enough, even if this violation converges to zero (see Fletcher, Leyffer, and Toint [19],
for an example).

Notice also that (2.19) ensures that the denominator of ρk in (2.20) will be strictly
positive whenever θk is. If θk = 0, then xk = xN

k , and the denominator of (2.20) will
be strictly positive unless xk is a first-order critical point because of (2.15).

The reader may have observed that Step 6 allows a relatively wide choice of the
new trust-region radius ∆k+1. While the stated conditions appear to be sufficient
for the theory developed below, one must obviously be more specific in practice. For
instance, one may wish to distinguish, at this point in the algorithm, the cases where
(2.19) fails or holds. If (2.19) fails, the main effect of the current iteration is not
to reduce the model (which makes the value of ρk essentially irrelevant), but rather
to reduce the constraint violation (which is taken care of by inserting the current
iterate into the filter at Step 5). In this case, Step 6 imposes no further restriction on
∆k+1. In practice, it may be reasonable not to reduce the trust-region radius, because
this might cause too small steps towards feasibility or an unnecessary restoration
phase. However, there is no compelling reason to increase the radius either, given
the compatibility of TRQP(xk,∆k). A reasonable strategy might then be to choose
∆k+1 = ∆k. If, on the other hand, (2.19) holds, the emphasis of the iteration is then
on reducing the objective function, a case akin to unconstrained minimization. Thus
a more detailed rule of the type

∆k+1 ∈
{

[γ1∆k, γ2∆k] if ρk ∈ [η1, η2),
[∆k, γ2∆k] if ρk ≥ η2

seems reasonable in these circumstances.
Finally, we recognize that (2.15) may be difficult to verify in practice, since it

may be expensive to compute xN

k and Pk when the dimension of the problem is large.

3. Convergence to first-order critical points. We now prove that our algo-
rithm generates a globally convergent sequence of iterates. In the following analysis,
we concentrate on the case in which the restoration iteration always succeeds. If this
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is not the case, then it usually follows that the restoration phase has converged to an
approximate solution of the feasibility problem (2.16) and we can conclude that (1.1)
is locally inconsistent. For the purpose of our analysis, we shall consider

S = {k | xk+1 = xk + sk},

the set of (indices of) successful iterations, and

R = {k | nk does not satisfy (2.10) or ‖nk‖ > κ∆∆k min[1, κµ∆
µ
k ]},

the set of restoration iterations. In order to obtain our global convergence result, we
will use the following assumptions.

AS1. f and the constraint functions cE and cI are twice continuously differen-
tiable.

AS2. There exists κumh > 1 such that

‖Hk‖ ≤ κumh − 1 for all k.

AS3. The iterates {xk} remain in a closed, bounded domain X ⊂ R
n.

If, for example, Hk is chosen as the Hessian of the Lagrangian function

�(x, y) = f(x) + 〈yE , cE(x)〉+ 〈yI , cI(x)〉

at xk, in that

Hk = ∇xxf(xk) +
∑
i∈E∪I

[yk]i∇xxci(xk),(3.1)

where [yk]i denotes the ith component of the vector of Lagrange multipliers yTk =
(yTE,k yTI,k), then we see from AS1 and AS3 that AS2 is satisfied when these multipliers
remain bounded. The same is true if the Hessian matrices in (3.1) are replaced by
bounded approximations.

A first immediate consequence of AS1–AS3 is that there exists a constant κubh > 1
such that, for all k,

|f(xk + sk)−mk(xk + sk)| ≤ κubh∆
2
k.(3.2)

A proof of this property, based on Taylor expansion, may be found, for instance, in
Toint [29]. A second important consequence of our assumptions is that AS1 and AS3
together directly ensure that, for all k,

fmin ≤ f(xk) and 0 ≤ θk ≤ θmax(3.3)

for some constants fmin and θmax > 0. Thus the part of the (θ, f)-space in which the
(θ, f)-pairs associated with the filter iterates lie is restricted to the rectangle

A0 = [0, θmax]× [fmin,∞].

We also note the following simple consequence of (2.10) and AS3.
Lemma 3.1. Suppose that Algorithm 2.1 is applied to problem (1.1). Suppose also

that (2.10) and AS3 hold and that

θk ≤ δn.
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Then there exists a constant κlsc > 0 independent of k such that

κlscθk ≤ ‖nk‖.(3.4)

Proof. First define

Vk def
= {j ∈ E | θk = |cj(xk)|}

⋃
{j ∈ I | θk = −cj(xk)},

which is the subset of most-violated constraints. From the definitions of θk in (2.9)
and of the normal step in (2.5) we obtain, using the Cauchy–Schwarz inequality, that

θk ≤ |〈∇xcj(xk), nk〉| ≤ ‖∇xcj(xk)‖ ‖nk‖(3.5)

for all j ∈ Vk. But AS3 ensures that there exists a constant κlsc > 0 such that

max
j∈E∪I

max
x∈X
‖∇xcj(x)‖ def

=
1

κlsc

.

We then obtain the desired conclusion by substituting this bound into (3.5).
Our assumptions and the definition of χk in (2.13) ensure that θk and χk can be

used (together) to measure criticality for problem (1.1).
Lemma 3.2. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite

termination does not occur. Suppose also that AS1 and AS3 hold, and that there exists
a subsequence {ki} such that, for any i, ki �∈ R with

lim
i→∞

χki = 0 and lim
i→∞

θki = 0.(3.6)

Then every limit point of the subsequence {xki} is a first-order critical point for prob-
lem (1.1).

Proof. Consider x∗, a limit point of the sequence {xki}, whose existence is ensured
by AS3, and assume that {k�} ⊆ {ki} is the index set of a subsequence such that {xk�}
converges to x∗. The fact that k� �∈ R implies that nk� satisfies (2.10) for sufficiently
large � and converges to zero, because {θk�} converges to zero and the second part of
this condition. As a consequence, we deduce from (2.11) that {xN

k�
} also converges to

x∗. Since the minimization problem occurring in the definition of χk� (in (2.13)) is
convex, we then obtain from classical perturbation theory (see, for instance, Fiacco
[15, pp. 14–17], AS1, and the first part of (3.6) that∣∣∣∣∣∣∣∣∣∣

min
AE(x∗)t=0

cI(x∗)+AI(x∗)t≥0
‖t‖≤1

〈g∗, t〉

∣∣∣∣∣∣∣∣∣∣
= 0.

This in turn guarantees that x∗ is first-order critical for problem (1.1).
We start our analysis by examining what happens when an infinite number of

iterates (that is, their (θ, f)-pairs) are added to the filter.
Lemma 3.3. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite

termination does not occur. Suppose that AS1 and AS3 hold and that |Z| =∞. Then

lim
k→∞
k∈Z

θk = 0.
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Proof. Suppose, for the purpose of obtaining a contradiction, that there exists an
infinite subsequence {ki} ⊆ Z such that

θki ≥ ε(3.7)

for all i and for some ε > 0. At each iteration ki, the (θ, f)-pair associated with xki ,
that is (θki , fki), is added to the filter. This means that no other (θ, f)-pair can be
added to the filter at a later stage within the square

[θki − γθε, θki ]× [fki − γθε, fki ]

or with the intersection of this square with A0. Note that this holds, even if (θki , fki)
is later removed from the filter, since the rule for removing entries, (2.18), ensures
that the envelope never shrinks. Now observe that the area of each of these squares
is γ2

θ ε
2. As a consequence, the set A0 ∩ {(θ, f)|f ≤ κf} is completely covered by at

most a finite number of such squares, for any choice of κf ≥ fmin. Since the pairs
(θki , fki) keep on being added to the filter, this implies that fki tends to infinity when
i tends to infinity. Let us assume, without loss of generality, that fki+1 ≥ fki for all i
sufficiently large. But (2.17) and (3.7) then imply that

θki+1 ≤ (1− γθ)θki ≤ θki − γθε,

and therefore that θki converges to zero, which contradicts (3.7). Hence this latter
assumption is imposssible and the conclusion follows.

We next examine the size of the constraint violation before and after an iteration
where restoration did not occur.

Lemma 3.4. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1 and AS3 hold, that k �∈ R, and
that nk satisfies (3.4). Then

θk ≤ κubt∆
1+µ
k(3.8)

and

θ(xk + sk) ≤ κubt∆
2
k(3.9)

for some constant κubt ≥ 0.
Proof. Since k �∈ R, we have from (3.4) and (2.12) that

κlscθk ≤ ‖nk‖ ≤ κ∆κµ∆
1+µ
k ,(3.10)

which gives (3.8). Now, the ith constraint function at xk + sk can be expressed as

ci(xk + sk) = ci(xk) + 〈ei, Aksk〉+ 1

2
〈sk,∇xxci(ξk)sk〉

for i ∈ E ∪ I, where we have used AS1 and the mean-value theorem and where ξk
belongs to the segment [xk, xk + sk]. Using AS3, we may bound the Hessian of the
constraint functions, and we obtain from (2.7), the Cauchy–Schwarz inequality, and
(2.6) that

|ci(xk + sk)| ≤ 1

2
max
x∈X
‖∇xxci(x)‖ ‖sk‖2 ≤ κ1∆

2
k
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if i ∈ E , or

−ci(xk + sk) ≤ 1

2
max
x∈X
‖∇xxci(x)‖ ‖sk‖2 ≤ κ1∆

2
k

if i ∈ I, where we have defined

κ1
def
=

1

2
max
i∈E∪I

max
x∈X
‖∇xxci(x)‖.

This gives the desired bound with

κubt = max[κ1, κ∆κµ/κlsc].

We next assess the model decrease when the trust-region radius is sufficiently
small.

Lemma 3.5. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1–AS3, (2.12), and (2.15) hold, that
k �∈ R, that

χk ≥ ε(3.11)

for some ε > 0, and that

∆k ≤ min

[
ε

κumh

,

(
2

κubg

κumhκ∆κµ

) 1
1+µ

,

(
κtmdε

4κubgκ∆κµ

) 1
µ

]
def
= δm,(3.12)

where κubg

def
= maxx∈X ‖∇xf(x)‖. Then

mk(xk)−mk(xk + sk) ≥ 1

2
κtmdε∆k.

Proof. We first note that, by (2.15), AS2, (3.11), and (3.12),

mk(x
N

k)−mk(xk + sk) ≥ κtmdχk min

[
χk
κumh

,∆k

]
≥ κtmdε∆k.(3.13)

Now

mk(x
N

k) = mk(xk) + 〈gk, nk〉+ 1

2
〈nk, Hknk〉,

and therefore, using the Cauchy–Schwarz inequality, AS2, (2.12), and (3.12),

|mk(xk)−mk(x
N

k)| ≤ ‖nk‖ ‖gk‖+ 1
2‖Hk‖ ‖nk‖2

≤ κubg‖nk‖+ 1
2κumh‖nk‖2

≤ κubgκ∆κµ∆
1+µ
k + 1

2κumhκ
2
∆κ

2
µ∆

2(1+µ)
k

≤ 2κubgκ∆κµ∆
1+µ
k

≤ 1
2κtmdε∆k.

We thus conclude from this last inequality and (3.13) that the desired conclusion
holds.

We continue our analysis by showing, as the reader has grown to expect, that
iterations have to be very successful when the trust-region radius is sufficiently small.
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Lemma 3.6. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1–AS3, (2.15), and (3.11) hold, that
k �∈ R, and that

∆k ≤ min

[
δm,

(1− η2)κtmdε

2κubh

]
def
= δρ.(3.14)

Then

ρk ≥ η2.
Proof. Using the definition of ρk in (2.20), (3.2), Lemma 3.5, and (3.14), we find

that

|ρk − 1| = |f(xk + sk)−mk(xk + sk)|
|mk(xk)−mk(xk + sk)| ≤

κubh∆
2
k

1
2κtmdε∆k

≤ 1− η2,

from which the conclusion immediately follows.
Note that this proof could easily be extended if the definition of ρk in (2.20) were

altered to be of the form

ρk
def
=

f(xk)− f(xk + sk) + Θk

mk(xk)−mk(xk + sk)
,(3.15)

provided that Θk is bounded above by a multiple of ∆2
k. We will comment in section 4

why such a modification might be of interest (see also section 10.4.3 of Conn, Gould,
and Toint [7]).

Now, we also show that the test (2.19) will always be satisfied when the trust-
region radius is sufficiently small.

Lemma 3.7. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1–AS3, (2.12), (2.15), and (3.11)
hold, that k �∈ R, that nk satisfies (3.4), and that

∆k ≤ min

[
δm,

(
κtmdε

2κθκ
ψ
ubt

) 1
ψ(1+µ)−1

]
def
= δf .(3.16)

Then

mk(xk)−mk(xk + sk) ≥ κθθψk .
Proof. This directly results from the inequalities

κθθ
ψ
k ≤ κθκψubt∆

ψ(1+µ)
k ≤ 1

2
κtmdε∆k ≤ mk(xk)−mk(xk + sk),

where we have successively used Lemma 3.4, (3.16), and Lemma 3.5.
We may also guarantee a decrease in the objective function, large enough to ensure

that the trial point is acceptable with respect to the (θ, f)-pair associated with xk, so
long as the constraint violation is itself sufficiently small.

Lemma 3.8. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1–AS3, (2.15), (3.11), and (3.14)
hold, that k �∈ R, that nk satisfies (3.4), and that

θk ≤ κ−
1
µ

ubt

(
η2κtmdε

2γθ

) 1+µ
µ

def
= δθ.(3.17)
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Then

f(xk + sk) ≤ f(xk)− γθθk.
Proof. Applying Lemmas 3.4–3.6—which is possible because of (3.11), (3.14),

k �∈ R, and the fact that nk satisfies (3.4)—and (3.17), we obtain that

f(xk)− f(xk + sk) ≥ η2[mk(xk)−mk(xk + sk)]
≥ 1

2η2κtmdε∆k

≥ 1
2η2κtmdε

(
θk
κubt

) 1
1+µ

≥ γθθk,

and the desired inequality follows.
We now establish that if the trust-region radius and the constraint violation are

both small at a noncritical iterate xk, TRQP(xk,∆k) must be compatible.
Lemma 3.9. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite

termination does not occur. Suppose also that AS1–AS3, (2.10), and (3.11) hold, that
(2.15) holds for k /∈ R, and that

∆k ≤ min

[
γ0δρ,

(
1

κµ

) 1
µ

,

(
γ2
0(1− γθ)κ∆κµ

κuscκubt

) 1
1−µ
]

def
= δR.(3.18)

Suppose furthermore that k > 0 and that

θk ≤ min[δθ, δn].(3.19)

Then k �∈ R.
Proof. Because θk ≤ δn, we know from (2.10) and Lemma 3.1 that nk satisfies

(2.10) and (3.4). Moreover, since θk ≤ δθ, we have that (3.17) also holds. Assume,
for the purpose of deriving a contradiction, that k ∈ R, that is,

‖nk‖ > κ∆κµ∆
1+µ
k ,(3.20)

where we have used (2.12) and the fact that κµ∆
µ
k ≤ 1 because of (3.18). In this

case, the mechanism of the algorithm then ensures that k− 1 �∈ R. Now assume that
iteration k−1 is unsuccessful. Because of Lemmas 3.6 and 3.8, which hold at iteration
k − 1 �∈ R because of (3.18), the fact that θk = θk−1, (2.10), and (3.17), we obtain
that

ρk−1 ≥ η2 and f(xk−1 + sk−1) ≤ f(xk−1)− γθθk−1.(3.21)

Hence, given that xk−1 is acceptable for the filter at the beginning of iteration k− 1,
if this iteration is unsuccessful, it must be because xk−1 + sk−1 is not acceptable for
the filter and xk−1, which in turn can happen only if

θ(xk−1 + sk−1) > (1− γθ)θk−1 = (1− γθ)θk
because of (3.21) (see the last paragraph of section 2.2). But Lemma 3.4 and the
mechanism of the algorithm then imply that

(1− γθ)θk ≤ κubt∆
2
k−1 ≤

κubt

γ2
0

∆2
k.
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Combining this last bound with (3.20) and (2.10), we deduce that

κ∆κµ∆
1+µ
k < ‖nk‖ ≤ κuscθk ≤ κuscκubt

γ2
0(1− γθ)

∆2
k

and hence that

∆1−µ
k >

γ2
0(1− γθ)κ∆κµ

κuscκubt

.

Since this last inequality contradicts (3.18), our assumption that iteration k − 1 is
unsuccessful must be false. Thus iteration k−1 is successful and θk = θ(xk−1+sk−1).
We then obtain from (3.20), (2.10), and (3.9) that

κ∆κµ∆
1+µ
k < ‖nk‖ ≤ κuscθk ≤ κuscκubt∆

2
k−1 ≤

κuscκubt

γ2
0

∆2
k,

which is again impossible because of (3.18) and because (1 − γθ) < 1. Hence our
initial assumption (3.20) must be false, which yields the desired conclusion.

We now distinguish two mutually exclusive cases. For the first, we consider what
happens if there is an infinite subsequence of iterates belonging to the filter.

Lemma 3.10. Suppose that Algorithm 2.1 is applied to problem (1.1) and that
finite termination does not occur. Suppose also that AS1–AS3, (2.10) hold, and (2.15)
holds for k /∈ R. Suppose furthermore that |Z| =∞. Then there exists a subsequence
{kj} ⊆ Z such that

lim
j→∞

θkj = 0(3.22)

and

lim
j→∞

χkj = 0.(3.23)

Proof. Let {ki} be any infinite subsequence of Z. We observe that (3.22) follows
from Lemma 3.3. Suppose now that

χki ≥ ε2 > 0(3.24)

for all i and some ε2 > 0. Suppose furthermore that there exists ε3 > 0 such that, for
all i ≥ i0,

∆ki ≥ ε3.(3.25)

Observe first that (3.22) and (2.10) ensure that

lim
i→∞

‖nki‖ = 0.(3.26)

Thus (3.25) ensures that (2.12) holds for sufficiently large i and thus ki �∈ R for such
i. Now, as we noted in the proof of Lemma 3.5,

|mki(xki)−mki(x
N

ki)| ≤ κubg‖nki‖+
1

2
κumh‖nki‖2,

which in turn, with (3.26), yields that

lim
i→∞

[mki(xki)−mki(x
N

ki)] = 0.(3.27)
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We also deduce from (2.15) and AS2 that

mki(x
N

ki)−mki(xki + ski) ≥ κtmdε2 min

[
ε2
κumh

, ε3

]
def
= δ > 0.(3.28)

We now decompose the model decrease in its normal and tangential components, that
is,

mki(xki)−mki(xki + ski) = mki(xki)−mki(x
N

ki) +mki(x
N

ki)−mki(xki + ski).

Substituting (3.27) and (3.28) into this decomposition, we find that

lim inf
i→∞

[mki(xki)−mki(xki + ski)] ≥ δ > 0.(3.29)

We now observe that, because xki is added to the filter at iteration ki, we know from
the mechanism of the algorithm that either iteration ki ∈ R or (2.19) must fail. Since
we have already shown that ki �∈ R, (2.19) must fail for i sufficiently large, that is,

mki(xki)−mki(xki + ski) < κθθ
ψ
ki
.(3.30)

Combining this bound with (3.29), we find that θki is bounded away from zero for
i sufficiently large, which is impossible in view of (3.22). We therefore deduce that
(3.25) cannot hold and obtain that there is a subsequence {k�} ⊆ {ki} for which

lim
�→∞

∆k� = 0.

We now restrict our attention to the tail of this subsequence, that is, to the set of
indices k� > 0 that are large enough to ensure that (3.16), (3.17), and (3.18) hold,
which is possible by definition of the subsequence and because of (3.22). For these
indices, we may therefore apply Lemma 3.9 and deduce that iteration k� �∈ R for �
sufficiently large. Hence, as above, (3.30) must hold for � sufficiently large. However,
we may also apply Lemma 3.7, which contradicts (3.30), and therefore (3.24) cannot
hold, yielding the desired result.

Thus, if an infinite subsequence of iterates is added to the filter, Lemma 3.2
ensures that there exists a limit point which is a first-order critical point. Our re-
maining analysis then naturally concentrates on the possibility that there may be no
such infinite subsequence. In this case, no further iterates are added to the filter for k
sufficiently large. In particular, this means that the number of restoration iterations,
|R|, must be finite. In what follows, we assume that k0 ≥ 0 is the last iteration for
which xk0−1 is added to the filter.

Lemma 3.11. Suppose that Algorithm 2.1 is applied to problem (1.1), that finite
termination does not occur, and that |Z| <∞. Suppose also that AS1–AS3 and (2.10)
hold and that (2.15) holds for k /∈ R. Then we have that

lim
k→∞

θk = 0.(3.31)

Furthermore, nk satisfies (3.4) for all k ≥ k0 sufficiently large.
Proof. Consider any successful iterate with k ≥ k0. Since xk is not added to the

filter, it follows from the mechanism of the algorithm that ρk ≥ η1 holds and thus
that

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(xk + sk)] ≥ η1κθθψk ≥ 0.(3.32)
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Thus the objective function does not increase for all successful iterations with k ≥ k0.
But AS1 and AS3 imply (3.3), and therefore we must have, from the first part of this
statement, that

lim
k∈S
k→∞

f(xk)− f(xk+1) = 0.(3.33)

The limit (3.31) then immediately follows from (3.32) and the fact that θj = θk for
all unsuccessful iterations j that immediately follow the successful iteration k, if any.
The last conclusion then results from (2.10) and Lemma 3.1.

We now show that the trust-region radius cannot become arbitrarily small if the
(asymptotically feasible) iterates stay away from first-order critical points.

Lemma 3.12. Suppose that Algorithm 2.1 is applied to problem (1.1), that finite
termination does not occur, and that |Z| <∞. Suppose also that AS1–AS3 hold and
(2.15) holds for k /∈ R. Suppose furthermore that (3.11) hold for all k ≥ k0. Then
there exists a ∆min > 0 such that

∆k ≥ ∆min

for all k.
Proof. Suppose that k1 ≥ k0 is chosen sufficiently large to ensure that (3.19) holds

and that nk satisfies (2.10) for all k ≥ k1, which is possible because of Lemma 3.11.
Suppose also, for the purpose of obtaining a contradiction, that iteration j is the first
iteration following iteration k1 for which

∆j ≤ γ0 min


δρ,

√
(1− γθ)θF

κubt

,∆k1


 def

= γ0δs,(3.34)

where

θF def
= min

i∈Z
θi

is the smallest constraint violation appearing in the filter. Note also that the inequality
∆j ≤ γ0∆k1 , which is implied by (3.34), ensures that j ≥ k1 + 1 and hence that
j− 1 ≥ k1 and thus that j− 1 �∈ R. Then the mechanism of the algorithm and (3.34)
imply that

∆j−1 ≤ 1

γ0
∆j ≤ δs,(3.35)

and Lemma 3.6, which is applicable because (3.34) and (3.35) together imply (3.14)
with k replaced by j − 1, then ensures that

ρj−1 ≥ η2.(3.36)

Furthermore, since nj−1 satisfies (2.10), Lemma 3.1 implies that we can apply Lemma 3.4.
This, together with (3.34) and (3.35), gives that

θ(xj−1 + sj−1) ≤ κubt∆
2
j−1 ≤ (1− γθ)θF.(3.37)

We may also apply Lemma 3.8 because (3.34) and (3.35) ensure that (3.14) holds and
because (3.17) also holds for j − 1 ≥ k1. Hence we deduce that

f(xj−1 + sj−1) ≤ f(xj−1)− γθθj−1.



654 FLETCHER, GOULD, LEYFFER, TOINT, AND WÄCHTER

This last relation and (3.37) ensure that xj−1 + sj−1 is acceptable for the filter and
xj−1. Combining this conclusion with (3.36) and the mechanism of the algorithm, we
obtain that ∆j ≥ ∆j−1. As a consequence, and since (2.19) also holds at iteration
j−1, iteration j cannot be the first iteration following k1 for which (3.34) holds. This
contradiction shows that ∆k ≥ γ0δs for all k > k1, and the desired result follows if
we define

∆min = min[∆0, . . . ,∆k1 , γ0δs].

We may now analyze the convergence of χk itself.
Lemma 3.13. Suppose that Algorithm 2.1 is applied to problem (1.1), that finite

termination does not occur, and that |Z| < ∞. Suppose also that AS1–AS3, (2.10)
hold, and (2.15) holds for k /∈ R. Then

lim inf
k→∞

χk = 0.(3.38)

Proof. We start by observing that Lemma 3.11 implies that the second conclusion
of (2.10) holds for k sufficiently large. Moreover, as in Lemma 3.11, we obtain (3.32)
and therefore (3.33) for each k ∈ S, k ≥ k0. Suppose now, for the purpose of obtaining
a contradiction, that (3.11) holds, and notice that

mk(xk)−mk(xk + sk) = mk(xk)−mk(x
N

k) +mk(x
N

k)−mk(xk + sk).(3.39)

Moreover, note, as in Lemma 3.5, that

|mk(xk)−mk(x
N

k)| ≤ κubg‖nk‖+ κumh‖nk‖2,
which in turn yields that

lim
k→∞

[mk(xk)−mk(x
N

k)] = 0

because of Lemma 3.11 and the second conclusion of (2.10). This limit, together with
(3.32), (3.33), and (3.39), then gives that

lim
k→∞
k∈S

[mk(x
N

k)−mk(xk + sk)] = 0.(3.40)

But (2.15), (3.11), AS2, and Lemma 3.12 together imply that for all k ≥ k0

mk(x
N

k)−mk(xk + sk) ≥ κtmdχk min
[
χk
βk
,∆k

]
≥ κtmdεmin

[
ε

κumh
,∆min

]
,

(3.41)

immediately giving a contradiction with (3.40). Hence (3.11) cannot hold and the
desired result follows.

We may summarize all of the above in our main global convergence result.
Theorem 3.14. Suppose that Algorithm 2.1 is applied to problem (1.1) and

that finite termination does not occur. Suppose also that AS1, (2.10), AS3, and AS2
hold, and that (2.15) holds for k /∈ R. Let {xk} be the sequence of iterates produced
by the algorithm. Then either the restoration procedure terminates unsuccessfully by
converging to an infeasible first-order critical point of problem (2.16), or there is a
subsequence {kj} for which

lim
j→∞

xkj = x∗
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and x∗ is a first-order critical point for problem (1.1).
Proof. Suppose that the restoration iteration always terminates successfully.

From AS3, Lemmas 3.10, 3.11, and 3.13, we obtain that, for some subsequence {kj},
lim
j→∞

θkj = lim
j→∞

χkj = 0.(3.42)

The conclusion then follows from Lemma 3.2.
Can we dispense with AS3 to obtain this result? First, this assumption en-

sures that the objective remains bounded below and the constraint violation remains
bounded above (see (3.3)). This is crucial for the rest of the analysis because the
convergence of the iterates to feasibility depends on this fact. Thus, if AS3 does not
hold, we have to verify that (3.3) holds for other reasons. The second part of this
statement may be ensured quite simply by initializing the filter to (θmax,−∞), for
some θmax > θ0, in Step 0 of the algorithm. This has the effect of putting an upper
bound on the infeasibility of all iterates, which may be useful in practice. However,
this does not prevent the objective function from being unbounded below in

C(θmax) = {x ∈ R
n | θ(x) ≤ θmax},

and we cannot exclude the possibility that a sequence of infeasible iterates might both
continue to improve the value of the objective function and satisfy (2.19). If C(θmax)
is bounded, AS3 is most certainly satisfied. If this is not the case, we could assume
that

fmin ≤ f(x) and 0 ≤ θ(x) ≤ θmax for x ∈ C(θmax)(3.43)

for some value of fmin and simply monitor that the values f(xk) are
reasonable—in view of the problem being solved—as the algorithm proceeds. To
summarize, we may replace AS1 and AS3 by the following assumption.

AS4. The functions f and c are twice continuously differentiable on an open
set containing C(θmax), their first and second derivatives are uniformly bounded on
C(θmax), and (3.43) holds.

The reader should note that AS4 no longer ensures the existence of a limit point,
but only that (3.42) holds for some subsequence {kj}. Furthermore, the comments
following the statement of (2.10) no longer apply if limit points at infinity are allowed.

4. Conclusion and perspectives. We have introduced a trust-region SQP-
filter algorithm for general nonlinear programming and have shown this algorithm to
be globally convergent to first-order critical points. The proposed algorithm differs
from that discussed by Fletcher and Leyffer [18], notably because it uses a decomposi-
tion of the step in its normal and tangential components and imposes some restrictions
on the length of the former. However, preliminary numerical experiments indicate that
its practical performance is similar to that reported in [18]. Since the performance
of the latter is excellent, the theory developed in this paper provides the reassurance
that filter algorithms also have reasonable convergence properties, which then makes
these methods very attractive.

We are aware, however, that the convergence study is not complete, as we have
not discussed local convergence properties. As it is possible to exhibit examples where
the SQP step increases both the objective function and the constraint violation,2 it is

2Such an example is provided by Figure 9.3.1 in Fletcher [16], taking the case β = 1
4
. Any

feasible point close to the origin illustrates the effect.



656 FLETCHER, GOULD, LEYFFER, TOINT, AND WÄCHTER

very likely that such a study will have to introduce second-order corrections (see [16,
section 14.4]) to ensure that the Maratos effect does not take place and that a fast
(quadratic) rate of convergence can be achieved. Moreover, convergence to second-
order critical points also remains, for now, an open question. In this context, the
alternative definition of ρk presented in (3.15) is also likely to play a role if we choose
Hk according to (3.1). In this case, we might choose

Θk =
∑
i∈E∪I

[yk]i〈sk,∇xxci(xk)sk〉

in order to ensure that the denominator of the fraction defining ρk is a correct model of
its numerator not only up to first-order, but also up to second-order. These questions
are the subject of ongoing work.
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Appendix.

initialization (k = 0)

❄
attempt to compute nk

❄
TRQP(xk,∆k) compatible?

❄
n

❄
y

add xk to the filter compute tk

❄ ❄
compute rk and ∆k+1 xk + sk acceptable?

❄

❄
y

❄

n

ρk < η1 and

mk(xk) −mk(xk + sk) ≥ κθθ
ψ
k

?
✲

y

❄
n

mk(xk) −mk(xk + sk) ≥ κθθ
ψ
k

?

❄

y
❄
n

add xk to the filter

❄
xk+1 = xk + skxk+1 = xk + rk xk+1 = xk

❄

❄ ❄

increase ∆k → ∆k+1
reduce ∆k

→ ∆k+1

❄ ❄
compute Hk+1 and increment k by one

✲

Fig. A.1. Flowchart of Algorithm 2.1.
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1. Accumulation of Jacobian matrices. Let

F ′ = F ′(x0) =

(
∂yi
∂xj

(x0)

)i=1,... ,m

j=1,... ,n

denote the Jacobian matrix (also: Jacobian) of a nonlinear vector function

F : R
n ⊇ D → R

m : x �→ y = F (x)

mapping the n components of x onto the m components of y and being evaluated at
a given argument x0. The run-time of numerous numerical algorithms is dominated
by the time it takes to accumulate F ′ or to evaluate products of the form (Rm×l1�)
Ẏ =F ′Ẋ and (Rl2×n�) X̄= Ȳ F ′. This paper presents a method for accumulating F ′

efficiently. Likely, these ideas will also be useful for computing higher order derivative
tensors. Automatic differentiation (AD) [6] will be considered from the point of view
of graph theory and combinatorial optimization.

F is assumed to be given as a computer program which decomposes into a se-
quence of scalar elemental functions (R �)vj = ϕj(vi)i≺j , where j = 1, . . . , q and
p = q −m. The direct dependence of vj on vi is denoted by i ≺ j. We write i ≺∗ j
if there exist k1, . . . , kp such that i ≺ k1 ≺ k2 ≺ · · · ≺ kp ≺ j. So, {i|i ≺ j} is
the index set of the arguments of ϕj and we denote its cardinality by |{i|i ≺ j}|.
Within F we distinguish between three types of variables V = X ∪ Z ∪ Y : in-
dependent (X ≡ {v1−n, . . . , v0}), intermediate (Z ≡ {v1, . . . , vp}), and dependent
(Y ≡ {vp+1, . . . , vq}). We set xi ≡ vi−n, i = 1, . . . , n, and yj ≡ vp+j , j = 1, . . . ,m.
The numbering I : V → {(1− n), . . . , q} of the variables of F must induce a topolog-
ical order with respect to the dependence “≺”, i.e., i ≺∗ j ⇒ I(vi) < I(vj).

Since the differentiation of F is based on the differentiability of its elemen-
tal functions it will be assumed that the ϕj , j = 1, . . . , q, have jointly continuous
partial derivatives cji ≡ ∂

∂vi
ϕj(vk)k≺j , i ≺ j, on open neighborhoods Dj ⊂ R

nj ,
nj ≡ |{i|i ≺ j}|, of their domain. The computational graph (or c-graph) G = (V,E)
of F is a directed acyclic graph with V = {i|vi ∈ F} and (i, j) ∈ E if i ≺ j. We
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assume G to be linearized in the sense that all partial derivatives of the elemental
functions are attached to their corresponding edges, i.e., (i, j) is labeled with cji.

The forward mode of AD [6] computes F ′ as Ẏ =F ′Ẋ by forward propagation of
Ẋ = In, where In ∈ R

n×n denotes the identity matrix. A lower bound on the number
of multiplications involved in this process is given by n · q ≤ n · |E|. Analogously,
AD’s reverse mode [6] sets Ȳ = Im ∈ R

m×m and accumulates F ′ as X̄ = Ȳ F ′ by
reverse propagation of the identity matrix at a cost of at least m · (p + n) ≤ m · |E|
multiplications.

In the case where F ′ is sparse, the method of Newsam and Ramsdell [19] may
lead to a reduction of these numbers. The application of this method in forward mode
yields a minimal cost of n̂(m + p) ≤ n̂ · |E|, where n̂ denotes the maximal number
of nonzero elements per row in F ′. Analogously, Newsam and Ramsdell’s version of
the reverse mode requires at least m̂(n+ p) ≤ m̂ · |E| multiplications, where m̂ is the
maximal number of nonzero elements per column in F ′.

In contrast to the methods sketched above, the accumulation of F ′ can be regarded
as the process of transforming G into a subgraph G′ of the complete bi-partite graph
Kn,m [8]. The n minimal nodes correspond to the independent variables of F , whereas
the dependent variables are represented by the m maximal nodes. The number of
arithmetic operations actually performed may vary drastically for different application
sequences of the chain rule to G.

Prior to the introduction of a particular elimination technique upon which the
transformation G → G′ ⊆ Kn,m can be built, let us look briefly at an example
to illustrate the above. Consider a function F : R

2 → R
2 given by the following

assignments:

h1 = x1 · x2,

h2 = exp(sin(h1)),

y1 = h1 · h2,

y2 = cos(h2).

(1.1)

Its c-graph is shown in Figure 1.1, where edges are labeled with local partial derivatives

a =
∂(v−1 · v0)

∂v−1
= v0 ≡ x2, . . . , c =

∂(sin(v1))

∂v1
= cos(v1), . . . .

From the chain rule it follows that an entry F ′(i, j) of the Jacobian can be computed
by multiplying the edge labels over all paths connecting the minimal vertex j with the
maximal vertex i followed by summing these products [8]. Consequently, the Jacobian
of (1.1) is given by

F ′ =
(
ae+ acdf be+ bcdf

acdg bcdg

)
.(1.2)

The naive approach to computing (1.2) would take 14 scalar multiplications and 2
additions. The preaccumulation of r = cd, s = rf, and t = rg would give us

F ′ =
(
a(e+ s) b(e+ s)

at bt

)
(1.3)

at a cost of only 7 multiplications and 2 additions. The algorithms presented in
this paper can partially be interpreted as approaches for identifying such reusable
expressions.
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Fig. 1.1.

2. Vertex elimination problem. Elimination of intermediate vertices will be
used to transform G into G′. The following terminology will be assumed: By the
chain rule, updating the existing or generating new edge labels means that the labels
of successive edges (i, j) and (j, k) are multiplied to form the new label of (i, k),
whereas labels of parallel edges having both the same source and target are added.
Parallel edges will always be merged by performing this addition.

Graphically, the elimination of an intermediate vertex j from G is equivalent to
connecting all i|i ≺ j with all k|j ≺ k followed by updating the existing or generating
new edge labels and, finally, the deletion of j. A vertex is deleted together with all
edges incident to it. This is illustrated by Figure 2.1.

2 3

1

0-1

a b

c
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e

2 3

0-1

c+ad

bd

ae

be

Fig. 2.1. Vertex elimination in G.

Relying on the abilities of a wide range of modern floating-point units [9], we
assume equal execution times of a multiply-add-fused ab+ c, a, b, c ∈ R, and a scalar
multiplication. Furthermore, we expect memory accesses to take constant time, in-
dependent of the actual elimination order (see section 6 for a discussion of this as-
sumption). The number of multiplications involved in the elimination of a vertex j is
called the Markowitz degree of j and is equal to µj = |{k|k ≺ j}| · |{l|j ≺ l}|. Again,
the local partial derivatives are represented by a, b, . . ., e.

Our objective is to solve the vertex elimination problem in c-graphs, i.e., to find
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a vertex elimination sequence which minimizes the number of (scalar floating-point)
multiplications required for the accumulation of F ′. Notice that there may be several
different elimination sequences yielding the same computational cost. Here, we are
interested in finding only one of them. Motivated by a similar heuristic for the solution
of sparse systems of linear equations, Griewank and Reese [8] have proposed a greedy
heuristic for the solution of the vertex elimination problem which will be referred to
as lowest Markowitz degree first (LM). As the name suggests, the idea is to eliminate
the cheapest vertex first, i.e., the vertex with the lowest Markowitz degree. Obviously,
this heuristic will have to be combined with possibly several tie-breakers to ensure
a unique choice at every stage. LM is a robust and easy-to-implement method for
solving the vertex elimination problem. However, it has its limitations as outlined in
[14]. Some of them can be potentially overcome by looking at other methods as done
in [15]. Simulated annealing represents one of them.

The vertex elimination problem in c-graphs can be represented as a shortest path
problem in a (single-source-single-sink, directed acyclic) metagraph with integer ver-
tices (which we will also refer to as the stages of the elimination process) as introduced
by Bischof and Haghighat in [5]. Its intermediate vertices correspond to all the dif-
ferent c-graphs resulting from vertex elimination applied to the original graph (the
source of the metagraph) in order to build the bipartite graph that represents the
Jacobian (the sink of the metagraph). Unfortunately, the number of intermediate
vertices in the metagraph grows exponentially with p, which limits the applicability
of this approach to problems of smaller size.

3. Simulated annealing applied to the vertex elimination problem. The
algorithm developed here is motivated by the approach to solving the traveling sales-
man problem presented in [20]. It lead to a software implementation in C++ based on
the library of efficient data types and algorithms (LEDA) [11] which will be referred
to as SAVE.

As a problem in simulated annealing, the vertex elimination problem is handled
as follows.

3.1. Configuration. The intermediate vertices are numbered i = 1, . . . , p, and
each of them has a Markowitz degree µi(k) depending on the stage k in the metagraph
as introduced in section 2. A configuration is a permutation of the indices 1, . . . , p
interpreted as the order in which the intermediate vertices are eliminated.

3.2. Rearrangements. We use slightly altered versions of the rearrangements
suggested in [10] which are based on operations on a certain type of subsequence of a
given vertex elimination sequence.

Definition 1. Let (i1, . . . , ip) be a vertex elimination sequence. (ij , . . . , ik),
1 ≤ j ≤ k ≤ p, is called a dense subsequence if for all j′ with j ≤ j′ ≤ k it holds that
ij′ ∈ (ij , . . . , ik).

In order for rearrangements to be suitable for logarithmic simulated annealing as
described in [2] they have to exhibit certain properties. One of them is reversibility.
It will be guaranteed for the following two types of moves which will be referred to as
reversal and transportation.

1. If (i1, . . . , ip) is the current elimination sequence, then we remove a dense
subsequence (ij , . . . , ij+k) and replace it with its reverse, making

(. . . , ij−1, ij+k, . . . , ij , ij+k+1, . . . )

the next elimination sequence to be regarded, or
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2. a dense subsequence (ij , . . . , ij+k) is removed and then replaced between two
indices il, ir on another, randomly chosen, part of the elimination sequence; i.e.,
(i1, . . . , ip) becomes

(. . . , ij−1, ij+k+1, . . . , il, ij , . . . , ij+k, ir, . . . )

if l > j + k. Otherwise, we get

(. . . , il, ij , . . . , ij+k, ir, . . . , ij−1, ij+k+1, . . . ),

where r < j.
We do not permit other rearrangements apart from these two. Obviously, both

rearrangements represent valid neighborhood relationships as they will always transfer
a given vertex elimination sequence into a new feasible vertex elimination sequence. A
discussion of further rearrangements in the light of logarithmic cooling schedules for
inhomogeneous Markov chains can be found in [18]. In this paper we will concentrate
on algorithmic issues that arise when applying a well-known simulated annealing
algorithm for solving the traveling salesman problem to the vertex elimination problem
in linearized computational graphs.

3.3. Objective function. The Markowitz degree of a vertex changes dynam-
ically throughout the elimination process. Our objective function is the sum of the
Markowitz degrees of all intermediate vertices at their respective moments of elimi-
nation. We will refer to this value as the overall Markowitz degree.

Figure 3.1 shows the principle of our simulated annealing algorithm. It starts
with an initial elimination sequence (ES) which we have chosen as the maximum out
of forward (VF) and backward (VB) vertex elimination sequences in terms of the
number of multiplications required for the accumulation of the complete Jacobian.
At the beginning of the optimization procedure, we do not want the cost c (of ES) to
be close to the minimum. In this case it would become very likely that the algorithm
stops after just one iteration without delivering any improvement.

3.4. Annealing schedule. There are two main loops—an outer loop (counter:
olc) and an inner loop (counter: ilc). For both of them we define upper bounds for
the number of iterations they will perform (ol and il). il*ol is the maximal number
of iterations (the maximal number of elimination sequences that are generated and
run) before the algorithm stops, even if it has not converged. It may happen that one
and the same elimination sequence is checked twice or even more often, although it
is very unlikely. We make sure that we get a result within a reasonable time span by
setting ol and il. Its quality strongly depends on the parameters of the simulated
annealing algorithm.

In contrast with the original algorithm, we have chosen the maximal number of
iterations performed in the inner loop il as the number returned by rounding

p ∗ (2 ∗ atan(1)− atan(p/30− 1))

to the nearest integer. Similarly, the maximal number of outer loop iterations ol has
been set to the integer nearest to

p ∗ (2 ∗ atan(1)− atan(p/100)) + 50.

Figure 3.2 shows the development of il and ol depending on the number p of
intermediate variables in G. Notice that for our algorithm we always assume that



CHEAPER JACOBIANS BY SIMULATED ANNEALING 665

1

t = c / (olc * logc);

olc == ol ?

accepted == 0 ?
accepted == zeros ?

ilc == il ?

min=c; ESmin=ES;

c < min ?

0

1

1

c==cprev?
0

0

EST=RANDOM_CHANGE(ES); c=COST(ES)

min=c; cprev=c; logc=log(c)G:    p > 0

accepted=0; zeros=0; olc++

ilc++

METROP(c-cprev) ?

zeros++

ES=EST; accepted++; cprev=c

t=c / logc

il=(int) (p*(2*atan(1) - atan(p/30 - 1))); ilc=0

ol=(int) (p*(2*atan(1) - atan(p/100))+50); olc=0

ESmin   (min)

0

0

1

0

1

1

ES=MAX(VF,VB); c=COST(ES)

Fig. 3.1. Simulated annealing algorithm.

there is at least one vertex to be eliminated from G. The maximal number of cooling
steps lies always between 50 and 150. It increases rapidly for small values of p, whereas
it converges to 150 for larger graphs. Analogously, we observe a steep ascent in the
first part (0<p<50) of the curve for il. Again, it settles for a value around 40 for
increasing numbers of intermediate variables. Choosing both values as we did assures
that the algorithm will always terminate after a reasonable and in most cases sufficient
run-time.

The “temperature” t is lowered with every iteration of the outer loop (inhomoge-
neous part) and is kept constant while running through the inner loop (homogeneous
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Fig. 3.2. Bounds on iterations in inner and outer loop.

part). Within the latter we randomly change the elimination sequence using the two
rearrangements suggested above. Whether this new, so far temporary, order (EST)
is accepted or not depends on the Metropolis criterion [12]. It returns a Boolean
variable which issues a verdict on whether to accept a reconfiguration leading to a
change d= c-cprev in the objective function COST. If d ≤ 0, then EST will always
be accepted. If d > 0, then the answer of METROP(d) will only be positive with
probability exp(-d/t). As we have already pointed out, t is not changed within the
inner loop. However, with every iteration (olc) of the outer loop we reinitialize t

as t=c/(olc*logc). Notice that the new value of t depends on the current over-
all Markowitz degree, i.e., it depends on the cost of the last accepted elimination
sequence. With this approach we obtain for the jth outer iteration

tj =
cj−1

(j − 1) · log(c0) ⇒ tj+1 =
cj

j · log(c0) .

From the above we can derive the cooling rate ∆tj :

∆tj =
tj+1

tj
=

(j − 1) · cj
j · cj−1

.

Why have we chosen to let t develop this way? Suppose we have taken a step up-
wards (accepted an elimination sequence which results in an increase of the objective
function), i.e., cj > cj−1. Then we do not want to continue the cooling process at
the same speed as before since this could lead to being unable to leave the current
“valley.” The temperature is eventually lowered as a result of the increasing outer
loop counter olc. However, the extent to which the system is cooled depends both
on the current temperature and on the change of the overall Markowitz degree during
the last iteration. This approach worked well in most cases.

Throughout the entire annealing process we always keep track of the minimal
Markowitz degree (min) resulting from any of the elimination orders that were checked
so far. Thus, we do not depend entirely on the convergence of the algorithm. Even a
very good elimination sequence which was found “by luck” in the high temperature
phase of the annealing process can be the result of running the algorithm. After each
outer loop iteration we check the exit criteria. There are three:

1. The maximal number of iterations to be performed is reached (olc== ol).
2. During the last outer loop iteration, none of the rearrangements has been

accepted (accepted== 0).



CHEAPER JACOBIANS BY SIMULATED ANNEALING 667

3. There may be rearrangements which do not lead to any change in the cost
function. All of them will be accepted. However, if all rearrangements ac-
cepted during one outer loop iteration are such, i.e., accepted == zeros,
then the algorithm will be terminated.

Finally, the simulated annealing algorithm delivers an elimination sequence with the
minimal cost, i.e., a vertex elimination order which approximates the minimal number
of multiplications required for the accumulation of the whole Jacobian.

Summarizing the above, we have the following list of parameters to experiment
with when looking for an optimal annealing schedule: initial elimination sequence,
initial temperature, cooling rate, types of rearrangements, number of iterations with
constant temperature, number of cooling steps, and acceptance philosophy. Therefore,
there is certainly plenty of room for experimentation. The method described above,
i.e., the simulated annealing algorithm based on the above configuration and annealing
schedule, will be referred to as SAC.

While looking for the “optimal schedule” we have implemented four additional
versions of the simulated annealing algorithm. In SAR we use the reversal of dense
subsequences as the only rearrangement action. SAT is similar except that only
transportation of dense subsequences is allowed. Furthermore, we have experimented
with two different annealing schedules. SACS is similar to the described method with

tj =
cj−1

2j
⇒ ∆tj =

tj+1

tj
=

j · cj
(j + 1) · cj−1

,

i.e., we have slowed the cooling process down. In SACF we increase the temperature
in the second step, which can be regarded as the generation of a new random initial
elimination sequence, as we accept almost every rearrangement. Then we cool the
system down with

tj =
cj−1

j2
⇒ ∆tj =

tj+1

tj
=

j2 · cj
(j + 1)2 · cj−1

,

which is much faster than in the main method. In the algorithm described by Figure
3.1 we have used the following symbolism:

ES, EST, ESmin ∈ N
p: elimination sequences,

c, cprev, min ∈ N ∪ {0}: cost values,
il, ilc, ol, olc ∈ N ∪ {0}: for loops,
t ∈ R: temperature,
logc ∈ R: logarithm of initial cost,
accepted, zeros ∈ N ∪ {0}: counters.

4. Case studies. The success of simulated annealing depends on extensive test-
ing and variation of parameters. Of course, we would like the algorithm to deliver
nearly optimal results in virtually all cases without always having to adapt the pa-
rameters to the given problem. Furthermore, it should not run too long even for
large-scale problems. We have applied SAVE to many test problems from which we
will select a small subset to discuss in detail. As supported by the results achieved,
our main version of the simulated annealing algorithm (SAC) performs well on a large
number of problems. However, there are certain exceptions indicating that it is prob-
ably impossible to come up with a strategy (annealing schedule) which is universally
optimal for an a priori fixed stopping time.
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4.1. Speelpenning function. The first test problem was used by Speelpenning
in his thesis [21] as an illustration of the powers of the reverse mode of AD; it represents

a simple chained product of the n independent variables y = f(x) =
∏n−1
i=0 xi (SPF).

For n = 50 the c-graph contains 48 intermediate vertices. It can be checked that
VB is optimal on this problem using 96 multiplications for the computation of the
gradient of f . On the other hand, running VF results in an overall Markowitz degree
of 1224 as a consequence of the successive increase of the in-degrees of the intermediate
vertices. The performance of LM would depend on the choice for the primary tie-
break criterion. LM would deliver the optimal solution if the latter were chosen as
VB. Setting it to VF would result in an overall Markowitz degree of 142.

We will use SPF as an illustration of the sensitivity of simulated annealing with
respect to different annealing schedules. Figure 4.1 shows the results for all variations
of our simulated annealing algorithm, which form the five columns of the table below.
The three columns in the figure show the development of the temperature over the
first 20 outer loop iterations, the changes in the objective function after each inner
loop iteration, and the course of the overall Markowitz degree which we intend to
minimize, respectively. Apart from differences in the run-time (tuser), the five meth-
ods converged to different final values of the overall Markowitz degree (min).

SAC SAT SAR SACS SACF
min 129 154 189 136 142
tuser 93 sec 63 sec 105 sec 171 sec 37 sec

Furthermore, we observe the following:
1. Neither a higher nor a lower cooling rate leads to improvements in the value

of the objective function. However, the run-time of SACF undercuts that of SAC by
a factor of nearly 3. Still, it delivers an acceptable result.

2. Starting with the VF-based elimination sequence, the reversal of substrings
could be expected to lead to a good solution in a short time. Obviously, this is not the
case. Why? The reason lies in the structure of the Speelpenning function. Whenever
we eliminate the vertices of a part of the c-graph backward, this can be regarded as
“good” for the value of our objective function. However, running forward is certainly
bad. Now, if we allow the reversal of substrings of a given elimination sequence to
be the only rearrangement in the annealing process, this can lead to the repeated
negation of savings made in the current step by the rearrangements to come.

3. Depending on the accepted rearrangements and the resulting overall Markowitz
degree, the temperature is lowered at varying speeds. This becomes especially clear
when looking at the graphs for SACS in the fourth row of Figure 4.1.

4. The largest decreases in the objective function value are achieved in the high
temperature phase. This is certainly not very surprising.

5. It might often be advantageous to choose a high cooling speed in order to get
useful estimates for the savings that can be expected.

It is difficult to state something of general validity when speaking about the prac-
ticality of simulated annealing when applied to computationally hard combinatorial
optimization problems. However, the approach that we have chosen as our main
method (SAC) turns out to deliver the best results in virtually all cases.

4.2. Steady state combustion problem. The steady state combustion prob-
lem (SSC) is the variational formulation of an underlying boundary value problem [3].
For the examination of the behavior of simulated annealing we have chosen the case
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Fig. 4.1. SAVE on SPF.

with n = 4 independent variables. This leads to a relatively small c-graph containing
103 intermediate vertices which permits a closer look at our algorithm.

SAC converged to an elimination sequence that took 123 multiplications to com-
pute the gradient. The VB-based sequence (142 multiplications) served as the starting
point. The best known value of the objective function achieved by applying the en-
hanced LM heuristic proposed in [14] is 122. Figure 4.2 shows the courses taken by
the temperature t and by the overall cost c.

With il = 47 and ol = 130, the algorithm had to terminate after checking
6110 vertex elimination sequences. In fact, it performed only 59 outer loop iterations
corresponding to the generation of 2773 (not necessarily different) elimination orders,
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after which one of the exit criteria described in section 3 was met. Exploiting one of
the advantages of our simulated annealing algorithm, the overall Markowitz degree is
increased repeatedly; thus, it is able to escape from local minima.

Obviously, the savings which can possibly be achieved are not so remarkable that
they could justify the effort. It makes sense to apply simulated annealing to the
vertex elimination problem in c-graphs if we care about the result only and ignore the
time that it took to compute the elimination sequences. In most cases heuristics will
deliver sequences nearly as good (or better) at much higher speed.

4.3. Chebyshev quadrature problem. Both the SSC and the Chebyshev
quadrature problem (CQ) are taken from the MINPACK test problem collection [3].
For the latter we have chosen n = 15 and m = 16, resulting in a c-graph of reasonable
size. Remember that we always take either the VF- or the VB-based elimination se-
quence as an initialization of the simulated annealing algorithm, depending on which
of them delivers the higher cost. Starting with a relatively “bad” initial elimination
sequence turned out to be advantageous for the behavior of the algorithm in many
cases. Now, CQ represents a counterexample, as the starting sequence is obviously
“not good enough” for a problem of the given size and structure. The operations count
resulting from the application of the VB mode (8400) is about four times as large as
the one of the VF mode (1980). The algorithm “cools the system down” to 4842
which is approximately half the number of multiplications compared to its starting
value. However, it does not reach the value which was calculated for VF. Figure 4.3
shows the development of the overall Markowitz degree. After some ups and downs



CHEAPER JACOBIANS BY SIMULATED ANNEALING 671

Table 5.1
Numerical results for some MINPACK-2 test problems.

n p m DM NR LM SAC NR/SAC

FDC 16 984 16 16000 11000 1338 1234 8.9
FCH 32 1209 32 39712 11169 845 851 13.1
DIE 20 2499 20 50380 50380 1659 1660 30.3
VDI 100 504 100 60400 60400 10401 10337 5.8
EXP 96 479 1 575 575 504 504 1.14

in the first section of the annealing process, caused by the initially high temperature,
the cost decreases continuously, unfortunately, not reaching the minimum. As a way
to overcome this problem we could think of slowing the cooling process down in order
to allow more iterations to be performed. Representing this approach, SACS results
in a cost of 4343. In fact, we observe an improvement compared to SAC. However, it
is not very encouraging when taking into account that it took about four times as long
to achieve the improvement. With VF as primary tie-break criterion, LM delivered
the same solution as VF in this case.

5. Further results. The c-graphs of all test problems were built using the tape
generated by the AD tool ADOL-C [7]. Our objective was to keep the size of the
graphs relatively small. One has to keep in mind that Jacobian accumulation should
primarily be regarded as a derivative code optimization technique performed at com-
pile time. Thus, it will be applied to basic blocks or, possibly using profiling informa-
tion, to unrolled loops performing a small number of iterations. The results presented
here show the potential savings that could be achieved following this approach using
versions of the corresponding c-graphs generated at run-time.

We will consider the following examples from the MINPACK test problem collection
[3]: Flow in a driven cavity problem (FDC), flow in a channel problem (FCH), discrete
integral equation function (DIE), variably dimensioned function (VDI), and extended
Powell function (EXP).

Vertex elimination in c-graphs fully exploits the structural sparsity of a given
problem. Naturally, this applies to both VF and VB. In most cases this alone may
lead to significant savings in the overall operations count. The solution of the vertex
elimination problem may add another factor which varies from problem to problem.

In Table 5.1 we have compared the values delivered by the SAC method with
the best choice out of dense forward and reverse modes (DM) and the corresponding
minimum value achieved by one of the two unidirectional methods by Newsam and
Ramsdell (NR) as introduced in section 1.

Considering the ratio between the optimal one-sided Newsam–Ramsdell approach
and the SAVE, we observe that, in fact, large savings can be achieved. The differ-
ences between LM and SAC are not so remarkable, which supports the thesis that
local heuristics are still a very good trade-off between efficiency and quality of the
result. From the compiler optimization point of view, Jacobian accumulation will
certainly be based on heuristics. However, libraries for scientific computing which
are extensively used in numerous applications may well apply for optimization using
simulated annealing in order to try to improve the corresponding derivative code even
further.

Simulated annealing algorithms are well suited for parallelization, which is not the
case for greedy heuristics such as LM. The development of parallel simulated annealing
algorithms for various elimination techniques in computational graphs [13] is one of the
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objectives of an ongoing research project at the University of Hertfordshire, Hatfield,
UK [16]. There we also investigate the consequences of restricting simulated annealing
to the loop bodies, which is crucial for loops with variable bounds. The simultaneous
treatment of two or more iterations may become important if the computational graph
of the loop body contains a vertex cut with many fewer elements than the numbers
of both minimal and maximal vertices. Also, the combination of several iterations
into one local Jacobian may decrease the overall computational effort significantly.
However, the question of how to decide when and how many iterations to combine
is still open. On a global level, preaccumulation techniques for local Jacobians will
have to be used in conjunction with other AD techniques such as sparse vector modes
[4], [6] or seed matrix compression techniques [1], [19]. Assuming that the number
of derivative values to be computed is large enough to justify the effort required for
preaccumulation, one should strive for local Jacobians of large parts of the program.
Algorithmic implications thereof are subject to future research.

6. Conclusion and future work. In this paper we have applied simulated an-
nealing to the vertex elimination problem in linearized c-graphs. The intention was
to suggest a method for solving this computationally hard combinatorial optimization
problem whose robustness can be adjusted by varying certain parameters. It turned
out to deliver nearly optimal results in most cases while lacking the implementation
simplicity of local heuristics. However, if the run-time of the optimization algorithm
is not a crucial parameter, then simulated annealing represents a very flexible alterna-
tive. Regarding the generation of efficient Jacobian code as a compile-time procedure,
the latter may be the case in many large-scale applications.

Naturally, the minimization of the number of arithmetic operations does not
necessarily result in efficient Jacobian code. Memory accesses may dominate the
run-time of the algorithm. Their locality can be ensured by regarding local Jacobians
of smaller sizes, such as basic blocks or loop bodies, as part of a hierarchical approach
as outlined by Bischof and Haghighat in [5]. The aim is certainly not to accumulate
the whole Jacobian of some real-world problem given in the form of a computer
program. Such programs contain branches and loops with exit criteria which cannot
be predicted at compile time, in general. Local Jacobians resulting from, for example,
CFD kernels as discussed in [22], are what we are talking about. Profiling information
generated by preliminary executions of the program with a typical set of inputs can
help identify cost- intensive parts as well as values of loop exit criteria and branches
taken. In cases where the values of array indices cannot be determined at compile
time, it may still be useful to accumulate local Jacobians without looking at the
vertex elimination problem. Although the shape of the c-graph cannot be predicted
correctly, the accumulated Jacobian will ensure the exploitation of the graph’s (i.e.,
the Jacobian’s) structural sparsity. Depending on whether we choose a VF or VB
sequence, this approach would be equivalent to the sparse forward or reverse modes
as described in chapter 6 of Griewank [6]. In any case, significant savings can be
expected when comparing with DM or Newsam and Ramsdell’s method.

What is the main difference between the AD specific optimizations proposed here
and the optimizations performed by most modern compilers? First, all other methods
for exploiting the structural sparsity of the Jacobian are, in fact, not compile time
solutions. They are implemented as special algorithms by the programmer (such as
seed matrix compression techniques) or they propagate dependency flags at run-time
as implemented in ADIFOR’s [4] SparseLinC library. Furthermore, no compiler can
currently solve the corresponding combinatorial optimization problem. However, this
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does not imply that these algorithms could not become optimizations performed by
a differentiation enabled compiler. A collaborative project between the author and
NAG Ltd. in Oxford, UK, is currently looking at this issue [17].

Apart from the very practical impact that simulated annealing can make on the
run-time of Jacobian code, we expect it to play a central role during the exploration of
certain theoretical aspects associated with the Optimal Jacobian Accumulation prob-
lem. In [13], we have shown that an optimal vertex elimination sequence does, in
general, not minimize the number of multiplications involved in the accumulation
of Jacobian matrices. Edge and face elimination techniques were introduced and
their superiority was demonstrated. So far, it is unknown how large the vertex-edge-
discrepancy and the edge-face-discrepancy actually are. We conjecture that the best
vertex elimination sequence will never involve more than twice the number of multi-
plications required by the optimal Jacobian code. In order to support this conjecture
by numerical results, we are currently implementing simulated annealing algorithms
for both edge and face elimination in c-graphs as part of the XCOp project [16] run-
ning at the University of Hertfordshire, UK. Anything other than a small discrepancy
would mean that the methods used in modern AD tools will not even get close to
the possible minimal number of arithmetic operations for selected, probably mostly
theoretical, problems.
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Abstract. Duality and penalty methods are popular in optimization. The study on duality and
penalty methods for nonconvex multiobjective optimization problems is very limited. In this pa-
per, we introduce vector-valued nonlinear Lagrangian and penalty functions and formulate nonlinear
Lagrangian dual problems and nonlinear penalty problems for multiobjective constrained optimiza-
tion problems. We establish strong duality and exact penalization results. The strong duality is an
inclusion between the set of infimum points of the original multiobjective constrained optimization
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1. Introduction and preliminaries. It is well known that the traditional La-
grange function plays an important role in both theory and methodology for single
objective and multiobjective convex optimization problems, such as optimality con-
dition, duality theory, saddle point theory, sensitivity analysis, and solution method
[2, 19]. However, it becomes less effective for nonconvex optimization problems. For
example, there may be a nonzero duality gap between the single objective nonconvex
constrained optimization problem and its Lagrange dual problem. Thus the Lagrange
method may fail for nonconvex optimization problems. Moreover, it is worth noting
that a zero duality gap can be achieved for a single objective nonconvex optimization
problem using an augmented Lagrangian function; see [14]. A more general scheme
of the conjugate framework was established for convex and nonconvex cases in [12, 1],
respectively. On the other hand, exact penalty functions and their applications in
the study of optimality conditions were provided for single objective constrained op-
timization problems in, e.g., [4, 14, 15] under calmness conditions. See [3] for an
excellent review.

Recently, a class of nonlinear Lagrangian functions was introduced and applied to
establish a zero duality gap for single objective constrained continuous optimization
problems without any convexity requirement [5, 17]. The terminology “nonlinear”
refers to the nonlinearity of the objective function of the transformed problems with
respect to the objective function of the original constrained optimization problem.
The exact penalization result for nonconvex inequality constrained single objective
optimization was obtained under a generalized calmness condition in [18]. It is worth
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noting that the early study on the nonlinear Lagrangian can be found in the work
[23]. Moreover, a pth power transformation was introduced in [9] to guarantee a zero
duality gap for an optimization problem, which is not necessarily convex.

In this paper, we introduce a class of nonlinear Lagrangian functions and nonlinear
Lagrangian dual problems for (nonconvex) multiobjective optimization problems. In
particular, we obtain a strong duality result between a constrained multiobjective op-
timization problem and its nonlinear Lagrangian dual problem without any convexity
requirement. Several types of exact penalization for nonlinear penalty multiobjective
optimization problems are investigated. We study conditions which guarantee

(i) there is a finite penalty parameter vector such that every infimum point of the
original constrained multiobjective optimization problem is an infimum point of the
nonlinear penalty multiobjective optimization problem (global exact penalization);
and

(ii) for each infimum point of the original constrained multiobjective optimization
problem, there is a finite penalty parameter vector such that this point is also an
infimum point of the nonlinear penalty multiobjective optimization problem (local
exact penalization).

The motivation of our study is that there is only limited study on duality and
penalty methods for nonconvex multiobjective optimization problems. Yet these ap-
proaches are popular solution methods in single objective optimization. For convex
multiobjective optimization problems, systematic study of Lagrangian duality and
conjugate duality was given in [19, 10] and the references cited therein. To the best
of our knowledge, investigation on the conventional penalty function method for con-
strained multiobjective optimization problems was only given in [16, 20]. We will
establish strong duality for multiobjective optimization problems without any con-
vexity requirement. The condition used is the lower semicontinuity of the functions
involved, which is much weaker than the continuity assumption in [17]. Moreover,
the conditions for exact penalization are a generalization of the ones for single objec-
tive optimization in [3, 4, 15, 18]. It is worth noting that nonlinear Lagrangian dual
problems studied in this paper provide new models for convex composite optimization
problems studied in [6, 7, 21].

Let Rl be an l-dimensional Euclidean space, C = Rl+, and intC be the interior of
C. Define the following orderings: for any z1, z2 ∈ Rl,

z1 ≤C z2 ⇐⇒ z2 − z1 ∈ C, z1 �≤C z2 ⇐⇒ z2 − z1 /∈ C,

z1 ≤C\{0} z2 ⇐⇒ z2 − z1 ∈ C\{0}, z1 �≤C\{0} z2 ⇐⇒ z2 − z1 /∈ C\{0},
z1 ≤intC z2 ⇐⇒ z2 − z1 ∈ intC, z1 �≤intC z2 ⇐⇒ z2 − z1 /∈ intC.

Let e = (1, . . . , 1) ∈ intC, and ei = (0, 0, . . . , 1, 0, . . . , 0) (the ith component is 1
and the other components are 0’s), i = 1, . . . , l.

Consider the following multiobjective constrained optimization problem:

(MOP) inf
x∈X

f(x)

such that (s.t.) gj(x) ≤ 0, j = 1, . . . ,m,

where X ⊆ Rn is a nonempty closed set, f = (f1, . . . , fl) : X → Rl is a vector-valued
function such that each of its component function fi is lower semicontinuous (l.s.c.),
and gj : X → R1 is l.s.c. for any j ∈ {1, . . . ,m}.

By X0 we denote the set of feasible solutions of (MOP). That is, X0 = {x ∈ X :
gj(x) ≤ 0, j = 1, . . . ,m}. It is clear that X0 is closed.
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We say that x∗ ∈ X0 is an efficient solution to (MOP) if there exists no x ∈ X0

such that f(x) ≤C\{0} f(x∗). The corresponding function value f(x∗) is called an
efficient point of (MOP). We denote by E(0) the set of the efficient solutions of
(MOP).

The point x∗ ∈ X0 is called a weakly efficient solution to (MOP) if there exists no
x ∈ X0 such that f(x) ≤intC f(x∗). The corresponding point f(x∗) is called a weakly
efficient point of (MOP). The set of weakly efficient solutions of (MOP) is denoted by
WE(0).

The point x∗ ∈ X0 is said to be a locally weak efficient solution to (MOP) if there
exists δ > 0 such that f(x) �≤intC f(x∗) for any x ∈ X0 with ‖x− x∗‖ ≤ δ. The set of
all locally weak efficient solutions of (MOP) is denoted by LWE(0).

We denote by V (0) the set of infimum points of (MOP), i.e., V (0) = inf x∈X0
f(x).

Namely, z ∈ V (0) if and only if (i) f(x) �≤C\{0} z ∀x ∈ X0 and (ii) ∃xk ∈ X0 such
that f(xk)→ z as k →∞.

Clearly, if x0 is an efficient solution to (MOP), then f(x0) ∈ V (0).
Without loss of generality, we assume throughout this paper that min1≤i≤l

inf x∈X fi(x) ≥ 0. If this assumption does not hold, then consider the following opti-
mization problem:

(MOP′) inf
x∈X

(exp(f1(x)) + 1, . . . , exp(fl(x)) + 1)

s.t. gj(x) ≤ 0, j = 1, . . . ,m.

It is clear that the sets of efficient solutions and weakly efficient solutions of (MOP)
are the same as that of (MOP′), respectively.

Throughout this paper, for simplicity, we shall use the notation ‖u‖γ to denote
the formula [

∑m
j=1 |uj |γ ]1/γ , where u = (u1, . . . , um) ∈ Rm, γ ∈ (0,+∞).

Let y1 = (y1
1 , . . . , y

1
m), y2 = (y2

1 , . . . , y
2
m) ∈ Rm, define the notation of component-

wise product for y1 and y2:

y1 ∗ y2 ≡ (y1
1y

2
1 , . . . , y

1
my2

m).

Let Z1 be a subset of a metric space Z, and z ∈ Z. Denote by d(z, Z1) the
distance from the point z to the set Z1.

The outline of the paper is as follows. In section 2, strong duality for (MOP) and
its nonlinear Lagrangian dual problem (DMOP) (see next section) is established. In
section 3, conditions are given which are necessary and sufficient for the existence of
a global (local) exact penalty parameter. In section 4, we consider saddle points of
the nonlinear Lagrangian.

2. Nonlinear Lagrangian functions and duality. Let A ⊆ Rl × Rm. A
vector-valued function p : A→ Rl is called increasing on the set A if for any (zi, yi) ∈
A(i = 1, 2) with (z1, y1)− (z2, y2) ∈ C ×Rm+ we have p(z1, y1) ≥C p(z2, y2).

Let p be an increasing vector-valued function defined either on the domain C×Rm

or on the domain C ×Rm+ such that each of its component functions pi is l.s.c. and p
enjoys the following two properties:

(A) There exist positive real numbers aj(j = 1, . . . ,m) such that for any z ∈
C, y = (y1, . . . , ym) with (z, y) belonging to the domain of p, p(z, y) ≥C z and
p(z, y) ≥C (max1≤j≤m{ajyj})e.

(B) ∀z ∈ C, p(z, 0, . . . , 0) = z.
Remark 2.1. This reduces to the function p of [17] when l = 1 and p is continuous.
It is easy to prove the following elementary proposition.
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Proposition 2.1. Let p(z, y) = p′(p′(z, y), y), where p′ is an increasing function
with properties (A) and (B). Then p is also an increasing function having properties
(A) and (B).

Example 2.1. Let z = (z1, . . . , zl), y = (y1, . . . , ym), and (z, y) ∈ C × Rm. Some
examples of the increasing function p defined on C × Rm having properties (A) and
(B) are as follows:

p∞(z, y) =
∑l
i=1 max {zi, y1, . . . , ym}ei;

pγ(z, y) =
∑l
i=1 (z

γ
i +

∑m
j=1 y+

j

γ
)
1/γ

ei, 0 < γ < ∞, where y+
j =max{yj , 0}, j =

1, . . . ,m;
p(z, y) = z + (

∑m
j=1 bjy

+
j )e, where bj > 0, j = 1, . . . ,m.

Example 2.2. The restrictions of p∞, pγ , p (considered in Example 2.1) to C×Rm+
are increasing functions defined on C ×Rm+ having properties (A) and (B).

In the rest of this section, p is assumed to be an increasing function defined on
C × Rm with properties (A) and (B), and this section concludes with a remark for
the case when p is defined on C ×Rm+ .

Let

F (x, d) = (f(x), d ∗ g(x)),

where d = (d1, . . . , dm) ∈ Rm+ and g(x) = (g1(x), . . . , gm(x)).
The nonlinear Lagrangian function corresponding to p for (MOP) is defined as

L(x, d) = p(F (x, d)).(1)

Definition 2.2. The following problem,

(DMOP) sup
d∈Rm+

q(d),

where q(d) = inf x∈X L(x, d) ∀d ∈ Rm+ , is called the nonlinear Lagrangian dual prob-
lem to (MOP) corresponding to p. Here by z ∈ sup d∈Rm+ q(d) we mean that

(i) (z − q(d))
⋂
(−C\{0}) = ∅ ∀d ∈ Rm+ ;

(ii) ∃dj ∈ Rm+ and zj ∈ q(dj) such that zj → z as j → +∞.
z is called a supremum point of (DMOP).

Remark 2.2. If p is convex, e.g., all the p’s except pγ in the case of γ ∈ (0, 1) in
Example 2.1, the problem of computing q(d),

inf
x∈X

p(F (x, d)),

is a type of convex composite multiobjective optimization problem studied in [7].
It is elementary to prove the following results.
Lemma 2.3. Let p be an increasing function with properties (A) and (B). Then

p(F (x, d)) = f(x) ∀x ∈ X0, d ∈ Rm+ .
Proposition 2.4 (weak duality). ∀x ∈ X0, d ∈ Rm+ , (q(d)−f(x))

⋂
(C\{0}) = ∅.

Corollary 2.5. If x∗ ∈ X0 satisfies f(x∗) ∈ supd∈Rm+ q(d), then x∗ ∈WE(0).

Corollary 2.6. [supd∈Rm+ q(d)− V (0)]
⋂
int C = ∅.

Definition 2.7 (see [19]). Let X ⊂ Rn be a set and f : X → Rl be a vector-
valued function. The set f(X) is said to be externally stable if for any x ∈ X there
exists an efficient solution x∗ ∈ X of f on X such that f(x∗) ≤C f(x).
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Definition 2.8. Let X ⊂ Rn be a set and f : X → Rl be a vector-valued
function. The set f(X) is said to be inf-externally stable if for any x ∈ X there exists
an infimum point z∗ of f(X) such that z∗ ≤C f(x).

Remark 2.3. The definition of external stability is given in [19], while the def-
inition of inf-external stability is a weaker concept, which will be used later in this
paper.

The following lemma on external stability can be derived from [19, Corollary
3.2.1].

Lemma 2.9. Let X ⊂ Rn be a compact subset. Let f : X → Rl be a vector-valued
function such that each of its component functions is l.s.c. Then f(X) is externally
stable.

It is routine to prove the next lemma.
Lemma 2.10. Let s : C × Rm → R1 be an increasing l.s.c. function. Let f :

X → C be a vector-valued function such that each component function fi is l.s.c. Let
gj : X → R1 (j = 1, . . . ,m) be l.s.c. Then s(f(x), g(x)) is l.s.c. on X.

Let ξ(z) = max 1≤i≤l{zi} ∀z = (z1, . . . , zl).
Clearly, ξ is an increasing, continuous, subadditive, positively homogeneous, and

convex function.
Definition 2.11. Let X ⊂ Rn be an unbounded set. A vector-valued function

f : X → Rl is said to be coercive on X if

lim
‖x‖→+∞,x∈X

ξ(f(x))→ +∞,

where ‖.‖ is a norm of Rn.
The following result establishes a proper relation between (MOP) and (DMOP).
Theorem 2.12 (strong duality). Assume that X is closed, f(x) ≥C 0 ∀x ∈ X,

and f is coercive on X if X is unbounded. Then

V (0) ⊆ sup
d∈Rm+

q(d).

Proof. Let z∗ ∈ V (0). Then ∃x1
k ∈ X0 such that f(x1

k)→ z∗ as k → +∞.
It follows that ξ(f(x1

k)) → ξ(z∗) as k → +∞. Therefore, {x1
k} is a bounded se-

quence by the coercivity of f on X. Since X0 is closed, there exists a subsequence
{x1

kj
} such that x1

kj
→ x∗ for some x∗ ∈ X0. Note that fi(x

∗) ≤ lim infj→+∞ fi(x
1
kj
) =

(z∗)i, i = 1, . . . , l, where (z∗)i denotes the ith component of z∗. We have f(x∗) ≤C z∗.
This with z∗ ∈ V (0) implies that f(x∗) = z∗. Hence x∗ ∈ E(0). Since f is coercive
on X, we deduce that ∃N > 0 such that

ξ(f(x)) ≥ ξ(f(x∗)) + 1∀x ∈ X1 = {x ∈ X : ‖x‖ > N}.(2)

We claim that

f(x) �≤C\{0} f(x∗) ∀x ∈ X1.(3)

Otherwise, ξ(f(x)) ≤ ξ(f(x∗)), contradicting (2).
Let d = ke, k = 1, 2, . . . . Since X2 = {x ∈ X : ‖x‖ ≤ N} is a nonempty compact

set and x∗ ∈ X2, by Lemmas 2.9 and 2.10, we obtain a sequence {x2
k} ⊆ X2 such that

each x2
k is an efficient solution to the problem: min x∈X2 p(f(x), kg(x)) and

p(f(x2
k), kg(x

2
k)) ≤C p(f(x∗), kg(x∗)) = f(x∗).(4)
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We show that this fact combined with (3) yields that p(F (x2
k, d)) ∈ q(k, . . . , k) =

infx∈X p(F (x, d)).
(i) It is obvious that if x ∈ X2, p(F (x2

k, d)) �≥C\{0} p(F (x, d)).
(ii) Suppose that ∃ x ∈ X1 such that

p(F (x2
k, d)) ≥C\{0} p(F (x, d)).(5)

Note that

p(F (x2
k, d)) ≤C f(x∗)

and

f(x∗) �≥C\{0} f(x).

Then

p(F (x2
k, d)) �≥C\{0} f(x).(6)

By (5) and (6),

p(F (x, d)) �≥C\{0} f(x),

a contradiction with the property (A).
It follows from {x2

k} ⊂ X2 that there exists a subsequence {x2
kj
} such that x2

kj
→

x0 ∈ X2.
Let us show that x0 ∈ X0. If not, d(x0, X0) ≥ δ0 for some δ0 > 0. It follows that

d(x2
kj
, X0) ≥ δ0/2 when j is sufficiently large.

Let X3 = {x ∈ X2 : d(x,X0) ≥ δ0/2} and ḡ(x) = max 1≤j≤m gj(x). Since ḡ(x) >
0 ∀x ∈ X3, X3 is compact, and ḡ is l.s.c, we deduce that minx∈X3 ḡ(x) = m0 > 0.

By property (A) of the function p, there exist positive numbers ai(i = 1, . . . ,m)
such that

p(f(x2
kj ), kjg(x

2
kj )) ≥C

(
m0kj min

1≤i≤m
ai

)
e

when j is sufficiently large, which contradicts (4). So x0 ∈ X0.
Applying property (A) and (4), we have

f(x2
kj ) ≤C p(f(x2

kj ), kjg(x
2
kj )) ≤C f(x∗).

Thus,

fi(x
2
kj ) ≤ pi(f(x

2
kj ), kjg(x

2
kj )) ≤ fi(x

∗), i = 1, . . . , l.(7)

Applying the lower limit to (7) by letting j →∞, we conclude that fi(x0) ≤ fi(x
∗), i =

1, . . . , l, which implies that

f(x0) = f(x∗)(8)

since x∗ ∈ E(0).
Equation (8) combined with (7) as well as x2

kj
→ x0 yields that

p(f(x2
kj ), kjg(x

2
kj ))→ f(x∗) as j → +∞.
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Finally, it follows directly from Proposition 2.4 that

(q(d)− f(x∗))
⋂

(C\{0}) = ∅ ∀d ∈ Rm+ .

The proof is complete.
Remark 2.4. 1. When l = 1, this theorem improves Theorem 3.1 in [17] by

relaxing the assumption of continuity of f and gj as well as p to lower semicontinuity
and dropping the assumption that X0 is compact.

2. It is evident from the proof of Theorem 2.12 that to solve (MOP) we can
solve a series of unconstrained multiobjective programming problems to approach the
efficient points of (MOP).

3. The condition that f is coercive on X is important to guarantee the validity
of Theorem 2.12. Otherwise, it may fail even if X0 is compact. Example 2.3 shows
this case.

Example 2.3. Let l = 1, X = [0,+∞), f(x) = 1/(x+ 1) ∀x ∈ X, g1(x) = x− 1 if
0 ≤ x ≤ 1; g1(x) = 1/

√
x− 1/x if 1 < x < +∞, p(y1, y2) = max{y1, y2} ∀y1, y2 ∈ R1.

Consider the problem

inf
x∈X

f(x) s.t. g1(x) ≤ 0.

It is easy to see that X0 = [0, 1] (which is compact) and V (0) = {1/2}.
p(f(x), dg1(x)) = max{f(x), dg1(x)} = max{1/(x + 1), d(1/

√
x − 1/x)} ∀x ∈

X\X0, d ≥ 0.
Clearly, q(d) = 0 ∀d ≥ 0. It follows that sup d≥0 q(d) = {0}. Hence V (0) ⊆

supd≥0 q(d) does not hold.
Despite Example 2.3, in actually designing an algorithm based on Theorem 2.12,

if X0 is compact, we can replace f(x) with f(x)+ l(x)e, where l : X → R1
+ is an l.s.c.

function which satisfies the following condition: there exists a compact set X ′ such
that X0 ⊆ X ′ ⊆ X with l(x) = 0 if x ∈ X ′ and l(x)→ +∞ if x ∈ X and ‖x‖ → +∞.
A simple example of such an l is l(x) = d(x,X0) ∀x ∈ X. Thus Theorem 2.12 can
be applied to the objective function f(x) + l(x)e, which has the same set of (weakly)
efficient solutions and the same set of (weakly) efficient points as f(x) on X0.

Finally, we observe the following two points:
(i) for z∗ ∈ V (0) there may not exist d∗ ∈ Rm+ such that z∗ ∈ q(d∗) even if all the

conditions in Theorem 2.12 hold;
(ii) for the conventional Lagrangian, Theorem 2.12 does not, in general, hold.
Counterexamples are given for these two cases in Examples 2.4 and 2.5, respec-

tively.
Example 2.4. Let l = 1, X = [1/2,+∞), and f(x) = 1/x if x ∈ [1/2, 1]; f(x) =

2− x if x ∈ [1, 2]; f(x) = x− 2 if x ∈ (2,+∞). Let g1(x) = x− 1.
Consider the problem

inf
x∈X

f(x) s.t. g1(x) ≤ 0.

Let L(x, d) = max{f(x), dg1(x)}, d ≥ 0, x ∈ X. Then it is not difficult to derive the
following fact: q(d) = d/(1 + d) ∀d ≥ 0. Clearly, q(d) < 1 = inf x∈X0 f(x) ∀d > 0.

Example 2.5. Let l = 1, X = [0,+∞), f(x) = x, g(x) = x − x2. Consider the
problem

inf
x∈X

f(x)

s.t. g1(x) ≤ 0.
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It is clear that all the conditions of Theorem 2.12 hold. Let us look at the
conventional Lagrangian for this problem: l(x, λ) = f(x)+λg1(x) = x+λ(x−x2) ∀x ∈
X, λ ≥ 0. It is easy to check that infx∈X l(x, λ) = −∞ ∀λ > 0 and infx∈X l(x, 0) = 0.
Thus, supλ≥0 infx∈X l(x, λ) = 0.However, the optimal value of the original constrained
problem is 1.

Based on some conditions on the constraint functions, we also have the following
result.

Theorem 2.13. Let ḡ(x) = max 1≤j≤m gj(x). Assume that there exist N > 0
and m1 > 0 such that

ḡ(x) ≥ m1 ∀x ∈ X with ‖x‖ > N.(9)

Then V (0) ⊆ sup d∈Rm+ q(d).

Proof. It follows from (9) that X0 is a nonempty compact set. For any z∗ =
f(x∗) ∈ V (0), by Proposition 2.4 we have that

(q(d)− f(x∗))
⋂

(C\{0}) = ∅ ∀d ∈ Rm+ .

Furthermore, whenever x ∈ X with ‖x‖ > N ,

p(f(x), kg(x)) ≥C
(
km1 min

1≤i≤m
{ai}

)
e ≥intC f(x∗) + e

when k is sufficiently large. Consequently, when k is sufficiently large, the set

{x ∈ X : p(f(x), kg(x)) ≤C f(x∗)}(⊆ {x ∈ X : ‖x‖ ≤ N})

is a nonempty compact set. Therefore, when k is sufficiently large, ∃xk ∈ X with
‖xk‖ ≤ N such that xk is an efficient solution to the problem

min
x∈X

p(f(x), kg(x))

with

f(xk) ≤C p(f(xk), kg(xk)) ≤C f(x∗).(10)

Since ‖xk‖ ≤ N for k sufficiently large, it follows that there exists a subsequence {xkj}
converging to x′ ∈ X. We can show as in the proof of Theorem 2.12 that x′ ∈ X0.
This fact combined with (10) yields that f(x′) ≤C f(x∗). Therefore, f(x′) = f(x∗)
since x∗ ∈ E(0). Hence, p(f(xkj ), kjg(xkj )) → f(x∗). So f(x∗) ∈ sup d∈Rm+ q(d) and

the proof is complete.
The following proposition further clarifies the relation between (MOP) and (DMOP).
Proposition 2.14. Let dk ∈ Rm+ ∀k and dk → +∞ as k →∞ (i.e., dki → +∞ ∀i

as k → +∞). Suppose that each xk is a weakly efficient solution to inf x∈X L(x, dk).
Then any limiting point of {xk} is a weakly efficient solution to (MOP).

Proof. Without loss of generality, suppose that xk → x∗. We can show by contra-
diction that x∗ ∈ X0. In fact, if d(x∗, X0) ≥ δ0 for some δ0 > 0, then d(xk, X0) ≥ δ0/2
when k is sufficiently large. Since xk → x∗, we deduce that ‖xk − x∗‖ ≤ 1 when k is
sufficiently large.

Let X4 = {x ∈ X : d(x,X0) ≥ δ0/2, ‖x − x∗‖ ≤ 1}. Then xk ∈ X4 when k
is sufficiently large. Let ḡ(x) = max 1≤i≤m gi(x). Then ḡ(xk) ≥ min x∈X3 ḡ(x) =
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m1 > 0 when k is sufficiently large. So

p(f(xk), dk ∗ g(xk))≥C ḡ(xk)

(
min

1≤i≤m
ai min

1≤i≤m
dki

)
e

≥C
(
m1 min

1≤i≤m
ai min

1≤i≤m
dki

)
e

≥intC f(x0)(11)

for any fixed x0 ∈ X0 and k large enough. Moreover, by Lemma 2.3,

f(x0) = p(f(x0), d
k ∗ g(x0)).(12)

The combination of (11) and (12) contradicts the fact that xk is a weakly efficient
solution to minx∈X p(f(x), dk ∗ g(x)). Therefore, x∗ ∈ X0.

Now we show that x∗ ∈W(0). Otherwise, ∃x′′ ∈ X0 such that f(x′′) ≤intC f(x∗).
Therefore,

f(x′′) ≤intC f(xk)(13)

when k is sufficiently large since each component function of f is l.s.c.
Note that

f(x′′) = p(f(x′′), dk ∗ g(x′′))

and

p(f(xk), d
k ∗ g(xk)) ≥C f(xk);

it follows from (13) that

p(f(x0), d
k ∗ g(x0)) ≤intC p(f(xk), dk ∗ g(xk))

when k is sufficiently large. Namely, xk is not a weakly efficient solution to

min
x∈X

p(f(x), dk ∗ g(x))

when k is sufficiently large, which cannot be true. The proof is complete.
Remark 2.5. All the results in this section also hold for the case when p is defined

on the domain C×Rm+ , F+(x, d) = (f(x), d∗g+(x)), g+(x) = (g+
1 (x), . . . , g+

m(x)), and

L(x, d) = p(F+(x, d)).(14)

3. Exact penalization. Consider the following nonlinear penalty function:

Lγ(x, d) = pγ(f(x), d ∗ g+(x)) =

l∑
i=1


fγi (x) + m∑

j=1

dγj g
+
j

γ
(x)


1/γ

ei,

where 0 < γ < +∞.
Let u = (u1, . . . , um) ∈ Rm. We associate (MOP) with a perturbed problem:

(MOPu) inf
x∈X

f(x)

s.t. gj(x) ≤ uj , j = 1, . . . ,m,
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where X, f, gj are defined as in (MOP).
Let

X(u) = {x ∈ X : gj(x) ≤ uj , j = 1, . . . ,m}.
We will denote by E(u),W (u), and V (u) the sets of efficient solutions, efficient points,
and infimum points of (MOPu), respectively.

We need the following lemma.
Lemma 3.1. For any x0 ∈ X(u), there exists z∗ ∈ V (u) such that z∗ ≤C f(x0).
Proof. Let Z = f(X(u)), Z1 = {z ∈ cl(Z) : z ≤C f(x0)}. Clearly, Z1 is

nonempty and closed and z ≥C 0 ∀z ∈ Z. Since ≤C is a partial order in Z1, by
the well-known Hausdorff maximality principle (see, e.g., [11]), there exists a totally
ordered subset Z2 of Z1, which is maximal with respect to the set inclusion. Let
z∗i = inf{zi : (z1, . . . , zi, . . . , zl) ∈ Z2}, i = 1, . . . , l, and z∗ = (z∗1 , . . . , z

∗
l ). It is obvious

that 0 ≤C z∗ ≤C f(x0). Furthermore, by the definition of z∗ and the fact that
Z2 is totally ordered, we deduce that z∗ ∈ cl(Z2) ⊂ Z1. We assert that z∗ ∈ Z2.
Otherwise, as Z2

⋃{z∗} is also a totally ordered subset of Z1 and Z2 ⊂ Z2

⋃{z∗}, this
contradicts the maximality of Z2 with respect to the set inclusion. Finally, we show
that z∗ ∈ V (u). We need to prove only that z �≤C\{0} z∗ ∀z ∈ cl(Z). Let z ∈ cl(Z). If
z �≤C f(x0), it can be shown by contradiction that z �≤C\{0} z∗. If z ≤C f(x0) and

z ≤C\{0} z∗,(15)

then, by the maximality of Z2, we have z ∈ Z2, and thus z∗ ≤C z by the definition of
z∗. This contradicts (15). The proof is complete.

Definition 3.2. We say that (MOP) is γ-rank uniformly weakly stable if there
exist δ > 0 and M > 0 such that[

V (u)− V (0)

‖u‖γγ +Me

]⋂
(−intC) = ∅(16)

for any u ∈ Rm+ with 0 < ‖u‖γ ≤ δ.
Remark 3.1. 1. It is not hard to show that the restriction u ∈ Rm+ in the definition

of the γ-rank uniform weak stability can be replaced by u ∈ Rm. This is also true for
the γ-rank weak stability and γ-rank calmness in Definitions 3.4 and 3.7, respectively.

2. If l = 1 and γ = 1, then Definition 3.2 is equivalent to the stability of scalar
optimization problems studied by Rosenberg [15]. (Any equality constraint h(x) =
0 with h being continuous can be equivalently written as the following inequality
constraint: |h(x)| ≤ 0.) In the definition of γ-rank uniform weak stability of (MOP),
the term “uniform” shows the difference from the usual stability in which V (0) in (16)
is replaced by a specific point of V (0) and the fact that different points of V (0) may
have different M ′s in (16), and the term “weak” is used in contrast to the stability of
(MOP) defined in [19, Definition 6.13, p. 182].

3. Let 0 < γ1 < γ2. It is not hard to see that if (MOP) is γ2-rank uniformly
weakly stable, then it is also γ1-rank uniformly weakly stable.

Theorem 3.3. If (MOP) is γ-rank uniformly weakly stable, then ∃d∗ ∈ Rm+ such
that when d− d∗ ∈ Rm+ ,

V (0) ⊆ qγ(d),(17)

where qγ(d) = inf x∈X Lγ(x, d). The converse is also true.
Proof. We begin by proving the first half of this theorem.
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If V (0) = ∅, then the conclusion holds automatically. Now we assume that V (0) �=
∅.

Let η(z) = min 1≤i≤l zi ∀z = (z1, . . . , zl) ∈ Rl. We show by contradiction that
η(V (0)) = {η(z) : z ∈ V (0)} is bounded from above by some M ′ > 0. Otherwise,
∃zk ∈ V (0) such that zk → +∞. Since V (0) �= ∅, it follows that for any δ > 0,
X(uδ) ⊃ X(0) = X0 �= ∅, where uδ = (0, 0, . . . , 0, δ) ∈ Rm+ . Suppose that x0 ∈ X0 ⊂
X(uδ). Then by Lemma 3.1 ∃zδ ∈ V (uδ) such that

zδ ≤C f(x0).

Hence,

(zδ − zk)/‖uδ‖γγ ≤C (f(x0)− zk)/‖uδ‖γγ → −∞ as n→∞,

which contradicts (16) because δ > 0 can be arbitrarily small.
Suppose that ∃dk = (dk,1, . . . , dk,m) → +∞ and zk ∈ V (0) such that zk /∈

inf x∈X Lγ(x, dk).

By zk ∈ V (0), it follows that ∃xjk such that g(xjk) ≤ 0 and f(xjk)→ zk as j →∞.
It follows from zk /∈ inf x∈X Lγ(x, dk) that ∃x′

k ∈ X such that

Lγ(x
′
k, dk) ≤C\{0} zk.

That is,

l∑
i=1


fγi (x′

k) +

m∑
j=1

(dγk,jg
+
j

γ
(x′
k))


1/γ

ei ≤C\{0} zk.(18)

Using (18), we deduce that max 1≤j≤m gj(x
′
k) > 0 since zk ∈ V (0).

(18) also implies that

m∑
j=1

dγk,jg
+
j

γ
(x′
k) ≤ (zk)

γ
i − fγi (x

′
k) ≤ (zk)

γ
i , i = 1, . . . , l,(19)

where (zk)i denotes the ith component of vector zk.
That is, [

∑m
j=1 dγk,jg

+
j

γ
(x′
k)]

1/γ ≤ η(zk) ≤M ′.
It follows that g+

j (x
′
k)→ 0 (j = 1, . . . ,m) as n→ +∞.

Now let uk,j = g+
j (x

′
k) and uk = (uk,1, . . . , uk,m). Clearly, ‖uk‖γ > 0 and

‖uk‖γ → 0. It follows from (19) that ‖uk‖γγ min 1≤j≤m dγk,j ≤ (zk)
γ
i − fγi (x

′
k). By

Lemma 3.1, we deduce that ∃vk ∈ V (uk) such that vk ≤C f(x′
k). By the mean-value

theorem, we have (zk)
γ
i − (vk)

γ
i = k(sk)

γ−1
i ((zk)i− (vk)i), where (sk)i ∈ ((vk)i, (zk)i).

Therefore, it follows from (19) that

‖uk‖γγ min
1≤j≤m

dγk,j ≤ k(sk)
γ−1
i ((zk)i − (vk)i) ≤ γ(vk)

γ−1
i ((zk)i − (vk)i) if γ ≤ 1;(20)

‖uk‖γγ min
1≤j≤m

dγk,j ≤ γM ′γ−1
((zk)i − (vk)i) if γ > 1.(21)

Since inf x∈X fi(x) > 0 ∀i, it follows that
min

1≤i≤m
(vk)i ≥ m2 > 0.(22)
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Let M ′′ = max {M ′γ−1
,mγ−1

2 }. The combination of (20), (21), and (22) yields that

‖uk‖γγ min
1≤j≤m

dγk,j ≤ γM ′′((zk)i − (vk)i),

i.e.,

(vk)i − (zk)i
‖uk‖γγ ≤ −

min
1≤j≤m

dγk,j

γM ′′ ,

which contradicts (16). Thus (17) holds.
Now we prove the second half of the theorem by contradiction.
Suppose that ∃uk = (uk,1, . . . , uk,m) ∈ Rm+ with uk → 0+ and zk ∈ V (uk), vk ∈

V (0) such that

(zk − vk)/‖uk‖γγ → −∞ as k → +∞,

where the virtual element −∞ is such that for any α ∈ R1
+,−∞ ≤intC −αe. Then

∃xk ∈ X with gj(xk) ≤ uk,j∀j such that

(f(xk)− vk)/‖uk‖γγ → −∞ as k → +∞.(23)

By the assumption of the theorem, ∃d∗ = (d∗1, . . . , d
∗
m) ∈ Rm+ such that when d−d∗ ∈

Rm+ , vk ∈ infx∈X Lγ(x, d). Therefore,

Lγ(xk, d
∗) �≤C\{0} vk.(24)

We assume that i∗ ∈ {1, . . . , l} is such that
fγi∗(xk) + m∑

j=1

d∗j
γg+
j

γ
(xk)


1/γ

≥ (vk)i∗ .

Namely,

fγi∗(xk)− (vk)
γ
i∗ ≥ −

m∑
j=1

d∗j
γg+
j

γ
(xk).(25)

It follows from (23) and (24) that max 1≤j≤m gj(xk) > 0. So from (25) we deduce
that

fγi∗(xk)− (vk)
γ
i∗ ≥ − max

1≤j≤m
d∗j
γ‖uk‖γγ .

That is,

[(vk)
γ
i∗ − fki∗(xk)]/‖uk‖γγ ≤ max

1≤j≤m
d∗j
γ .(26)

Since

(vk)
γ
i∗ − fγi∗(xk) = γsγ−1

k ((vk)i∗ − fi∗(xk)), sk ∈ (fi∗(xk), (vk)i),

it follows from the assumption on f that ∃a > 0 such that

(vk)
γ
i∗ − fki∗(xk) ≥ γa((vk)i∗ − fi∗(xk)).(27)
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Equations (26) and (27) yield that

[fi∗(xk)− (vk)i∗ ]/‖uk‖γγ ≥ − max
1≤j≤m

d∗j
γ/(ka),

which contradicts (23). The proof is complete.
Remark 3.2. When l = 1,m = 1, Theorem 3.3 reduces to Theorem 7.2 in [18].
Definition 3.4. (i) Let z∗ ∈ V (0). The problem (MOP) is said to be γ-rank

weakly stable at z∗ if there exist positive real numbers δz∗ and Mz∗ such that[
V (u)− z∗

‖u‖γγ +Mz∗e

]⋂
(−intC) = ∅

for any u ∈ Rm+ with 0 < ‖u‖γ ≤ δz∗ .
(ii) The problem (MOP) is said to be γ-rank weakly stable if it is γ-rank weakly

stable at every z∗ ∈ V (0).
Remark 3.3. 1. It is clear that if (MOP) is γ-rank uniformly weakly stable, then

(MOP) is γ-rank weakly semistable.
2. It is not hard to check that if f(X(u)) is externally stable for any u ∈ Rm+ ,

then the stability of (MOP) defined in [19, Definition 6.1.3, p. 182] implies the 1-rank
weak stability of (MOP).

The proof of the next theorem is similar to that of Theorem 3.3 and is thus
omitted.

Theorem 3.5. Let z∗ ∈ V (0). Then (MOP) is γ-rank weakly stable at z∗ if and
only if there exists a d∗ ∈ Rm+ such that z∗ ∈ qγ(d) whenever d− d∗ ∈ Rm+ .

Corollary 3.6. (MOP) is γ-rank weakly stable if and only if for every z∗ there
exists a d∗ ∈ Rm+ such that z∗ ∈ qγ(d) whenever d− d∗ ∈ Rm+ .

Remark 3.4. The following simple example shows that (MOP) is 1-rank weakly
stable but not 1-rank uniformly weakly stable.

Example 3.1. Let n = 1, l = 2, X = R1, and m = 1. Let f(x) = (exp(−x1/2),
exp(−x1/2)) if x > 0; f(x) = (exp(x), exp(−x)) if x ≤ 0. Let g(x) = x ∀x ∈ R1. It is
easy to check that V (0) = {(exp(x), exp(−x)) : x ≤ 0} and

V (u) = {(exp(−u1/2), exp(−u1/2))}
⋃
{(exp(x), exp(−x)) : x < −u1/2} ∀u > 0.

It is elementary to prove that (MOP) is 1-rank weakly stable but not 1-rank uniformly
weakly stable. By Corollary 3.6, we know that for every z∗ ∈ V (0) there exists d∗ ≥ 0
such that z∗ ∈ inf x∈R1(f(x) + dg+(x)e), where d ≥ d∗. On the other hand, by
Theorem 3.3, we deduce that there exists no d∗ ≥ 0 such that V (0) ⊆ inf x∈R1(f(x)+
dg+(x)e), whenever d ≥ d∗.

Definition 3.7. Let x∗ ∈ LWE(0). We say that (MOP) is γ-rank calm at x∗

if there exists M > 0 such that for any uk = (uk,1, . . . , uk,m) ∈ Rm+ with ‖uk‖γ → 0+

(namely, ‖uk‖γ > 0 and ‖uk‖γ → 0), for any xk satisfying gj(xk) ≤ uk,j , j = 1, . . . ,m
and xk → x∗, there holds

f(xk)− f(x∗)
‖uk‖γγ +Me /∈ −C ∀n.

Remark 3.5. 1. If l = 1, γ = 1, then this definition is equivalent to the calmness
at a point of a scalar optimization problem (see, e.g., [15, 4]). If l > 1, γ = 1, then
this definition is equivalent to the weak calmness at a point of the multiobjective
optimization problem (MOP) defined in [16].
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2. If 0 < γ1 < γ2, then (MOP) is γ2-rank calm at a point x∗, which implies that
it is γ1-rank calm at x∗.

The following local exact penalization result can also be similarly proved as The-
orem 3.3.

Theorem 3.8. Let 0 < γ < +∞. The following statements hold.
(i) Assume that x∗ is a locally weak efficient solution to (MOP) and (MOP) is

γ-rank calm at x∗. Then there exist δ > 0 and d∗ ∈ Rm+ such that x∗ is also a weak
efficient solution to the problem min x∈Xδ Lγ(x, d), for any d satisfying d− d∗ ∈ Rm+ ,
where Xδ = {x ∈ X : ‖x− x∗‖ ≤ δ}.

(ii) If x∗ ∈ X0 and there exist d∗ ∈ Rm+ and δ > 0 such that x∗ is a locally weak
efficient solution to the problem min x∈X Lγ(x, d

∗), then x∗ ∈ LWE(0) and (MOP)
is γ-rank calm at x∗.

The next theorem uses a well-known condition in the study of sensitivity of a con-
strained optimization problem (see, e.g., [12]), i.e., the compactness of the feasible set
with a small perturbation. Under this condition, the set of efficient points of (MOP)
and that of Lγ(·, d) are nonempty. The conclusion follows directly from Theorem 3.3.

Theorem 3.9. Assume that there exists u0 = (u0
1, . . . , u

0
m) ∈ intRm+ with ‖u0‖ >

0 sufficiently small such that X5 = {x ∈ X : gj(x) ≤ u0
j∀j} is compact. If (MOP) is

γ-rank uniformly weakly stable, then ∃d∗ ∈ Rm+ such that when d− d∗ ∈ Rm+ ,

W (0) = f(E(0)) ⊆ q̄γ(d),

where q̄γ(d) is the set of efficient points of Lγ(·, d) over X. The converse is also true.
The following theorem establishes a further relationship between the solutions of

(MOP) and that of the penalty problems based on Lγ .
Theorem 3.10. Assume that X0 �= ∅ and ∃d∗ = (d∗1, d

∗
2, . . . , d

∗
m) ∈ Rm+ such

that for all d satisfying d − d∗ ∈ Rm+ , x∗ ∈ X is an efficient solution of the problem
min x∈X Lγ(x, d); then x∗ is an efficient solution of (MOP).

Proof. Let x∗ be an efficient solution of min x∈X Lγ(x, d) for any d satisfying
d− d∗ ∈ Rm+ . Then we have

Lγ(x, d)− Lγ(x
∗, d) �≤C\{0} 0 ∀x ∈ X, d satisfying d− d∗ ∈ Rm+ .

For any x0 ∈ X0, we have Lγ(x0, d) = f(x0) ∀d ∈ Rm+ by Lemma 2.3. Thus,

f(x0)−
l∑
i=1


fγi (x∗) +

m∑
j=1

dγj g
+
j

γ
(x∗)


1/γ

ei �≤C\{0} 0 ∀x0 ∈ X0, d satisfying d−d∗ ∈ Rm+ .

(28)

We claim that g+
j (x

∗) = 0 ∀j (i.e., x∗ ∈ X0). Otherwise,
∑m
j=1 g+

j

γ
(x∗) > 0.

It follows from (28) that there exists i∗ ∈ {1, . . . , l} such that

fγi∗(x0)− fγi∗(x
∗) ≥

m∑
j=1

dγj g
+
j

γ
(x∗) ≥

(
min

1≤j≤m
dγj

) m∑
j=1

g+
j

γ
(x∗).

Hence,

max
1≤i≤l

{fγi (x0)− fγi (x
∗)} ≥

m∑
j=1

dγj g
+
j

γ
(x∗) ≥

(
min

1≤j≤m
dγj

) m∑
j=1

g+
j

γ
(x∗),
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which is impossible if we let dj → +∞ ∀j. Therefore, x∗ ∈ X0. It follows directly from
Lemma 2.3 and (28) that x∗ ∈ E(0), and the proof is complete.

What follows is a characterization of the γ-rank weak stability of (MOP) at a
point z∗ ∈ V (0) in terms of the γ-rank stability of a scalar optimization problem (see
below).

Let z∗ ∈ V (0). Recall ξ(z) = max1≤i≤l{zi} ∀z = (z1, . . . , zl). Consider the
following scalar optimization problem:

(P(z∗)) inf
x∈X

ξ(f(x)− z∗)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,

and its perturbed problem,

(Pu(z
∗)) inf

x∈X
ξ(f(x)− z∗)

s.t. gj(x) ≤ uj , j = 1, . . . ,m

where u = (u1, . . . , um) ∈ Rm+ is such that ‖u‖γ > 0 is sufficiently small.
Clearly, the optimal value of (P(z∗)) is 0. We denote by π(u) the optimal value

of (Pu(z
∗)). (P(z∗)) is said to be γ-rank stable if there exist positive numbers δ and

M such that

π(u)

‖u‖γγ ≥ −M

for any u ∈ Rm+ with 0 < ‖u‖γ ≤ δ.
Note that this notion of γ-rank stability of (P(z∗)) is equivalent to the stability

defined in [15] if γ = 1.
The following conclusion can be straightforwardly proved.
Theorem 3.11. Let z∗ ∈ V (0). Then (MOP) is γ-rank weakly stable at z∗ if

and only if (P (z∗)) is γ-rank stable.
Corollary 3.12. (MOP) is γ-rank weakly stable if and only if for any z∗ ∈ V (0),

(P (z∗)) is γ-rank stable.
Remark 3.6. As noted in [4, p. 238], for a scalar optimization problem, any

constraint qualification (such as the Slater or Mangasarian–Fromowitz condition)
which rules out abnormal Lagrangian multipliers at every optimum also guarantees
a stronger version of stability of the optimization problem; that is, the optimal value
function of (Pu(z

∗)) is locally Lipschitz at the origin of Rm.
In the following, we provide some criteria for the γ-rank calmness of (MOP) at a

point.
Let x∗ ∈ LWE(0). Let u ∈ Rm+ \{0}. We associate (MOP) with the following

scalar optimization problem (P ′) and its perturbed problem (P′
u):

(P ′) inf
x∈X

ξ(f(x)− f(x∗))

s.t. gj(x) ≤ 0, j = 1, . . . ,m,

(P ′
u) inf

x∈X
ξ(f(x)− f(x∗))

s.t. gj(x) ≤ uj , j = 1, . . . ,m.

It is easy to see that x∗ is also a local minimum to (P ′).
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(P ′) is said to be γ-rank calm at x∗ if there exists M > 0 such that for any
uk = (uk,1, . . . , uk,m) ∈ Rm+ with ‖uk‖γ → 0+, for any xk → x∗ with gj(xk) ≤ uk,j ,∀j,
we have

ξ(f(xk)− f(x∗))/‖uk‖γγ ≥ −M.

The following proposition establishes the relationship between the γ-rank calm-
ness of (MOP) and that of (P ′).

Proposition 3.13. Let x∗ be a locally weak efficient solution to (MOP) and
0 < γ < +∞. Then (MOP) is γ-rank calm at x∗ if and only if (P ′) is γ-rank calm at
x∗.

A sufficient condition for the calmness of (MOP) at a point is given in the fol-
lowing proposition.

Proposition 3.14. Let x∗ ∈ X and 0 < γ < +∞. Assume that the following
conditions hold:

(i) there exists λ ∈ Rl+\{0} such that x∗ is a local minimum to

(Pλ) inf
x∈X

λT f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m;

(ii) (Pλ) is γ-rank calm at x∗.
Then (MOP) is γ-rank calm at x∗.

The following lemma follows from a statement in [4, p. 239].
Lemma 3.15. Let γ ∈ (0, 1], fi(i = 1, . . . , l), gj(j = 1, . . . ,m) be locally Lipschitz

functions around a local minimum x∗ to (P ′). If (P ′) satisfies either of the following
constraint qualifications:

(i) Mangasarian–Fromowitz-type constraint qualification: there exists v ∈ TCX (x∗)
such that g0

j (x
∗; v) < 0 ∀j ∈ J(x∗), where J(x∗) = {j : gj(x

∗) = 0, j = 1, . . . ,m},
g0
j (x

∗; v) denotes the Clarke’s generalized directional derivative of gj at x∗ in direction

v, and TCX (x∗) is the Clarke tangent cone of X at x∗,
(ii) Slater-type constraint qualification: if X is convex, gj (j = 1, . . . ,m) is convex

around x∗ (i.e., ∃δ > 0 such that gj is convex on the set Xδ = {x ∈ X : ‖x−x∗‖ ≤ δ}),
there exists x0 ∈ Xδ such that gj(x0) < 0 ∀j ∈ J(x∗),
then (P ′) is 1-rank calm at x∗; therefore, it is γ-rank calm at x∗.

It follows from Lemma 3.15 and Proposition 3.13 that we have the following
proposition.

Proposition 3.16. Let fi(i = 1, . . . , l), gj(j = 1, . . . ,m) be locally Lipschitz
around a local efficient solution x∗ of (MOP) and either of (i) and (ii) in Lemma 3.15
hold. Then (MOP) is γ-rank calm at x∗.

Finally, we note that if f is locally Lipschitz and all the constraint functions
gj , j = 1, . . . ,m, are affine and X is a polyhedron, then (P ′) is (1-rank) calm at any
of its local minima (see [22], for instance). Thus, by Proposition 3.13, (MOP) is
γ-rank calm at any of its local efficient solutions (γ ∈ (0, 1]).

4. Saddle points of nonlinear Lagrangian functions. In this section, we
consider the saddle point problem of the nonlinear Lagrangian.

Let p be an increasing function defined on C×Rm (or C×Rm+ ) enjoying properties
(A) and (B) and let the nonlinear Lagrangian L be defined by (1) (or (14)).

Definition 4.1. The point (x∗, d∗) ∈ X × Rm+ is called a saddle point of the
nonlinear Lagrangian L if



NONLINEAR LAGRANGIAN AND VECTOR OPTIMIZATION 691

(i) L(x, d∗)− L(x∗, d∗) �≤C\{0} 0 ∀x ∈ X;
(ii) L(x∗, d)− L(x∗, d∗) �≥C\{0} 0 ∀d ∈ Rm+ .
It should be noted that a saddle point may not exist even if all the conditions of

Theorem 2.12 hold (see Example 2.4 due to Proposition 4.2).
The following proposition presents the relationship among a saddle point of L,

an efficient solution of (MOP), and an efficient solution of (DMOP) in the sense of
maximum.

Proposition 4.2. The point (x∗, d∗) ∈ X×Rm+ is a saddle point of L if and only
if x∗ is an efficient solution of (MOP), f(x∗) ∈ q(d∗), and d∗ is an efficient solution
to (DMOP).

In the following, we compare the Lagrangian function defined analogously as in
[19, pp. 185–187] with a special class of nonlinear Lagrangian functions. Then we
provide sufficient conditions for the existence of a saddle point of this special class of
nonlinear Lagrangian functions.

As in [19], we define a Lagrangian function as follows:

L′(x, d) = f(x) +

m∑
j=1

djgj(x)e,

where the dual variable d = (d1, . . . , dm) ∈ Rm+ , x ∈ X.
Analogous to Definition 4.1, we can define a saddle point of L′.
It is clear that the following inequality holds:(

m∑
i=1

bγi

)1/γ

≥
m∑
i=1

bi ∀bi ≥ 0, γ ∈ (0, 1].(29)

Let γ ∈ (0, 1]. Consider the following class of nonlinear Lagrangian functions:

Lγ(x, d) =

l∑
i=1


fγi (x) + m∑

j=1

dγj g
+
j

γ
(x)


1/γ

ei,

where x ∈ X, d = (d1, . . . , dm) ∈ Rm+ . It follows from (29) that

Lγ(x, d) ≥C f(x) +

m∑
j=1

djg
+
j (x)e ≥C L′(x, d) ∀x ∈ X, d ∈ Rm+ .(30)

This inequality allows us to establish the following conclusion.
Proposition 4.3. Assume that γ ∈ (0, 1]. Any saddle point of L′ is also a saddle

point of Lγ .
The following theorem follows from Theorem 3.5 and Proposition 4.2.
Theorem 4.4. Assume that γ ∈ (0, 1] and (MOP) is 1-rank weakly stable. Then

x∗ ∈ X is an efficient solution of (MOP) if and only if there exists d∗ ∈ Rm+ such that
(x∗, d∗) is a saddle point of Lγ .

5. Conclusions. In this paper, we introduced nonlinear Lagrangian functions
and nonlinear penalty functions for constrained multiobjective optimization problems.
We obtained weak and strong duality and saddle point results based on nonlinear
Lagrangian functions. We also studied the relationship between the γ-rank weak
stability and the exact penalization for inequality constrained multiobjective opti-
mization problems, and the relationship between the γ-rank calmness and the local
exact penalization.
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Abstract. The BFGS method is one of the most famous quasi-Newton algorithms for un-
constrained optimization. In 1984, Powell presented an example of a function of two variables that
shows that the Polak–Ribière–Polyak (PRP) conjugate gradient method and the BFGS quasi-Newton
method may cycle around eight nonstationary points if each line search picks a local minimum that
provides a reduction in the objective function. In this paper, a new technique of choosing parameters
is introduced, and an example with only six cyclic points is provided. It is also noted through the
examples that the BFGS method with Wolfe line searches need not converge for nonconvex objective
functions.
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1. The BFGS algorithm. The BFGS algorithm is one of the most efficient
quasi-Newton methods for unconstrained optimization:

min f(x), x ∈ Rn.(1.1)

The algorithm was proposed by Broyden [2], Fletcher [5], Goldfarb [7], and Shanno [19]
individually and can be stated as follows.

Algorithm 1.1. The BFGS algorithm.
Step 0. Given x1 ∈ Rn; B1 ∈ Rn×n positive definite;

Compute g1 = ∇f(x1). If g1 = 0, stop; otherwise, set k := 1.
Step 1. Set dk = −B−1

k gk.
Step 2. Carry out a line search along dk, getting αk > 0,

xk+1 = xk + αkdk, and gk+1 = ∇f(xk+1);
If gk+1 = 0, stop.

Step 3. Set

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

sTk yk
,(1.2)

where

sk = αkdk,(1.3)

yk = gk+1 − gk.(1.4)

Step 4. k := k + 1; go to Step 1.
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The line search in Step 2 requires the steplength αk to meet certain conditions.
If exact line search is used, αk satisfies

f(xk + αkdk) = min
α>0

f(xk + αdk).(1.5)

In the implementations of the BFGS algorithm, one normally requires that the step-
length αk satisfies the Wolfe conditions [20]:

f(xk + αkdk)− f(xk) ≤ δ1αkd
T
k gk,(1.6)

dTk∇f(xk + αkdk) ≥ δ2d
T
k gk,(1.7)

where δ1 ≤ δ2 are constants in (0, 1). For convenience, we call the line search that
satisfies the Wolfe conditions (1.6)–(1.7) the Wolfe line search.

Another famous quasi-Newton method is the DFP method, which was discovered
by Davidon [3] and modified by Fletcher and Powell [6]. Broyden [2] proposed a family
of quasi-Newton methods:

Bk+1(θ) = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

sTk yk
+ θ(sTkBksk)vkv

T
k ,(1.8)

where θ ∈ R1 is a scalar and vk = yk
sT
k
yk
− Bksk

sT
k
Bksk

. The choice θ = 0 gives rise to the

BFGS update, whereas θ = 1 defines the DFP method.
For uniformly convex functions, Powell [12] showed that the DFP algorithm with

exact line searches stops at the unique minimum or generates a sequence that con-
verges to the minimum. Dixon [4] found that all methods in the Broyden family with
exact line searches produce the same iterations for general functions. For inexact line
searches, Powell [14] first proved the global convergence of the BFGS algorithm with
Wolfe line searches for convex functions. His result was extended by Byrd, Nocedal,
and Yuan [1] to all methods in the restricted Broyden family with θ ∈ [0, 1). However,
the following questions have remained open for many years (for example, see Nocedal
[9] and Yuan [21]): (i) does the DFP method with Wolfe line searches converge for
convex functions? and (ii) does the BFGS method with Wolfe line searches converge
for nonconvex functions?

In this paper, we will consider the n = 2,m = 8 example in [15] for the Polak–
Ribière–Polyak (PRP) conjugate gradient method [10, 11]. The two-dimensional ex-
ample shows that the PRP method may cycle around eight nonstationary points if
each line search picks a local minimum that provides a reduction in the objective
function. By introducing a new technique of choosing parameters, we will present a
new example for the PRP method (see section 2). The example has only six cyclic
points. Since, in the case that gTk+1dk = 0 for all k, the BFGS method can produce
the same iterations as the PRP method does for two-dimensional functions, it can
be shown by the examples that the BFGS method with Wolfe line searches need not
converge for nonconvex objective functions (see section 3). Thus a negative answer is
given to question (ii). The last section contains some discussions.

2. A counterexample with six cyclic points. The PRP method uses the
negative gradient as its initial search direction. For k ≥ 1, the method defines dk+1

as follows:

dk+1 = −gk+1 +
gTk+1yk

‖gk‖22
dk.(2.1)
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Powell [15] constructed a two-dimensional example, showing that the PRP method
with the line search (2.2) may cycle around eight nonstationary points:

αk is a local minimum of Φk(α) and such that Φk(αk) < Φk(0),(2.2)

where Φk(α) is the line search function

Φk(α) = f(xk + αdk), where α > 0.(2.3)

However, examples with fewer cyclic points do not seem possible from the practice in
[15]. In this section, we will introduce a new technique of choosing parameters and
provide an example with only six cyclic points.

Assume that n = 2. Similar to [15], our example will be constructed so that all
the iterations generated by the PRP method converge to the horizontal axis in R2.
For m even, we consider the steps {sk} in the form

smj+i = ai

(
1

biφ
2j

)
, smj+m

2 +i = ai

( −1
biφ

2j+1

)
, i = 1, . . . ,

m

2
,(2.4)

where φ, {ai}, {bi} are parameters to be determined, satisfying φ ∈ (0, 1) and ai >
0 (i = 1, . . . , m2 ). To be such that

gTk+1dk = 0 for all k,(2.5)

we assume that the gradients {gk} have the form


gmj+1 = c1

(
bm

2
φ2j−1

1

)
; gmj+i = ci

(−bi−1φ
2j

1

)
, i = 2, . . . ,

m

2
,

gmj+m
2 +1 = c1

(−bm
2
φ2j

1

)
; gmj+m

2 +i = ci

(
bi−1φ

2j+1

1

)
, i = 2, . . . ,

m

2
,

(2.6)
where {ci} are also parameters to be determined. In this section, we are interested in
the case that m = 6.

By relations (2.1) and (2.5), we know that the PRP method satisfies the conjugacy
condition

dTk+1yk = 0(2.7)

and the descent condition

dTk+1gk+1 < 0.(2.8)

The above conditions require that gT6j+is6j+i = gT6j+i−1s6j+i < 0, yielding


c2(b2 − b1) = c1(b2 + b3φ
−1) < 0,

c3(b3 − b2) = c2(b3 − b1) < 0,
c1(b1φ+ b3) = c3(b1φ+ b2) < 0.

(2.9)

Denoting b0 = −b3φ−1 and b4 = −b1φ, we can draw the following conditions on {bi}
from (2.9):{

(b2 − b1)(b3 − b2)(b4 − b3) = (b2 − b0)(b3 − b1)(b4 − b2),
(b3 − b4)(b2 − b0) > 0, (b2 − b1)(b3 − b1) > 0, (b3 − b2)(b2 − b4) > 0.

(2.10)
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Defining ϕi = bi − bi−1, the above relations are equivalent to{
ϕ2ϕ3ϕ4 = (ϕ1 + ϕ2)(ϕ2 + ϕ3)(ϕ3 + ϕ4),
ϕ4(ϕ1 + ϕ2) < 0, ϕ2(ϕ2 + ϕ3) > 0, ϕ3(ϕ3 + ϕ4) < 0.

(2.11)

Further, letting ti = ϕi+1/ϕi and noting that ϕ4/ϕ1 = −φ, we can obtain{
t1t2t3 = (1 + t1)(1 + t2)(1 + t3) = −φ,
t1 > −1, t2 > −1, t3 < −1.(2.12)

The first line in (2.12) is equivalent to

−t1t2t3 =
t1t2(1 + t1)(1 + t2)

1 + t1 + t2
= φ.(2.13)

Thus for any φ ∈ (0, 1) and t3 < −1, we may solve t1 and t2 from (2.13). If the solved
t1 and t2 are such that t1 > −1 and t2 > −1, then we can further consider the choices
of {ai}. In our real construction, we pick t3 = −2. This with (2.13) indicates that

t1t2 = 1 + t1 + t2.(2.14)

Further, we find that the following values of {ti} and φ satisfy (2.13) and allow suitable
{ai; i = 1, 2, 3}:

t1 = −3

4
, t2 = −1

7
, t3 = −2, φ =

3

14
.(2.15)

Now, by the definitions of ϕi and ti, we can express
∑4
i=2 ϕi in two ways:

4∑
i=2

ϕi
(1)
= b4 − b1 = −b1(1 + φ)

(2)
= ϕ2(1 + t2 + t2t3) = (b2 − b1)(1 + t2 + t2t3).(2.16)

We then get that

b2 =

[
1− 1 + φ

1 + t2 + t2t3

]
b1.(2.17)

Further, we have

b3 = b2 + ϕ3 = b2 + t2ϕ2 = (1 + t2)b2 − t2b1.(2.18)

Thus, letting b1 = 1, we have from this, (2.17), and (2.18) that

b1 = 1, b2 = − 1

16
, b3 =

5

56
.(2.19)

Letting c2 = 1, we obtain from (2.9) that

c1 = −3, c2 = 1, c3 = −6.(2.20)

As will be shown, the parameters chosen above allow the function value to be
monotonically decreased. Define f∗ to be the limit of f(xk). Since all the iterations
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are required to converge to the horizontal axis and, for each value of the first variable,
the dependence of f(x) on the second variable is linear, we have that

f(xk)− f∗ = (xk)2(gk)2 for all k ≥ 1,(2.21)

where (v)i means the ith component of vector v. Given the limit x̂1 = limj→∞ x6j+1,
we can compute {x6j+i; i = 1, . . . , 4} in the following way:{

x6j+1 = x̂1 −
∑∞
k=j

∑6
i=1 s6k+i,

x6j+i = x6j+i−1 + s6j+i−1, i = 2, 3, 4.
(2.22)

As a result, the second components of {x6j+i; i = 1, . . . , 4} can be expressed as follows:

(x6j+i)2 = −hi(1− φ)−1φ2j , i = 1, . . . , 4,(2.23)

where 


h1 = a1b1 + a2b2 + a3b3,

h2 = a1b1φ+ a2b2 + a3b3,

h3 = a1b1φ+ a2b2φ+ a3b3,

h4 = h1φ.

(2.24)

Using the relations (2.21) and (2.23) and noting that the structure of this example
has some symmetry, we know that the monotonicity of f(xk) requires {ai} to meet

−c1h1 > −c2h2 > −c3h3 > −c1h4.(2.25)

This relation can be satisfied if we choose

a1 = 14, a2 = 160, a3 = 1.(2.26)

In this case, the four terms in (2.25) have the values

687

56
,

387

56
,

159

28
, and

2061

784
,

respectively. So (2.25) is satisfied. Further, if we let (x1)1 = −87.5, then {(x6j+i)1; i =
1, . . . , 6} have the values −87.5, −73.5, 86.5, 87.5, 73.5, and −86.5, which are all
different.

Finally, we discuss how to construct a smooth function f(x) ∈ R2 that satisfies
the gradient conditions (2.6). At first, for given real numbers p1, p2(
= 0), p3, p4, and
any j ≥ 1, we see that the function

Ψ(u1, u2) =
[
p4 + p−1

2 p3(u1 − p1)
]
u2(2.27)

is such that

∇Ψ
(

p1

p2φ
j

)
=

(
p3φ

j

p4

)
.(2.28)

Note that {x6j+i; i = 1, . . . , 6} are as follows:(
−87.5

− 229
44

φ2j

)
,

(
−73.5
387
44

φ2j

)
,

(
86.5

− 53
44
φ2j

)
,

(
87.5

− 229
44

φ2j+1

)
,

(
73.5

387
44

φ2j+1

)
,

(
−86.5

− 53
44
φ2j+1

)
.
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Letting Bi = {u1; |u1 − (x6j+i)1| ≤ 0.1}, it is easy to find one-dimensional C∞ func-
tions ξ and γ such that their values at the intervals {Bi; i = 1, . . . , 6} are

8251

458
, −2847

387
, −6981

212
,

8251

458
, −2847

387
, −6981

212

and

55

229
, − 44

387
,

33

106
, − 55

229
,

44

387
, − 33

106
,

respectively. Then we can test that the function

f(u1, u2) = [ξ(u1) + γ(u1)u1]u2(2.29)

is a C∞ function in R2 and satisfies the gradient conditions (2.6). One deficiency of
the function (2.29) is that the point x6j+i+1 may not be a local minimum of Φ6j+i(α)
(see (2.3) for the definition of Φ). For example, x6j+2. For this, we can further choose
a one-dimensional C∞ function τ such that for i = 1, . . . , 6 its value at Bi is equal to
(x6j+i)1. Then the C∞ function

f(u1, u2) = [ξ(u1) + γ(u1)u1 +M(u1 − τ(u1))
2]u2(2.30)

with M > 0 sufficiently large can guarantee that each x6j+i+1 is a local minimum of
Φ6j+i(α). This completes the construction of our new example.

Thus by introducing the quantities ϕi and ti, we have obtained a new example.
The example shows that the PRP method with the line search (2.2) may cycle around
six nonstationary points. One advantage of this example over the one in [15] is that
it has only six cyclic points, whereas the latter has eight.

It is easy to see that the above example applies to the BFGS method if the choice
of B1 is such that B1s1 = −lg1, where l is any positive number. If one changes the
definition of f in a small neighborhood of x1 to meet the necessary initial conditions,
the example is also efficient for the BFGS method with any positive definite matrix
B1 or the PRP method with d1 = −g1.

3. Nonconvergence of the BFGS algorithm for nonconvex functions.
Generally, the line search (2.2) need not satisfy the Wolfe conditions (1.6)–(1.7). For
example, consider the function

f(x) = cosx, x ∈ R1.(3.1)

Assume that xk = 0 and dk = 1. For any nonnegative integer i, α = (2i + 1)π is
a local minimum of Φk(α). Then (1.6) is false if i is large. For the line search in
the example of section 2, however, we can directly test that the Wolfe conditions
(1.6)–(1.7) hold (see Theorem 3.1). Thus the example in section 2 also shows that the
BFGS algorithm with Wolfe line searches need not converge for nonconvex objective
functions.

Theorem 3.1. Consider the BFGS algorithm with the Wolfe line search (1.6)–
(1.7), where δ1 ≤ 69

7480 and δ2 ∈ (δ1, 1). Then for any n ≥ 2 there exists a starting
point x1 and a C∞ function f in Rn such that the sequence {‖gk‖2 : k = 1, 2, . . .}
generated by the algorithm is bounded away from zero.
Proof. Consider the example in section 2. For any starting matrix B1, we may

slightly modify the example such that it satisfies the necessary initial conditions. By
(2.21), (2.23), and (2.6), we see that

f(x6j+i) = f∗ − cihi(1− φ)−1φ2j , i = 1, . . . , 4.(3.2)
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Still denote b0 = −b3φ−1, b4 = −b1φ and let a4 = a1, c4 = c1. We have by (2.4) and
(2.6) that

gT6j+is6j+i = aici(bi − bi−1)φ
2j , i = 1, . . . , 4.(3.3)

Combining (3.2) and (3.3) and noting the symmetry of the example, we know that
the first Wolfe condition (1.6) holds with any constant δ1 satisfying

δ1 ≤ min

{
f(x6j+i+1)− f(x6j+i)

gT6j+is6j+i

: i = 1, 2, 3

}

=
1

1− φ
min

{
cihi − ci+1hi+1

aici(bi − bi−1)
: i = 1, 2, 3

}
=

69

7480
.(3.4)

In addition, relations (2.5) and (2.8) imply that the second Wolfe condition (1.7) holds
for δ2 ∈ (δ1, 1). Thus the example in section 2 shows that the BFGS algorithm with
Wolfe line searches need not converge for two-dimensional functions.

In the case when n ≥ 3, we need only to consider the function

f̂(x) = f̂(u1, u2, . . . , un) = f(u1, u2),(3.5)

where f is the function in the example of section 2. This completes our proof.
The parameter δ1 in the above theorem is required to be no greater than 69

7480 ≈
0.0092. If we consider Powell’s example with eight cyclic points, then Theorem 3.1
can be extended to δ1 ≤ 1

84 ≈ 0.0119.

4. Some discussions. In this paper, it has been shown by one of Powell’s ex-
amples in [15] and a new example with six cyclic points that the BFGS algorithm
with Wolfe line searches need not converge for nonconvex objective functions. This
result also applies to the Hestenes–Stiefel conjugate gradient method [8], the Broyden
positive family (1.8) with θ ≥ 0, and the limited-memory quasi-Newton methods,
since all these methods satisfy both the conjugacy condition (2.7) and the descent
condition (2.8) if gTk+1dk = 0 for all k.

To my knowledge, the parameters δ1 and δ2 in (1.6)–(1.7) are often set to 0.01 (or
a smaller value) and 0.9, respectively, in the implementations of the BFGS algorithm.
According to the remark after it, Theorem 3.1 can be extended to the case where
δ1 ≤ 1

84 . Since 1
84 > 0.01, one would be satisfied with this result for the BFGS

algorithm. As Professor J. C. Gilbert discussed with me, however, we wonder whether
Theorem 3.1 holds for any δ1 < 1 in theory.

Using the same technique as in section 2, we can show that there do not exist
examples of four cyclic points having similar structures. This means that the number
of cyclic points, six, cannot be decreased if we assume m to be even. In fact, if m = 4,
we have by (2.4) and (2.6) that{

c2(b2 − b1) = c1(b2 + b2φ
−1) < 0,

c1(b2 + b1φ) = c2(b1 + b1φ) < 0,
(4.1)

where φ ∈ (0, 1). Denote b0 = −b2φ−1, b3 = −b1φ, ϕi = bi − bi−1 (i = 1, 2, 3), and
ti = ϕi+1/ϕi(i = 1, 2). Similar to (2.10), (2.11), and (2.12), we can obtain{

t1t2 = (1 + t1)(1 + t2) = −φ,
t1 > −1, t2 < −1.(4.2)
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The above imply that t2 = −(1 + t1) and φ = t1(1 + t1). Since φ ∈ (0, 1), we can
then get that t1 > 0. Further, letting b1 = 1, we can, similarly to (2.16), obtain that
b2 = (1+t1)

2/t1. Since b1, b2, and φ are all positive, we know by c1(b2+b1φ) < 0 that
c1 < 0. Letting c1 = −t1, we can get by (4.1) that c2 = −(1 + t1). In a way similar
to (2.21)–(2.25), it is easy to see that the condition f(x4j+1) > f(x4j+2) requires

−c1(a1b1 + a2b2) > −c2(a1b1φ+ a2b2).(4.3)

Substituting the expressions of φ, c1, and c2 with t1, (4.3) is equivalent to

−(2 + t1)t
2
1a1b1 − a2b2 > 0.(4.4)

This is not possible since t1, a1, a2, b1, and b2 are all positive. The contradiction
shows the nonexistence of examples of four cyclic points.

Under the assumption that xk → x̄, Powell [13] showed that the BFGS algorithm
with exact line searches converges globally for general functions when there are only
two variables. This result was extended by Pu and Yu [18] to the case in which n ≥ 2.
Therefore an interesting question may be, If xk → x̄, is the BFGS algorithm with
Wolfe line searches globally convergent for general functions? Another question is,
Does there exist an inexact line search that ensures the global convergence of the
BFGS method for general functions?

Recently, Powell [16] showed that if the line search always finds the first local min-
imum of Φk(α) in (2.3), the BFGS method is globally convergent for two-dimensional
twice-continuously differentiable functions with bounded level sets. Powell [17] and
the author are trying to construct a three-dimensional example showing that the
BFGS algorithm with the above line search need not converge.

Acknowledgments. The author is much indebted to Professors Y. Yuan,
J. C. Gilbert, and M. J. D. Powell, who discussed with him the idea of this paper
and gave many valuable suggestions and comments. Thanks are also due to the two
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Abstract. Nonsmoothness pervades optimization, but the way it typically arises is highly
structured. Nonsmooth behavior of an objective function is usually associated, locally, with an
active manifold: on this manifold the function is smooth, whereas in normal directions it is “vee-
shaped.” Active set ideas in optimization depend heavily on this structure. Important examples
of such functions include the pointwise maximum of some smooth functions and the maximum
eigenvalue of a parametrized symmetric matrix. Among possible foundations for practical nonsmooth
optimization, this broad class of “partly smooth” functions seems a promising candidate, enjoying a
powerful calculus and sensitivity theory. In particular, we show under a natural regularity condition
that critical points of partly smooth functions are stable: small perturbations to the function cause
small movements of the critical point on the active manifold.

Key words. active set, nonsmooth analysis, subdifferential, generalized gradient, sensitivity,
U-Lagrangian, eigenvalue optimization, spectral abscissa, identifiable surface
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1. Introduction. Optimality conditions throughout the field of optimization
are intimately bound up with nonsmoothness. As a simple example, consider the
problem of minimizing a sum of Euclidean norms (cf. [1]):

min
x∈Rn

h(x) :=

k∑
i=1

‖Aix− bi‖

for given matrices Ai and vectors bi. Except at the origin, the Euclidean norm is
a smooth function, by which we will always mean twice continuously differentiable.
Yet its nonsmoothness is crucial to any understanding of this problem. Associated
with an optimal solution x0 is an “active set” {i : Aix0 = bi}, often nonempty, so the
objective function h is nonsmooth at x0. Furthermore, under reasonable conditions
this active set is stable under small perturbations to the problem. (See [6, 20] for
active set algorithms.)

This particular problem could be rephrased as a conic quadratic program, amenable
to contemporary interior point techniques [1, 3]. Nonetheless, as in linear program-
ming, the active set is an important tool for understanding the problem.

This phenomenon of nonsmoothness inducing a certain “activity” central to opti-
mality conditions repeats many times throughout optimization. Consider the follow-
ing examples.

(a) Classical nonlinear programming and minimax. At an optimal solution of a
nonlinear constrained optimization problem, some subset of the inequality constraints
is active (that is, those constraints hold with equality): under reasonable conditions
(see, for example, [8]), this active set is stable under small perturbations to the
problem.
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http://www.siam.org/journals/siopt/13-3/38762.html
†Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

(aslewis@sfu.ca, http://www.math.sfu.ca/∼aslewis).

702



ACTIVE SETS, NONSMOOTHNESS, AND SENSITIVITY 703

Somewhat analogously, consider a nonlinear minimax problem

min
x∈Rn

h(x) := max
i=1,2,...,k

hi(x, u),

where each function hi is smooth and u denotes a vector of parameters. Under
reasonable conditions the active set at an optimal solution x0,

I(x0, u) := {i : hi(x0, u) = h(x0)},

is stable under small changes in u.
(b) Sums of norms. Rather more generally than our initial example, we could

consider the problem

min
x∈Rn

h(x) :=

k∑
i=1

‖Fi(x, u)‖,

where each function Fi is smooth and u denotes a vector of parameters. Under
reasonable conditions the active set at an optimal x0,

I(x0, u) := {i : Fi(x0, u) = 0},

is stable under small changes in u. Any smooth norm could be used in place of the
Euclidean norm (cf. [7]).

(c) Semidefinite programming and eigenvalue optimization. The primal variable
in a semidefinite program is a positive semidefinite matrix (see [16], for example). An
optimal solution has a zero eigenvalue with a certain multiplicity: under reasonable
conditions, this multiplicity is stable under small perturbations to the problem.

Relatedly, consider the eigenvalue optimization problem (see, for example, [14])

min
x∈Rn

h(x) := λ1(F (x, u)),

where the smooth function F takes real symmetric matrix values, u denotes a vector
of parameters, and the function λ1(·) is the largest eigenvalue. At an optimal solution
this largest eigenvalue has a certain multiplicity, which under reasonable conditions
is stable under small changes in u.

(d) Spectral abscissa minimization. More generally, consider the problem

min
x∈Rn

h(x) := α(F (x, u)),

where F now takes arbitrary square matrix values and the function α(·) is the spec-
tral abscissa (the largest real part of an eigenvalue). An optimal matrix generally has
several distinct “active” eigenvalues with real part equal to its spectral abscissa, and
each such eigenvalue has an associated algebraic multiplicity (the geometric multi-
plicity typically being one): under reasonable conditions this pattern of multiplicities
is stable under small changes in u (see [5]).

Each of these problems has optimal solutions with a corresponding “activity,”
which is stable under small perturbations to the problem. In nonlinear minimax or
sums of norms, the activity consists of subsets of indices; in eigenvalue optimization or
spectral abscissa minimization, it consists of a certain pattern of multiplicities. These
“activities” have powerful algorithmic significance: in each case, once the activity of
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an optimal solution is known, finding it (at least locally) is a smooth minimization
problem.

Let us summarize. The problem of minimizing a nonsmooth function is common
in practice. But the nonsmoothness of a typical such function is highly structured: it
induces a certain “activity” at an optimal solution, which under reasonable conditions
is stable under small perturbations to the problem. Once the activity is known, the
optimization problem is locally smooth.

The central idea of this current work is that the “activity” corresponds to a man-
ifold. Each of the functions h above is what we will call partly smooth. Specifically,
in a neighborhood of the point of interest x0 there is a manifoldM (the active mani-
fold) containing x0, with certain properties. Loosely speaking, the function h behaves
smoothly as we move on the active manifold M and “sharply” if we move normal
to the manifold; furthermore, in any fixed direction its directional derivative behaves
continuously as we move onM and upper semicontinuously if we allow perturbations
off it. (For closed convex functions, for example, this latter semicontinuity property,
known as “regularity,” is automatic.) We give the precise description in Definition 2.7.

The idea of partial smoothness at first sight appears rather intricate, but we
shall find many interesting examples in practice. Each of our four examples is partly
smooth under reasonable conditions. Given the parameter vector u, the four active
manifolds are defined near x0 as follows:

(a) {x : hi(x, u) = hj(x, u) for all i, j ∈ I(x0, u)};
(b) {x : Fi(x, u) = 0 for all i ∈ I(x0, u)};
(c) {x : λ1(F (x, u)) has same multiplicity as λ1(F (x0, u))};
(d) {x : F (x, u) has same active eigenvalue multiplicities as F (x0, u)}.

Furthermore, we shall see that partly smooth functions have a robust calculus. Thus
they form a rich, practical class of nonsmooth functions.

The literature contains many classes of nonsmooth functions more open to anal-
ysis than general, potentially pathological nonsmooth functions. A useful example is
“amenability” [23, Def. 10.23], a powerful notion for combining smooth and convex
techniques, again with a robust calculus. As we shall see, the real function

√| · | is
partly smooth at the origin relative to the active manifold {0}, but it is not amenable
at the origin (see [23, Ex. 10.25(a)]), and it is not hard to construct similar Lipschitz
examples using the fact that amenable functions are locally regular [23, Ex. 10.25(b)].
On the other hand, the convex, piecewise linear-quadratic function x 	→ ‖x‖21 is not
partly smooth relative to any manifold containing the origin.

The distinctive feature of partial smoothness is the notion of the active manifold:
it is this idea that decouples the smooth behavior of the function from its “sharp”
behavior. The importance of this general structure was realized for convex functions in
[22], although not rigorously developed. The notion of active manifold is also implicit
in the approach to polyhedral minimization via “structure functionals” [17]. In the
nonconvex case the notion of the active manifold is familiar from active set methods
for classical nonlinear programming (see [9], for example). In eigenvalue optimization
the role of the active manifold is well known; see [21] and [24], for example. In spectral
abscissa minimization, the idea is used heavily in [5].

For convex functions, partial smoothness is closely related to the “U-Lagrangian”
techniques of [12]: the active manifold is the “gully-shaped valley” of that work, and
the normal and tangent spaces to the manifold correspond to the “U − V decom-
position” originating with the earlier work in [13] and developed for the maximum
eigenvalue in [18, 19]. The idea of a “fast track” [15] is also closely related. We link
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the U-Lagrangian theory to partial smoothness towards the end of the current work.
Notice, however, that many interesting examples of partly smooth functions are not
convex: convexity is not the real driving force behind this theory.

Another closely related idea is the notion of an “identifiable surface” of a convex
set [26], which is a subset of the boundary having a suitable “sharpness” property.
In [26] it is shown that, if the solution of an optimization problem posed over such
a set lies in an identifiable surface, then various standard constrained optimization
algorithms “identify” the surface after a finite number of iterations. Hence the idea
of identifiability is a powerful tool for algorithmic analysis.

Remarkably, as we shall see, for convex sets, the ideas of identifiability and partial
smoothness coincide, reinforcing the power of this theory. By contrast with identifia-
bility, however, partial smoothness is defined in a more geometric manner, and once
again is not dependent on convexity.

To demonstrate the power of partly smooth techniques, our culminating result is
a sensitivity theorem. In classical nonlinear programming, if a local minimizer has lin-
early independent active constraints and satisfies strict complementarity and a strong
second-order condition, then the minimizer depends smoothly on the parameters of
the problem (see [8], for example). An analogous result for eigenvalue optimization
appears in [24] and for spectral abscissa minimization, in [5]. Our work here shows
how partial smoothness unifies this work. To sketch the idea, suppose the function h
is partly smooth at a point x0 relative to the active manifold M. If x0 is a strong
second-order minimizer of the smooth, restricted function h|M, and is a “sharp” min-
imizer of the restriction to the normal space h|x0+NM(x0), then the critical point x0

varies smoothly over M as the parameters of the problem vary. Back in the con-
text of nonlinear programming, our “sharp minimizer” condition corresponds to the
usual strict complementarity condition, and the usual linear independence assumption
becomes a transversality condition allowing us to apply a chain rule.

The proof of our sensitivity result amounts to local reduction to a smooth equality-
constrained problem. Such a reduction is a standard approach to sensitivity results in
nonlinear programming (see [4, Rem. 4.127], for example), and also works in semidef-
inite programming [4, p. 495]. By comparison, we are able here to consider rather
general optimization problems, and without recourse to general nonsmooth second-
order theory (such as [23, Chap. 13], for example), but the price of this generality
is that we must settle for critical points in our sensitivity analysis, rather than local
minimizers (see the example in section 7).

Partial smoothness seems a promising framework for practical nonsmooth opti-
mization. Partly smooth functions form a wide and robust class, with many of the
properties sought by previously cited researchers interested in algorithm development,
stemming from the decoupling of the smooth and sharp behaviors. We defer algorith-
mic discussion to a later work.

2. Partial smoothness. We begin with some elementary definitions. We follow
the notation and terminology of [23] throughout.

We consider a fixed Euclidean space X (a finite-dimensional real inner product
space). We denote the subspace parallel to a nonempty convex set C ⊂ X by parC.
Thus for any point x ∈ C we have

parC = (affC)− x = R(C − C) = R+(C − C),

where affC is the affine span of C. Easy exercises show par (AC) = AparC for any
linear map A, and par (C1 × C2) = parC1 × parC2 for arbitrary nonempty convex
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sets C1 and C2. We denote the extended reals by R = [−∞,+∞]. The lineality space
of a sublinear function f : X → R is the subspace

lin f = {w ∈ X : f(w) = −f(−w)}.
Let us consider a function h : X → R, finite at a point x ∈ X. We review some

definitions from [23]. The subderivative dh(x)(·) : X → R is defined by

dh(x)(w̄) = lim inf
τ↓0, w→w̄

h(x+ τw)− h(x)

τ
(w̄ ∈ X)

and the set of regular subgradients is (see [23, Ex. 8.4])

∂̂h(x) = {v ∈ X : 〈v, w〉 ≤ dh(x)(w) for all w ∈ X}.
The set of subgradients is

∂h(x) =
{

lim
r
vr : vr ∈ ∂h(xr), xr → x, h(xr)→ h(x)

}
,

while the set of horizon subgradients is

∂∞h(x) =
{

lim
r
λrvr : vr ∈ ∂h(xr), xr → x, h(xr)→ h(x), λr ↓ 0

}
.

Suppose in addition ∂h(x) �= ∅. Then h is (subdifferentially) regular at x if h is locally
lower semicontinuous around x, every subgradient is regular, and furthermore the
recession cone (in the sense of convex analysis) h(x)∞ coincides with ∂∞h(x) (see [23,
Cor. 8.11]). In this case, the support function of ∂h(x) is the subderivative dh(x) [23,
Thm. 8.30]. This is the case in particular for any closed convex function h, and in
this case ∂h is the usual subdifferential in the sense of convex analysis.

Proposition 2.1 (lineality space of subderivative). If the function h is regular
at the point x ∈ X, and has a subgradient there, then

lin dh(x) = (par ∂h(x))⊥.

Proof. We know w �∈ lin dh(x) if and only if dh(x)(w) +dh(x)(−w) > 0, which by
[23, Thm. 8.30] is equivalent to the existence of subgradients y and z of h
at x satisfying 〈y − z, w〉 > 0, or equivalently w �∈ (∂h(x) − ∂h(x))⊥. The result
follows.

Given a set M⊂ X containing a point x, we call a function f :M→ R smooth
around x if x has an open neighborhood V in X such that some smooth function
g : V → R agrees with f onM∩V . We call such a function g a smooth representative
of f around x. Note that in this case f is also smooth around any nearby point in
M. We call x a critical point of f if

f(z)− f(x) = o(‖z − x‖) for z close to x in M.

We call the function f smooth if it is smooth around every point in M.
A “manifold” in X, loosely speaking, is a set consisting locally of the solutions

of some smooth equations with linearly independent gradients. To be more precise,
we say that a set M⊂ X is a manifold (of codimension m) around a point x ∈ X if
x ∈M and there is an open set V ⊂ X containing x such that

M∩ V = {x ∈ V : F (x) = 0},
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where the smooth function F : V → Rm has surjective derivative throughout V . In
this case, the tangent space to M at x is given by

TM(x) = Ker(∇F (x))

(which is independent of the choice of F ), and the normal space to M at x is the
orthogonal complement of the tangent space, namely

NM(x) = R(∇F (x)∗)

(where R(·) denotes range). The set M is then Clarke regular at x, and its normal
cone there is exactly the normal space [23, Ex. 6.8].

We call a setM a manifold (of codimension m) ifM is a manifold of codimension
m around every point in M. (More precisely, M is an “m-codimensional manifold
embedded in X”; see [25].) If M is a manifold around a point x, then M∩ U is a
manifold for some open neighborhood U ⊂ X of x.

If the function f : M → R is smooth around x and M is a manifold around x,
then x is a critical point of f if and only if

∇g(x) ∈ NM(x),

where g is any smooth representative of f around x. In particular, this holds if x is
a local minimizer of f .

The indicator function δM takes the value 0 on M and +∞ otherwise.
Proposition 2.2 (subgradients and smoothness). Suppose the set M⊂ X is a

manifold around the point x ∈ M. For a function h : X → R, if the restriction h|M
is smooth around x, then

∂̂h(x) ⊂ ∇g(x) +NM(x)(2.3)

for any smooth representative g of h|M around x, and hence

par ∂̂h(x) ⊂ NM(x).

Proof. For some open neighborhood V of x we have g + δM∩V = h + δM∩V , so
by [23, Cor. 10.9] we deduce

∇g(x) +NM(x) = ∂̂(g + δM)(x) = ∂̂(h+ δM)(x) ⊃ ∂̂h(x),

and the result follows.
Putting this together with the previous result, we arrive at the following propo-

sition.
Proposition 2.4 (smoothness and lineality). Suppose the set M ⊂ X is a

manifold around the point x. Suppose also that the function h : X → R has a
subgradient at x and is regular there, and furthermore that the restriction h|M is
smooth around x. Then the subderivative dh(x) is linear on the tangent space, or in
other words

lin dh(x) ⊃ TM(x),(2.5)

and the horizon subdifferential satisfies

∂∞h(x) ⊂ NM(x).(2.6)

Furthermore, the following properties are equivalent:
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(i) The lineality and tangent spaces coincide:

lin dh(x) = TM(x).

(ii) The subdifferential and normal space are parallel:

par ∂h(x) = NM(x).

(iii) h is “sharp” in normal directions at x, by which we mean

dh(x)(−w) > −dh(x)(w) whenever 0 �= w ∈ NM(x).

Finally, if any of the above three properties hold, then ∇g(x) ∈ aff ∂h(x) for any
smooth representative g of h|M and hence the following properties are equivalent:

(a) x is a critical point of h|M;
(b) 0 ∈ aff ∂h(x);
(c) aff ∂h(x) = NM(x).
Proof. The first inclusion follows from Propositions 2.1 and 2.2, and the second

(2.6) follows from the fact that ∂∞h(x) is the recession cone of ∂h(x). The equivalence
of statements (i) and (ii) is also a consequence of Proposition 2.1. On the other hand,
by Proposition 2.2, statement (ii) fails if and only if there exists a nonzero vector w
in NM(x) orthogonal to par ∂h(x), or in other words satisfying

〈w, u− v〉 = 0 for all u, v ∈ ∂h(x),

and since we have

dh(x)(w) + dh(x)(−w) = sup{〈w, u− v〉 : u, v ∈ ∂h(x)},
this is in turn equivalent to statement (iii) failing.

For the last statement, note that inclusion (2.3), regularity, and property (ii)
imply ∇g(x) ∈ aff ∂h(x), and hence aff ∂h(x) = ∇g(x) + NM(x). This shows that
properties (a) and (b) are equivalent, and the equivalence of properties (b) and (c)
follows from property (ii).

We are now ready for the key definition.
Definition 2.7. Suppose that the setM⊂ X contains the point x. The function

h : X → R is partly smooth at x relative to M ifM is a manifold around x and the
following four properties hold:

(i) (restricted smoothness) the restriction h|M is smooth around x;
(ii) (regularity) at every point close to x inM, the function h is regular and has

a subgradient;
(iii) (normal sharpness) dh(x)(−w) > −dh(x)(w) for all nonzero directions w in

NM(x);
(iv) (subgradient continuity) the subdifferential map ∂h is continuous at x relative

toM.
We say h is partly smooth relative to a set M if M is a manifold and h is partly
smooth at each point inM relative toM.

Definition 2.8 (partly smooth sets). A set S ⊂ X is partly smooth at a point
x relative to a set M if δS is partly smooth at x relative to M. We say S is partly
smooth relative to a set M if M is a manifold and S is partly smooth at each point
inM relative toM.

Note 2.9 (equivalent properties). Some comments may help with this rather
lengthy definition.
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(a) By Propositions 2.1, 2.2, and 2.4, we could replace property (iii) (normal
sharpness) by either of the following properties:

(iii*) (tangent linearity of subderivative)

lin dh(x) ⊂ TM(x)

(or indeed the corresponding equality);
(iii**) (normals parallel to subdifferential)

NM(x) ⊂ par ∂h(x)

(or again the corresponding equality).
(b) Property (i) ensures that h is continuous relative toM, so the subdifferential

mapping is always outer semicontinuous relative to M, by [23, Prop. 8.7].
Hence we could replace property (iv) by the following property:

(iv*) (subgradient inner semicontinuity) The subdifferential ∂h is inner semi-
continuous at x relative toM: in other words, for any sequence of points
xr inM approaching x and any subgradient y ∈ ∂h(x), there exist sub-
gradients yr ∈ ∂h(xr) approaching y.

Notice that if h is locally Lipschitz (or “strictly continuous” in the terminology
of [23]), then the subdifferential ∂h(x) is everywhere nonempty and compact
[23, Thm. 9.13], so by [23, Cor. 11.35] we could replace condition (iv) by the
following condition:
(iv) (subderivative continuity) for all directions w ∈ X, the function x ∈

M 	→ dh(x)(w) is continuous at x0.
Furthermore, in this case the subderivative reduces to

dh(x)(w) = lim inf
t↓0

h(x+ tw)− h(x)

t
,

and regularity at x amounts to upper semicontinuity of the function dh(·)(w)
at x for all directions w [23, Ex. 9.15 and Cor. 8.19]. This justifies the
description of partial smoothness we gave in the introduction.

(c) Although the definition of partial smoothness is for a function h defined every-
where on the space X, it extends unchanged to a function defined only close
to the point of interest, since partial smoothness depends only on properties
of h near that point.

For a partly smooth function, the “normal sharpness” condition (iii), or equiva-
lently, conditions (iii*) (tangent linearity of subderivative) and (iii**) (normals parallel
to subdifferential), are all “stable”: the fact that they hold at the point x0 implies
that they also hold at all nearby points in the active manifold. That is the content of
the following result.

Proposition 2.10 (local normal sharpness). If the function h : X → R is partly
smooth at the point x0 relative to the set M⊂ X, then all points x ∈ M close to x0

satisfy the condition

dh(x)(−w) > −dh(x)(w) for all 0 �= w ∈ NM(x),

or equivalently, the condition

NM(x) = par ∂h(x).
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Proof. The two properties are equivalent by Note 2.9. By Proposition 2.2 (sub-
gradients and smoothness) we know NM(x) ⊃ par ∂h(x), so if the result fails, then
there is a sequence of points xr ∈ M approaching x0 and a sequence of unit vectors
yr ∈ NM(xr) orthogonal to par ∂h(xr). Taking a subsequence, we can suppose that
yr approaches a unit vector y0 ∈ NM(x0).

Now for arbitrary subgradients u0, v0 ∈ ∂h(x0), by the continuity of ∂h there
exist sequences ur ∈ ∂h(xr) approaching u0 and vr ∈ ∂h(xr) approaching v0, and
they must satisfy 〈yr, ur − vr〉 = 0. Taking the limit shows 〈y0, u0 − v0〉 = 0, so since
u0 and v0 were arbitrary we deduce y0 is orthogonal to par ∂h(x0) = NM(x0), which
contradicts the fact that y0 is a unit vector in NM(x0).

We end this section with a simple characterization of partly smooth sets.
Proposition 2.11 (partly smooth sets). Suppose that the set M⊂ X contains

the point x0. A set S ⊂ X is partly smooth at x0 relative toM if and only ifM is a
manifold around x0 and the following four properties hold:

(i) S ∩M is a neighborhood of x0 inM;
(ii) S is Clarke regular at each point inM close to x0;
(iii) NM(x0) ⊂ NS(x0)−NS(x0);
(iv) the normal cone map NS(·) is continuous at x0 relative toM.
Proof. This is an easy exercise using the facts that the set S is Clarke regular at

the point x ∈ S if and only if δS is regular there, and that ∂δS(x) = NS(x), and then
applying property (iii**) (normals parallel to subdifferential) in Note 2.9.

The definition of partial smoothness looks a little involved at first sight, but we
shall see that there are many important examples.

3. Basic examples. In this section we describe a few basic examples of partly
smooth functions. In the next section we describe some calculus rules for building
more complex examples.

Example 3.1 (smooth functions). If the open set Ω ⊂ X contains the point x
and the function h : Ω→ R is smooth, then h is partly smooth at x relative to Ω.

Example 3.2 (indicator functions). If M⊂ X is a manifold around the point x,
then M is a partly smooth set at x relative to M. This is an easy consequence of
Proposition 2.11 (partly smooth sets).

Example 3.3 (distance functions). If M⊂ X is a manifold around the point x0,
then the distance function dM : X → R defined by

dM(x) = inf{‖y − x‖ : y ∈M}

is partly smooth at x0 relative to M. To see this, notice that δM|M is identically
zero, which is smooth. By [23, Ex. 8.53] we know that dM is regular at each point
x ∈M and

∂h(x) = B ∩NM(x)

(where B denotes the closed unit ball in X). Thus the normal space is again parallel
to the subdifferential, and this subdifferential varies continuously as x varies in M.
In fact, the Euclidean norm could be replaced by any other norm in this example,
providing we replace B in the subdifferential formula above with the dual ball.

Notice in particular that the norm ‖ · ‖ is partly smooth at the origin relative to
the origin.

Example 3.4 (polyhedral functions). Given any function h : X → R that is
polyhedral (that is, its epigraph is a polyhedral set) and any point x0 at which h is
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finite, there is a natural manifold about x0 relative to which h is partly smooth. To
see this we express h in the form (see [23, Thm. 2.49])

h(x) =

{
max{〈ai, x〉+ bi : i ∈ I} if 〈cj , x〉 ≤ dj for all j ∈ J,
+∞ otherwise

for some finite index sets I �= ∅ and J and given vectors ai and cj in X and reals bi
and dj (for i ∈ I and j ∈ J). For any point x ∈ X, define “active” index sets

I(x) = {i ∈ I : 〈ai, x〉+ bi = h(x)},
J(x) = {j ∈ J : 〈cj , x〉 = dj}.

Define the set

Mx0 = {x ∈ X : I(x) = I0 and J(x) = J0},
where I0 = I(x0) and J0 = J(x0). It is easy to see that Mx0 is a manifold around
x0. We claim that h is partly smooth at x0 relative to Mx0 .

To see this observe first that for any index i ∈ I0 we have

h(x) = 〈ai, x〉+ bi for all x ∈Mx0 ,

so h|Mx0
is smooth. Second, h is lower semicontinuous and convex, and hence regular

whenever it is finite [23, Ex. 7.27]. Now routine calculation (using [23, Thm. 6.46],
for example) shows that at any point x ∈Mx0 we have

NMx0
(x) =


∑
i∈I0

λia
i +

∑
j∈J0

µjc
j :
∑
i∈I0

λi = 0


 ,

∂h(x) =


∑
i∈I0

λia
i +

∑
j∈J0

µjc
j :
∑
i∈I0

λi = 1, λi ≥ 0 (i ∈ I0),

µj ≥ 0 (j ∈ J0)


 .

Thus the normal space is parallel to the subdifferential, which is constant on Mx0
.

In particular, the basic max function mx : Rn → R defined by mxx = maxi xi is
partly smooth at any point x0 ∈ Rn relative to the set

Mx0 = {x ∈ Rn : I(x) = I(x0)},(3.5)

where

I(x) =
{
j : xj = max

i
xi

}
.

Example 3.6 (largest eigenvalue). The Euclidean space Sn consists of the n-by-n
real symmetric matrices with the inner product 〈x, y〉 = trace(xy), for x, y ∈ Sn. The
functions λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x) denote the eigenvalues of x (listed in decreasing
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order by multiplicity). Then the largest eigenvalue is partly smooth relative to the
manifold

Mm = {x ∈ Sn : λ1(x) has multiplicity m} (1 ≤ m ≤ n).

To see this, note first that the set Mm above is indeed a manifold (see [18], for
example). Furthermore we can write the maximum eigenvalue as

λ1(x) = m−1
m∑
j=1

λj(x) for all x ∈Mm,

and the right-hand side is a smooth function of x on Mm (see [11], for example).
Second, λ1 is convex (see [10], for example) and so is regular everywhere. Now, by
[18], as x varies in Mm there is an n-by-m matrix Q(x), depending continuously on
x, whose columns are a basis for the eigenspace of x corresponding to λ1(x), and then
we have

NMm(x) = Q(x){w ∈ Sn : tracew = 0}Q(x)T ,

∂λ1(x) = Q(x){w ∈ Sn+ : tracew = 1}Q(x)T ,

where Sn+ denotes the positive semidefinite matrices [18, Thm. 4.7]. It is easy to
see from this that the normal space is parallel to the subdifferential, which varies
continuously on Mm.

Example 3.7 (spectral abscissa). The Euclidean space Mn consists of the n-by-n
complex matrices with the (real) inner product 〈x, y〉 = Re trace(x∗y) for x, y ∈Mn.
The spectral abscissa α(x) is the largest of the real parts of the eigenvalues of x.

Given any list φ = (n1, n2, . . . , nr) of positive integers with sum no greater than
n, let Mφ denote the subset of Mn consisting of matrices x satisfying the following
properties:

(i) x has r distinct “active” eigenvalues λ1, λ2, . . . , λr with real part α(x), and
all its other eigenvalues have real part strictly less than α(x);

(ii) each active eigenvalue λj has algebraic multiplicity nj and geometric multi-
plicity one.

Classic results of Arnold [2] show that Mφ is a manifold.
In fact the spectral abscissa α is partly smooth relative to Mφ (see [5]).

4. Calculus. In this section we show that partly smooth functions form a robust
class by proving a variety of calculus rules. Our fundamental result considers the
composition of a partly smooth function with a smooth function, and requires a
transversality condition. Consider Euclidean spaces X and Z, an open set W ⊂ Z
containing a point z, a smooth map Φ : W → X, and a set M ⊂ X. We say Φ is
transversal toM at z if M is a manifold around Φ(z), and

R(∇Φ(z)) + TM(Φ(z)) = X

or equivalently

Ker(∇Φ(z)∗) ∩NM(Φ(z)) = {0}.(4.1)

Theorem 4.2 (chain rule). Given Euclidean spaces X and Z, an open setW ⊂ Z
containing a point z0, a smooth map Φ : W → X, and a set M ⊂ X, suppose Φ is
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transversal to M at z0. If the function h : X → R is partly smooth at Φ(z0) relative
toM, then the composition h ◦ Φ is partly smooth at z0 relative to Φ−1(M).

Proof. An immediate consequence of transversality is that the set Φ−1(M) is a
manifold around any point z ∈ Φ−1(M) close to z0, with normal space

NΦ−1(M)(z) = ∇Φ(z)∗NM(Φ(z)),

and transversality also holds at all such z.
Given a smooth representative g of h|M around Φ(z0), it is easy to see that g◦Φ is

a smooth representative of (h◦Φ)|Φ−1(M) around z0, so this latter function is smooth
around z0.

Consider any point z ∈ Φ−1(M) close to z0. By inclusion (2.6) we know

∂∞h(Φ(z)) ⊂ NM(Φ(z)).(4.3)

Transversality at z therefore implies

Ker(∇Φ(z)∗) ∩ ∂∞h(Φ(z)) = {0},

so by [23, Thm. 10.6], h ◦ Φ is regular at z, with subdifferential

∂(h ◦ Φ)(z) = ∇Φ(z)∗∂h(Φ(z)) �= ∅.(4.4)

Now, the normal space is parallel to the subdifferential, since

par (∂(h ◦ Φ)(z0)) = par (∇Φ(z0)∗∂h(Φ(z0)))

= ∇Φ(z0)∗par (∂h(Φ(z0))) ⊃ ∇Φ(z0)∗NM(Φ(z0)) = NΦ−1(M)(z0),

so it remains only to check the inner semicontinuity property of the subdifferential.
Consider therefore a convergent sequence of points zr → z0 in Φ−1(M), and a

subgradient w ∈ ∂(h ◦ Φ)(z0). By (4.4) there is a subgradient y ∈ ∂h(Φ(z0)) such
that ∇Φ(z0)∗y = w. Since Φ(zr)→ Φ(z0) inM and ∂h is continuous onM at Φ(z0),
there must be subgradients yr ∈ ∂h(Φ(zr)) approaching y. But Φ is smooth, so the
vectors ∇Φ(zr)

∗yr ∈ ∂(h ◦ Φ)(zr) approach w, as required.
For example, suppose Φ(z0) = 0 and ∇Φ(z0) is surjective. Then the function

z 	→ ‖Φ(z)‖ is partly smooth at z0 relative to Φ−1(0).
By applying this result with h = δS , we obtain conditions guaranteeing that the

set Φ−1(S) is partly smooth if the set S is smooth.
Proposition 4.5 (separability). For each i = 1, 2, . . . , k, suppose that Xi is a

Euclidean space, that the set Mi ⊂ Xi contains the point x
0
i , and that the function

hi : Xi → R is partly smooth at x0
i relative toMi. Then the function h : X1 ×X2 ×

· · · ×Xk → R defined by

h(x1, x2, . . . , xk) =

k∑
i=1

hi(xi) for xi ∈ Xi, i = 1, 2, . . . , k,

is partly smooth at (x0
1, x

0
2, . . . , x

0
k) relative toM1 ×M2 × · · · ×Mk.

Proof. This follows easily from the facts thatM1×M2× · · · ×Mk is a manifold
around (x0

1, x
0
2, . . . , x

0
k), with normal space

NM1×M2×···×Mk
(x1, x2, . . . , xk) = NM1(x1)×NM2(x2)× · · · ×NMk

(xk),
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and

∂h(x1, x2, . . . , xk) = ∂h1(x1)× ∂h2(x2)× · · · × ∂hk(xk),

with regularity providing each hi is regular at xi [23, Prop. 10.5].
For example, the function

(x1, x2, . . . , xk) 	→ ‖x1‖+ ‖x2‖+ · · ·+ ‖xk‖
is partly smooth at the origin relative to the origin.

Applying this result to indicator functions shows that direct products of partly
smooth sets are partly smooth.

Corollary 4.6 (sum rule). Consider sets M1,M2, . . . ,Mk in a Euclidean
space Z. Suppose the function hi : Z → R is partly smooth at the point z0 relative to
Mi for each i. Assume furthermore the condition

k∑
i=1

yi = 0 and yi ∈ NMi
(z0) for each i ⇒ yi = 0 for each i.

Then the function
∑
i hi is partly smooth at z0 relative to ∩iMi.

Proof. We apply the chain rule (Theorem 4.2) and Proposition 4.5 (separability)
with

X = Z × Z × · · · × Z (k copies),

W = Z,

Φ(z) = (z, z, . . . , z) for z ∈ Z,
M =M1 ×M2 × · · · ×Mk,

h(z1, z2, . . . , zk) =
∑
i

hi(zi) for zi ∈ Z, i = 1, 2, . . . , k.

Applying this result to indicator functions gives conditions guaranteeing that
intersections of partly smooth sets are partly smooth.

Corollary 4.7 (smooth perturbation). If the function h : X → R is partly
smooth at the point x0 relative to the set M ⊂ X and the function f : X → R is
smooth on an open set containing x0, then the function h+ f is partly smooth at x0

relative toM.
Corollary 4.8 (smooth max function). Suppose W is an open subset of the

Euclidean space Z, and the function Φ : W → Rn is smooth. For any point z ∈ W ,
define the “active set”

J(z) =

{
i : Φi(z) = max

j
Φj(z)

}
.

If the point z0 ∈W satisfies

{∇Φi(z0) : i ∈ J(z0)} linearly independent,(4.9)

then the function h : W → R defined by h(z) = maxj Φj(z) is partly smooth at z0
relative to the set

M = {z ∈W : J(z) = J(z0)}.
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Proof. We apply the chain rule (Theorem 4.2) with X = Rn, M = MΦ(z0) as
in (3.5), and h = mx, the basic max function of Example 3.4. The transversality
condition follows easily from condition (4.9).

To apply the idea of partial smoothness to optimization problems with constraints,
we need conditions to recognize partly smooth level sets. That is the aim of the last
result of this section.

Theorem 4.10 (level sets). Consider a point x0 in a setM⊂ X. Suppose that
the function h : X → R is partly smooth at x0 relative to M, and that x0 is not a
critical point of h|M. Then the level set

L = {x ∈M : h(x) ≤ 0}

is partly smooth at x0 relative to the set

M0 = {x ∈M : h(x) = 0}.

Proof. We can choose an open neighborhood V of x0, and smooth functions
g : V → R and F : V → Rm, such that g agrees with h on the set

M∩ V = {x ∈ V : F (x) = 0}

and F has surjective derivative throughout V . If we choose a sufficiently small neigh-
borhood V , then the set

{x ∈M∩ V : h(x) = 0} = {x ∈ V : F (x) = 0 and g(x) = 0}(4.11)

is a manifold around x0 since

∇g(x0) �∈ NM(x0) = R(∇F (x0)∗).

Thus M0 is indeed a manifold around x0.
We now need to check the four conditions of Proposition 2.11 (partly smooth

sets). Clearly property (i) holds, since M0 ⊂M.
The assumption that x0 is not a critical point of h|M is equivalent to 0 �∈ aff ∂(x0),

by Proposition 2.4, so in particular we know 0 �∈ ∂h(x0). Since the subdifferential
mapping ∂h is continuous relative toM, it follows that 0 �∈ ∂h(x) for all points x ∈M
close to x0. (In fact this follows just from outer semicontinuity.)

Now consider a point x ∈M0 close to x0. Notice that h is regular at x0 and thus
locally lower semicontinuous. We can apply [23, Prop. 10.3] to deduce that the level
set L is Clarke regular at x (which proves property (ii)), and

NL(x) = (R+∂h(x)) ∪ ∂∞h(x).

Notice that the right-hand side is closed (since the normal cone is always closed), and
it contains R+∂h(x) and hence also clR+∂h(x). On the other hand, by regularity we
have

∂∞h(x) = ∂h(x)∞ ⊂ clR+∂h(x).

Putting these observations together, we deduce the representation

NL(x) = clR+∂h(x).(4.12)
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By (4.11) we have

NM0
(x0) = NM(x0) + R∇g(x0),

and since h is partly smooth at x0 relative to M we also know

NM(x0) = R+(∂h(x0)− ∂h(x0)).

Furthermore, Proposition 2.4 implies

∇g(x0) ∈ aff ∂h(x0) = ∂h(x0) + R+(∂h(x0)− ∂h(x0)).

Hence certainly we have

NM0(x0) ⊂ R+∂h(x0)−R+∂h(x0) ⊂ NL(x0)−NL(x0),

which proves property (iii).
It remains to prove that the normal cone mapping NL(·) is inner semicontinuous

at x0 relative to M0, or in other words

NL(x0) ⊂ lim inf
x→x0, x∈M0

NL(x).

Using (4.12) we can rewrite this as

clR+∂h(x0) ⊂ lim inf
x→x0, x∈M0

clR+∂h(x).

Since the lim inf is always closed, it suffices to prove

R+∂h(x0) ⊂ lim inf
x→x0, x∈M0

R+∂h(x).

To this end, suppose that the sequence of points xr ∈ M0 converges to x0, and
consider a vector y = µz for some real µ ≥ 0 and subgradient z ∈ ∂h(x0). Since the
subdifferential map ∂h is continuous at x0 relative toM, there exist subgradients zr ∈
∂h(xr) approaching z, and then we have vectors µzr ∈ R+∂h(xr) approaching y as
required.

Corollary 4.13 (smooth constraints). Suppose W is an open subset of the
Euclidean space Z, and the function Φ : W → Rn is smooth. For any point z in the
set

L = {z ∈W : Φ(z) ≤ 0},

define the “active set”

K(z) = {k : Φk(z) = 0}.

If the point z0 ∈ L satisfies the condition

{∇Φk(z0) : k ∈ K(z0)} linearly independent,

then the set L is partly smooth at z0 relative to the set

{z ∈W : K(z) = K(z0)}.
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Proof. We apply Theorem 4.10 (level sets) to the smooth max function h defined
in Corollary 4.8. Notice

∂h(z0) = conv {∇Φk(z0) : k ∈ K(z0)},

so 0 �∈ aff ∂h(z0) by the linear independence assumption, and hence z0 is not a critical
point of h|M for the set M defined in Corollary 4.8.

Example 4.14 (semidefinite cone). The convex cone Sn− of negative semidefinite
matrices is partly smooth relative to the manifold

{x ∈ Sn− : rankx = k}

for any integer k = 0, 1, . . . , n. To see this, we simply apply Theorem 4.10 to the
largest eigenvalue.

Example 4.15 (semistable matrices). A matrix x ∈ Mn is semistable if all its
eigenvalues lie in the closed left half-plane, or in other words, with the notation of
Example 3.7 (spectral abscissa), if α(x) ≤ 0. The (nonconvex) cone of semistable
matrices is partly smooth relative to the manifold

{x ∈Mφ : α(x) = 0}

for any list of multiplicities φ. To see this, we apply Theorem 4.10 to the spectral
abscissa, using the fact that any subgradient of the spectral abscissa at any point has
trace one.

5. Sensitivity. This section considers the stability of critical points of paramet-
ric partly smooth functions. Throughout this section we make the following assump-
tion.

Assumption 5.1 (transversal embedding). For Euclidean spaces Y and Z, the set
Q ⊂ Y × Z is a manifold containing the point (y0, z0) and satisfies the condition

(w, 0) ∈ NQ(y0, z0) ⇒ w = 0.

Notice that this assumption is “stable”: if it holds at the point (y0, z0), then it
also holds at all nearby points in Q.

For each vector y ∈ Y we define the set

Qy = {z ∈ Z : (y, z) ∈ Q}.

Since the condition in Assumption 5.1 is exactly the transversality condition (4.1) for
the map Φ : Z → Y × Z defined by Φ(z) = (y0, z), the set Qy0 is a manifold around
z0. In fact the following result, whose proof is immediate, shows that rather more is
true: providing y is close to y0, the set Qy has the structure of a manifold close to z0.

Proposition 5.2. If Assumption 5.1 holds, then there is an open neighborhood
U of z0 such that for all vectors y ∈ Y close to y0 the set Qy ∩ U is a manifold.

Throughout this section we consider a function p : Y × Z → R, and we define a
function py : Z → R by

py(z) = p(y, z) for y ∈ Y and z ∈ Z.

Clearly if the restriction p|Q is smooth, then so is the restriction py|Qy . The next
result shows an analogous property for partial smoothness.
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Proposition 5.3 (partial smoothness with parameters). Suppose Assumption 5.1
holds and the function p is partly smooth relative to the manifold Q. Then there is an
open neighborhood U of the point z0 such that the function py is partly smooth relative
to Qy ∩ U for all vectors y ∈ Y close to y0.

Proof. There are open neighborhoods U of z0 and V of y0 such that Qy ∩ U is a
manifold for all y ∈ V and

y ∈ V, z ∈ U, (y, z) ∈ Q, (w, 0) ∈ NQ(y, z) ⇒ w = 0.

Hence for any points ŷ ∈ V and ẑ ∈ Qŷ∩U we can apply the chain rule (Theorem 4.2)
at ẑ with the map Φ : Z → Y ×Z defined by Φ(z) = (ŷ, z) to deduce that the function
pŷ = p ◦ Φ is partly smooth at ẑ relative to the manifold Qŷ ∩ U .

Our main aim in this work is to study sensitivity of critical points for partly
smooth functions. Just as in classical sensitivity analysis for nonlinear programming,
we need second-order conditions to make progress.

Definition 5.4. Given any subset M of a Euclidean space X, a point x0 is a
strong local minimizer of a function f :M→ R if there exists a real δ > 0 such that
f(x) ≥ f(x0) + δ‖x− x0‖2 for all x ∈M near x0.

We recall some classical sensitivity analysis (see, for example, [8]). SupposeM⊂
X is a manifold around the point x0 ∈M, and the restriction h|M is smooth around
x0, for some function h : X → R. Let g be any smooth representative of h|M. By
definition, x0 has an open neighborhood V ⊂ X such that

M∩ V = {x ∈ V : F (x) = 0}

for some smooth function F : V → Rm with ∇F (x0) surjective. The point x0 is
a critical point of h|M if and only if ∇g(x0) ∈ NM(x0), which is equivalent to the
existence of a multiplier vector µ ∈ Rm (necessarily unique) such that x0 is a critical
point of the corresponding Lagrangian function L = g + µTF . Furthermore, x0 is a
strong local minimizer of h|M if and only if it is a critical point of h|M and satisfies
the second-order condition

yT∇2L(x0)y > 0 whenever 0 �= y ∈ Ker(∇F (x0)).

The following result is also classical.
Theorem 5.5 (parametric strong minimizers). Suppose that the function p|Q is

smooth around the point (y0, z0), that the point z0 is a strong local minimizer of the
function py0 |Qy0 , and that Assumption 5.1 holds. Then there are open neighborhoods
U ⊂ Z of z0 and V ⊂ Y of y0 and a continuously differentiable function Ψ : V → U
such that Ψ(y0) = z0 and for all vectors y ∈ V the function py|Qy∩U has a unique
critical point Ψ(y), which is furthermore a strong local minimizer.

To approach a more complete sensitivity theory, we combine the smooth analysis
of a partly smooth function on its active manifold with a study of its behavior in
normal directions. That is the idea of the following definition.

Definition 5.6 (strong critical point). For a Euclidean space X, suppose the
function h : X → R is partly smooth at the point x0 relative to the set M ⊂ X. We
call x0 a strong critical point of h relative toM if

(i) x0 is a strong local minimizer of h|M, and
(ii) 0 ∈ ri ∂h(x0).

In the next section we see that the condition 0 ∈ ri ∂h(x0) could be written equiva-
lently as x0 being a “sharp” local minimizer of the function h|x0+NM(x0).
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We are now ready for the main result. Comparing it with the classical result
Theorem 5.5 above, we see that the extra assumption of strong criticality implies that
the parametrized minimizer is also a strong critical point.

Theorem 5.7 (strong critical points and parameters). Suppose Assumption 5.1
holds and the function p is partly smooth relative to the manifold Q. If the point z0
is a strong critical point of the function py0 relative to the set Qy0 , then there are
open neighborhoods U ⊂ Z of z0 and V ⊂ Y of y0 and a continuously differentiable
function Ψ : V → U satisfying Ψ(y0) = z0 and with the following properties for all
vectors y ∈ V :

(i) the function py|Qy∩U has a unique critical point Ψ(y);
(ii) Ψ(y) is a strong critical point of the function py relative to the manifold
Qy ∩ U .

Proof. Theorem 5.5 shows the existence of a function Ψ having the required
properties, with the exception of property (ii). Proposition 5.3 shows that py is partly
smooth relative to the manifold Qy ∩ U . Hence to prove property (ii), it suffices to
show

0 ∈ ri ∂py(Ψ(y)) for y ∈ V close to y0.

To this end, as in the proof of Proposition 5.3, we define a map Φy : Z → Y × Z
by Φy(z) = (y, z) for z ∈ Z, observe that py = p ◦ Φy, and note that Assumption 5.1
allows us to apply the chain rule (Theorem 4.2). By (4.4) we deduce

∂py(Ψ(y)) = projZ ∂p(y,Ψ(y)),

where projZ : Y × Z → Z is the natural projection, whereas a standard calculation
shows

NQy (Ψ(y)) = projZ NQ(y,Ψ(y)).

We therefore know

0 ∈ ri (projZ ∂p(y0,Ψ(y0))),(5.8)

and we want to deduce

0 ∈ ri (projZ ∂p(y,Ψ(y))) for all y close to y0.

Notice that, by definition, we know Ψ(y) is a critical point of the restriction py|Qy
for y close to y0, so by partial smoothness, Proposition 2.10 (local normal sharpness)
and Proposition 2.4 (smoothness and lineality) we have

aff (projZ ∂p(y,Ψ(y))) = aff ∂py(Ψ(y)) = NQy (Ψ(y)) = projZ NQ(y,Ψ(y)).

If the result fails, then there is a sequence of vectors yr in Y approaching y0 such that

0 �∈ ri (projZ ∂p(yr,Ψ(yr))) for all r.

For all large r we can separate in the subspace projZ NQ(yr,Ψ(yr)) to deduce the
existence of a unit vector zr in this subspace, satisfying

inf 〈zr,projZ ∂p(yr,Ψ(yr))〉 ≥ 0.
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After taking a subsequence, we can assume zr approaches a nonzero vector z ∈ Z.
Now, since the point (yr,Ψ(yr)) converges to the point (y0, z0) in the manifold

Q, it follows that the subspace NQ(yr,Ψ(yr)) converges to the subspace NQ(y0, z0),
so Assumption 5.1 implies that the subspace projZ NQ(yr,Ψ(yr)) converges to the
subspace projZ NQ(y0, z0), by [23, Ex. 4.28]. Hence we deduce

z ∈ projZ NQ(y0, z0).

We now claim

inf 〈z,projZ ∂p(y0, z0)〉 ≥ 0.(5.9)

To see this, consider any vector u ∈ projZ ∂p(y0, z0). Partial smoothness implies
that ∂p(yr,Ψ(yr)) converges to ∂p(y0, z0), so again by [23, Ex. 4.28] we deduce that
projZ ∂p(yr,Ψ(yr)) converges to projZ ∂p(y0, z0). Thus there is a sequence of vectors
ur ∈ projZ ∂p(yr,Ψ(yr)) converging to u. Since 〈zr, ur〉 ≥ 0 for all r, we deduce
〈z, u〉 ≥ 0, as we claimed.

Thus inequality (5.9) holds, so the origin is separated from the convex set
projZ ∂p(y0, z0) in its affine span (the subspace projZ NQ(y0, z0)). But this contra-
dicts relation (5.8), so the proof is complete.

6. U − V decomposition and identifiable surfaces. As we remarked in the
introduction, our development is closely related to the U-Lagrangian theory for convex
functions of Lemaréchal, Oustry, and Sagastizábal (see, for example, [12]). The key
idea of that theory is, for a given convex function h : X → R, to decompose X as
a sum of two orthogonal subspaces, U and V: h behaves “sharply” at the point of
interest if we perturb in directions in the V space, whereas it behaves smoothly if we
perturb in directions in the U space.

Our purpose in this section is to draw the connection between this idea and partial
smoothness. The development is a nice illustration of various features of the theory
of partial smoothness.

We call a local minimizer x of an arbitrary function h : X → R sharp if

lim inf
z→0

h(x+ z)− h(x)

‖z‖ > 0,

or equivalently, if 0 ∈ int ∂̂h(x).
Theorem 6.1 (U −V decomposition). Suppose the function h : X → R is partly

smooth at the point x relative to the set M ⊂ X. Define subspaces U = TM(x)
and V = NM(x). Then there exists a function v : U → V with the following three
properties:

(i) the function v is smooth near the origin;
(ii) for small vectors u ∈ U and w ∈ V, x+ u+ w ∈M⇔ w = v(u);
(iii) v(u) = O(‖u‖2) for small u ∈ U .

Fix any vector y ∈ ri ∂h(x). Then for any small vector u ∈ U , the function

w ∈ V 	→ h(x+ u+ w)− 〈y, x+ u+ w〉(6.2)

has a sharp minimizer at the point v(u).
Furthermore, the point x is a strong critical point of h relative to M if and only

if it is a strong local minimizer of h|M and a sharp local minimizer of h|x+V .
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Proof. By first intersecting with an open set, we can assume M is a manifold.
A standard argument using the implicit function theorem shows the existence of the
function v with the properties (i), (ii), and (iii).

Define a map Φ : U × V → X by

Φ(u,w) = x+ u+ w for u ∈ U and w ∈ V.

Clearly Φ is everywhere transversal to M. Hence by the chain rule (Theorem 4.2),
the function h ◦ Φ is partly smooth relative to the manifold Φ−1(M). Consequently,
by smooth perturbation (Corollary 4.7) the function p : U × V → R defined by

p(u,w) = h(x+ u+ w)− 〈y, x+ u+ w〉 for u ∈ U and w ∈ V

is partly smooth relative to the manifold

Q = Φ−1(M) = {(u,w) ∈ U × V : x+ u+ w ∈M}.

Notice that for a small vector u ∈ U , the function (6.2) is exactly pu, and property
(ii) shows

Qu = {v(u)}.

It is easy to check

NQ(0, 0) = {0} × V,

so Assumption 5.1 holds for our function p. Hence we can apply Theorem 5.7 (strong
critical points and parameters) to deduce that v(u) is a strong critical point of pu
relative to {v(u)}. Hence

0 ∈ ri ∂pu(v(u)) = int ∂pu(v(u)),

since aff ∂pu(v(u)) = NQu(v(u)) = V.
To see the “only if” direction of the last statement, we simply consider the function

(6.2) with y = 0 and u = 0. In the converse direction, since x is a local minimizer of
h|M, we know aff ∂h(x) = V, by Proposition 2.4 (smoothness and lineality), and since
the origin is a sharp local minimizer of the function p0, we deduce 0 ∈ int ∂p0(0) =
int projV ∂h(x), just like the proof of Theorem 5.7. It follows that 0 ∈ ri ∂h(x).

The spaces U and V in the above result coincide with those in [12] in the convex
case.

The idea of partial smoothness is also closely related to the notion of an identifiable
surface [26] of a convex set. Given a closed convex set S ⊂ X, we call a connected
manifoldM⊂ S a (class-C2) identifiable surface if eitherM is open or for every point
x0 ∈ M and every vector w0 ∈ riNS(x0) there exists an open set V ⊂ X containing
x0 and a smooth function F : V → Rm (where m is the codimension ofM) such that
∇F is everywhere surjective, M∩ V = F−1(0), ∇F (x)∗Rm

+ ⊂ NS(x) for all points
x ∈M∩ V , and w0 ∈ ∇F (x0)∗Rm

++ (where Rm
++ = intRm

+ ).
Theorem 6.3 (identifiable surfaces). Consider a closed convex set S ⊂ X and a

connected manifoldM⊂ S. Then S is partly smooth relative toM if and only ifM
is an identifiable surface.

Proof. The case when M is open is immediate, so assume M has codimension
m > 0.
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Suppose first that M is an identifiable surface. We need to check the conditions
of Proposition 2.11 (partly smooth sets). Condition (i) is immediate, and condition
(ii) holds since closed convex sets are everywhere regular. At any point x0 ∈ M we
can choose a vector w0, a neighborhood V , and a function F as in the definition of
an identifiable surface, and then we have

NM(x0) = R(∇F (x0)∗) = ∇F (x0)∗(Rm
+ −Rm

+ ) ⊂ NS(x0)−NS(x0),

so condition (iii) holds.
It remains to show that the normal cone mapping NS is inner semicontinuous at

x0 relative toM. Since NS(x0) is the closure of its relative interior, it suffices to show,
for our arbitrary choice w0 ∈ riNS(x0), that for any sequence {xr} ⊂ M converging to
x0, there exist vectors wr ∈ NS(xr) converging to w0. But since w0 ∈ ∇F (x0)∗Rm

++,
there exists a vector µ ∈ Rm

++ such that w0 = ∇F (x0)∗µ, and then the vector

wr = ∇F (xr)
∗µ ∈ ∇F (xr)

∗Rm
+

lies in NS(xr) for all large r and converges to w0, as required.
Conversely, suppose that the set S is partly smooth relative to the manifold M,

and consider a point x0 ∈M and a vector w0 ∈ riNS(x0). By Proposition 2.10 (local
normal sharpness) we know NM(x) = NS(x) − NS(x) for all points x ∈ M close to
x0, and hence the closed convex cone NS(x) has the same dimension as the subspace
NM(x), namely m. Thus there exist linearly independent vectors w1, w2, . . . , wm ∈
riNS(x0) such that

w0 ∈ ri (conv {w1, w2, . . . , wm}).
Since M is a manifold of codimension m around x0, there exists an open set

V ⊂ X containing x0 and a smooth function G : V → Rm such that ∇G is everywhere
surjective and M∩ V = F−1(0). Hence for all points x ∈ M∩ V we have NM(x) =
R(∇G(x)∗). Since ∇G(x)∗ is injective for all points x ∈ V , there exists a basis
{a1, a2, . . . , am} of Rm satisfying

∇G(x0)∗aj = wj for j = 1, 2, . . . ,m.

Now the function F : V → Rm defined by

(F (x))j = 〈aj , G(x)〉 for x ∈ V, j = 1, 2, . . . ,m,

satisfies F−1(0) = G−1(0) =M∩ V and

∇F (x)∗ej = ∇G(x)∗aj for x ∈ V, j = 1, 2, . . . ,m

(where ej ∈ Rm denotes the jth unit vector). Thus ∇F (x)∗ is injective, and so ∇F (x)
is surjective for all points x ∈ V . Also,

∇F (x0)∗ej = ∇G(x0)∗aj = wj for j = 1, 2, . . . ,m,

so w0 ∈ ∇F (x0)∗Rm
++, as required, and furthermore,

NM(x) = R(∇F (x)∗) for x ∈M∩ V.
It remains to prove ∇F (x)∗Rm

+ ⊂ NS(x) for all points x ∈M close to x0. If this
fails, then for some index j there is a sequence {xr} ⊂ M approaching x0 such that

∇F (xr)
∗ej �∈ NS(xr) for all r.
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Both the left- and right-hand sides above are contained in the subspace NM(xr), so
by separating in this subspace, there exists a unit vector yr ∈ NM(xr) satisfying

〈yr,∇F (xr)
∗ej〉 < 〈yr, v〉 for all v ∈ NS(xr), r = 1, 2, . . . .

We can assume, after taking a subsequence, that the sequence {yr} converges to some
unit vector y0 ∈ NM(x0), and since wj ∈ riNS(x0), there exists a real δ > 0 such that
wj − δy0 ∈ NS(x0). Now, since the mapping NS is continuous, there exist vectors
vr ∈ NS(xr) approaching wj − δy0. But we know

〈yr,∇F (xr)
∗ej〉 < 〈yr, vr〉 for r = 1, 2, . . . ,

so taking the limit as r →∞ gives the contradiction

〈y0, wj〉 ≤ 〈y0, wj − δy0〉.

7. Example. The idea of a strong critical point decouples behavior in the active
manifold from behavior in directions normal to it. Restricting to the active manifold,
a strong critical point is a strong local minimizer, whereas, as we saw in the previous
section, any point in the active manifold is a sharp local minimizer with respect to
perturbations in normal directions.

One might hope that these properties suffice to ensure that strong critical points
of reasonable functions are local minimizers. Unfortunately, this is not the case. We
present in this section a locally Lipschitz, everywhere regular function f : R2 → R,
partly smooth relative to two distinct manifolds containing the origin. Relative to
one manifold, the origin is a strong critical point. However, f restricted to the other
manifold has a strong local maximum at the origin.

We partition R2 into four disjoint sets

S1 = {(x, y) : y ≤ 0},
S2 = {(x, y) : 0 < y < 2x2},
S3 = {(x, y) : 0 < 2x2 ≤ y ≤ 4x2},
S4 = {(x, y) : 4x2 < y},

and we define f by

f(x, y) =




x2 − y on S1,√
x4 + 2x2y − y2 on S2,

3x2 − y on S3,

y − 5x2 on S4.

It is easy to check that f is everywhere continuous and in fact is continuously differ-
entiable except on the manifolds

M1 = {(x, y) : y = 0},
M2 = {(x, y) : y = 4x2}.
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A calculation shows that ∂̂f(x, y) is given by


{(2x,−1)} on intS1,[
(2x,−1), (2x, 1)

]
on M1,{(

1 + 2
(
y
x2

)
−
(
y
x2

)2)−1/2(
2x
(

1 +
(
y
x2

))
, 1− y

x2

)}
on S2,

{(6x,−1)} on S3 \M2,[
(6x,−1), (−10x, 1)

]
on M2,

{(−10x, 1)} on S4,

where [u, v] denotes the line segment between the points u, v ∈ R2. The calculation at
every point except the origin is routine, since f is either continuously differentiable at
such points or can be written locally as the maximum of two continuously differentiable
functions. At the origin we use the inequality

|3x2 − y| − 2x2 ≤ f(x, y) ≤ |3x2 − y| for all x, y.

The map

β ∈ [0, 2] 	→ (1 + 2β − β2)−1/2(1− β)

has range the interval [−1, 1], so for x ≥ 0,

∇f(x, y) ∈ [2x, 6x]× [−1, 1] on S2,(7.1)

and a similar relation holds if x ≤ 0. Hence f is everywhere locally Lipschitz, even
around the origin.

We next claim ∂f = ∂̂f everywhere, so f is everywhere regular. As above, this is
routine everywhere except at the origin, where it follows using (7.1).

Now it is straightforward to check that the function f is partly smooth relative to
both the manifoldsM1 andM2, and that the origin is a strong critical point relative
to M1. But

f(x, y) = −x2 on M2,

so the origin is not a local minimizer. In summary, although strong criticality is
significant for sensitivity analysis, it is not a sufficient condition for optimality.

Acknowledgment. Thanks to Henry Wolkowicz for suggesting the connection
between partly smooth sets and identifiable surfaces.
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Abstract. By virtue of convexification techniques, we study best approximations to a closed
set C in a Hilbert space as well as perturbation conditions relative to C and a nonlinear inequality
system. Some results on equivalence of the best approximation and the basic constraint qualification
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1. Introduction. Let X, Y be Hilbert spaces over the real field R (unless specif-
ically stated otherwise), and let C be a closed convex subset of X. Let K consist of
all x ∈ C satisfying the nonconvex inequality system

(NIS) Ai(x) � 0 ∀i = 1, 2, . . . ,m,

where eachAi is a composite function of the formHi◦Fi withHi : Y → R, Fi : X → Y
for each i. We assume throughout that, for each i, Hi is continuous convex and Fi is
Fréchet differentiable on X with continuous Fréchet derivative denoted by F ′

i (·). In
general, Ai is nondifferentiable and nonlinear. For each x ∈ X, let ∂Ai(x) denote the
subdifferential of Ai at x. Let x

∗ ∈ K and I(x∗) denote the set of all active indices i :
I(x∗) = {i : Ai(x

∗) = 0}. Let PC and PK denote the projection operators from X to
C and K, respectively. Because it is generally easier to compute PC than PK (noting,
in particular, that K is not necessarily convex), we stipulate the following definition:
x∗ is said to have the perturbation property with respect to C and the above (NIS)
if for each x ∈ X,

x∗ = PK(x)⇐⇒ x∗ = PC

(
x−

m∑
1

λihi

)
(1.1)

for some hi ∈ ∂Ai(x
∗) and λi � 0, with λi = 0 for all i /∈ I(x∗). Here and throughout,

x∗ = PK(x) is read as x
∗ ∈ PK(x) if the operator is multivalued. For the special case

in which Y = R and each Ai is affine, this property has been studied by many authors
(see, for example, [2, 4, 5, 9, 11, 17, 18]) and has been shown by Deutsch, Li, and
Ward (in [10]) to be equivalent to the strong CHIP (strong conical hull intersection
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property) of {C,G1, G2, . . . , Gm}, where each Gi denotes a half-space defined by Ai.
Their result has been extended by Li and Jin in [14] to the cases (a) X = Y and each
Fi is the identity mapping and (b) Y = R and each Hi is the identity mapping. In
this paper, we consider the case in which each Fi is a general Fréchet differentiable
function and each Hi is a general continuous convex function. For each i, let Ãi
denote the “convexification” of Ai at x

∗. (For a definition, see section 2.) Under a
regularity condition (which is automatic in the above case (a)), we show in Theorem
3.7 that x∗ has the above perturbation property if and only if the convex inequality
system

Ãi(·) � 0, i = 1, 2, . . . ,m,

satisfies the basic constraint qualification (BCQ) relative to C at x∗(which is equiv-
alent to the strong CHIP of the family {C; Ã−1

i (R−), i = 1, 2, . . . ,m} in the case in
which each Ãi is affine). This generalizes a main result of [10] and that of [14]. More-
over, in the case of Y = R

n, the regularity condition mentioned above is shown to be
implied by a constraint qualification of Mangasarian–Fromowitz type (see Theorem
3.13). In section 4, some applications are made to study the inequality system with
respect to an abstract convex cone in a (real or complex) Hilbert space.

2. Notations and preparatory results. The notation used in this paper is
standard (see [1, 6, 13, 20]). In particular, for a set Z in X (or in Y or R

n), the
interior (resp., relative interior, closure, convex hull, convex cone hull, affine space,
linear space, negative polar) of Z is defined by intZ (resp., riZ, Z̄, convZ, coneZ,
affZ, spanZ, Z◦), and the normal cone of Z at z̄ is denoted by NZ(z̄) and defined
by NZ(z̄) = (Z − z̄)◦. R− denotes the subset of R consisting of all nonpositive real
numbers. For a proper extended real-valued function f on X, the subdifferential of f
at x ∈ X is denoted by ∂f(x) and defined by

∂f(x) = {z ∈ X : f(x) + 〈z, y − x〉 � f(y) ∀y ∈ X}.
In particular, NZ(z̄) = ∂IZ(z̄). Here and throughout, IZ denotes the indicator func-
tion of Z : IZ(x) = 0 if x ∈ Z, and IZ(x) = +∞ if x ∈ X \ Z.

Let m,C,K,Hi, Fi, and Ai be as in the preceding section. Let x∗ ∈ K and
I(x∗) = {i : Ai(x

∗) = 0}. For each i, let Ãi denote the “convexification” of Ai at x
∗

defined by

Ãi(x) = Hi(Fi(x
∗) + F ′

i (x
∗)(x− x∗)) ∀x ∈ X.(2.1)

Note that Ãi is continuous and convex (because Hi is, and because x �→ Fi(x
∗) +

F ′
i (x

∗)(x− x∗) is affine). Note also that

Ãi(x
∗) = Ai(x

∗), i = 1, 2, . . . ,m.(2.2)

Definition 2.1. An element d ∈ X is called
(a) a convexification feasible direction of (NIS) at x∗ if

Ãi(x
∗ + d) � 0, i ∈ I(x∗),

(b) a sequentially feasible direction of K at x∗ if there exist sequences {dk} → d
and a sequence of positive real numbers {δk} → 0 such that {x∗ + δkdk} ⊆ K.

Let CFD(x∗) (resp., SFD(x∗)) denote the set of all d satisfying (a) (resp., (b)).
Note that CFD(x∗) = [∩i∈I(x∗)Ã

−1
i (R−)]−x∗ and is a closed convex set containing the
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origin (but not necessary a cone), while SFD(x∗) is a closed cone (but not necessarily
convex).

Definition 2.2. Let KS(x
∗), KC(x

∗), and KL(x
∗) be, respectively, defined by

KS(x
∗) = (x∗ + conv(SFD(x∗))

⋂
C,(2.3)

KC(x
∗) = (x∗ +CFD(x∗))

⋂
C(2.4)

and

KL(x
∗) = (x∗ + cone(CFD(x∗)))

⋂
C.(2.5)

Note that the three sets are closed convex and that

KC(x
∗) =

⋂
i∈I(x∗)

Ã−1
i (R−)

⋂
C.(2.6)

Note also that

KC(x
∗) ⊆ KL(x

∗),(2.7)

and that KC(x
∗) = KL(x

∗) when the level set H−1
i (R−) is a cone with the vertex

Fi(x
∗) for all i ∈ I(x∗). Furthermore, we have the following claim.
Proposition 2.3. Suppose that the level set H−1

i (R−) is a cone with the vertex
Fi(x

∗) for all i ∈ I(x∗). Then SFD(x∗) ⊆CFD(x∗), and hence KS(x
∗) ⊆ KC(x

∗) =
KL(x

∗).
Proof. The second assertion follows from the first and the fact that CFD(x∗) is

closed convex. (It is straightforward to verify that KC(x
∗) = KL(x

∗) under the stated
assumption.) To prove the first assertion, let d ∈ SFD(x∗), and let {dk}, {δk} be as
in Definition 2.1(b). In particular, for each i ∈ I(x∗), one has Hi(Fi(x

∗ + δkdk)) � 0
and hence that Fi(x

∗ + δkdk) ∈ Vi, where Vi := H−1
i (R−). Therefore

δkF
′
i (x

∗)dk + o(‖δkdk‖) ∈ Vi − Fi(x
∗).

By the assumption, Vi − Fi(x
∗) is a cone. It follows that

F ′
i (x

∗)dk + o(‖dk‖) ∈ Vi − Fi(x
∗);

passing to the limits, one has that F ′
i (x

∗)d ∈ Vi − Fi(x
∗). This implies that d ∈

CFD(x∗), and the proof is complete.
Proposition 2.4. Suppose that int(cone(CFD(x∗))) �= ∅ and that, for each i ∈

I(x∗), F ′
i (x

∗) is surjective. Then SFD(x∗) ⊆ cone(CFD(x∗)), and hence KS(x
∗) ⊆

KL(x
∗).
Proof. We need only to prove the first assertion. As in the proof of Proposition

2.3, let d ∈ SFD(x∗), with {dk}, {δk} as in Definition 2.1(b). Then
F ′
i (x

∗)dk + o(‖dk‖) ∈ Vi − Fi(x
∗) ⊆ cone(Vi − Fi(x

∗));

passing to the limits, one has that F ′
i (x

∗)d ∈ cone(Vi − Fi(x
∗)) for each i ∈ I(x∗).

This shows that

SFD(x∗) ⊆
⋂

i∈I(x∗)

F ′
i (x

∗)−1(cone(Vi − Fi(x
∗))).(2.8)
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We claim that

cone(CFD(x∗)) =
⋂

i∈I(x∗)

F ′
i (x

∗)−1(cone(Vi − Fi(x
∗))).(2.9)

Indeed, it is clear that the set on the left-hand side of (2.9) is contained in the set on
the right-hand side. Conversely, let d belong to the set of the right-hand side in (2.9).
Then for each i ∈ I(x∗) there exists ti > 0 such that d

ti
∈ F ′

i (x
∗)−1(Vi−Fi(x

∗)); that
is,

F ′
i (x

∗)
d

ti
∈ Vi − Fi(x

∗) ∀i ∈ I(x∗).

Set t := maxi ti. Then, since Vi − Fi(x
∗) is a cone,

F ′
i (x

∗)
d

t
∈ Vi − Fi(x

∗), i ∈ I(x∗).

This implies that d
t ∈ CFD(x∗), and so d ∈ cone(CFD(x∗)). Therefore, (2.9) holds.

In addition, by (2.9) and the assumption int(cone(CFD(x∗))) �= ∅,

int
⋂

i∈I(x∗)

(F ′
i (x

∗)−1(cone(Vi − Fi(x∗))) �= ∅.

This implies that

cone(CFD(x∗)) =
⋂

i∈I(x∗)

F ′
i (x

∗)−1(cone(Vi − Fi(x∗)))

=
⋂

i∈I(x∗)

F ′
i (x

∗)−1(cone(Vi − Fi(x∗)))

=
⋂

i∈I(x∗)

F ′
i (x

∗)−1(cone(Vi − Fi(x
∗))).

Here the last equality holds by the open mapping theorem and by the assumption
that F ′

i (x
∗) is surjective. Thus, by (2.8), we have the desired result.

Proposition 2.5. Let Ãi be defined by (2.1). Then it holds that

∂Ai(x
∗) = ∂Ãi(x

∗) = ∂Hi(Fi(x
∗)) ◦ F ′

i (x
∗),(2.10)

where, by definition, z ∈ ∂Hi(Fi(x
∗)) ◦ F ′

i (x
∗) if and only if there is ζ ∈ ∂Hi(Fi(x

∗))
such that

〈z, v〉 = 〈ζ, F ′
i (x

∗)v〉 ∀v ∈ X.

Proof. Recalling that Hi is regular at Fi(x
∗) and Fi is strictly differentiable (see

[6, Proposition 2.3.6 and section 2.2]), it follows from the chain rule (Theorem 2.3.10
of [6]) that

∂Ai(x
∗) = ∂Hi(Fi(x

∗)) ◦ F ′
i (x

∗).

Similarly, we also have

∂Ãi(x
∗) = ∂Hi(Fi(x

∗)) ◦ F ′
i (x

∗).
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We shall need the following well-known characterization theorem for the best
approximation from a closed convex set G in X; see [3, 9, 10].

Proposition 2.6. Let G be a closed convex set in X. Then for any x ∈ X,
PG(x) = g0 if and only if g0 ∈ G, and for any g ∈ G, 〈x − g0, g0 − g〉 � 0, that is,
x− g0 ∈ NG(g0).

Definition 2.7. (a) Let {C0, . . . , Cm} be a collection of closed convex sets and
x ∈ ⋂m0 Cj. The collection is said to have the strong CHIP at x if

N⋂m

0
Cj
(x) =

m∑
j=0

NCj (x).

(b) Let {φi : i = 1, 2, . . . ,m} be a collection of continuous convex functions on
X, and let C be a closed convex set in X. The system of convex inequalities

φi(z) � 0, i = 1, 2, . . . ,m,(2.11)

is said to satisfy the BCQ relative to C at x if (2.11) holds for Z = x and

NC∩(∩m
i=1

φ−1
i

(R−))(x) = NC(x) + cone(∪i∈I(x){∂φi(x)}),

where I(x) = {i : φi(x) = 0}.
Remark 2.1. (a) It is known (see [14]) and easy to see that if system (2.11)

satisfies the BCQ relative to C at x, then {C, φ−1
1 (R−), . . . , φ−1

m (R−)} has the strong
CHIP. For further discussions relating to the strong CHIP, see also [7, 8, 19].

(b) If φi is affine, it is well known that

cone(∂φi(x)) = Nφ−1
i

(R−)(x), i ∈ I(x),

and hence that

cone


 ⋃
i∈I(x)

∂φi(x)


 =

∑
i∈I(x)

cone (∂φi(x)) =
∑
i∈I(x)

Nφ−1
i

(R−)(x) =

m∑
i=1

Nφ−1
i

(R−)(x).

Thus system (2.11) satisfies the BCQ relative to C at x if and only if {C, φ−1
1 (R−),

φ−1
2 (R−), . . . , φ−1

m (R−)} has the strong CHIP at x.
(c) When C = X, the definition of the BCQ relative to C at x is the same as the

BCQ at x considered in [12, 13]. Note that if x ∈ ∩j∈I(x)φ−1
j (R−) and φi(x) = 0, then

cone(∂φi(x)) ⊆ Nφ−1
i

(R−)(x). In addition, some further properties were investigated

in [14].

3. Reformulation of the best approximation. We begin with a key lemma
that provides a unified tool for the study of best approximation from nonconvex sets.

Lemma 3.1. Let K̂ be a closed set, C a closed convex set in X, and let x∗ ∈ X
be such that x∗ ∈ K̂ ⊆ C. Let T be a closed convex cone in X. Then the following
statements are equivalent:

(i) K̂ ⊆ (x∗ + T ) ∩ C;
(i∗) K̂ ⊆ x∗ + T;
(ii) PK̂(x) = x∗ whenever x ∈ X with P(x∗+T )∩C(x) = x∗;
(iii) PK̂(x) = x∗ whenever x ∈ X with Px∗+T (x) = x∗.
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Note: By abuse of notations, PK̂(x) = x∗ is read as x∗ ∈ PK(x) when PK̂(x) is
multivalued.

Proof. Since K̂ ⊆ C, (i) ⇔ (i∗). It is trivial that (i) ⇒ (ii) ⇒ (iii). It remains
to show that (iii) ⇒ (i∗). Suppose that (i∗) does not hold; take x̄ ∈ K̂ such that
x̄ /∈ x∗ + T . Let x∗ + e ∈ Px∗+T (x̄), where e ∈ T . Write h for x̄− (x∗ + e). Then, by
Proposition 2.6,

〈x̄− (x∗ + e), (x∗ + z)− (x∗ + e)〉 � 0 ∀z ∈ T ;

that is, 〈h, z − e〉 � 0 for each z ∈ T . Letting z = 2e, e/2 separately, it follows that
〈h, e〉 = 0, and hence that 〈h, z〉 � 0 for each z ∈ T . Consequently, Px∗+T (xt) = x∗

for each t > 0, where xt := x∗ + th; this is because of Proposition 2.6 and

〈x̄t − x∗, (x∗ + z)− x∗〉 = 〈th, z〉 � 0 ∀z ∈ T.

By (iii), it follows that

PK̂(xt) = x∗.(3.1)

On the other hand, for t > 1 large enough,

‖xt − x̄‖2 = ‖x∗ + th− (h+ x∗ + e)‖2
= (t− 1)2‖h‖2 + ‖e‖2
< t2‖h‖2.

Since x̄ ∈ K̂, this contradicts (3.1). The proof is complete.
The following corollary is evident.
Corollary 3.2. Let C be a closed convex set, and let T1, T2 be closed convex

cones in X; let x∗ ∈ C. Then the following statements are equivalent:
(i) C ∩ (x∗ + T1) = C ∩ (x∗ + T2);
(ii) for any x ∈ X, PC∩(x∗+T1)(x) = x∗ if and only if PC∩(x∗+T2)(x) = x∗.
Theorem 3.7 of [14] follows immediately from Lemma 3.1 by applying to K̂ = K

defined in section 1 and T = conv(SFD(x∗)). Similarly, by letting T = cone(CFD(x∗))
in Lemma 3.1, we have the following result.

Proposition 3.3. Let x∗ ∈ K. Then the following statements are equivalent:
(i) K ⊆ KL(x

∗);
(ii) for any x ∈ X, PKL(x∗)(x) = x∗ =⇒ PK(x) = x∗.
Definition 3.4. Let x∗ ∈ K. Then
(a) x∗ is called a regular point of K (more precisely, a regular point of K with

respect to C and the system (NIS)) if

K ⊆ KC(x
∗) ⊆ KS(x

∗);(3.2)

(b) x∗ is called a weakly regular point of K (with respect to C and the system
(NIS)) if

K ⊆ KL(x
∗) and KC(x

∗) ⊆ KS(x
∗).(3.3)

Remark 3.1. (a) Obviously, a regular point of K must be a weakly regular point
of K; the converse is true if the assumption of Proposition 2.3 is satisfied.

(b) If Fi is affine for each i ∈ I(x∗), then x∗ is a regular point of K.
Theorem 3.5. Let x∗ ∈ K. If x∗ is a regular point of K in the above sense,

then for any x ∈ X,

PK(x) = x∗ ⇐⇒ PKC(x∗)(x) = x∗.(3.4)
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Furthermore, if K ⊆ KS(x
∗) and H−1

i (R−) is a cone with the vertex Fi(x
∗) for each

i ∈ I(x∗), then x∗ is regular if and only if (3.4) holds.
Proof. Suppose that (3.2) holds. Then

PK(x) = x∗ =⇒ PKS(x∗)(x) = x∗ =⇒ PKC(x∗)(x) = x∗ =⇒ PK(x) = x∗,(3.5)

where the first implication holds by [14] (see also Lemma 3.8 below). Hence (3.4)
holds. Conversely, suppose that K ⊆ KS(x

∗) and that H−1
i (R−) is a cone with the

vertex Fi(x
∗) (thus KC(x

∗) = KL(x
∗)) for each i ∈ I(x∗). Then it follows from the

first implication of (3.5) that, for any x ∈ X, PKS(x∗)(x) = x∗ ⇐⇒ PK(x) = x∗.
Thus, from (3.4), we have

PKS(x∗)(x) = x∗ ⇐⇒ PKC(x∗)(x) = x∗.

By Corollary 3.2 and noting that KC(x
∗) = KL(x

∗) and KS(x
∗) are cones with the

vertex x∗, this implies that KC(x
∗) = KS(x

∗), and so K ⊆ KC(x
∗), i.e., (3.2) holds.

The proof is complete.
If K is convex, then K ⊆ KS(x

∗). We therefore have the following result.
Corollary 3.6. Let x∗ ∈ K. Suppose that K is convex and that H−1

i (R−) is a
cone with the vertex Fi(x

∗) for each i ∈ I(x∗). Then x∗ is regular if and only if (3.4)
holds.

We are now ready to present one of our main results. Recall that Ãi is defined
by (2.1).

Theorem 3.7. Let x∗ ∈ K. Then the following statements are equivalent:
(i) The system of convex inequalities

Ãi(z) � 0, i ∈ I(x∗),(3.6)

satisfies the BCQ relative to C at x∗.
(ii) The system of convex inequalities

Ãi(z) � 0, i = 1, 2, . . . ,m,(3.7)

satisfies the BCQ relative to C at x∗.
(i∗) x∗ has the perturbation property with respect to C and the system (3.6).
(ii∗) x∗ has the perturbation property with respect to C and the system (3.7).

Moreover, if x∗ ∈ K is a regular point of K with respect to C and the system (NIS),
then each of the above statements is also equivalent to the following:

(iii) x∗ has the perturbation property with respect to C and the system (NIS).
Proof. The equivalence of (i) ⇐⇒(i∗) and (ii) ⇐⇒(ii∗) are given in [14, The-

orem 5.1]. By (2.1), Ãi(x
∗) = Ai(x

∗); hence i ∈ I(x∗) if and only if Ãi(x∗) = 0.
We may assume that I(x∗) is a proper subset of {1, 2, . . . ,m} and note that x∗ ∈
int(∩i/∈I(x∗)Ã

−1
i (R−)). Writing Ci for Ã−1

i (R−), it follows from [1, Corollary 2.4,
p. 113] that

∂(IC∩(∩i∈I(x∗)Ci)(x
∗) + I∩i/∈I(x∗)Ci(x

∗)) = ∂IC∩(∩i∈I(x∗)Ci)(x
∗) + ∂I∩i/∈I(x∗)Ci(x

∗);

that is,

NC∩(∩m
i=1

Ci)(x
∗) = NC∩(∩i∈I(x∗)Ci)(x

∗).

Therefore (i) ⇐⇒ (ii). Under the additional assumption that x∗ is regular (and
thus that Theorem 3.5 is applicable), we will show the equivalence of (i∗) ⇐⇒ (iii).
Consider the following statements for x ∈ X:
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(1) PK(x) = x∗;
(2) PC∩(∩i∈I(x∗)Ã

−1
i

(R−))(x) = x∗;
(3) PC(x−

∑
i∈I(x∗) λihi) = x∗ for some hi ∈ ∂Ai(x

∗) and λi � 0.

By Theorem 3.5 and the fact that KC(x
∗) = C ∩ (∩i∈I(x∗)Ã

−1
i (R−)), (1) ⇐⇒ (2).

Since ∂Ai(x
∗) = ∂Ãi(x

∗) (see Proposition 2.6), (i∗) holds if and only if [(2)⇐⇒(3)].
Therefore, (i∗) holds if and only if [(1)⇐⇒(3)]; namely, (i∗) holds if and only if (iii)
holds.

Remark 3.2. (a) The statement (ii∗) simply means (by definition):
(ii′) For any x ∈ X,

PKC(x∗)(x) = x∗ ⇐⇒ PC


x−

∑
i∈I(x∗)

λihi


 = x∗ for some hi ∈ ∂Ãi(x

∗), λi � 0,

where ∂Ãi(x
∗) can be replaced by ∂Ai(x

∗), by Proposition 2.6.
(b) The sufficient part of (ii′) holds in general by Lemma 3.8(ii) below.
(c) The system (3.6) (or (3.7)) may be referred to as a convexification system of

(NIS).
Lemma 3.8. Let x∗ ∈ K and x ∈ X. The following statements hold:
(i) If PK(x) = x∗, then PKS(x∗)(x) = x∗.
(ii) If

PC

(
x−

m∑
i=1

λihi

)
= x∗(3.8)

for some hi ∈ ∂Ai(x
∗) and λi � 0 with λi = 0 for all i /∈ I(x∗), then PKL(x∗)(x) = x∗,

and so PKC(x∗)(x) = x∗.
Proof. For a proof of (i), see [14]. Next suppose that (3.8) holds. Then, by

Proposition 2.6,

x−
m∑
i=1

λihi − x∗ ∈ NC(x
∗).

Hence,

x− x∗ ∈ NC(x
∗) +

m∑
i=1

λihi

⊆ NC(x
∗) +

∑
i∈I(x∗)

cone∂Ai(x
∗)

⊆ NC(x
∗) +

∑
i∈I(x∗)

NÃ−1
i

(R−)(x
∗)

⊆ NC(x
∗) +N∩i∈I(x∗)Ã

−1
i

(R−)(x
∗)

= NC(x
∗) +


 ⋂
i∈I(x∗)

Ã−1
i (R−)− x∗


◦

= NC(x
∗) + (coneCFD(x∗))◦

= NC(x
∗) +N(x∗+coneCFD(x∗))(x

∗)
⊆ NC∩(x∗+coneCFD(x∗))(x

∗)
= NKL(x∗)(x

∗).
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This implies that PKL(x∗)(x) = x∗ by Proposition 2.6.
The following theorem shows that the regularity condition in Theorem 3.7 can be

replaced by weak regularity if a Slater-type condition is satisfied.
Theorem 3.9. Let x∗ ∈ K be a weakly regular point of K, and suppose that

ri(x∗ + coneCFD(x∗))
⋂

C �= ∅.(3.9)

Then the following statements are equivalent:
(i) System (3.7) satisfies the BCQ relative to C at x∗.
(ii) x∗ has the perturbation property with respect to C and the system (NIS).
Proof. Suppose that (i) holds. Then, by Theorem 3.7, (ii′) holds. For each x ∈ X,

the following implications hold:

PK(x) = x∗ =⇒ PKS(x∗) = x∗ (Lemma 3.8)
=⇒ PKC(x∗) = x∗ (KC(x

∗) ⊆ KS(x
∗) by weak regularity)

=⇒ (3.8) holds (Theorem 3.7(ii′))
=⇒ PKL(x∗) = x∗ (Lemma 3.8(ii))
=⇒ PK = x∗. (K ⊆ KL(x

∗) by weak regularity)

This proves that (i)=⇒(ii). ((3.9) is not needed for this implication.)
To prove the opposite implication (ii)=⇒(i), note that, since (3.9) is satisfied,

KL(x
∗) = (x∗ + cone(CFD(x∗)) ∩ C.(3.10)

We will show below that

PKC(x∗)(x) = x∗ ⇐⇒ PKL(x∗)(x) = x∗.(3.11)

Indeed, since KC(x
∗) ⊆ KL(x

∗), it is sufficient to show

PKC(x∗)(x) = x∗ =⇒ PKL(x∗)(x) = x∗.(3.12)

Assume that PKC(x∗)(x) = x∗. By Proposition 2.6, we have

〈x− x∗, x∗ − z̄〉 � 0 ∀z̄ ∈ KC(x
∗).(3.13)

Let z ∈ KL(x
∗): z ∈ C and z = x∗ + t(z̄ − x∗) for some z̄ ∈ x∗ +CFD(x∗) and t � 0.

Without loss of generality, assume that t > 1. Thus, z̄ = x∗ + (1/t)(z − x∗), and so
z̄ ∈ C since z ∈ C; consequently, z̄ ∈ KC(x

∗). This, with (3.13), implies that

〈x− x∗, x∗ − z〉 = t〈x− x∗, x∗ − z̄〉 � 0.

Hence, by (3.10), x − x∗ ∈ NKL(x∗)(x
∗). By Proposition 2.6 again, (3.12) holds and

so does (3.11). For each x ∈ X, the following implications hold:

PK(x) = x∗ ⇐⇒ (3.8) holds (by (ii))
=⇒ PKL(x∗)(x) = x∗ (Lemma 3.8)
=⇒ PK(x) = x∗. (K ⊆ KL(x

∗) by the weak regularity)

Combining this with (3.11), (ii′) of Remark 3.2(a) is seen to hold. Thus, by Theorem
3.7, (i) holds.

Remark 3.3. (a) The implication (i)=⇒(ii) of Theorem 3.9 remains true even if
the condition (3.9) is dropped. Example 3.1 below shows that we do require condition
(3.9) for the implication (ii)=⇒(i).
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(b) In the case in which the condition (3.9) is satisfied, Theorem 3.9 is a genuine
extension of Theorem 3.7 (see Example 3.2 below).

Remark 3.4. If x∗ is regular, then

K ⊆ KC(x
∗) and K ⊆ KS(x

∗).(3.14)

In the following corollaries, we consider (3.14) instead of the regularity.
Corollary 3.10. Suppose that x∗ satisfies (3.14). Then the following statements

are equivalent:
(i) The system (3.7) satisfies the BCQ relative to C at x∗, and x∗ is a regular

point of K.
(ii) x∗ has the perturbation property with respect to C and the system (NIS).
Proof. By Theorem 3.7, (i)=⇒ (ii). Conversely, suppose that (ii) holds. We claim

that, for every x ∈ X,

PKS(x∗)(x) = x∗ ⇐⇒ PK(x) = x∗ ⇐⇒ PKC(x∗)(x) = x∗.(3.15)

Indeed, by (3.14), PK(x) = x∗ if either PKS(x∗)(x) = x∗ or PKL(x∗)(x) = x∗. Con-
versely, let x ∈ X and x∗ = PK(x). Then x∗ = PKS(x∗)(x) by Lemma 3.8(i), and it
follows from (ii) that x∗ = PC(x−

∑m
1 λihi) for some hi ∈ ∂Ai(x

∗) and λi � 0, with
λi = 0 for all i /∈ I(x∗). By Lemma 3.8(ii), it follows that x∗ = PKC(x∗)(x). Therefore,
(3.15) holds. By Lemma 3.1, this implies that KC(x

∗) ⊆ KS(x
∗). Combining this

with (3.14), x∗ is regular. Now Theorem 3.7 is applicable, and thus (ii)=⇒(i).
Corollary 3.11. Suppose that the system (3.7) satisfies the BCQ relative to C

at x∗ and that

KC(x
∗) = KS(x

∗).(3.16)

Then (3.14) holds if and only if x∗ has the perturbation property with respect to C
and the system (NIS).

Proof. In view of the preceding corollary, the necessity part is clear. Conversely,
suppose that x∗ has the perturbation property with respect to C and the system
(NIS). Then we have the following equivalences:

PK(x) = x∗ ⇐⇒ (3.8) holds
⇐⇒ PKC(x∗)(x) = x∗ ((ii)⇐⇒(ii∗) of Theorem 3.7)
⇐⇒ PKS(x∗)(x) = x∗. (by (3.16))

Thus K ⊆ KS(x
∗) by Lemma 3.1. Combining this with (3.16), we see that (3.14)

holds.
A natural question arises from Theorem 3.7: When does the inclusion KC(x

∗) ⊆
KS(x

∗) hold? Apart from the obvious sufficient condition that each Fi, i ∈ I(x∗),
is affine, we give another sufficient condition below in the case when Y = Rn. Let
aff(C) denote the linear manifold (i.e., affine subspace) spanned by C. Define

E = {i : intH−1
i (R−) = ∅}, I0(x

∗) = I(x∗) \ E.

Write

Fi := (Fi1, Fi2, . . . , Fin), i = 1, 2, . . . ,m.

Note that

Hi(x) � 0 on X ∀i ∈ E.(3.17)
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Let

S∗ = {d ∈ X : Hi(Fi(x
∗)+F ′

i (x
∗)d) = 0, i ∈ E; Hi(Fi(x

∗)+F ′
i (x

∗)d) < 0, i ∈ I0(x
∗)}.

Thus S∗ ⊆ CFD(x∗); moreover, by (3.17),

(1− t)d1 + td2 ∈ S∗ ∀t ∈ [0, 1), d1 ∈ S∗, d2 ∈ CFD(x∗).(3.18)

In particular (by letting d2 = 0), one has

(1− t)d1 ∈ S∗ ∀t ∈ [0, 1), d1 ∈ S∗.(3.19)

Definition 3.12. Let x∗ ∈ K, and suppose that Y = Rn. We say that (NIS)
satisfies the generalized MFCQ (Mangasarian–Fromowitz constraint qualification) at
x∗ if the following conditions are satisfied:

(a) The intersection (x∗ +CFD(x∗)) ∩ riC is nonempty;
(b) {F ′

ij(x
∗) : i ∈ E, j = 1, 2, . . . , n} are linearly independent on span(C − x∗);

(c) the intersection S∗ ∩ span(C − x∗) is nonempty.
Remark 3.5. In the special case in which Y = R, each Hi is the identity map-

ping, and C is a subspace of X, the above (a) is automatic, while (b) and (c) are,
respectively, equivalent to the following:
(b′) {F ′

ij(x
∗) : i ∈ E, j = 1} are linearly independent on C;

(c′) the intersection S∗ ∩ C is nonempty.
That is, the generalized MFCQ condition coincides with the standard MFCQ on C
([16]; see also [15, 21]).

Our next main result is the following.
Theorem 3.13. Let x∗ ∈ K and Y = Rn. Suppose that (NIS) satisfies the

generalized MFCQ at x∗ Then

KC(x
∗) ⊆ KS(x

∗).(3.20)

If, in addition, for each i ∈ I(x∗),

Ãi(z) � Ai(z) for each z ∈ C,(3.21)

then x∗ is regular.
Proof. It is easy to verify that K ⊆ KC(x

∗) if (3.21) holds. Thus we need only
to prove (3.20). By Definition 3.12(a), it is not difficult to verify that

KC(x
∗) = (x∗ +CFD(x∗)) ∩ riC.(3.22)

Thus, we need only to prove that

(x∗ +CFD(x∗)) ∩ riC ⊆ KS(x
∗).(3.23)

Let x̄ belong to the set on the left-hand side of (3.23), and let d = x̄− x∗. Then

d ∈ CFD(x∗) ∩ span(C − x∗).(3.24)

By (c), pick d̄0 ∈ S∗ ∩ span(C − x∗). Define

d̄k =

(
1− 1

k

)
d+

1

k
d̄0 ∀k ∈ N.(3.25)
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Then, by (3.18) and (3.24), one has

d̄k ∈ S∗ ∩ span(C − x∗).(3.26)

By (b), take a family {xij ∈ span(C − x∗) : i ∈ E; j = 1, 2, . . . , n} of vectors in
span(C − x∗), which is dual to {F ′

ij(x
∗)} in the sense that

F ′
ij(x

∗)xhl =
{
1 if (i, j) = (h, l),
0 otherwise.

(3.27)

Let Zk denote the linear subspace of X spanned by d̄k and the vectors xhl, with h ∈ E
and l = 1, 2, . . . , n. We will show that there exist θ̄k ∈ (0, 1

k ) and a continuously
differentiable function θ �→ xk(θ) defined on [0, θ̄k] such that, for each (i, j) ∈ E ×
{1, 2, . . . , n} and each θ ∈ [0, θ̄k],

(∗)




xk(θ) ∈ Zk + x∗,
xk(0) = x∗,
x′
k(0) = d̄k,

Fij(x(θ)) = Fij(x
∗) + θF ′

ij(x
∗)d̄k, (i, j) ∈ E × {1, 2, . . . , n}.

Granting this, we show below that xk(θ) satisfies (NIS) for sufficiently small θ > 0:

Hi(Fi(xk(θ)) � 0, i = 1, 2, . . . ,m.(3.28)

Since xk(0) = x∗ and by considering smaller θ if necessary, we need only verify the
above (3.28) for i ∈ I(x∗). If i ∈ E, then the last equality in (*) gives

Hi(Fi(x(θ))) = Hi(Fi(x
∗) + θF ′

i (x
∗)d̄k) = 0 ∀θ ∈ [0, θ̄k],

thanks to (3.19) and (3.26). If i ∈ I0(x
∗), then the Taylor theorem gives

Fi(xk(θ)) = Fi(x
∗) + θF ′

i (x
∗)d̄k + o(θ),

and thus it follows from the convexity that

Hi(Fi(xk(θ))) = Hi(Fi(x
∗) + θ(F ′

i (x
∗)d̄k +O(θ)))

� θHi(Fi(x
∗) + F ′

i (x
∗)d̄k +O(θ)) < 0,

provided that θ > 0 is sufficiently small. Here the last inequality holds because

Hi(Fi(x
∗) + F ′

i (x
∗)d̄k) < 0

as d̄k ∈ S∗ and i ∈ I0(x
∗). Therefore, by taking smaller θ̄k > 0 if necessary, (3.28)

becomes valid for all θ ∈ [0, θ̄k]. By (*), take θk with 0 < θk � θ̄k � 1/k such that∥∥∥∥xk(θk)− x∗

θk
− d̄k

∥∥∥∥ <
1

k
.

Then, by (3.25), ∥∥∥∥xk(θk)− x∗

θk
− d

∥∥∥∥ <
1

k
(1 + ‖d− d̄0‖).



738 CHONG LI AND K. F. NG

Thus, setting dk =
xk(θk)−x∗

θk
, we have limk→∞ dk = d. To verify (3.23), it suffices to

show d ∈ SFD(x∗). We will establish this by showing that xk(θk) ∈ K. To do this,
note first that, because

dk + x∗ =
xk(θk)

θk
+

(
1− 1

θk

)
x∗ ∈ aff(C),

it follows from x̄ ∈ riC and limk→∞(dk+x∗) = x̄ that dk+x∗ ∈ C for k large enough.
This implies that xk(θk) ∈ C as xk(θk) = (1− θk)x

∗ + θk(dk + x∗). Consequently, it
follows from (3.28) that xk(θk) ∈ K, as required.

To show that there exists xk with property (*), henceforth we fix k and consider
only the special case in which d̄k is linearly independent from {xij , (i, j) ∈ E ×
{1, 2, . . . , n}} (the case in which d̄k is linearly dependent on {xij} can be dealt with
similarly but somewhat more simply); in this case, take a unit vector x0 ∈ Zk such
that 〈x0, xij〉 = 0 for each (i, j) ∈ E × {1, 2, . . . , n}. Then

d̄k = 〈x0, d̄k〉x0 +
∑
ij

λijxij(3.29)

for some λij ∈ R. We consider the equality system for x in Zk + x∗ near x∗:{
Fij(x) = Fij(x

∗) + θF ′
ij(x

∗)d̄k, (i, j) ∈ E × {1, 2, . . . , n},
〈x0, x− x∗〉 = θ〈x0, d̄k〉.

For simplicity of notation, we write Ẽ for E ×{1, 2, . . . , n} and N for the cardinality
|Ẽ| of Ẽ. Expressing x in the form

x = α0x0 +
∑
ij

αijxij + x∗,

the above system can be written as for (α0, αij) ∈ R
1+N near the origin:{

Fij(α0x0 +
∑
ij αijxij + x∗) = Fij(x

∗) + θF ′
ij(x

∗)d̄k, (i, j) ∈ Ẽ,

α0 = θ〈x0, d̄k〉.(3.30)

The Jacobi matrix J for (3.30) at the origin is nonsingular; in fact, by (3.27),

J =



1 0 · · · 0 F ′

11(x
∗)x0

0 1 · · · 0 F ′
12(x

∗)x0

· · · · · · ·
0 0 · · · 1 F ′

|E|n(x
∗)x0

0 0 · · · 0 1


 .

By the implicit function theorem, there exist θk ∈ (0, 1
k ) and continuously differen-

tiable functions, still denoted by α0, αij , such that the preceding equality system is
satisfied by these functions on [−θk.θk] and such that each of these functions vanishes
at θ = 0. Set

xk(θ) = α0(θ)x0 +
∑

αij(θ)xij + x∗, θ ∈ [−θk, θk].

Then (*) is seen to hold. Indeed, by differentiating each equation in the preceding
system at the origin and making use of the dual property (3.27) of {xij} relative to
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{F ′
ij(x

∗)}, one has

J ·




α′
11(0)
...

α′
|E|n(0)
α′

0(0)


 =




F ′
11(x

∗)d̄k
...

F ′
|E|n(x

∗)d̄k
〈x0, d̄k〉


 .

Computing the last row gives

α′
0(0) = 〈x0, d̄k〉,(3.31)

and computing the other rows gives

α′
ij(0) + F ′

ij(x
∗)x0 · α′

0(0) = F ′
ij(x

∗)d̄k ∀(ij) ∈ Ẽ.(3.32)

By the dual property of {xij} relative to {F ′
ij(x

∗)}, it follows from (3.29), (3.31), and

(3.32) that α′
ij(0) = λij for each (i, j) ∈ Ẽ. Consequently,

x′
k(0) = α′

0(0)x0 +
∑

α′
ij(0)xij

= 〈x0, d̄k〉x0 +
∑

λijxij

= d̄k,

thanks to (3.29). Therefore (*) holds, and the proof is complete.
Corollary 3.14. Let Y = Rn and x∗ ∈ K. Suppose that
(a) the intersection (x∗ +CFD(x∗)) ∩ riC is nonempty;
(b′) {F ′

ij(x
∗) : i ∈ I(x∗); j = 1, 2, . . . , n} is linearly independent on span(C−x∗).

Then KC(x
∗) ⊆ KS(x

∗).
Proof. It is sufficient to show that the condition (c) of Definition 3.12 is satisfied

by virtue of the strengthened condition (b′) (comparing with (b)). If I0(x∗) = ∅, then
0 ∈ S∗ ∩ span(C − x∗). Hence, we assume that I0(x∗) �= ∅. For any i ∈ I0(x

∗), let
αi = (αi1, αi2, . . . , αin) �= 0 be an element of R

n satisfying Hi(Fi(x
∗)+αi) < 0. From

assumption (b′), there exists {xkl : (k, l) ∈ I(x∗)×{1, 2, . . . , n}} in span(C−x∗) such
that F ′

ij(x
∗)xkl = αij if (i, j) = (k, l) ∈ I0(x

∗) × {1, 2, . . . , n}, and F ′
ij(x

∗)xkl = 0

otherwise. Then dk :=
∑n
l=1 xkl satisfies F ′

i (x
∗)dk = αi if i = k ∈ I0(x

∗), and
F ′
i (x

∗)dk = 0 otherwise. Let d :=
∑
k∈I(x∗) dk. Then d ∈ S∗ ∩ span(C − x∗). The

proof is complete.
Example 3.1. Let X = Y = R

2 and C = [−1/2, 1]× {0}. Define
A(x1, x2) = H(F1(x1, x2), F2(x1, x2)),

where

F1(x1, x2) = x1(1 + x2
2) ∀(x1, x2) ∈ R

2,

F2(x1, x2) = x2
1 + x2 ∀(x1, x2) ∈ R

2,

and

H(u, v) =

{
u2 + (v − 1)2 − 1, u � 0,
−u+ (v − 1)2 − 1, u � 0.
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Then, if (x1, x2) ∈ C,

A(x1, x2) =

{
x4

1 − x2
1, x1 � 0,

x1(x
3
1 − 2x1 − 1), x1 � 0.

Since t3 − 2t − 1 < 0 on [−1/2, 0], it follows that K = [0, 1] × {0}. Let x∗ = (0, 0).
Then

F1(x
∗) = F2(x

∗) = 0,

F ′
1(x

∗) = (1, 0), F ′
2(x

∗) = (0, 1),

and so

Ã(x) =

{
x2

1 + (x2 − 1)2 − 1, x1 � 0,
−x1 + (x2 − 1)2 − 1, x1 � 0.

Thus,

x∗ +CFD(x∗) = {(x1, x2) ∈ R
2 : x2

2 − 2x2 � x1 �
√
1− (x2 − 1)2, 0 � x2 � 2},

(3.33)

which is the set bounded by a parabola Γ1 and a semicircle Γ2 whose tangents at x
∗

are of slopes 1/2 and 0, respectively, and hence x∗+cone(CFD(x∗)) is the polyhedral
cone generated by these two tangents. Consequently,

KC(x
∗) = {(0, 0)}, KL(x

∗) = [0, 1]× {0},
so that

KC(x
∗) ⊆ KS(x

∗), K ⊆ KL(x
∗);

that is, x∗ is a weakly regular point of S. Furthermore,

∂Ã(x∗) = ∂A(x∗) = [−1, 0]× {−2}.
For any x = (x1, x2) ∈ X, PK(x) = x∗ if and only if x1 � 0. Taking λ = −x1, h = −1,
we get that PC(x − λh) = x∗. This implies that x∗ has the perturbation property
with respect to C and the system (NIS). However, note that

NKC(x∗)(x
∗) = R

2, NC(x
∗) = {0} × R,

cone(∂Ã(x∗)) = {(x1, x2) ∈ R
2 : x2 � 2x1 � 0}.

This implies that the system Ã(·) � 0 does not satisfy the BCQ relative to C. Thus
(ii) does not imply (i) in Theorem 3.9 if the condition (3.9) is dropped.

Example 3.2. Let H,F, x∗ be defined as in Example 3.1, but let C be defined by

C = {(x1, x2) : −2x2 � x1 � 1, x2 ∈ [0, 1]}.
By Example 3.1, we obtain that KL(x

∗) = C ⊇ K. Moreover,

ri(x∗ + cone(CFD(x∗))) ∩ riC �= ∅.(3.34)

Since {F ′
1(x

∗), F ′
2(x

∗)} is linearly independent, KC(x
∗) ⊆ KS(x

∗) by Corollary 3.14.
It follows that x∗ is a weakly regular point of K; hence, by (3.34), the assumptions of
Theorem 3.9 are satisfied, and so (i) and (ii) are equivalent. However, K � KC(x

∗)
because (0, 1] × {0} ⊂ K, but (0, 1] × {0} is disjoint from KC(x

∗). Hence, Theorem
3.7 cannot be applied. Therefore, in the case in which (3.9) holds, Theorem 3.9 is a
genuine extension of Theorem 3.7.
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4. Inequality system with respect to cones. In this section, we will apply
the results obtained to study an abstract inequality system. Let X,C be as before.
Let W be a closed convex cone in R

N . Then W defines a partial order � on R
N :

ā � b̄⇐⇒ ā− b̄ ∈W.(4.1)

Let G = (g1, g2, . . . , gN ) be a Fréchet differentiable function from X to R
N , and let

b = (b1, b2, . . . , bN ) ∈ R
N . Let K̂ consist of all x ∈ C satisfying the abstract inequality

system

G(x) � b,(AIS)

namely,

K̂ = C ∩ {x ∈ X : G(x) ∈ b+W}.(4.2)

Let x∗ ∈ K̂. This system can be rephrased as a system of the form (NIS) by the
following device. Define H : R

N → R by the Euclidean distance function of W :

H(y) = dist(y,W ), y ∈ R
N .(4.3)

Then H(·) � 0 on R
N , H(G(x∗) − b) = 0, W = {y ∈ R

N : H(y) = 0}, and, by [13,
Example 3.3, p. 259],

∂H(y) = NW (y) ∩B(0, 1) ∀y ∈W,(4.4)

where B(0, 1) denotes the unit ball of R
N . Note that x satisfies (AIS) if and only if

H(G(x)− b) � 0.(4.5)

Clearly (4.5) is of the type (NIS) withm = 1. According to the notation arrangements
in sections 1 and 2, let F,A, Ã be defined by, for each x ∈ X,

F (x) = G(x)− b
A(x) = H(G(x))

Ã(x) = H(F (x∗) + F ′(x∗)(x− x∗))
F̃ (x) = F (x∗) + F ′(x∗)(x− x∗)


 .(4.6)

Let J(x∗) = {j : gj(x
∗) = bj}.

Theorem 4.1. Let x∗ ∈ K̂, and suppose that x∗ is regular with respect to C and
the system (4.5). Then the following statements are equivalent:

(i) NC∩F̃−1(W )(x
∗) = NC(x

∗) +NW (G(x
∗)− b) ◦G′(x∗);

(ii) for any x ∈ X, PK̂(x) = x∗ ⇐⇒ PC(x −
∑N
i=1 yig

′
i(x

∗)) = x∗ for some
(y1, y2, . . . , yN ) ∈W ◦ with

∑
i/∈J(x∗) yi(gi(x

∗)− bi) = 0.

Proof. Clearly, Ã(x∗) = A(x∗) = 0, G′(·) = F ′(·), and Ã−1(R−) = F̃−1(W ). By
Proposition 2.5 and (4.4), we have

cone∂Ã(x∗) = NW (F (x
∗)) ◦ F ′(x∗).(4.7)

Then (i) holds if and only if the convexification system

Ã(x) � 0(4.8)
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corresponding to (4.5) satisfies the BCQ relative to C at x∗.
On the other hand, it is well known and easy to verify that

NW (F (x
∗)) = {y ∈W ◦ : 〈y, F (x∗)〉 = 0}(4.9)

=

{
(y1, y2, . . . , yN ) ∈W ◦ :

N∑
i=1

yi(gi(x
∗)− bi) = 0

}

=


(y1, y2, . . . , yN ) ∈W ◦ :

∑
i/∈J(x∗)

yi(gi(x
∗)− bi) = 0


 .

Combining this with (4.7), one has

cone∂Ã(x∗) =




N∑
i=1

yig
′
i(x

∗) : (y1, y2, . . . , yN ) ∈W ◦;
∑

i/∈J(x∗)

yi(gi(x
∗)− bi) = 0


 .

Thus, (ii) is exactly the perturbation property with respect to C and system (4.5).
Therefore Theorem 4.1 follows from Theorem 3.7.

Remark 4.1. Since W is a closed cone, the regularity assumption is equivalent to
the weak regularity of x∗ (see Proposition 2.3).

An important special case of (AIS) considered above is the following familiar
inequality-equality system: x ∈ C and{

gi(x) = bi, i = 1, 2, . . . ,me,
gi(x) � bi, i = me + 1, 2, . . . ,m,

(4.10)

where me ∈ {1, 2, . . . .m}. Writing N for m and letting

W = {(y1, y2, . . . , ym) : yi = 0 ∀i = 1, . . . ,me; yi � 0 ∀i = me + 1, . . . ,m},(4.11)

we see that the system (4.10) is of the type considered in (AIS). Let K consist of all
x ∈ C satisfying (4.10), and let x∗ ∈ K. Let I(x∗) consist of all i satisfying gi(x∗) = bi,
and let I0(x

∗) = I(x∗) \ {1, 2, . . . ,me}; thus I(x∗) := I0(x
∗) ∪ {1, 2, . . . ,me}. We

define

Ci = {x ∈ X : g′i(x
∗)(x− x∗) = 0}, i ∈ {1, 2, . . . ,me},

Ci = {x ∈ X : g′i(x
∗)(x− x∗) � 0}, i ∈ I0(x

∗).

The following facts are well known (and easy to verify):

NCi(x
∗) = span{g′i(x∗)}, i ∈ {1, 2, . . . ,me},

NCi(x
∗) = cone{g′i(x∗)}, i ∈ I0(x

∗),
W ◦ = {(λ1, λ2, . . . , λm) : λi � 0 ∀i = me + 1, . . . ,m}.


(4.12)

Corollary 4.2 (see Theorem 4.1 of [14]). Let x∗ ∈ K be a regular point with
respect to C and the system (4.10). Let

D = {x ∈ X; g′i(x
∗)(x− x∗) = 0 ∀i ∈ {1, 2, . . . ,me}}.

Then the following statements are equivalent:
(i) {C, D, Ci : i ∈ I0(x

∗)} has the strong CHIP at x∗;
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(ii) for any x ∈ X, PK(x) = x∗ ⇐⇒ PC(x −
∑m

1 λig
′
i(x

∗)) = x∗ for some
λi, i = 1, . . . ,m, with {

λi � 0 ∀i ∈ I0(x
∗),

λi = 0 ∀i /∈ I(x∗).

Proof. Let G : x �→ (g1(x), . . . , gm(x)), and let H,F,A, Ã, F̃ be defined as in
(4.3), (4.6). Then,

NC∩F̃−1(W )(x
∗) = NC∩(∩i∈I(x∗)Ci)(x

∗).

Moreover, by (4.12) and (4), one has

NW (F (x
∗)) =

{
(λ1, λ2, . . . , λm) ∈W ◦ :

m∑
i=1

λi(gi(x
∗)− bi) = 0

}

= {(λ1, λ2, . . . , λm) ∈ R
m : λi � 0 ∀i � me + 1;λi = 0 ∀i /∈ I(x∗)}

and

NW (F (x
∗)) ◦ F ′(x∗) =

{
m∑
i=1

λig
′
i(x

∗) : λi � 0 ∀i � me + 1;λi = 0 ∀i /∈ I(x∗)

}
.

Thus, by (4.12),

NW (F (x
∗)) ◦ F ′(x∗) = ND(x

∗) +
∑

i∈I0(x∗)

NCi(x
∗).

Hence (i) and (ii) are the same as (i) and (ii), respectively, of Theorem 4.1. Therefore
Corollary 4.2 follows from Theorem 4.1.

Finally, we should point out that the results in this paper can be applied to the
case when our Hilbert space X is over the complex field C. For the remainder of the
paper, let X be a complex Hilbert space and Fj be a Fréchet differentiable complex
function defined on X for each j = 1, 2, . . . ,m. Let V1, V2, . . . , Vm be convex closed
subsets of the complex plane C. Let C be a closed convex subset of X, and let K
consist of all x ∈ C satisfying the complex system

Fj(x) ∈ Vj , j = 1, 2, . . . ,m.(CS)

As usual, C can be metrically viewed as R
2, while X can be regarded as a real Hilbert

space with the inner product defined by

〈x, y〉R = Re〈x, y〉, x, y ∈ X.

Consequently, Fj is a mapping from X into R
2, and Vj is a closed convex subset of

R
2. Let Hj : R

2 → R denote the distance function to Vj . Then Hj is a real-valued
convex function on R

2 such that

Vj = {y ∈ C : Hj(y) � 0},
and hence K consists of all x ∈ C satisfying the real system

Hj(Fj(x)) � 0, j = 1, 2, . . . ,m.(RS)
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Thus, Theorems 3.7 and 3.9 can then be applied in a manner similar to what we
have done for Theorem 4.1; details need not be repeated here. However, it is worth
pointing out that the approach of using ReFj and ImFj does not work here because,
for general closed convex sets Vj , the constraint Fj(x) ∈ Vj cannot be described by
ReFj and ImFj separately.
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Abstract. We study the asymptotic behavior of the continuous flow generated by coupling
the steepest descent method with a general class of penalty schemes for convex programming. We
establish convergence of the trajectories towards primal optimal solutions, as well as convergence
of some naturally associated dual paths. The results are extended to the sequences generated by
an implicit discretization scheme which corresponds to the coupling of an inexact proximal point
iteration with the penalty schemes.

Key words. subgradient inclusions, prox method, penalty schemes, convex programming
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1. Introduction. Let I = {1, . . . ,m} and consider the mathematical program

(P) v = min
x∈Rn
{f0(x) : fi(x) ≤ 0, i ∈ I}

together with the penalty approximation scheme defined for r > 0 by

(Pr) vr = min
x∈Rn

f(x, r)

with f(x, r)=f0(x) + r
∑
i∈I θ(fi(x)/r). Throughout the paper we assume

(H0)




(a) fi : R
n → R is convex for i = 0, . . . ,m;

(b) the optimal solution set S(P) is nonempty and bounded;

(c) θ : (−∞, κ)→ R is smooth and convex with κ ∈ [0,∞];
(d) θ′(u) > 0 with θ′(u)→ 0 for u→ −∞ and θ′(u)→∞ for u→ κ;
(e) if κ = 0, there is a Slater point x̄ with fi(x̄) < 0,∀ i ∈ I.

When κ <∞ we extend θ by setting θ(κ) = limu→κ θ(u) and θ(u) =∞ for u > κ.
Under these circumstances (Pr) admits an optimal path x(r) and we have vr → v and
d(x(r), S(P)) → 0 when r → 0, where d(x, S) = infy∈S ‖x − y‖ denotes the distance
from the point x to the set S. With further assumptions the path x(r) is uniquely
determined and converges to an optimal solution xθ ∈ S(P) (see section 2).

Examples. A number of penalty functions have been proposed [9, 13, 14, 17,
19, 25, 26, 42], such as the exponential penalty θ(u) = exp(u) and the inverse and
log-barriers defined for u < 0 by θ(u) = −1/u and θ(u) = − ln(−u), respectively.
Further examples include the root-barrier θ(u) = −√−u for u ≤ 0, the shifted-barriers
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u �→ θ(u− 1) with θ the inverse or log-barrier (κ = 1), as well as other penalties built
by gluing together two or more convex functions.

The standard approach in penalty methods is to closely trace the optimal path
x(r) by using some numerical method to estimate x(rk) for a sequence of penalty
parameters rk → 0. However, approximating x(rk) with precision may be expensive
and unnecessary to generate a convergent algorithm. For instance, one might expect
that an economic algorithm performing a single iteration of a descent method for
each value rk could still generate a sequence converging to an optimal solution of (P),
regardless of the fact that the iterates approach the optimal path x(r) or not. Such an
algorithm may no longer be interpreted as a path-following on the optimal trajectory,
and we must rather think of it as a discretization of an underlying continuous flow.
If this flow converges to the optimal set, we expect the discrete iterates to be driven
towards S(P) by following the stream and not necessarily one specific trajectory.
More precisely, since every point lies on an integral curve of the flow, we may think
of the discrete iterates as jumping from one streamline to a close but different one,
and since all these curves lead to S(P) we may still expect the discrete process to be
stable and convergent. Thus, instead of allocating computational resources to restore
the proximity to a prespecified trajectory such as the optimal path x(r), we may let
the iterates evolve freely along successive integral curves. Proceeding in this way we
might expect to attain convergence with a reduced overall computational cost.

In this paper we focus on the flow generated by coupling steepest descent with
the penalty scheme, namely

(SDP) u̇(t) ∈ −∂f(u(t), r(t)) a.e. t ≥ 0,
where r(t) is a positive real function tending to 0 as t → ∞, and ∂f(x, r) denotes
the subdifferential of f(·, r) at the point x. Under mild assumptions we prove that,
no matter how we choose r(t), every solution of (SDP) converges when t → ∞ to a
point u∞ ∈ S(P) (which may or may not depend on the initial condition u(0) = u0).
The freedom in the choice of r(t) provides much flexibility to control the dynamics of
(SDP), allowing us even to adapt r(t) on-line depending on the behavior of u(t).

Thus, (SDP) provides a convergent flow whose integral curves could be approx-
imately traced by using a variety of numerical integration schemes such as Adams,
Runge–Kutta, extrapolation, Newton-like methods, etc. In section 4 we study a class
of numerical methods based on the implicit discretization scheme

(PP)
uk − uk−1

λk
∈ −∂f(uk, rk),

where rk → 0 and λk > 0 with
∑
λk = ∞ (this is the discrete analogue of t → ∞).

This iteration may be seen as performing a single proximal point step for the mini-
mization of f(·, rk) for each value of the penalty parameter rk. The same assumptions
ensuring the convergence of the continuous flow imply that the discrete iterates uk
converge to a point u∞ ∈ S(P). To turn (PP) into an implementable algorithm we
consider in fact an inexact prox-penalty iteration of the form

(IPP)
uk − uk−1

λk
∈ −∂εkf(uk, rk) + νk,

where we allow for a residual νk and we replace the exact by the approximate sub-
differential ∂εkf(uk, rk). We show that convergence of such an iteration is preserved
as long as the errors satisfy

∑
[εk+‖νk‖]λk < ∞. As in the continuous case, the
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flexibility in the choice of rk provides a support for algorithms in which the penalty
parameter is updated on-line (e.g., to handle numerical instabilities), so that rk is not
known in advance and one cannot impose a priori conditions on it.

We remark that (IPP) is a generic method in the sense that we do not specify how
the point uk is to be computed. For instance, this could be done by using a bundle-type
method (with εk > 0, νk = 0). Alternatively, noting that the solution uk of (PP) is the
unique minimizer of the strongly convex function ϕk(u) = f(u, rk) +

1
2λk
‖u− uk−1‖2,

the point uk may be computed by using an unconstrained minimization method on ϕk.
In particular, if ϕk is smooth, we may take εk = 0, in which case νk = ∇ϕk(uk) and
then uk may be computed by using a Newton-like method with a stopping criterion
guaranteeing

∑ ‖∇ϕk(uk)‖λk <∞. Note also that by adjusting the stepsize λk one
may reduce the distance from uk−1 to the minimizer of ϕk, controlling indirectly the
number of steps required by the unconstrained method to find the next iterate uk.

In order to put our results into perspective, we remark that (SDP) falls in the
framework of subgradient evolution equations of the form u̇(t) ∈ −∂ϕt(u(t)), where
{ϕt}t≥0 is a family of closed proper convex functions. In the autonomous case ϕt ≡ ϕ,
a well-known result [15, 16] states that u(t) converges to a minimizer u∞ ∈ Argmin(ϕ),
provided the latter set is nonempty. This result was extended to the nonautonomous
case in [27], assuming that ϕt converges in an appropriate sense and sufficiently fast
toward ϕ. More recently, considering (SDP) for general classes of approximation
schemes, convergence of u(t) was established when r(t) tends to 0 sufficiently slow
[7, 21] or sufficiently fast [2, 21]. Unfortunately, for the penalty scheme (Pr) this
slow/fast alternative may not cover all possible parameter functions. However, in the
recent paper [12] it was shown that in the special case of the exponential penalty
for linear programming, any solution of (SDP) tends to a point u∞ ∈ S(P) with no
restriction on the rate of convergence of r(t) → 0. Our results for (SDP) extend
the latter by considering more general penalty schemes as well as nonlinear convex
programs.

Concerning (IPP) there exist many previous works such as [1, 10, 11, 20, 31, 32, 34,
35, 39, 40, 41, 43] as well as many other references therein (see [5] for a short survey).
A point common to all these works is that, in order to attain convergence, restrictive
conditions are imposed on the sequence rk. In contrast, [5] establishes the discrete
analogues of the results in [12] for the exponential penalty in linear programming: for
all rk → 0 any sequence generated by (IPP) converges to a point u∞ ∈ S(P) (provided
that

∑
λk=∞ and

∑
[εk+‖νk‖]λk<∞). Our results for (IPP) extend the latter to

general penalty schemes and nonlinear convex programs.

To conclude this introduction let us mention that, in addition to the convergence
of the primal trajectories u(t) and uk generated by the dynamics (SDP) and (IPP), in
the case of a linear program (P) and under some extra conditions on the parameters
defining the dynamics, we also establish the convergence of some naturally associated
dual paths µ(t) and µk towards a special dual optimal solution λ

θ. These results
generalize the corresponding dual convergence results established for the exponential
penalty in [5, 12].

The plan of the paper is as follows. In section 2 we review the convergence theory
for the penalty scheme (Pr) and a corresponding dual scheme (Dr). In section 3 we
analyze the convergence of the trajectories generated by the steepest-descent-penalty
(SDP), as well as the associated dual trajectories. Finally, in section 4 we study the
primal and dual convergence of the inexact prox-penalty iteration (IPP).

Throughout the paper we adopt the standard notations in convex analysis [28, 44].
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In particular, for ϕ closed proper and convex we denote ϕ∗ its Fenchel conjugate, ∂ϕ(x)
and ∂εϕ(x) its exact and approximate subdifferentials, and ϕ

∞ its recession function
defined as usual by ϕ∞(d) = limk→∞[ϕ(x+tkdk)−ϕ(x)]/tk for any sequences tk →∞,
dk → d, and x ∈ dom(ϕ). For A,B ⊂ R

n we denote e(A,B) = supx∈A d(x,B) the
excess of A over B, where d(x,B) = infy∈B ‖x − y‖ is the distance from x to B.
Finally, we will denote aff(C) the affine space spanned by the set C ⊂ R

n.

2. The penalty scheme. In this section we present a short review of the con-
vergence results for the primal and dual optimal paths associated with (Pr).

2.1. Primal convergence. The following result describes the rationale behind
the penalty scheme (Pr). Its proof is rather standard and it can be found in [9].

Proposition 2.1. Under (H0), for all r > 0 the optimal solution set S(Pr) is
nonempty and bounded. Moreover, when r ↓ 0 we have vr → v and d(x(r), S(P))→ 0
for every optimal path x(r)∈S(Pr).

The optimal path x(r) is uniquely determined (see [22]) if we have in addition

(H1) θ is strictly convex on (−∞, κ) and
(H2) f0, . . . , fm ∈ Q,
whereQ denotes the class of convex functions f which are constant on aff(C) whenever
C is convex and f is constant on C. This class has been considered in [3, 38] and is
closely related to the concept of faithful convexity [45]. It contains all strictly convex,
as well as linear, quadratic, and analytic convex functions. Moreover, Q is closed
under composition: σ◦f ◦A∈Q whenever σ is increasing and convex, f ∈Q, and A is
affine.

Proposition 2.1 implies that x(r) is bounded with all its cluster points in S(P).
With more structure one can prove that x(r) converges to a particular point xθ∈S(P).
To prove such a result let D={1, . . . , d} and consider the θ-meanMθ : (−∞, κ)d → R

and the asymptotic θ-mean Aθ : (−∞, 0)d → R defined by

Mθ(v)= θ
−1
(

1
d

∑
i∈D θ(vi)

)
,

Aθ(v) = lim
r→0
rMθ(v/r),

where we assume implicitly that

(H3) the limit Aθ(v) exists.

Although for each dimension d we have different means Md
θ and A

d
θ , we omit the

superscript, as d will be clear from the context. Notice that Aθ depends only on the
behavior of θ at −∞: if θ−1

1 ◦ θ2(u)/u converges to some β ∈ (0,∞) when u → −∞,
then the limit Aθ1 exists if and only if Aθ2 exists, in which case both asymptotic
means coincide. Also, if θ is C2 with θ′′(u)/θ′(u) → β ∈ (0,∞) for u → −∞, then
(H3) holds with Aθ(v) = maxi∈D vi. The proof of these facts can be found in [22].

Examples. For the penalty functions mentioned in the introduction, (H3) holds
with

Aθ(v) = maxi∈D vi (exp-penalty),

Aθ(v) = [ 1d
∑
i∈D 1/vi]

−1 (inverse-barrier),

Aθ(v) = −[Πi∈D(−vi)]1/d (log-barrier),

Aθ(v) = −[ 1d
∑
i∈D
√−vi]2 (root-barrier).

Moreover, since Aθ depends only on the behavior of θ at −∞, it follows that for most
penalties found in the literature the limit Aθ exists and coincides with one of the above.
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In general (see [22]) the function Aθ is convex, continuous, symmetric, positively
homogeneous, and componentwise nondecreasing, with

1
d

∑
i∈D
vi ≤ Aθ(v) ≤ max

i∈D
vi,(2.1)

and it can be uniquely extended from (−∞, 0)d to R
d
− preserving all these properties.

In what follows we keep the notation Aθ to denote this extension, and we suppose in
addition that for all u, v ∈ R

d
− we have

(H4) max
i∈D
ui �= max

i∈D
vi ⇒ min

w∈[u,v]
Aθ(w) < max{Aθ(u), Aθ(v)}.

This property is rather weak and it holds, for instance, whenever Aθ is strictly convex
or the max function as in the examples above.

Definition 2.2. For each closed convex nonempty C⊂S(P ) we let EC=aff(C)
and IC={i∈I :fi is nonconstant on C}. When IC is nonempty we set vC = minϕC
and SC = argmin(ϕC) with ϕC : EC → R ∪ {∞} given by

ϕC(x) =

{
Aθ(fi(x) : i∈IC) if x ∈ C,

∞ otherwise.

The following basic properties will be used throughout the paper.
Lemma 2.3. Let C ⊂ S(P) be closed convex and nonempty.
(a) If IC �= φ, then there exists x̂ ∈ C with fi(x̂) < 0 for all i ∈ IC .
(b) Assume (H2) and let d = y−x with x, y ∈ C. Then f∞i (±d) = 0 for all i �∈IC .
(c) Assume (H2) and (H0)(b). Then IC = φ if and only if C is a singleton.
(d) Assume (H3) and let vj→v∈R

d
− and rj→0. Then Aθ(v) ≤ lim inf rjMθ(vj/rj),

and when v ∈ (−∞, 0)d we have Aθ(v) = lim rjMθ(vj/rj).
(e) Assume (H3), (H4), and IC �= φ. Then SC is a proper subset of C and there

exist β ≤ 0 and j ∈ IC with fj(x)=maxi∈IC fi(x)=β for all x ∈ SC .
Proof. (a) For each i ∈ IC take xi ∈ C with fi(xi) < 0. Then (a) holds with

x̂= 1
|IC |

∑
i∈IC xi (notice that since C ⊂ S(P) we have fi(x) ≤ 0 for all i ∈ I and

x ∈ C).
(b) For i �∈ IC the function fi is constant on [x, y] so that (H2) implies that it is

constant on the line passing through x and y. Hence d is a constancy direction for fi.
(c) Clearly when C is a singleton we have IC=φ. Conversely, if IC=φ, then for

x, y∈C we have that d=y−x is a constancy direction for all the fi’s, including i=0
since C⊂S(P). The boundedness assumption (H0)(b) implies d=0 so that x=y.

(d) Take ε > 0 and let 1d be a d-dimensional vector with all entries equal to 1.
For j large we have rjMθ([v − ε1d]/rj) ≤ rjMθ(vj/rj) so that letting j → ∞ we get
Aθ(v − ε1d) ≤ lim inf rjMθ(vj/rj). Making ε ↓ 0 and using the continuity of Aθ, it
follows that Aθ(v) ≤ lim inf rjMθ(vj/rj). A similar argument with v+ε1d shows that
when v ∈ (−∞, 0)d we have lim sup rjMθ(vj/rj) ≤ Aθ(v).

(e) We claim that max{fi(x) : i∈ IC} is constant on SC . Indeed, suppose there
exist x, y ∈ SC with max{fi(x) : i ∈ IC} �= max{fi(y) : i ∈ IC}. Denoting v(z) =
(fi(z) : i∈ IC) we have ϕC(z) = Aθ(v(z)), so that using the convexity of the fi’s, the
componentwise monotonicity of Aθ, and (H4), we get the contradiction

min
z∈[x,y]

ϕC(z) ≤ min
w∈[v(x),v(y)]

Aθ(w) < max{Aθ(v(x)), Aθ(v(y))} = vC .
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Let β ≤ 0 be the constant value of max{fi(x) : i∈IC} on SC . Then there is j ∈ IC such
that fj(x) = β for all x ∈ SC (otherwise for each i ∈ IC we could find xi ∈ SC with
fi(x

i) < β and the point x̄ = 1
|IC |

∑
i∈IC x

i ∈ SC would satisfy max{fi(x̄) : i∈IC} < β,
which is impossible). The latter also implies that the inclusion SC ⊂ C is strict.

The previous facts allow us to establish the convergence of the optimal path x(r).
Theorem 2.4. Assume (H0)–(H4). Then (Pr) has a unique optimal path x(r)

and we have x(r)→ xθ as r → 0, with xθ the unique solution of the nested hierarchy
of minimization problems defined recursively from (P0) ≡ (P) by
(Pk+1) vk+1 = min

x∈Sk
ϕ
Sk(x),

where Sk denotes the optimal solution set of (Pk).
Proof. The proof is a slight modification of [22, Theorem 5.2]. By Lemma 2.3(e)

the set ISk is strictly decreasing so that ISk = φ for all k large and then Lemma 2.3(c)
implies that Sk is a singleton {xθ}.

Now, Proposition 2.1 shows that x(r) is bounded with all its cluster points in S0.
Let x∗ = limxj ∈ S0 be such a cluster point, where xj = x(rj) for some rj → 0. We
show inductively that x∗ ∈ Sk for all k so that x∗ = xθ and then x(r)→ xθ. Suppose
x∗ ∈ Sk and set xε=(1−ε)xθ+εx̂ with x̂ ∈ Sk such that fi(x̂) < 0 for all i ∈ ISk (see
Lemma 2.3(a)) so that the same strict inequalities hold for xε. Setting xεj=xj−x∗+xε
and using Lemma 2.3(b) we have fi(xj) = fi(x

ε
j) for i �∈ ISk , so that canceling the

corresponding terms in the inequality f(xj , rj) ≤ f(xεj , rj) a direct computation gives
rjMθ(fi(xj)/rj : i∈ISk) ≤ rjMθ(fi(x

ε
j)/rj : i∈ISk).

Letting j → ∞ and using Lemma 2.3(d) we get ϕSk(x
∗) ≤ ϕSk(xε), and then ε ↓ 0

implies ϕSk(x
∗) ≤ ϕSk(xθ) so that x∗ ∈ Sk+1, completing the induction step.

We remark that smoothness of θ is not required for this result and also that
(H0)(e) can be replaced by θ(0) < ∞. This theorem first appeared in [22] with a
slightly stronger assumption (H3). Under this form of (H3) the result was proved
in [18] where in addition a wider class of functions fi is considered. Other previous
results include the convergence of the (log-barrier) central path in linear programming
[36, 37] and “quasi-analytic” convex programming [38], as well as convergence of the
optimal paths for several other penalty functions in [3, 4, 9, 23]. All these results are
covered by Theorem 2.4. See also [30] for the case where each constraint “fi(x) ≤ 0”
is penalized with a different penalty function θi(·).

Remark 1. Note that (H0)(d) implies θ
∞(−1) = 0 and θ∞(1) = ∞, which is the

assumption used in [22].

2.2. Dual approximation. Let (Dr) be the dual problem obtained from (Pr)
using the perturbation function Ψr(x, y) = f0(x)+r

∑
i∈I θ([fi(x)+yi]/r). This dual

consists in minimizing the Fenchel conjugate Ψ∗
r(0, λ), and a direct computation yields

(Dr) wr = min
λ∈Rm

p(λ) + r
∑
i∈I
θ∗(λi),

where p(λ)=− infx∈Rn [f0(x)+
∑
i∈I λifi(x)]. Properties (H0)(c)–(d) imply that θ

∗ is
finite and strictly convex on (0,∞) with θ∗(µ) = ∞ for µ < 0, so that (Dr) can be
viewed as a Tikhonov-like approximation scheme for the dual problem

(D) w = min
λ∈Rm

{p(λ) : λi ≥ 0, i ∈ I}.
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Taking x̄ feasible for (P) if κ > 0 or a Slater point if κ = 0, we have that Ψr(x̄, ·) is
finite and continuous at y = 0. Hence duality theory yields vr+wr=0 and S(Dr) �= φ,
and therefore (Dr) has a unique optimal solution λ(r). Moreover, if x(r) solves (Pr),
then λi(r) = θ

′(fi(x(r))/r). Concerning the asymptotic behavior of λ(r), we have the
following slight extension of [9, Corollary 2.6] and [9, Theorem 3.4].

Theorem 2.5. Assume (H0), S(D) �= φ, and suppose that either θ is bounded
from below or (P) is a linear program. Then (Dr) has a unique optimal path λ(r) and
we have λ(r)→ λθ as r → 0, with λθ the unique solution of

(D1) min
λ∈S(D)

∑
i∈I0
θ∗(λi),

where I0={i∈I :λi>0 for some λ∈S(D)}. Moreover, λθi > 0 for all i ∈ I0.
The results in [9] assume θ strictly convex with θ(u)→∞ as u→κ. However, a

careful look at the proofs reveals that strict convexity is never used and the divergence
condition serves only to ensure fi(x(r))/r < κ for which (H0)(d) suffices. Similar
results for Tikhonov-like approximations can be found in [6, 23, 29].

3. The steepest-descent-penalty trajectory. In this section we study the
coupling of the steepest descent method with penalty schemes as in (SDP). Our
analysis is based on two convergence results for nonautonomous subgradient evolution
equations developed in section 3.1. The convergence of the primal steepest-descent-
penalty trajectories is established in section 3.2, while section 3.3 is concerned with
the convergence of some naturally associated dual trajectories. The results in this
section are an outgrowth of [24] which is itself an extension of [12].

3.1. Convergence of subgradient inclusions. Let ϕt : E → R ∪ {∞} for
t ≥ 0 be a family of convex functions defined on a finite dimensional Euclidean space
E, and let α : [0,∞)→ [0,∞) be a measurable function. Suppose that x : [0,∞)→ E
is an absolutely continuous function satisfying

ẋ(t) ∈ −α(t)∂ϕt(x(t)) a.e. t ≥ 0.(3.1)

General existence results for nonautonomous subdifferential inclusions of this type
can be found in [8, 33]. In the present setting we will take for granted the existence of
such a global solution and we concentrate on its asymptotic convergence properties.
We prove two convergence results for x(t) depending on whether α(·) is integrable.

The first result generalizes [12, Theorem 2.1].
Theorem 3.1. Let S ⊂ E be nonempty and suppose that for ε > 0 small enough

there exist nonempty sets Bε and Sε in E with Sε closed and convex such that
(a) e(Bε, Sε)→ 0 and e(Sε, S)→ 0 when ε→ 0, and
(b) lim inft→∞mt(ε) > 0, where mt(ε) = inf{ϕt(x)−ϕt(y) : x �∈Bε, y∈Sε}.

If
∫∞
t̄
α(τ)dτ =∞ for all t̄ ≥ 0, then d(x(t), S)→ 0 when t→∞.

Proof. Let ε > 0 be fixed and consider the function ψ(t) = 1
2d(x(t), Sε)

2. Since
x �→ 1

2d(x, Sε)
2 is differentiable with gradient equal to (x− xε), where xε denotes the

projection of x onto Sε, using (3.1) we obtain a.e. t ≥ 0
ψ̇(t) = 〈−ẋ(t), xε(t)− x(t)〉 ≤ α(t)[ϕt(xε(t))− ϕt(x(t))].(3.2)

Let aε=
1
2e(Bε, Sε)

2 and use (b) to find σ > 0 and t̄ such that mt(ε) ≥ σ for t ≥ t̄.
Then (3.2) implies that a.e. t ≥ t̄ we have

ψ(t) > aε ⇒ x(t) �∈ Bε ⇒ ψ̇(t) ≤ −σα(t).
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Hence ψ(t) is decreasing when above aε, and since
∫∞
t̄
α(τ)dτ =∞ we get ψ(t) ≤ aε

for all t large. Thus ‖x(t) − xε(t)‖ ≤ e(Bε, Sε) and then d(x(t), S) ≤ e(Bε, Sε) +
e(Sε, S), so that the conclusion follows from (a).

For the case when α(·) is integrable we have the following.
Theorem 3.2. Suppose that ϕt(x(t)) is bounded from below and assume there

exists a cluster point x̄ of x(t) and xε → x̄ as ε→ 0 with lim supt→∞ ϕt(xε) <∞. If∫∞
t̄
α(τ)dτ <∞ for some t̄, then x(t)→ x̄.
Proof. Let ψ(t)= 1

2‖x(t)−xε‖2 and take Mε≥0 and t̂≥ t̄ such that a.e. t ≥ t̂ we
have

ψ̇(t) = 〈−ẋ(t), xε − x(t)〉 ≤ α(t)[ϕt(xε)− ϕt(x(t))] ≤Mεα(t).

Then the function ψ(t) +Mε

∫∞
t
α(τ)dτ is nonnegative and decreasing for t ≥ t̂, so it

has a limit when t → ∞. Hence ‖x(t) − xε‖ converges and since x̄ is a cluster point
of x(t) the limit is ‖x̄−xε‖. The conclusion follows by letting ε→ 0 in the inequality

lim sup
t→∞

‖x(t)− x̄‖ ≤ lim
t→∞ ‖x(t)− xε‖+ ‖xε − x̄‖ = 2‖x̄− xε‖.

3.2. Primal convergence of steepest-descent-penalty. Let us turn to the
asymptotic analysis of the subdifferential inclusion (SDP). Concerning the existence
of solutions, we may apply the results in [8, 33] to the family of functions ϕt=f(·, r(t))
in order to find sufficient conditions on r(·) so that for every u0∈dom(ϕ0) there exists
a unique u : [0,∞)→R

n absolutely continuous satisfying (SDP) with u(0)=u0. These
conditions differ according to the following cases: if κ =∞, it suffices to have r(·)
absolutely continuous; when 0 < κ <∞ we must have in addition dr

dt ∈ L2
loc(0,∞);

while for the case κ = 0 it is enough to have r(·) continuous and nonincreasing.
Furthermore, when κ=0 or κ=∞, the domain of ϕt is a constant set and one may
allow r(·) to have a finite number of jump discontinuities on each bounded interval.

Taking for granted the existence of a global solution u(t) for (SDP), we will
analyze its asymptotic properties with the help of the abstract results in section 3.1.
To this end we require the following technical lemma.

Lemma 3.3. Assume (H0) and let S = S(P). Then for ε ∈ (0, 1) there exist
nonempty and bounded closed convex sets Bε and Sε such that

(a) e(Bε, Sε)→ 0 and e(Sε, S)→ 0 when ε→ 0, and
(b) lim infr→0mr(ε) > 0, where mr(ε) = inf{f(x, r)−f(y, r) : x �∈Bε, y∈Sε}.
Proof. Let Bε = {x : f0(x) ≤ v+ε; fi(x) ≤ ε, i ∈ I} and Sε = (1−ε)S + εx̄ with

x̄ chosen so that f0(x̄) ≤ v+1/2 and fi(x̄) ≤ 0 for i ∈ I, with strict inequalities if
κ = 0. These sets are clearly convex, nonempty, and compact (since S is compact).
Moreover, Bε decreases to S when ε ↓ 0 which readily implies (a).

To establish (b) we proceed by contradiction. If this were not the case, we could
find sequences rk → 0, xk �∈ Bε, yk ∈ Sε, and δk → 0 such that f(xk, rk) ≤ δk +
f(yk, rk). Since yk = (1 − ε)zk + εx̄ for some zk ∈ S, we have f0(yk) ≤ v + ε/2 and
fi(yk) ≤ εfi(x̄) for all i ∈ I, so that f(yk, rk) ≤ vk := v + ε/2 + rk

∑
i∈Iθ[εfi(x̄)/rk]

with vk → v + ε/2 (see Remark 1). The inequality f(xk, rk) ≤ δk + vk gives

f0(xk) + rk
∑
i∈I
θ(fi(xk)/rk) ≤ δk + vk,(3.3)

which implies that xk is bounded. Indeed, otherwise passing to a subsequence we
may assume ‖xk‖ → ∞ and xk/‖xk‖ → d for some d �= 0. Dividing (3.3) by ‖xk‖
and letting k → ∞ we get f∞0 (d) +

∑
i∈I θ

∞(f∞i (d)) ≤ 0 so that Remark 1 implies



COUPLING PENALTY AND DESCENT METHODS 753

f∞i (d) ≤ 0 for all i = 0, . . . ,m, contradicting (H0)(b). Since xk is bounded, we may
assume xk → x̂ for some x̂, and then (3.3) yields f0(x̂) +

∑
i∈I θ

∞(fi(x̂)) ≤ v + ε/2.
Again, Remark 1 implies fi(x̂) ≤ 0 for all i ∈ I and then f0(x̂) ≤ v+ε/2, contradicting
the fact that xk �∈ Bε for all k. This contradiction proves (b).

Here is our main result on the coupling of steepest descent and penalty. It extends
[12, Theorem 3.1] to nonlinear convex programs and general penalty functions.

Theorem 3.4. Let r : [0,∞) → (0,∞) be measurable with r(t) → 0 as t → ∞,
and let u : [0,∞)→ R

n be an absolutely continuous function satisfying

(SDP) u̇(t) ∈ −∂f(u(t), r(t)) a.e. t ≥ 0.
Under (H0) we have d(u(t), S(P))→ 0 as t→∞. If in addition (H1)–(H4) hold and
the θ-means Mθ are convex, then u(t)→u∞ for some u∞∈S(P).

Proof. Assume (H0). Taking Bε and Sε as in Lemma 3.3 we may apply Theorem
3.1 with α(t)≡ 1, ϕt(x) = f(x, r(t)), and S =S(P) in order to get d(u(t), S(P))→ 0.
Since S(P) is bounded, it follows that u(t) is bounded with all its cluster points in
S(P). Let C ⊂ S(P) be the closed convex hull of these cluster points. To establish the
convergence of u(t) we must show that C is a singleton or equivalently that IC = φ
(see Lemma 2.3(c)). To prove the latter we assume (H1)–(H4) and Mθ convex.

We proceed by contradiction. Suppose IC �= φ and assume without loss of gen-
erality that EC is a linear subspace. Since fi ∈ Q, for i �∈ IC (including i = 0) the
space EC is contained in the constancy space of fi so that ∂fi(x) ⊂ E⊥

C . Letting x(t)
and y(t) be the projections of u(t) onto EC and E

⊥
C , respectively, we have y(t) → 0,

and projecting (SDP) onto EC we get

ẋ(t) ∈ −
∑
i∈IC
θ′(fi(x(t) + y(t))/r(t))∂Cfi(x(t) + y(t))(3.4)

with ∂Cfi(u) the projection of ∂fi(u) on EC . Choose σ(t) > d(x(t), C) with σ(t)→ 0
as t →∞, and let α(t)= |IC |θ′(Mθ(fi(u(t))/r(t) : i∈ IC)). Then (3.4) can be written
in the form (3.1) by taking ϕt : EC → R ∪ {∞} as

ϕt(x) =

{
r(t)Mθ(fi(x+y(t))/r(t) : i∈IC) if d(x,C) ≤ σ(t),

∞ otherwise.

To complete the proof we contradict IC �= φ by analyzing the cases α(·) integrable or
not with Theorems 3.2 and 3.1, respectively.

Case 1.
∫∞
t̄
α(τ)dτ <∞ for some t̄ ≥ 0.

We use Theorem 3.2. Since u(t) is bounded, the same holds for x(t), and (2.1)
implies that ϕt(x(t)) is bounded from below. Let x̄ ∈ C be a cluster point of x(t) and
set xε = (1 − ε)x̄ + εx̂ with x̂ ∈ C such that maxi∈IC fi(x̂) < 0 (see Lemma 2.3(a)).
Then the same inequalities hold for xε, and Lemma 2.3(d) gives ϕt(xε) → ϕC(xε) <
∞. Hence Theorem 3.2 applies and we get x(t)→ x̄, so that C = {x̄}, contradicting
IC �=φ.

Case 2.
∫∞
t̄
α(τ)dτ =∞ for all t̄ ≥ 0.

We use Theorem 3.1 to show that d(x(t), SC) → 0 which implies C ⊂ SC and
contradicts Lemma 2.3(e). To apply the theorem take Bε={x∈EC :d(x, SC)≤ε} and
let ωε = lim inft→∞ infx�∈Bε ϕt(x). We claim that ωε > vC . Indeed, if this were not
the case, we could find tk →∞ and xk �∈ Bε with limϕtk(xk) ≤ vC . In particular for
k large we have ϕtk(xk) < ∞ so that d(xk, C) ≤ σ(tk) → 0, and then xk is bounded
so we may assume that it converges toward some x̄ ∈ C. Using Lemma 2.3(d) it
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follows that ϕC(x̄) ≤ lim inf ϕtk(xk) ≤ vC so that x̄ ∈ SC contradicting the fact that
d(xk, SC) > ε for all k. This proves our claim.

Choose x̂ ∈ C as in Lemma 2.3(a) and set Sε = (1−αε)SC+αεx̂ with αε > 0 small
enough so that (1−αε)vC+αεϕC(x̂) < wε and αε ↓ 0 when ε→ 0. Then condition (a)
of Theorem 3.1 holds trivially, while (b) follows since lim supt→∞ supy∈Sε ϕt(y) < wε.
To prove the latter take tk → ∞ a sequence attaining this upper limit and yk ∈ Sε
a point where ϕtk is maximal. Passing to a subsequence, we may assume that yk
converges to a certain ȳ ∈ Sε. Then fi(ȳ) < 0 for all i ∈ IC , and Lemma 2.3(d)
gives ϕtk(yk)→ ϕC(ȳ). The definition of Sε and the convexity of ϕC imply ϕC(ȳ) ≤
(1− αε)vC + αεϕC(x̂) < wε which completes the proof.

3.3. Dual convergence of steepest-descent-penalty. In this subsection we
restrict our attention to the case of linear programming, that is to say, f0(x) = c

Tx
and fi(x) = a

T
i x − bi for all i ∈ I. Let u(t) be any trajectory satisfying equation

(SDP) and consider the associated dual trajectory µ(t) defined by

µi(t) = θ
′([aTi u(t)− bi]/r(t)) ∀ i∈I.

We extend [12, Theorem 3.2] proving that under suitable assumptions µ(t) converges
to the solution λθ described in Theorem 2.5.

Theorem 3.5. Assume (H0) and let r(t) be smooth and decreasing with r(t)→ 0
and ṙ(t)/r(t) bounded. Then µ(t)→ λθ and u̇(t)→ 0 when t→∞.

Proof. Since u̇(t) =
∑
i∈I [λ

θ
i −µi(t)]ai it suffices to prove that µ(t) → λθ. The

latter amounts to θ′(zi(t))→ λθi for all i ∈ I, where zi(t) = [aTi u(t)− bi]/r(t). Hence,
letting hi(z) = θ(z) − λθi z, the result boils down to hi(zi(t)) → infz hi(z) = −θ∗(λθi )
for i ∈ I.

Since θ may be unbounded from below, we may have θ∗(0) = ∞ so that special
care must be taken for dealing with the λθi ’s which are zero. Let I0 be as in Theorem
2.5 and recall that λθi > 0 if and only if i ∈ I0. Define γ(t) =

∑
i �∈I0 µi(t) and

ψ(t) =
∑
i∈I0hi(zi(t)). To establish the result we must then prove that γ(t)→ 0 and

ψ(t)→ α with α = −∑i∈I0 θ
∗(λθi ) (notice that α is finite).

The idea of the proof is the following. For s = 1, . . . , |Ic0 | we let

θs(t) = min
S

{∑
i∈S
θ(zi(t)) : S ⊂ Ic0 , |S| = s

}
,(3.5)

γs(t) = min
S

{∑
i∈S
µi(t) : S ⊂ Ic0 , |S| = s

}
,(3.6)

while for s = 0 we set γ0(t) ≡ θ0(t) ≡ 0. Define also

ψs(t) =
∑
i∈I
hi(zi(t))− θs(t).(3.7)

We will show inductively that γs(t) → 0 and ψs(t) → αs :=α−(|Ic0 |−s) θ∗(0), from
which the result follows since for s = |Ic0 | we have γs(t) ≡ γ(t) and ψs(t) ≡ ψ(t).
Since the proof is somewhat involved, we split it into a series of lemmas.

Hereafter we assume (H0) and r(t) → 0. We remark that aix̄ = bi for all i ∈ I0
and x̄ ∈ S(P) (this follows by complementary slackness since λθi > 0 for i ∈ I0) and we
denote ū(t) the projection of u(t) onto S(P), δ = diam(S(P)), and σ = maxi �∈I0 ‖ai‖.
Notice that since (H0) holds we have ‖ū(t)− u(t)‖ = d(u(t), S(P))→ 0.
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Our first lemma shows that when ‖u̇(t)‖ ∼ 0 we have µi(t) ∼ 0 for all i �∈ I0.
Lemma 3.6. There exist positive constants β > 0 and M ≥ 0 such that γ(t) ≤

M [‖u̇(t)‖+ θ′(−β/r(t))] for all t large.
Proof. If Ic0 is empty, take β=1 and M=0. Otherwise let β= 1

3 mini �∈I0(bi−aTi x̄)
with x̄ ∈ ri(S(P)), so that β > 0 and then aTi [u(t)− ū(t)] ≤ β for t large enough.
Decompose Ic0 = I(t) ∪ J(t), where I(t) contains the i’s such that aTi ū(t) ≥ bi − 2β
and J(t) contains the rest. For i ∈ J(t) we have aTi u(t) ≤ aTi ū(t) + β < bi − β so that
µi(t) ≤ θ′(−β/r(t)). To obtain a bound on µi(t) for i ∈ I(t) we observe that ū(t) and
x̄ belong to S(P), so that aTi ū(t) = a

T
i x̄ for all i ∈ I0 and then

〈−u̇(t), ū(t)− x̄〉 =
∑
i �∈I0
µi(t)a

T

i [ū(t)− x̄].

Noting that aTi [ū(t)− x̄] ≥ β for all i ∈ I(t), we get

β
∑
i∈I(t)

µi(t) ≤ δ

‖u̇(t)‖+ σ ∑

i∈J(t)

µi(t)


 ,

and then the result holds with M = δ/β + |Ic0 |(1 + σδ/β).
In the next two lemmas we establish that when ‖u̇(t)‖ ∼ 0 we also have ψ(t) ∼ α.

To this end we require some additional notation. Let E0 = span{ai : i ∈ I0} and for
ε > 0 define g(ε)=supw∈E0

{Φ(w) :d(0, ∂Φ(w))≤ε} with Φ : E0 → R ∪ {∞} given by

Φ(w) =
∑
i∈I0

[
θ(aTi w)− λθi aTi w

]
.

Lemma 3.7. Φ is coercive with minw∈E0Φ(w)=α and g(ε)→ α when ε→ 0.
Proof. Since λθi > 0 for all i ∈ I0, using Remark 1 it follows easily that Φ is

coercive. Also, by definition of the Fenchel conjugate θ∗ it is clear that Φ(w)≥α for
all w ∈ E0. Take x̄ ∈ S(P) and let w(r) be the projection of [x(r)− x̄]/r onto E0.
For i∈I0 we have aTi x̄=bi so that θ′(aTi w(r))=λi(r) and, since Theorem 2.5 implies
λi(r)→λθi > 0, it follows that aTi w(r) remains bounded. Hence w(r) is also bounded
and then it has a cluster point w̄ ∈ E0 which satisfies θ

′(aTi w̄) = λ
θ
i . The definition

of θ∗ then gives Φ(w̄) = −∑i∈I0 θ
∗(λθi ) proving minw∈E0

Φ(w) = α as claimed. The
property g(ε)→ α is a well-known consequence of coercivity.

Lemma 3.8. α ≤ ψ(t) ≤ g(‖u̇(t)‖+ σγ(t)).
Proof. Since aiū(t) = bi for all i ∈ I0, taking w(t) as the projection of [u(t) −

ū(t)]/r(t) onto E0 we get ψ(t) = Φ(w(t)) ≥ α. Now, (SDP) and the definition of Φ
imply

−u̇(t)−
∑
i �∈I0
µi(t)ai =

∑
i∈I0

[µi(t)− λθi ]ai ∈ ∂Φ(w(t))

so that the definition of g yields ψ(t) = Φ(w(t)) ≤ g(‖u̇(t)‖+ σγ(t)).
The previous results lead to the following bound for ψs(t).
Lemma 3.9. There exists a nondecreasing function ε �→ Hs(ε) with Hs(ε) → αs

when ε ↓ 0, such that for all t large enough

αs ≤ ψs(t) ≤ Hs(‖u̇(t)‖+ θ′(−β/r(t))).(3.8)
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Proof. From definition of θ∗ it is clear that ψs(t) ≥ αs. To establish the upper
bound we define b(s)=sup{θ(u) :θ′(u)≤s} so that θ(zi(t)) ≤ b(µi(t)) ≤ b(γ(t)) for all
i �∈ I0, which combined with Lemma 3.8 gives

ψs(t) ≤ g(‖u̇(t)‖+ σγ(t)) + (|Ic0 |−s) b(γ(t)).

Thus, using Lemma 3.6, it follows that (3.8) holds for t large enough with Hs(ε) =
g((1+σM)ε) + (|Ic0 |−s) b(Mε). Clearly Hs(·) is nondecreasing, while Hs(ε) → αs
follows from Lemma 3.7 and the obvious fact b(ε)→ infu θ(u) = −θ∗(0).

Our final lemma provides the key for completing the proof of Theorem 3.5.
Lemma 3.10. With the hypothesis of Theorem 3.5, if γs(t)→ 0, then ψs(t)→ αs.
Proof. Using (3.7) we may compute the right derivative of ψs(t) as

dψs
dt+

=
d

dt

[∑
i∈I
hi(zi(t))

]
− dθs
dt+
,

and since θs(·) is a min-function, denoting S(t) the set of S’s which attain the min-
imum in (3.5), we have dθs

dt+ = min{ ddt
[∑

i∈Sθ(zi(t))
]
: S ∈ S(t)}. Take St ∈ S(t)

attaining the latter minimum. Since hi(zi(t)) = θ(zi(t)) for all i ∈ St we get
dψs
dt+

=
∑
i �∈St

d

dt
[hi(zi(t))] =

∑
i �∈St

(µi(t)−λθi )żi(t).

Now, setting ξ(t) = ṙ(t)[u(t)− ū(t)]/r(t), a direct computation gives

żi(t) = a
T

i [u̇(t)− ξ(t)]/r(t)− ṙ(t)[aTi ū(t)− bi]/r(t)2,

and since ṙ(t) ≤ 0, [aTi ū(t)− bi] ≤ 0 and λθi [aTi ū(t)− bi] = 0, we deduce
dψs
dt+
≤
∑
i �∈St

(µi(t)−λθi )aTi [u̇(t)− ξ(t)]/r(t).

Letting η(t) =
∑
i∈St µi(t)ai we have

∑
i �∈St(µi(t)−λθi )ai = −[u̇(t) + η(t)] so that

dψs
dt+
≤ − 1

r(t)
〈u̇(t) + η(t), u̇(t)− ξ(t)〉.(3.9)

From this inequality it follows easily that dψsdt+ ≥ 0 implies ‖u̇(t)−ξ(t)‖ ≤ ‖ξ(t)+η(t)‖
so that, letting ε(t) = ‖ξ(t)‖ + ‖ξ(t) + η(t)‖ and hs(t) = Hs(ε(t) + θ′(−β/r(t))), we
may use Lemma 3.9 to deduce that for t large we have

dψs
dt+
≥ 0 ⇒ ‖u̇(t)‖ ≤ ε(t) ⇒ αs ≤ ψs(t) ≤ hs(t).(3.10)

We claim that ε(t) → 0 so that hs(t) → αs. Indeed, since ṙ(t)/r(t) is bounded
and ‖u(t) − ū(t)‖ = d(u(t), S(P )) → 0, we get ξ(t) → 0. To see that η(t) → 0 we
observe that the sets S attaining the minima in (3.6) and (3.5) coincide, and since
St ∈ S(t) we deduce ‖η(t)‖ ≤ σ

∑
i∈Stµi(t) = σγs(t) which tends to 0 by assumption.

Using (3.10) it follows that ψs(·) is decreasing whenever it is above hs(·). Since
hs(t) → αs we deduce that ψs(t) has a limit ᾱs ≥ αs when t → ∞. If ᾱs > αs,
then (3.8) implies ‖u̇(t)‖ ≥ ε for some ε > 0 and all t large, and then by (3.9) the
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right derivative of ψs(t) tends to −∞ so that ψs(t)→ −∞. This contradiction proves
ᾱs = αs and therefore ψs(t)→ αs.

We may now conclude the proof of Theorem 3.5. We distinguish two cases.
Proof.
Case 1. θ∗(0) < ∞. Using Lemma 3.10 with s = 0 we get ψ0(t) → α0. This

implies ψ(t) → α, as well as θ(zi(t)) → −θ∗(0) for all i �∈ I0 from which it follows
that µi(t) = θ

′(zi(t))→ 0 and then γ(t)→ 0.
Case 2. θ∗(0) = ∞. We prove by induction that γs(t) → 0 for s = 0, 1, . . . , |Ic0 |.

For s = 0 this holds by definition. Suppose γs(t) → 0 for some s < |Ic0 | so that
Lemma 3.10 implies ψs(t) → αs = −∞. Since ψs(t) = ψ(t) +

∑
i∈Ic0\St θ(zi(t)) with

ψ(t) ≥ α we may find i(t) ∈ Ic0 \ St with θ(zi(t)(t)) → −∞, so that µi(t)(t) → 0 and
then γs+1(t) ≤ γs(t) + µi(t)(t)→ 0. This achieves the induction step. Taking s = |Ic0 |
we deduce γ(t) ≡ γs(t)→ 0 and ψ(t) ≡ ψs(t)→ α as required.

4. The prox-penalty iteration. In this section we analyze the convergence
of the inexact prox-penalty iteration (IPP), proving the analogues of the results ob-
tained for (SDP). Roughly speaking, the analysis is a discretization of the continuous
arguments. We begin in section 4.1 with two convergence results for an abstract in-
exact diagonal prox iteration. The convergence of the primal prox-penalty iterates is
studied in section 4.2, while in section 4.3 we study the corresponding dual iterates.

4.1. Convergence of diagonal prox processes. Let ϕk : E → R ∪ {∞} be a
sequence of convex functions defined on a finite dimensional Euclidean space E, and
let αk ≥ 0. Let xk ∈ E be any sequence satisfying

xk − xk−1

λk
∈ −∂εk [αkϕk](xk) + νk,(4.1)

where λk > 0 is a stepsize, εk ≥ 0 is a tolerance in the computation of approximate
subgradients, and νk ∈ E represents the residual in the inexact resolution of the prox
iteration.

For the case
∑
αkλk =∞ we have the following.

Theorem 4.1. Assume that
∑
αkλk =∞ and

∑
[εk+‖νk‖]λk <∞. Let S ⊂ E

be nonempty and suppose that for ε > 0 small enough there exist nonempty sets Bε
and Sε in E, with Sε closed convex and bounded, such that

(a) e(Bε, Sε)→ 0 and e(Sε, S)→ 0 when ε→ 0, and
(b) lim infk→∞mk(ε) > 0, where mk(ε) = inf{ϕk(x)−ϕk(y) : x �∈Bε, y∈Sε}.

Then d(xk, S)→ 0 when k →∞.
Proof. Fix ε > 0 and set ψk =

1
2‖xk − yk‖2 with yk the projection of xk onto Sε.

Denoting δε = diam(Sε) and gk = νk − [xk − xk−1]/λk ∈ ∂εk [αkϕk](xk) we get
ψk − ψk−1 ≤ 1

2‖xk − yk−1‖2 − 1
2‖xk−1 − yk−1‖2

= 〈xk − xk−1,
xk+xk−1

2 − yk−1〉
≤ 〈xk − xk−1, xk − yk−1〉
= λk〈gk, yk−1 − xk〉 − λk〈νk, yk−1 − xk〉
≤ λkαk[ϕk(yk−1)− ϕk(xk)] + λkεk + λk‖νk‖[‖xk − yk‖+ δε].

The inequality 2z ≤ 1+z2 implies ‖xk−yk‖ ≤ 1/2+ψk, so that letting ρk = 1−λk‖νk‖
and ηk = λk[(δε +

1
2 )‖νk‖+ εk] we deduce
ρkψk ≤ ψk−1 + ηk + λkαk[ϕk(yk−1)− ϕk(xk)].
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Choose k̄ so that ρk > 0 for k ≥ k̄. Defining ρ′k = [
∏k
k̄ ρi] and ψ

′
k = ρ

′
k[ψk+

∑∞
k+1 ηi],

using the fact that ρk ≤ 1 we obtain that for all k > k̄ we have
ψ′
k ≤ ψ′

k−1 + λkαkρ
′
k−1[ϕk(yk−1)− ϕk(xk)].(4.2)

The assumption
∑
[εk+‖νk‖]λk <∞ implies

∑∞
k ηi ↓ 0 and ρ′k ↓ ρ̄ for some ρ̄ ∈ (0, 1).

Then we may find k̂ > k̄ with ρ′k < ρ̄(1 + ε) and
∑∞
k ηi < ε for all k ≥ k̂, and using

assumption (b) we may also suppose that mk(ε) ≥ σ for some σ > 0 and all k ≥ k̂.
Let aε = ρ̄(1 + ε)[

1
2e(Bε, Sε)

2 + ε]. If ψ′
k > aε, then ψk >

1
2e(Bε, Sε)

2 so that
xk �∈ Bε, and therefore [ϕk(xk)− ϕk(yk−1)] ≥ mk(ε) ≥ σ. Hence (4.2) yields

ψ′
k > aε ⇒ ψ′

k ≤ ψ′
k−1 − σαkλkρ′k−1.

Thus ψ′
k decreases when above aε, and since

∑
ρ′k−1αkλk =∞ it follows that ψ′

k ≤ aε
for all k large. Since ρ̄ψk ≤ ψ′

k the latter implies ‖xk − yk‖ ≤
√
2aε/ρ̄ and then

d(xk, S) ≤
√
2aε/ρ̄+ e(Sε, S), so that the conclusion follows from (a).

When
∑
αkλk <∞ we have the following.

Theorem 4.2. Assume
∑
αkλk < ∞ and

∑
[εk+‖νk‖]λk < ∞. Suppose also

that xk is bounded with ϕk(xk) bounded from below, and let x̄ be a cluster point of xk
for which there exists xε → x̄ as ε→ 0 with lim supk→∞ ϕk(xε) <∞. Then xk → x̄.

Proof. Let ψk =
1
2‖xk−xε‖2. Proceeding as in the previous proof we get

ψk − ψk−1 ≤ λkαk[ϕk(xε)− ϕk(xk)] + λkεk + λk〈νk, xk − xε〉.
Since xk is bounded, ϕk(xk) is bounded from below, and lim supk ϕk(xε) <∞, we may
find some constant M ≥ 0 such that ψk −ψk−1 ≤ λkε̃k with ε̃k = εk +M [αk + ‖νk‖].
Then the sequence ψk +

∑∞
k+1 ε̃kλk is nonnegative and decreasing, so it has a limit

when k →∞. Hence ‖xk−xε‖ converges and since x̄ is a cluster point of xk the limit
is ‖x̄− xε‖. The conclusion follows by letting ε→ 0 in the inequality

lim sup
k→∞

‖xk − x̄‖ ≤ lim
k→∞

‖xk − xε‖+ ‖xε − x̄‖ = 2‖x̄− xε‖.

4.2. Primal convergence of the prox-penalty iteration. Let rk > 0 be a
sequence of penalty parameters converging to 0 and consider any sequence uk ∈ R

n

satisfying the inexact prox-penalty iteration

(IPP)
uk − uk−1

λk
∈ −∂εkf(uk, rk) + νk,

where as before f(x, rk) = f0(x) + rk
∑
θ(fi(x)/rk) denotes the penalty function

for the given sequence of penalty parameters, λk > 0 is a stepsize, εk ≥ 0 is a
tolerance in the computation of approximate subgradients, and νk ∈ R

n is the residual
in the inexact resolution of the prox iteration. In what follows we denote sk =
−(uk−uk−1)/λk and gk = sk + νk ∈ ∂εkf(uk, rk).

We extend [5, Theorem 1.1] to nonlinear programs and general penalty schemes.
Theorem 4.3. Suppose (H0), rk → 0,

∑
λk = ∞, and

∑
[εk+‖νk‖]λk < ∞.

Then we have d(uk, S(P)) → 0. If in addition (H1)–(H4) hold and the θ-means Mθ

are convex, then uk → u∞ for some u∞ ∈ S(P).
Proof. Under (H0),

∑
λk = ∞ and

∑
[εk+‖νk‖]λk <∞, using Lemma 3.3 and

Theorem 4.1 with αk ≡ 1, ϕk(x) = f(x, rk), and S = S(P) we get d(uk, S(P)) → 0.
Suppose in addition (H1)–(H4) and Mθ convex. To establish the convergence of uk
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we prove that IC = φ with C the convex hull of the cluster points of uk. We proceed
by contradiction: suppose IC �= φ and take S = SC . Assume also that EC is a linear
space and decompose uk = xk+yk with xk ∈EC and yk ∈E⊥

C , so that yk → 0. We
show that xk satisfies an inclusion of the form (4.1). Indeed, for all w ∈ R

n we have

f(uk, rk) + 〈sk + νk, w − uk〉 ≤ f(w, rk) + εk.(4.3)

Taking w=x+yk with x∈EC and since fi(xk+yk) = fi(x+yk) for all i �∈IC , we have

qk(xk) + 〈sk + νk, x− xk〉 ≤ qk(x) + εk,

where qk(x) = rk
∑
i∈ICθ(fi(x+yk)/rk), so that letting s̃k =−(xk−xk−1)/λk and ν̃k

the projection of νk onto EC we get s̃k + ν̃k ∈ ∂εkqk(xk). Now qk can be expressed as
the composition of hk(t) = |IC |rkθ(t/rk) and Ak(x) = rkMθ(fi(x+yk)/rk : i∈IC), so
that [28, Theorem 3.6.1] implies the existence of αk ∈ ∂εkhk(Ak(xk)) such that

s̃k + ν̃k ∈ ∂εk [αkAk](xk).(4.4)

Take σk > d(xk, C) with σk → 0 and define ϕk : EC → R ∪ {∞} as ϕk(x) = Ak(x)
if d(x,C) ≤ σk and ϕk(x) = ∞ otherwise. Since hk(·) is increasing we have αk ≥ 0,
and (4.4) implies that xk satisfies

xk−xk−1

λk
∈ −∂εk [αkϕk](xk) + ν̃k.

To complete the proof we contradict IC �= φ by analyzing the cases
∑
αkλk finite and

infinite with Theorems 4.2 and 4.1, respectively.
Case 1.

∑
αkλk <∞.

We use Theorem 4.2. By assumption we have
∑
αkλk <∞ and

∑
εkλk <∞, as

well as
∑ ‖ν̃k‖λk ≤∑ ‖νk‖λk <∞. Since uk is bounded the same holds for xk, and

(2.1) implies that ϕk(xk) is bounded from below. Let x̄ ∈ C be a cluster point of xk,
and set xε=(1−ε)x̄+εx̂ with x̂ ∈ C such that maxi∈IC fi(x̂) < 0 (see Lemma 2.3(a)).
Then the same inequality holds for xε, and Lemma 2.3(d) implies ϕk(xε)→ϕC(xε)<
∞. Hence Theorem 4.2 applies, and we get xk → x̄, so that C = {x̄}, contradicting
IC �= φ.

Case 2.
∑
αkλk =∞.

We use Theorem 4.1. By assumption we have
∑
αkλk = ∞ and

∑
εkλk < ∞

as well as
∑ ‖ν̃k‖λk ≤ ∑ ‖νk‖λk < ∞. Setting Bε = {x ∈ EC : d(x, SC) ≤ ε} and

Sε = (1 − αε)SC + αεx̂ as in Case 2 of Theorem 3.4 one can prove that properties
(a) and (b) of Theorem 4.1 are satisfied, and then d(xk, SC)→ 0. This gives C ⊂ SC
which yields a contradiction with Lemma 2.3(e).

In order to establish the convergence of the dual variables (in the next section)
we do not require uk to be convergent but only d(uk, S(P)) → 0. Hence it is worth
noting that this also holds when the assumption

∑ ‖νk‖λk < ∞ is replaced by the
(usually weaker) condition νk → 0.

Proposition 4.4. Assume (H0), rk → 0,
∑
λk =∞,

∑
εkλk <∞, and νk → 0.

Then we have d(uk, S(P))→ 0.
Proof. This follows from Theorem 4.1 applied to ϕk(x)=f(x, rk)−〈νk, x〉. Notice

that ∂εkϕk(uk) = ∂εkf(uk, rk) − νk, and a slight modification of Lemma 3.3 shows
that when νk → 0 conditions (a) and (b) in Theorem 4.1 hold for this ϕk with the
same sets Bε and Sε, so that the theorem applies.
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4.3. Dual convergence of the prox-penalty iteration. Consider the case of
linear programming (f0(x)= c

Tx, fi(x)=a
T
i x − bi for i∈ I) and the dual iterates µk

defined by

µki = θ
′([aTi uk − bi]/rk).

We will prove two results ensuring that µk → λθ, where λθ is the dual optimal solution
described in Theorem 2.5. The first one concerns the case where εk ≡ 0, while the
second allows εk > 0 but requires the penalty function θ to be bounded from below.

As in the proof of Theorem 3.5 the convergence µk → λθ is equivalent to γk → 0
and ψk → α, where γk=∑i �∈I0 µ

k
i , ψ

k=
∑
i∈I0 hi(z

k
i ), and α = −

∑
i∈I0 θ

∗(λθi ) with
hi(z)=θ(z)−λθi z and zki =[aTi uk−bi]/rk. Since the proofs are somewhat involved, we
introduce some additional notation and two technical lemmas.

In what follows we denote ūk the projection of uk onto S(P). We take E0, Φ(·),
and g(·) as in section 3.3 and we let δ = diam(S(P)) and σ=maxi �∈I0‖ai‖. Moreover,
we fix x̄∈ ri(S(P)) and set β= 1

3 mini �∈I0 βi with βi= bi−aTi x̄ > 0 for i �∈ I0. Finally,
noting that θ′ is nondecreasing we define its right inverse as θ′−1(ε)=sup{u :θ′(u)≤ε}.

The first lemma proves that ‖gk‖ ∼ 0 implies γk ∼ 0.
Lemma 4.5. Assume (H0), rk → 0,

∑
λk = ∞,

∑
εkλk < ∞, εk/rk → 0,

and νk → 0. Then there exist âk → 0 and an increasing function ε �→ ρ̂(ε) with
limε↓0 ρ̂(ε) = 0 such that 0 ≤ γk ≤ ρ̂(‖gk‖+ âk) for all k large enough.

Proof. The result is evident if Ic0 is empty. Otherwise, Proposition 4.4 implies that
‖uk − ūk‖ = d(uk, S(P))→ 0 so that aTi [uk−ūk] ≤ β for k large enough. Decompose
Ic0 = Ik∪Jk, where Ik contains the i’s such that aTi ūk ≥ bi−2β and Jk the rest. For
i ∈ Jk we have zki ≤ −β/rk so that µki ≤ θ′(−β/rk). Let us bound µki for i ∈ Ik.
Taking w = uk + rk(x̄−ūk) in (4.3) and noting that cT(x̄−ūk) = 0 and aTi (x̄−ūk) = 0
for all i ∈ I0, we obtain∑

i �∈I0
θ(zki ) + 〈gk, x̄−ūk〉 ≤ εk/rk +

∑
i �∈I0
θ(zki + y

k
i ),(4.5)

where yki = a
T
i (x̄−ūk). We have yki ≤ −β for i ∈ Ik and yki ≤ σδ for i ∈ Jk. Then,

the monotonicity of θ and the subgradient inequality yield

θ(zki + y
k
i ) ≤ θ(zki −β) ≤ θ(zki )− βθ′(zki −β) ∀i∈Ik,

θ(zki + y
k
i ) ≤ θ(zki +σδ) ≤ θ(zki ) + σδθ′(zki +σδ) ∀i∈Jk.

Using these bounds and (4.5) we deduce

β
∑
i∈Ikθ

′(zki −β) ≤ δ‖gk‖+ εk/rk + σδ
∑
i∈Jkθ

′(zki + σδ)

≤ δ‖gk‖+ εk/rk + σδ|Ic0 |θ′(σδ − β/rk).
Letting bk= εk/(rkδ)+σ|Ic0 |θ′(σδ−β/rk) it follows that zki ≤ β + θ′−1(δ[‖gk‖+bk]/β)
for all i ∈ Ik, and then setting ν(ε) = θ′(β + θ′−1(δε/β)) we obtain µki = θ

′(zki ) ≤
ν(‖gk‖+ bk) for all i ∈ Ik. Therefore

γk =
∑
i∈Jk
µki +

∑
i∈Ik
µki ≤ |Ic0 |θ′(−β/rk) + |Ic0 |ν(‖gk‖+ bk)

and the result holds with ρ̂(ε) = |Ic0 |[ε+ ν(ε)] and âk = max{bk, θ′(−β/rk)}.
The next lemma shows that ‖gk‖ ∼ 0 also implies ψk ∼ α.
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Lemma 4.6. Assume (H0), rk → 0,
∑
λk = ∞,

∑
εkλk < ∞, εk/rk → 0,

and νk → 0. Then there exist ãk → 0 and an increasing function ε �→ ρ̃(ε) with
limε↓0 ρ̃(ε)=α such that α≤ψk≤ ρ̃(‖gk‖+ãk) for all k large enough.

Proof. Let wk be the projection of yk= [uk−x̄]/rk on E0 so that ψ
k = Φ(wk) ≥ α.

Set ϕk(y)=c
Ty+

∑
i∈I θ(a

T
i y−βi/rk). Taking w = x̄+ rky in (4.3) it follows

ϕk(yk) + 〈gk, y − yk〉 ≤ ϕk(y) + εk/rk(4.6)

so that gk ∈ ∂ε̃kϕk(yk) with ε̃k = εk/rk. Using Brøndsted–Rockafellar’s theorem we
may find ỹk and g̃k ∈ ∂ϕk(ỹk) such that ‖yk − ỹk‖ ≤

√
ε̃k and ‖gk − g̃k‖ ≤

√
ε̃k. Let

w̃k be the projection of ỹk onto E0. Taking y = ỹk in (4.6) and noting that we have
ϕk(yk)=Φ(wk)+

∑
i �∈I0 θ(a

T
i yk−βi/rk) and similarly for ϕk(ỹk), we obtain

ψk=Φ(wk)≤Φ(w̃k)+ε̃k+
√
ε̃k‖gk‖+

∑
i �∈I0

[θ(aTi ỹk−βi/rk)−θ(aTi yk−βi/rk)].

The terms in the last sum can be bounded from above by θ′(aTi ỹk−βi/rk)aTi (ỹk− yk).
Moreover, aTi (ỹk − yk) ≤ σ

√
ε̃k and since a

T
i ỹk − βi/rk = aTi (ỹk − yk) + zki and

zki ≤ θ′−1(µki ) ≤ θ′−1(γk), for i /∈ I0 we get

θ′(aTi ỹk−βi/rk) ≤ θ′(σ
√
ε̃k + θ

′−1(γk))(4.7)

leading to the bound

ψk ≤ Φ(w̃k) + ε̃k +
√
ε̃k‖gk‖+ σ|Ic0 |

√
ε̃k θ

′(σ
√
ε̃k + θ

′−1(γk)).

If k is large so that ε̃k≤1, letting ηk=
√
ε̃k+‖gk‖+σ|Ic0 | θ′(σ+θ′−1(γk)) we get

ψk ≤ Φ(w̃k) +
√
ε̃k ηk ≤ g(‖∇Φ(w̃k)‖) + ηk.(4.8)

Moreover, g̃k=∇Φ(w̃k)+
∑
i �∈I0θ

′(aTi ỹk−βi/rk)ai so that using (4.7) and the inequality
‖g̃k‖ ≤

√
ε̃k + ‖gk‖ we obtain

‖∇Φ(w̃k)‖ ≤ ‖g̃k‖+ σ|Ic0 | θ′(σ+θ′−1(γk)) ≤ ηk,

which combined with (4.8) yields ψk ≤ g(ηk) + ηk. To conclude we observe that
Lemma 4.5 gives γk ≤ ρ̂(‖gk‖+ âk) so that letting χ(ε) = ε+σ|Ic0 |θ′(σ+θ′−1(ρ̂(ε)))
and ãk = max{âk,

√
ε̃k} we get ηk ≤ χ(‖gk‖ + ãk), and then the result holds with

ρ̃(ε) = g(χ(ε)) + χ(ε). Notice that χ(ε) is increasing and tends to 0 when ε ↓ 0, so
that by Lemma 3.7 we have ρ̃(ε) increasing with limit α when ε ↓ 0.

We may now prove our first dual convergence result.
Theorem 4.7. Assume (H0), rk → 0,

∑
λk =∞, νk → 0, and εk ≡ 0. Suppose

also rk nonincreasing with qk=(rk−1−rk)/(λkrk−1) bounded. Then µ
k → λθ.

Proof. We prove that γk → 0 and ψk → α. To this end we set ψks =
∑
i∈I hi(z

k
i )−

θks , where γ
k
0 ≡ θk0 ≡ 0, and for s = 1, . . . , |Ic0 | we define

θks = min
S

{∑
i∈S
θ(zki ) : S ⊂ Ic0 , |S| = s

}
,(4.9)

γks = min
S

{∑
i∈S
µki : S ⊂ Ic0 , |S| = s

}
.(4.10)
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We will show inductively that γks → 0 and ψks → αs with αs=α−(|Ic0 |−s) θ∗(0). The
result then follows since for s = |Ic0 | we have γks ≡ γk and ψks ≡ ψk. For the induction
argument we first establish the following.

Claim. If γks → 0, then ψks → αs.
Proof. Let us study the increment ψks − ψk−1

s = (ψk0 − ψk−1
0 ) + (θk−1

s −θks ). Take
Sk attaining the minimum in (4.9) so that

ψks − ψk−1
s ≤ (ψk0 − ψk−1

0 ) +
∑
i∈Sk [θ(z

k−1
i )− θ(zki )]

=
∑
i �∈Sk [hi(z

k
i )− hi(zk−1

i )]

≤∑i �∈Skh
′
i(z

k
i )[z

k
i − zk−1

i ]

=
∑
i �∈Sk(µ

k
i − λθi )[zki − zk−1

i ].

Setting ξk=νk+qk(uk−1−ūk−1), a straightforward computation gives

[zki − zk−1
i ] = (λk/rk)[a

T

i (ξk − gk) + qk(aTi ūk−1 − bi)],

and since (aTi ūk−1−bi) ≤ 0 and λθi (aTi ūk−1−bi) = 0 we deduce

ψks − ψk−1
s ≤ (λk/rk)

∑
i �∈Sk

(µki − λθi )aTi [ξk − gk].

Now
∑
i �∈Sk(µ

k
i −λθi )ai = ∇f(uk, rk)−ηk = gk−ηk with ηk =

∑
i∈Sk µ

k
i ai, so that

ψks − ψk−1
s ≤ (λk/rk)〈gk − ηk, ξk − gk〉.(4.11)

Using (4.11) it follows that when ψks > ψ
k−1
s we have ‖gk − ξk‖ ≤ ‖ξk − ηk‖ and

then ‖gk‖ ≤ δk with δk = ‖ξk‖ + ‖ξk − ηk‖ → 0 (note that ξk → 0 since qk is
bounded, and ηk → 0 since

∑
i∈Sk µ

k
i = γ

k
s → 0 by assumption of the claim). Then

Lemmas 4.6 and 4.5 imply ψk ≤ ρ̃(δk+ ãk) and γk ≤ ρ̂(δk+ âk), so that letting
χks = ρ̃(δk+ãk)+(|Ic0 |−s)θ(θ′−1(ρ̂(δk+âk))) and using the definition of ψ

k
s we get

ψks > ψ
k−1
s ⇒ αs ≤ ψks ≤ χks .

Since χks→αs it follows that ψks has a limit ᾱs≥αs. If ᾱs>αs, then Lemmas 4.5 and
4.6 imply lim inf ‖gk‖ > 0, so we may find a constant c > 0 with 〈gk−ηk, gk−ξk〉 > c for
all k large. Then (4.11) gives cλk/rk ≤ ψk−1

s −ψks implying
∑
λk/rk ≤ (ψ0

s−ᾱs)/c <∞,
which is impossible. This contradiction proves ᾱs = αs so that ψ

k
s → αs establishing

the claim.
To complete the proof of Theorem 4.7 we distinguish two cases.
Case 1. θ∗(0) <∞. Since γk0 ≡ 0 the claim implies ψk0 → α0, from which we get

ψk → α, as well as θ(zki )→ −θ∗(0) for all i �∈ I0 so that γk → 0.
Case 2. θ∗(0) =∞. We prove inductively that γks → 0 for s = 0, 1, . . . , |Ic0 |. This

holds by definition for s = 0. Suppose γks → 0 for some s < |Ic0 |. The claim gives
ψks → αs = −∞ and since ψks = ψ

k +
∑
i∈Ic0\Sk θ(z

k
i ) with ψ

k ≥ α, there must exist
an index i(k) ∈ Ic0 \ Sk such that θ(zki(k)) → −∞. Then µki(k) = θ′(zki(k)) → 0 and

therefore γks+1 ≤ γks + µki(k) → 0, achieving the induction step. Taking s = |Ic0 | we
obtain γk ≡ γks → 0 and ψk ≡ ψks → α, completing the proof.

Our last result allows εk > 0 but requires θ to be bounded from below, extending
[5, Theorem 1.2] to more general penalty functions.
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Theorem 4.8. Assume (H0), rk → 0,
∑
λk = ∞,

∑
εkλk < ∞, εk/rk → 0,

νk → 0, and either εk/λk→ 0 or
∑
εk/rk<∞. Suppose also that θ is bounded from

below and rk nonincreasing with qk=(rk−1−rk)/(λkrk−1) bounded. Then µ
k → λθ.

Proof. As in Case 1 above, it suffices to prove ψk0 → α0. This will be established
in the following three claims. As before we set ξk = νk + qk(uk−1−ūk−1)→ 0.

Claim 1. ψk0 − ψk−1
0 ≤ [λk〈gk, ξk − gk〉+ εk]/rk.

Proof. We observe that ψk0 = [f(uk, rk) − v]/rk, where v denotes the optimal
value of problem (P). Let πk = rk+1/rk and define xk = (1−πk)ūk+πkuk. Then
[aTi xk−1− bi] ≤ rk[aTi uk−1− bi]/rk−1 and therefore

f(xk−1, rk) ≤ (1− πk−1)v + πk−1c
Tuk−1 + rk

∑
i∈I
θ([aTi uk−1 − bi]/rk−1)

so that taking x = xk−1 in (4.3) we obtain ψ
k
0 + 〈gk, xk−1−uk〉/rk ≤ ψk−1

0 +εk/rk.
The conclusion follows since xk−1 − uk = λk[gk − ξk].

Claim 2. ψk0 converges.
Proof. We distinguish the alternative cases εk/λk→0 and

∑
εk/rk <∞.

If εk/λk→0, setting δk= 1
2 [‖ξk‖+

√‖ξk‖2+4εk/λk] we have δk → 0. If ψk0 >ψ
k−1
0 ,

Claim 1 implies ‖gk‖ ≤ δk, and then Lemmas 4.6 and 4.5 give ψk ≤ ρ̃(δk+ ãk) and
γk ≤ ρ̂(δk+âk). Letting χk0 = ρ̃(δk+ãk)+|Ic0 |θ(θ′−1(ρ̂(δk+âk))) we get

ψk0 > ψ
k−1
0 ⇒ α0 ≤ ψk0 ≤ χk0

with χk0 → α0 so that ψ
k
0 converges.

The alternative case
∑
εk/rk <∞ is similar. Letting ψ̃k0 = ψ

k
0 +

∑∞
k+1 εi/ri with

ψk0 defined as above but with δk = ‖ξk‖, Claim 1 and Lemmas 4.5 and 4.6 imply

ψ̃k0 > ψ̃
k−1
0 ⇒ ‖gk‖ ≤ δk ⇒ α0 ≤ ψ̃k0 ≤ χ̃k0 := χk0 +

∞∑
k+1

εi/ri

with χ̃k0 → α0 so that ψ̃
k
0 converges and then ψ

k
0 converges as well.

Claim 3. ψk0 → α0.
Proof. Using Claim 2 and Lemmas 4.5 and 4.6 it suffices to prove lim inf ‖gk‖ = 0.

If this were not the case, we could find a constant c > 0 such that 〈gk, gk − ξk〉 > c
for all k large, so that Claim 1 implies [cλk − εk]/rk ≤ ψk−1

0 −ψk0 . Considering the
alternative assumption εk/λk → 0 or

∑
εk/rk < ∞, it follows that

∑
λk/rk < ∞,

which gives a contradiction.
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pp. 163–179.



COUPLING PENALTY AND DESCENT METHODS 765

[35] B. Martinet, Régularisation d’inéquations variationnelles par approximations successives,
Rev. Française Informat. Recherche Operationnelle, 4 (1970), pp. 154–159.

[36] L. McLinden, An analogue of Moreau’s proximation theorem with applications to the nonlinear
complementarity problem, Pacific J. Math., 88 (1980), pp. 101–161.

[37] N. Megiddo, Pathways to the optimal set in linear programming, in Progress in Mathematical
Programming: Interior Point Methods, N. Megiddo, ed., Springer-Verlag, New York, 1989,
pp. 131–158.

[38] R. Monteiro and F. Zhou, On the existence and convergence of the central path for convex
programming and some duality results, Comput. Optim. Appl., 10 (1998), pp. 51–77.
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Abstract. We introduce a new barrier-type function which is not a barrier function in the usual
sense: it has finite value at the boundary of the feasible region. Despite this, the iteration bound of a
large-update interior-point method based on this function is shown to be O(

√
n (logn) log n

ε
), which

is as good as the currently best known bound for large-update methods. The recently introduced
property of exponential convexity for the kernel function underlying the barrier function, as well as
the strong convexity of the kernel function, are crucial in the analysis.

Key words. linear optimization, interior-point method, primal-dual method, large-update
method, polynomial complexity
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1. Introduction. Since the path-breaking paper of Karmarkar [5], linear opti-
mization (LO) revived as an active area of research. Today the resulting interior-point
methods (IPMs) are among the most effective methods for solving wide classes of LO
problems. Many researchers have proposed and analyzed various IPMs for LO and
a large amount of results have been reported. For a survey we refer to recent books
on the subject [17, 19, 21]. An interesting fact is that almost all known polynomial-
time variants of IPMs use the so-called central path [18] as a guideline to the optimal
set and some variant of Newton’s method to follow the central path approximately.
Therefore, analyzing the behavior of Newton’s method has been a crucial issue in
the theoretical investigation of IPMs. In this paper we consider so-called primal-dual
methods. It is generally agreed that these methods are the most efficient methods
from a computational point of view (see, e.g., Andersen et al. [1]). These methods
use the Newton direction as a search direction; this direction is closely related to the
well-known primal-dual logarithmic barrier function.

At present there is still a gap between the practical behavior of the algorithms
and the theoretical performance results, in favor of the practical behavior. This is
especially true for so-called large-update methods. If n denotes the number of inequal-
ities in the problem, then the theoretical complexity analysis of large-update methods
yields an O(n log(n/ε)) iteration bound, where ε represents the desired accuracy of
the solution. In practice, however, large-update methods are much more efficient than
the so-called small-update methods for which the theoretical iteration bound is only
O(
√
n log(n/ε)). So the current theoretical bounds differ by a factor

√
n, in favor of

the small-update methods. This gap is significant.
Recently, the gap could be narrowed by deviating from the usual approach. Re-

placing the logarithmic barrier by a so-called self-regular barrier function, and modi-
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fying the search direction accordingly, a large-update method was obtained for which
the theoretical iteration bound is O(

√
n (log n) log(n/ε)) [10, 11, 12, 13, 14]. Thus the

gap between the theoretical iteration bounds for small- and large-update methods has
been narrowed.

In this paper we introduce a new barrier function which is not self-regular.
Based on this barrier function we devise a new large-update method which has an
O(
√
n (log n) log(n/ε)) iteration bound, the currently best bound for large-update

methods. The barrier function is different from all known barrier functions in the
sense that it is finite at the boundary of the feasible region. Until now all barrier
functions used in the analysis of polynomial-time IPMs become unbounded when ap-
proaching the boundary of the feasible region. The result of this paper is therefore
quite surprising.

The paper is organized as follows. In section 2 we first briefly recall the classical
approach and its relation to the well-known (primal-dual) logarithmic barrier function.
In section 2.4 we describe the idea underlying the approach of the paper. A crucial
observation is that any (univariate) function that is strongly convex on the positive
real axis and that attains its minimal value determines in a natural way a primal-dual
IPM. The (univariate) function underlying the method is called a kernel function. In
section 2.5 we introduce the kernel function considered in this paper. In the analysis of
the corresponding algorithm we use the notion of exponential convexity, a notion that
was also used in [10, 11, 12, 13, 14]. In sections 2.6 and 2.7 we derive some relevant
properties that play a crucial role in the analysis of the algorithm; the complexity
analysis is performed in section 3. Finally, section 4 contains some concluding remarks
and directions for future research.

We use the following notational conventions. Throughout the paper, ‖·‖ de-
notes the 2-norm of a vector, whereas ‖·‖∞ denotes the infinity norm. For any
x = (x1, x2, . . . , xn)T ∈ Rn, xmin denotes the smallest and xmax the largest value
of the components of x. If also s ∈ Rn, then xs denotes the coordinatewise (or
Hadamard) product of the vectors x and s. Furthermore, e denotes the all-one vector
of length n. The nonnegative orthant and positive orthant are denoted as Rn

+ and
Rn

++, respectively. Finally, if z ∈ Rn
+ and f : R+ → R+, then f (z) denotes the

vector in Rn
+ whose ith component is f (zi), with 1 ≤ i ≤ n.

2. Preliminaries.

2.1. The central path. We deal with the LO problem in standard format:

(P ) min{cTx : Ax = b, x ≥ 0},

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and its dual problem

(D) max{bT y : AT y + s = c, s ≥ 0}.

We assume that both (P ) and (D) satisfy the interior-point condition (IPC); i.e.,
there exists (x0, s0, y0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.(1)

It is well known that the IPC can be assumed without loss of generality. In fact we
may, and will, assume that x0 = s0 = e. For this and some other properties mentioned
below, see, e.g., [17]. Finding an optimal solution of (P ) and (D) is equivalent to
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solving the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(2)

xs = 0.

The basic idea of primal-dual IPMs is to replace the third equation in (2), the so-called
complementarity condition for (P ) and (D), by the parametrized equation xs = µe,
with µ > 0. Thus we consider the system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(3)

xs = µe.

If rank(A) = m and the IPC holds, then for each µ > 0 the parameterized system (3)
has a unique solution. This solution is denoted as (x(µ), y(µ), s(µ)), and we call x(µ)
the µ-center of (P ) and (y(µ), s(µ)) the µ-center of (D). The set of µ-centers (with
µ running through all positive real numbers) gives a homotopy path, which is called
the central path of (P ) and (D). The relevance of the central path for LO was first
recognized by Sonnevend [18] and Megiddo [6]. If µ→ 0, then the limit of the central
path exists and since the limit points satisfy the complementarity condition, the limit
yields optimal solutions for (P ) and (D).

2.2. Primal-dual path-following methods. IPMs follow the central path ap-
proximately. We briefly describe the usual approach. Without loss of generality we
assume that (x(µ), y(µ), s(µ)) is known for some positive µ. For example, due to the
above assumption we may assume this for µ = 1, with x(1) = s(1) = e. We then
decrease µ to µ := (1−θ)µ for some fixed θ ∈ (0, 1) and we solve the following Newton
system:

A∆x = 0,

AT∆y + ∆s = 0,(4)

s∆x + x∆s = µe− xs.

This system uniquely defines a search direction (∆x,∆s,∆y). By taking a step along
the search direction, with the step size defined by some line search rules, one constructs
a new triple (x, y, s). If necessary, we repeat the procedure until we find iterates that
are “close” to (x(µ), y(µ), s(µ)). Then µ is again reduced by the factor 1− θ and we
apply Newton’s method targeting at the new µ-centers, and so on. This process is
repeated until µ is small enough, say until nµ ≤ ε; at this stage we have found an
ε-solution of the problems (P ) and (D).

Let us mention that in practice many LO solvers use the ε-solution to construct
a basic solution and then produce an optimal basic solution by crossing over to the
Simplex method. An alternative way is to apply a rounding procedure as described
by Ye [20] (see also Mehrotra and Ye [7] and Roos, Terlaky, and Vial [17]).

The choice of the so-called barrier update parameter θ plays an important role
both in theory and practice of IPMs. Usually, if θ is a constant independent of the
dimension n of the problem, for instance θ = 1

2 , then we call the algorithm a large-
update (or long-step) method. If θ depends on the dimension of the problem, such as
θ = 1√

n
, then the algorithm is named a small-update (or short-step) method.
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Recall that small-update methods have the best iteration bound; they require
O
(√

n log n
ε

)
iterations to produce an ε-solution. On the other hand, large-update

methods, which are in practice much more efficient than small-update methods [1],
have a worse iteration bound, namely O

(
n log n

ε

)
[17, 19, 21]. This gap between

theory and practice has been referred to as the irony of IPM methods [15].
The result of a Newton step with step size α is denoted as

x+ = x + α∆x, y+ = y + α∆y, s+ = s + α∆s.(5)

The choice of the step size α (0 < α ≤ 1) is another crucial issue in the analysis of
the algorithm. It has to be taken such that the closeness of the iterates to the current
µ-center improves by a sufficient amount. In the theoretical analysis the step size α
is usually given a value that depends on the closeness of the current iterates to the
µ-center.

2.3. Relation with the logarithmic barrier function. Obviously, when an-
alyzing an algorithm as just described, we are in need of a measure for the “closeness”
of a primal-dual pair (x, s) to the µ-center (x(µ), s(µ)). The most popular tool for
measuring this closeness is the so-called primal-dual logarithmic barrier function (cf.,
e.g., [17]), which is a primal-dual variant of the primal logarithmic barrier function
introduced by Frisch [3]. Up to the constant n logµ− n, the primal-dual logarithmic
barrier function is given by

Φc(x, s;µ) =
xT s

µ
−

n∑
i=1

log
xisi
µ
− n.(6)

Its usefulness can most easily be understood by introducing the vector

v :=

√
xs

µ
.(7)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if v = e.
Now defining

ψc(t) :=
t2 − 1

2
− log t, t > 0,(8)

one may easily verify that Φc(x, s;µ) can be expressed in terms of the vector v as
follows:

Φc(x, s;µ) = 2Ψc(v) := 2

n∑
i=1

ψc (vi) .(9)

Since ψc(t) is strictly convex, and attains its minimal value at t = 1, with ψc(1) = 0,
it follows that Φc(x, s;µ) is nonnegative and vanishes if and only if v = e, i.e., if and
only if xs = µe. Thus we see that the µ-centers x(µ) and s(µ) can be characterized
as the minimizers of Φc(x, s;µ).

Another crucial property of the logarithmic barrier function becomes apparent
when applying a widely used scaling scheme. Using the vector v, as defined in (7), we
define scaled versions of the displacements ∆x and ∆s as follows:

dx :=
v∆x

x
, ds :=

v∆s

s
.(10)
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Now one easily checks that the system (4), which defines the Newton search directions,
can be rewritten as

Ādx = 0,
ĀT∆y + ds = 0,

dx + ds = v−1 − v,
(11)

where Ā = AV −1X, with V = diag (v), X = diag (x). The last equation in the above
system is called the scaled centering equation. Yet we observe that the right-hand side
in this equation is nothing else than the negative gradient of Ψc(v), as can be easily
verified. In other words,

dx + ds = v−1 − v = −∇Ψc(v).(12)

Note that dx and ds are orthogonal vectors, since the matrix dx belongs to the null
space and ds to the row space of the matrix Ā. Thus we arrive at the important con-
clusion that the scaled search directions dx and ds form an orthogonal decomposition
of the steepest descent direction of the scaled logarithmic barrier function Ψc(v).

2.4. Generalization to new barrier functions. Now we are ready to describe
the idea underlying the approach in this paper: in the scaled centering equation (12),
which defines the search directions, we replace the scaled barrier function Ψc(v) by
a strictly convex function Ψ(v), v ∈ Rn

++, such that Ψ(v) is minimal at v = e and
Ψ(e) = 0. Thus the new scaled centering equation becomes

dx + ds = −∇Ψ(v).(13)

Note that since dx and ds are orthogonal, we will have dx = 0 and ds = 0 if and only
if v = e, i.e., if and only if x = x(µ) and s = s(µ), as it should.

To simplify matters we will restrict ourselves to the case where Ψ(v) is separa-
ble with identical coordinate functions. Thus, letting ψ denote the function on the
coordinates, we have

Ψ(v) =

n∑
i=1

ψ(vi),(14)

where ψ(t) : D → R+, with R++ ⊆ D, is strictly convex and minimal at t = 1,
with ψ(1) = 0. We call the univariate function ψ(t) the kernel function of the barrier
function Ψ(v). Observe that ψc(t), as given by (8), is the kernel function of the
logarithmic barrier function.

In principle any kernel function gives rise to a primal-dual algorithm. The generic
form of this algorithm is given below. The parameters τ, θ and the step size α should
be chosen in such a way that the algorithm is “optimized” in the sense that the number
of iterations required by the algorithm is as small as possible. Obviously, the resulting
iteration bound will depend on the kernel function underlying the algorithm, and our
main task becomes finding a kernel function that minimizes the iteration bound.
Figure 1 gives some examples of kernel functions that have been analyzed in earlier
papers and the complexity results for the corresponding algorithms. In the third and
sixth cases, the bound is minimal if q = 1

2 log n. For this value of q one has

qn
q+1
2q = q

√
nn

1
2q = eq

√
n = e

2

√
n log n,

where we used the identity n
1

logn = e. This gives the currently best known iteration
bound, namely O(

√
n (log n) log n

ε ).
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Generic primal-dual algorithm for LO

Input:
A threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;

begin
x := e; s := e; µ := 1;
while nµ ≥ ε do
begin

µ := (1− θ)µ;
while Ψ(v) > τ do
begin

x := x + α∆x;
s := s + α∆s;
y := y + α∆y;

v :=
√

xs
µ ;

end
end

end

kernel function iteration bound ref.

1 t2−1
2

− log t O (n) log n
ε

e.g., [17]

2 1
2

(
t− 1

t

)2
O
(
n

2
3

)
log n

ε
[8, 9]

3 t2−1
2

+ t1−q−1
q−1

, q > 1 O
(
qn

q+1
2q

)
log n

ε
[11, 12]

4 t2−1
2

+ e
1
t −e
e

O
(√

n log2 n
)

log n
ε

[16]

5 t2−1
2

− ∫ t

1
e

1
ξ
−1

dξ O
(√

n log2 n
)

log n
ε

[16]

6 t2−1
2

+ t1−q−1
q(q−1)

− q−1
q

(t− 1) O
(
qn

q+1
2q

)
log n

ε
[12]

7 t2−1
2

+ (e−1)2

e
1

et−1
− e−1

e
O
(
n

3
4

)
log n

ε
[2]

Fig. 1. Examples of kernel functions and complexity results.

2.5. The kernel function considered in this paper. We consider the kernel
function1

ψ(t) =
t2 − 1

2
+

1

σ

(
eσ(1−t) − 1

)
for some σ ≥ 1.

1In section 4 we will indicate how this function has been found in the search for a kernel function
that is likely to yield a good complexity result.
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It is worth pointing out that all known kernel functions are coercive, i.e., have the
properties limt↓0 ψ(t) = ∞ and limt→∞ ψ(t) = ∞. Our new function has the second
property, but it fails to have the first property, because

lim
t↓0

ψ(t) = ψ(0) =
eσ − 1

σ
− 1

2
<∞.

This means that if either x or s approaches the boundary of the feasible region, then
Φ (x, s;µ) := 2Ψ(v) converges to a finite value, depending on the value of σ. This is
a striking feature of the new barrier function. Because of this it is quite surprising
that we can show in this paper that if σ is chosen appropriately, then the resulting
algorithm has an O(

√
n (log n) log n

ε ) iteration bound, which is at present the best
known iteration bound for large-update methods.

In the analysis of the algorithm based on the present kernel function ψ(t) we need
its first three derivatives. For ease of reference we give them here. One has

ψ′(t) = t− eσ(1−t), ψ′′(t) = 1 + σeσ(1−t), ψ′′′(t) = −σ2eσ(1−t).(15)

As said before, in the analysis of the algorithm the concepts of strong and exponential
convexity are crucial ingredients. We deal with these concepts in the next two sections.
To make the paper self-supporting, we include the (elementary) proofs of the results
in these sections.

2.6. Consequences of strong convexity. Following the usual terminology
(see, e.g., [4]), since ψ′′(t) > 1 we say that ψ(t) is strongly convex. In this section we
deal with some important consequences of this property.

Lemma 2.1. One has

1

2
(t− 1)

2 ≤ ψ(t) ≤ 1

2
ψ′(t)2, t > 0.(16)

Proof. Using that ψ(1) = ψ′(1) = 0, and ψ′′(t) > 1, we may write

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ) dζ dξ ≥
∫ t

1

∫ ξ

1

dζ dξ =
1

2
(t− 1)

2
,

which proves the first inequality. The second inequality is obtained as follows:

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ)dζdξ ≤
∫ t

1

∫ ξ

1

ψ′′(ξ)ψ′′(ζ)dζdξ

=

∫ t

1

ψ′′(ξ)ψ′(ξ)dξ =

∫ t

1

ψ′(ξ)dψ′(ξ) =
1

2
ψ′(t)2.

This completes the proof.
In the analysis of the algorithm we also use the norm-based proximity measure

δ(v) defined by

δ(v) :=
1

2
‖∇Ψ (v)‖ =

1

2

√√√√ n∑
i=1

(ψ′ (vi))
2
.(17)

Note that since Ψ(v) is strictly convex and minimal at v = e, whereas the minimal
value is zero, we have

Ψ (v) = 0⇔ δ (v) = 0⇔ v = e.
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Corollary 2.2. One has Ψ (v) ≤ 2 δ(v)2.
Proof. Using the second inequality in (16) we may write

Ψ (v) =

n∑
i=1

ψ (vi) ≤ 1

2

n∑
i=1

ψ′ (vi)
2

=
1

2
‖∇Ψ (v)‖2 = 2 δ(v)2,

which is the desired inequality.
Corollary 2.3. One has ‖v‖ ≤ √n +

√
2Ψ (v) ≤ √n + 2δ(v).

Proof. Using the first inequality in (16) we obtain

2Ψ (v) = 2

n∑
i=1

ψ(vi) ≥
n∑
i=1

(vi − 1)
2

= ‖v‖2 − 2eT v + n ≥ (‖v‖ − ‖e‖)2 .

This implies ‖v‖ ≤ ‖e‖+
√

2Ψ (v) =
√
n +

√
2Ψ (v).

2.7. Exponential convexity. Our first lemma in this section is related to Def-
inition 1 and Lemma 1 in [12].

Lemma 2.4. Let t1 ≥ 1
σ and t2 ≥ 1

σ . Then

ψ
(√

t1t2
) ≤ 1

2
(ψ (t1) + ψ (t2)) .(18)

Proof. One may easily verify that the property in the lemma holds if and only if the
function ψ (ez) is convex for z ≥ − log σ, and this holds if and only if ψ′(t)+tψ′′(t) ≥ 0,
whenever t ≥ 1

σ . Using (15), one obtains

ψ′(t) + tψ′′(t) = 2t + (σt− 1) eσ(1−t).(19)

The last expression is positive if t ≥ 1
σ . Hence, the lemma follows.

The above proof makes clear that the property (18) is equivalent to convexity of
the composed function ψ (ez) with respect to z. Following [11], we therefore say that
ψ(t) is exponentially convex, or shortly, e-convex, whenever t ≥ 1

σ .
Contrary to the present kernel function, the kernel functions considered in [10,

11, 12, 13, 14] were all exponentially convex on the whole positive axis. Since we
are going to use exponential convexity in our analysis we have to ensure that during
the course of the algorithm the coordinates of v stay within the region where ψ(t)
is exponentially convex. It is obvious that this will certainly hold if Ψ(v) ≤ ψ( 1

σ ).
Because then we have ψ(vi) ≤ ψ( 1

σ ) for each i, and this implies that vi ≥ 1
σ for each

i, since σ ≥ 1. We need a stronger result, however, provided by the next lemma,
which makes clear that when v belongs to the level set {v : Ψ(v) ≤ L}, for some
given L ≥ 8, then all coordinates of v are larger than or equal to 3

2σ , provided that
the value of σ is large enough.

Lemma 2.5. Let L ≥ 8 and Ψ(v) ≤ L. If σ satisfies σ ≥ 1 + 2 log (1 + L), then
v1 := min(v) > 3

2σ .
Proof. First note that Ψ(v) ≤ L implies ψ(vi) ≤ L for each i = 1, . . . , n. Hence,

putting t = v1, we have

t2 − 1

2
+

1

σ

(
eσ(1−t) − 1

)
≤ L.

It follows that

1

σ

(
eσ(1−t) − 1

)
≤ L +

1− t2

2
≤ L +

1

2
.(20)



774 Y. Q. BAI, M. EL GHAMI, AND C. ROOS

Below we show that if L ≥ 8 and σ ≥ 1 + 2 log (1 + L), then (20) implies t > 3
2σ ,

which suffices for the proof of the lemma. If t ≥ 1, then there is nothing to prove,
since 3

2σ < 1. Thus we assume that t < 1. Since the left-hand side in (20) is
monotonically increasing in σ, without loss of generality we may put σ at its smallest
value: σ = 1 + 2 log (1 + L). Then log (1 + L)

2
= σ − 1, and hence (20) implies

eσ(1−t) − 1

σ
=

eσ−1e1−σt − 1

σ
=

(1 + L)
2
e1−σt − 1

1 + 2 log (1 + L)
≤ L +

1

2
.

Thus we obtain

e1−σt ≤ 1 + (1 + 2 log (1 + L))
(
L + 1

2

)
(1 + L)

2 .

The expression at the right-hand side is monotonically decreasing in L. The value at
L = 8 is 0.6065 < e−

1
2 . Thus we obtain that e1−σt < e−

1
2 , which implies 1− σt < − 1

2 ,
or t > 3

2σ , proving the lemma.

3. Analysis of the algorithm. We assume that in the generic algorithm the
threshold value τ and the barrier update parameter θ are given. Also, we assume that
τ = O(n). With τ and θ given, we start by finding an upper bound L for the values
that are attained by Ψ(v) during the course of the algorithm. After having determined
such a bound we use Lemma 2.5 to fix a suitable value for σ. This is done in section
3.1. Then we proceed by estimating the decrease in Ψ(v) during an inner iteration. In
doing this we use a fixed value for the step size, which depends on σ and the current
value of δ(v). The analysis is completed by first deriving an upper bound for the
number of inner iterations between two subsequent updates of the barrier parameter.
By multiplying this upper bound with the number of µ-updates we obtain an upper
bound for the total number of iterations required by the algorithm.

3.1. Fixing the values of L and σ. Note that at the start of each outer
iteration, just before the update of µ with the factor 1− θ, we have Ψ(v) ≤ τ . Due to
the update of µ the vector v is divided by the factor

√
1− θ, with 0 < θ < 1, which in

general leads to an increase in the value of Ψ(v). Then, during the subsequent inner
iterations, Ψ(v) decreases until it passes the threshold τ again. Hence, during the
course of the algorithm the largest values of Ψ(v) occur just after the updates of µ.
That is why in this section we derive an estimate for the effect of a µ-update on the
value of Ψ(v). We start with a simple lemma.

Lemma 3.1. Let β ≥ 1. Then ψ(βt) ≤ ψ(t) + 1
2

(
β2 − 1

)
t2.

Proof. Defining ψb(t) = 1
σ

(
eσ(1−t) − 1

)
, we may write

ψ(βt) =
β2t2 − 1

2
+ ψb(βt) = ψ(t) +

1

2

(
β2t2 − t2

)
+ ψb(βt)− ψb(t).

Since ψb(t) is monotonically decreasing in t, ψb(βt)−ψb(t) ≤ 0. Hence, the inequality
in the lemma follows.

Corollary 3.2. Let 0 ≤ θ < 1 and v+ = v√
1−θ . Then

Ψ(v+) ≤ Ψ (v) +
θ

2 (1− θ)

(
2Ψ (v) +

√
8nΨ (v) + n

)
.
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Proof. Using Lemma 3.1, with β = 1/
√

1− θ, we write

Ψ(βv) ≤
n∑
i=1

(
ψ(vi) +

1

2

(
β2 − 1

)
v2
i

)
= Ψ (v) +

θ ‖v‖2
2 (1− θ)

.

Since ‖v‖ ≤ √n +
√

2Ψ (v), by Corollary 2.3, we get

Ψ(βv) ≤ Ψ (v) +
θ

2 (1− θ)

(
2Ψ (v) + 2

√
2nΨ (v) + n

)
.

This proves the lemma.
Due to Corollary 3.2, after each µ-update we have Ψ(v) ≤ L, where

L = τ +
θ

2 (1− θ)

(
2τ + 2

√
2nτ + n

)
= O

(
θn

1− θ

)
.(21)

The above defined value for L satisfies our desires: L is an absolute upper bound for
the values that the barrier function Ψ(v) may take during the course of the algorithm.
We define σ as follows:

σ = 1 + 2 log (1 + L) .(22)

Note that since τ = O(n) and θ/(1− θ) = O(1), we have

L = O (n) , σ = O (log n) .(23)

Without loss of much generality we assume that L ≥ 8.2 According to Lemma 2.5 we
then have

Ψ(v) ≤ L ⇒ vi ≥ 3

2σ
for all i.(24)

From now on we assume that L and σ are as given by (21) and (22), respectively.

3.2. Determining a step size. In this section we determine a default step size,
namely

ᾱ :=
1

1 + σ(1 + 4δ)
,(25)

where δ = δ(v). We will show below that this step size not only keeps the iterates
feasible but also gives rise to a sufficiently large decrease of the barrier function

Φ(x, s;µ) := Ψ(v) =

n∑
i=1

ψ(vi)(26)

in each inner iteration.
Apart from the necessary adaptations to the current context and some simplifi-

cations, the analysis below follows the same line of arguments that was first used in
[12] and subsequently also in [10, 11, 13, 14].

2Assuming θ ≥ 2
3
, this already holds if τ ≥ 1 and n ≥ 2.
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In each inner iteration we first compute the search directions ∆x, ∆y, and ∆s
from

A∆x = 0,

AT∆y + ∆s = 0,(27)

s∆x + x∆s = −µv∇Ψ(v).

After a step with size α the new iterates are

x+ = x + α∆x, y+ = y + α∆y, s+ = s + α∆s.

Recall that during an inner iteration the parameter µ is fixed. Hence, after the step
the new v-vector is given by

v+ =

√
x+s+

µ
.(28)

Since

x+ = x

(
e + α

∆x

x

)
= x

(
e + α

dx
v

)
=

x

v
(v + αdx) ,

and, similarly,

s+ = s

(
e + α

∆s

s

)
= s

(
e + α

ds
v

)
=

s

v
(v + αds) ,

also using xs = µv2, we obtain

v+ =
√

(v + αdx) (v + αds).(29)

We consider the decrease in Ψ as a function of α. Thus we define

f(α) := Ψ (v+)−Ψ (v) .(30)

Our aim is to find an upper bound for f(α) by using exponential convexity, according
to Lemma 2.4. In order to do this we assume for the moment that the step size α is
such that the coordinates of the vectors v + αdx and v + αds are not smaller than 1

σ ,
i.e.,

vi + αdxi ≥
1

σ
, vi + αdsi ≥

1

σ
, 1 ≤ i ≤ n.(31)

Then Lemma 2.4 implies that

Ψ (v+) ≤ 1

2
(Ψ (v + αdx) + Ψ (v + αds)) .(32)

As a consequence we have f(α) ≤ f1(α), where

f1(α) =
1

2
(Ψ (v + αdx) + Ψ (v + αds))−Ψ (v) .(33)

Obviously,

f(0) = f1(0) = 0.(34)
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Taking the derivative to α, we get

f ′
1(α) =

1

2

n∑
i=1

(ψ′ (vi + αdxi) dxi + ψ′ (vi + αdsi) dsi) .(35)

This gives, also using (13),

f ′
1(0) =

1

2

n∑
i=1

(ψ′ (vi) dxi + ψ′ (vi) dsi) =
1

2
∇Ψ (v)

T
(dx + ds)

= − 1

2
∇Ψ (v)

T ∇Ψ (v) = −2δ(v)2.

(36)

Differentiating once more in (35), we obtain

f ′′
1 (α) =

1

2

n∑
i=1

(
ψ′′ (vi + αdxi) dx

2
i + ψ′′ (vi + αdsi) ds

2
i

)
.(37)

Note that this makes clear that f ′′
1 (α) > 0, unless dx = ds = 0. Thus, since during

an inner iteration the iterates x and s are not both at the µ-center, we may conclude
that f1(α) is strictly convex as a function of α.3

Recall that f(α) ≤ f1(α) and f(0) = f1(0) = −2δ(v)2 < 0. It may be worth
pointing out at this stage that the best value for α is the one that minimizes f(α).
The idea underlying our approach is that the step size that minimizes f1(α) will be
good enough for our purpose. Thus we want to find α∗ such that f ′

1(α∗) = 0. Since
f ′
1(α) is strictly convex, we have

α∗ = max {α : f ′
1(α) ≤ 0} .(38)

The default step size that we are going to use will satisfy f ′
1(α) ≤ 0, and as a con-

sequence also α ≤ α∗. This has as an important consequence that our step size will
certainly be feasible.

In order to get our default step size, we proceed by deriving an upper bound for
the expression at the right in (37). First, letting

v1 := vmin, δ := δ(v),(39)

we obtain the inequalities

vi + αdxi ≥ v1 − α ‖dx‖ ≥ v1 − 2αδ,

vi + αdsi ≥ v1 − α ‖ds‖ ≥ v1 − 2αδ.
(40)

Here we used that ‖(dx, ds)‖ = 2δ, which follows from (13), (17), and the fact that dx
and ds are orthogonal. Recall from (15) that ψ′′′(t) = −σ2eσ(1−t) < 0. Hence, ψ′′(t)
is monotonically decreasing. Therefore, (37) implies that

f ′′
1 (α) ≤ 1

2
ψ′′ (v1 − 2αδ)

n∑
i=1

(
dx

2
i + ds

2
i

)
=

1

2
ψ′′ (v1 − 2αδ) ‖(dx, ds)‖2 = 2δ2 ψ′′ (v1 − 2αδ) .

(41)

3Note that f(α) is not necessarily convex as a function of α; that is why the analysis is greatly
simplified through the use of the auxiliary function f1(α), and to justify this we needed exponential
convexity!
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By integrating we derive from this that

f ′
1(α) = f ′

1(0) +

∫ α

0

f ′′
1 (ξ) dξ ≤ −2δ2 +

∫ α

0

2δ2 ψ′′ (v1 − 2ξδ) dξ

= −2δ2 − δ (ψ′ (v1 − 2αδ)− ψ′ (v1)) .

Hence, f ′
1(α) ≤ 0 will certainly hold if α satisfies

−ψ′ (v1 − 2αδ) + ψ′ (v1) ≤ 2δ.(42)

Any α satisfying this inequality will also satisfy α ≤ α∗, and hence is a feasible step
size. Of course, we want α to be as large as possible. Thus our next task is to find the
largest α that satisfies (42). Obviously, this α depends on δ and v1. Below we use the
following strategy: given δ > 0 we find the value of v1 for which the largest possible
step size α is minimal. For that value of v1 the largest solution of (42) becomes a
function of δ alone; this function can be found explicitly as we show below.

Since ψ′′(t) is decreasing, the derivative to v1 of the left-hand side in (42) (i.e.,
−ψ′′ (v1 − 2αδ) + ψ′′ (v1)) is negative. Hence, with δ fixed, the smaller v1 is, the
smaller the maximal step size α will be. Note that one has

δ =
1

2
‖∇Ψ (v)‖ ≥ 1

2
|ψ′ (v1)| ≥ −1

2
ψ′ (v1) ,

and that equality holds throughout if and only if v1 is the only coordinate in v that
differs from 1, and v1 ≤ 1 (in which case ψ′ (v1) ≤ 0). Hence, the worst situation for
the step size occurs when v1 satisfies

−1

2
ψ′ (v1) = δ.(43)

In that case the largest α satisfying (42) is minimal. For our purpose we need to deal
with the worst case, so we will assume (43). Then inequality (42) reduces to

−1

2
ψ′ (v1 − 2αδ) ≤ 2δ.(44)

The function − 1
2ψ

′(t) maps the interval [0, 1] to the interval [0,− 1
2ψ

′(0)] and is mono-
tonically decreasing on this interval. Hence, the inverse function ρ : [0,− 1

2ψ
′(0)] →

[0, 1] exists and is monotonically decreasing as well. Therefore, (44) is equivalent to
v1−2αδ ≥ ρ (2δ). Since, by the definition of ρ and (43), v1 = ρ(δ), substitution yields
ρ(δ)−2αδ ≥ ρ (2δ). Thus we obtain that in the worst case the maximal step size that
solves (42) is given by

α =
ρ (δ)− ρ (2δ)

2δ
.(45)

Lemma 3.3. With α as given by (45), one has

α ≥ α̃ :=
1

ψ′′ (ρ (2δ))
.(46)

Proof. By the definition of ρ we have −ψ′(ρ(δ)) = 2δ. Taking derivatives to δ at
both sides we get

ρ′(δ) = − 2

ψ′′ (ρ(δ))
.
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Thus we may rewrite (45) as follows:

α =
ρ (δ)− ρ (2δ)

2δ
=

1

2δ

∫ δ

2δ

ρ′(ξ) dξ =
1

δ

∫ 2δ

δ

dξ

ψ′′ (ρ(ξ))
.

To obtain a lower bound for α, we replace the argument of the last integral by its
minimal value. Since ψ′′ is monotonically decreasing, ψ′′ (ρ(ξ)) is maximal for ξ ∈
[δ, 2δ] when ρ(ξ) is minimal. Since ρ is monotonically decreasing this occurs when
ξ = 2δ. Therefore

α =
1

δ

∫ 2δ

δ

dξ

ψ′′ (ρ(ξ))
≥ 1

δ

δ

ψ′′ (ρ(2δ))
=

1

ψ′′ (ρ(2δ))
,

proving the lemma.
We proceed by deriving a lower bound for the step size α̃, as given by (46). Due

to the definition of ρ we may write

α̃ =
1

ψ′′ (t)
, where t is such that − ψ′ (t) = 4δ.

In other words, by (15),

α̃ =
1

1 + σeσ(1−t) , eσ(1−t) − t = 4δ.

From the second expression we derive that

eσ(1−t) = 4δ + t ≤ 4δ + 1.

Substituting this in the first expression we obtain α̃ ≥ ᾱ, where ᾱ is our default step
size as given by (25).

Finally, to validate the above analysis we need to show that α = ᾱ satisfies (31).
Due to (40) it suffices to show that v1 − 2ᾱδ ≥ 1

σ . This is now easy. Using the
definition (25) of ᾱ and v1 ≥ 3

2σ , which is due to (24), we may write

v1 − 2ᾱδ ≥ 3

2σ
− 2δ

1 + σ(1 + 4δ)
≥ 3

2σ
− 1

2σ
=

1

σ
.

3.3. Decrease of the barrier function during an inner iteration. Now
that the step size has been determined, the resulting decrease in the barrier function
value can be easily established by using the following result; for its (elementary) proof
we refer to [12, Lemma 12].

Lemma 3.4. Let h(t) be a (univariate) twice differentiable convex function with
h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t) is
increasing for t ∈ [0, t∗], then

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.

Using this lemma and (36) and (25) we obtain

f(ᾱ) ≤ f1(ᾱ) ≤ ᾱf ′
1(0)

2
= −ᾱ δ2 ≤ − δ2

1 + σ(1 + 4δ)
.



780 Y. Q. BAI, M. EL GHAMI, AND C. ROOS

This expresses the decrease in one inner iteration in terms of δ = δ(v). By Corollary
2.2, we have

δ(v) ≥
√

Ψ(v)

2
.

Since the decrease depends monotonically on δ, we may express the decrease in terms
of Ψ = Ψ(v) as follows:

f(ᾱ) ≤ − Ψ(v)

2
(

1 + σ
(

1 + 2
√

2Ψ(v)
)) .(47)

It will be convenient to write instead

f(ᾱ) ≤ −κ

σ

√
Ψ(v)(48)

for some absolute constant κ > 0 (e.g., κ = 1
16 ).

3.4. Inner-iteration bound. We need to count how many inner iterations are
required to return to the situation where Ψ(v) ≤ τ after a µ-update. We denote
the value of Ψ(v) after the µ-update as Ψ0; the subsequent values in the same outer
iteration are denoted as Ψk, k = 1, 2, . . .. If K denotes the total number of inner
iterations in the outer iteration, we then have

Ψ0 = O

(
θn

1− θ

)
, ΨK−1 > τ, 0 ≤ ΨK ≤ τ,(49)

and, according to (48),

Ψk+1 ≤ Ψk − κ

σ
(Ψk)

1
2 , k = 0, 1, . . . ,K − 1.(50)

At this stage we invoke the following lemma from [12, Lemma 14] without proof.
Lemma 3.5. Let t0, t1, . . . , tK be a sequence of positive numbers such that

tk+1 ≤ tk − λt1−γk , k = 0, 1, . . . ,K − 1,(51)

where λ > 0 and 0 < γ ≤ 1. Then K ≤
⌊
tγ0
λγ

⌋
.

Lemma 3.6. One has

K = O

(
σ

√
θn

1− θ

)
.(52)

Proof. We apply Lemma 3.5, with tk = Ψk, λ = κ
σ , and γ = 1

2 . This yields

K ≤ 2σΨ
1
2
0

κ
= O

(
σ

√
θn

1− θ

)
,

proving the lemma.
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3.5. Iteration bound. We just found that the number of inner iterations needed
to recenter is given by (52). The number of outer iterations is bounded above by (cf.
[17, Lemma II.17])

1

θ
log

n

ε
.(53)

By multiplying these two numbers we get an upper bound for the total number of
iterations, namely

O

(
σ

√
n

θ (1− θ)

)
log

n

ε
.

In large-update methods we have θ/(1− θ) = Θ(1). Since σ = O(log n), by (23), the
iteration bound then becomes

O
(
σ
√
n log

n

ε

)
= O

(√
n (log n) log

n

ε

)
.

4. Concluding remarks. Let us start by indicating how the barrier function
proposed in this paper has been found. Recall that the default step size ᾱ used in the
paper is obtained from the step size α̃ given in Lemma 3.3:

α̃ =
1

ψ′′ (ρ (2δ))
,(54)

where ρ is the inverse function of − 1
2ψ

′. Note that this step size essentially depends
only on the kernel function ψ(t) and on δ. From the analysis in the paper it may
be clear that we may expect an O

(√
n log n

ε

)
iteration bound only if α̃ = Θ(1/δ).

Thus it is natural to ask if there exists a kernel function ψ(t) with this property. The
desired property certainly holds if ψ(t) is such that there exist positive a and b such
that, for all δ ≥ 0,

ψ′′ (ρ(2δ)) = a + 4bδ, −ψ′ (ρ(δ)) = 2δ.(55)

The second equation says that ρ is the inverse function of − 1
2ψ

′, and the first equation
says that the default step size (54) is of the order 1/δ. Some straightforward calcu-
lations lead to the conclusion that the system (55), with the additional requirements
ψ(1) = ψ′(1) = 0, admits only one solution, namely the function

ψ(t) =
a

b

(
t− 1 +

1

b

(
eb(1−t) − 1

))
.(56)

At first sight the outcome of this analysis is quite disappointing, for at least three
reasons: the above function ψ is not a barrier function in the usual sense, it is not
strongly convex, and it is not exponentially convex.

Note that the kernel function of this paper arises from (56) by taking a = b = σ
and by replacing the first linear term t − 1 by 1

2 (t2 − 1). Although the resulting
barrier function is not a barrier function in the usual sense, we have been able to
show in this paper that the iteration bound of the corresponding large-update method
coincides with the currently best iteration bound for large-update methods. It remains
a challenge for future research to analyze a primal-dual method based on the kernel
function (56); since this function is not strongly convex, such an analysis will require
completely new techniques.

At present no computational results exist for the method presented in this pa-
per. This will be another issue for future research. The extensions to semidefinite
optimization and second order cone optimization also deserve to be investigated.
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[1] E.D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu, Implementation of interior point
methods for large scale linear programming, in Interior Point Methods of Mathematical
Programming, T. Terlaky, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands,
1996, pp.189–252.

[2] Y.Q. Bai, C. Roos, and M. El ghami, A primal-dual interior-point algorithm based on an
exponential barrier, Optim. Methods Softw., to appear.

[3] R. Frisch, The logarithmic potential method for solving linear programming problems, memo-
randum, University Institute of Economics, Oslo, Norway, 1955.
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A. Prékopa, J. Szelezsán, and B. Strazicky, eds., Lecture Notes in Control and Inform. Sci.
84, Springer-Verlag, Berlin, West Germany, 1986, pp. 866–876.

[19] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.
[20] Y. Ye, On the finite convergence of interior-point algorithms for linear programming, Math.

Program., 57 (1992), pp. 325–335.
[21] Y. Ye, Interior Point Algorithms, Theory and Analysis, John Wiley and Sons, Chichester,

UK, 1997.



INTERIOR-POINT METHODS FOR
MASSIVE SUPPORT VECTOR MACHINES∗

MICHAEL C. FERRIS† AND TODD S. MUNSON‡

SIAM J. OPTIM. c© 2003 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 783–804

Abstract. We investigate the use of interior-point methods for solving quadratic programming
problems with a small number of linear constraints, where the quadratic term consists of a low-rank
update to a positive semidefinite matrix. Several formulations of the support vector machine fit into
this category. An interesting feature of these particular problems is the volume of data, which can
lead to quadratic programs with between 10 and 100 million variables and, if written explicitly, a
dense Q matrix. Our code is based on OOQP, an object-oriented interior-point code, with the linear
algebra specialized for the support vector machine application. For the targeted massive problems,
all of the data is stored out of core and we overlap computation and input/output to reduce overhead.
Results are reported for several linear support vector machine formulations demonstrating that the
method is reliable and scalable.
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1. Introduction. Interior-point methods [30] are frequently used to solve large
convex quadratic and linear programs for two reasons. First, the number of itera-
tions taken is typically either constant or grows very slowly with the problem dimen-
sion. Second, the major computation involves solving (one or) two systems of linear
equations per iteration, for which many efficient, large-scale algorithms exist. Thus,
interior-point methods become more attractive as the size of the problem increases.
General-purpose implementations of these methods can be complex, relying upon so-
phisticated sparse techniques to factor the relevant matrix at each iteration. However,
the basic algorithm is straightforward and can be used in a wide variety of problems
by simply tailoring the linear algebra to the application.

We are particularly interested in applying an interior-point method to a class
of quadratic programs with two properties: each model contains a small number of
linear constraints, and the quadratic term consists of a (dense) low-rank update to a
positive semidefinite matrix. The key to solving these problems is to exploit structure
using block eliminations. One source of massive problems of this type is the data
mining community, where several linear support vector machine (SVM) formulations
[28, 1, 2, 19] fit into the framework. A related example is the Huber regression problem
[17, 21, 31], which can also be posed as a quadratic program of the type considered.

The linear SVM attempts to construct a hyperplane partitioning two sets of ob-
servations, where each observation is an element of a low-dimensional space. An
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interesting characteristic of these models is the volume of data, which can lead to
quadratic programs with between 10 and 100 million variables and, if written explic-
itly, a dense Q matrix. The large number of practical applications of the SVM [6, 26]
is indicative of the importance of robust, scalable algorithms to the data mining and
machine learning communities.

Sampling techniques [3] can be used to decrease the number of observations needed
to construct a good separating surface. However, if we considered a “global” appli-
cation and randomly sampled only 1% of the current world population, we would
generate a problem with around 60 million observations. Recent work [10] has shown
that although a random sampling of 20–30% is sufficient for many applications, sam-
pling even as high as 70–80% can produce statistically significant differences in the
models. Furthermore, for comparative purposes, a researcher might wish to solve the
nonsampled problem to validate the choice of sampling technique.

Solving realistic, large-scale models of this form raises important research issues.
In particular, codes targeting massive problems need to handle the required data
volume effectively. For example, one dense vector with 50 million double-precision
elements requires 400 megabytes of storage. If all data were to be kept in core,
we would rapidly exhaust the memory resources of most machines available today.
Therefore, we store all data out of core and overlap computation and input/output
(I/O) to reduce the overhead inherent in such a scheme.

As mentioned above, the crucial implementation details are in the linear algebra
calculation. Rather than reimplement a standard predictor-corrector interior-point
code [23], we use OOQP [11, 12] as the basis for our work. A key property of OOQP
is the object-oriented design, which enables us to tailor the required linear algebra
to the application. Our linear algebra implementation exploits problem structure
while keeping all of the data out of core. A proximal-point modification [25] to the
underlying algorithm is also available to improve robustness on some of the SVM
formulations considered.

We begin in section 2 by formally stating the general optimization problem we are
interested in solving, and we show specializations of the framework for linear SVMs
and Huber regression. In section 3, we describe the interior-point method and linear
algebra requirements. The basic proximal-point idea is discussed, and we demonstrate
the use of block eliminations to exploit problem structure. The implementation of the
linear algebra using out of core computations is presented in section 4, along with some
numerical considerations for massive problems. In section 5, we present experimental
results for several linear SVM formulations on two large, randomly generated data sets.
These results indicate that the method is reliable and scalable to massive problems.
In section 6, we summarize our work and briefly outline future efforts.

2. Quadratic programming framework. The general optimization problem
we consider has a quadratic term consisting of a low-rank update to a positive semidef-
inite matrix and a small number of linear constraints. In particular, the problems
discussed have m variables, n constraints, and a rank-k update. Let Q ∈ �m×m be
of the form

Q = S +RHRT ,

where S ∈ �m×m is symmetric positive semidefinite, H ∈ �k×k is symmetric positive
definite, and R ∈ �m×k. Typically, S is a very large matrix while H is small. We are
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concerned with solving the convex problem

minx
1
2x

TQx+ cTx
s.t. Bx = b,

 ≤ x ≤ u
(2.1)

for given B ∈ �n×m with full row rank, b ∈ �n, c ∈ �m, and general bounds,
 ∈ �m ∪ {−∞}m and u ∈ �m ∪ {+∞}m with  < u. We assume that k + n 	 m.
That is, the rank of the update and the number of constraints must be small in relation
to the overall size of the problem.

To solve instances of this problem, we exploit structure in the matrices generated
by an interior-point algorithm using block eliminations. The underlying operations
are carried out in the context of the machine learning applications outlined below.
As will become evident, in addition to the assumptions made concerning the form
of the quadratic program, we also require that the matrices H and S + T can be
inverted easily for any positive diagonal matrix T . These assumptions are satisfied
in our applications because H and S are diagonal matrices. However, general cases
satisfying these criteria clearly exist.

2.1. Linear SVMs. The linear SVM attempts to construct a hyperplane {x |
wTx = γ} correctly separating two point sets with a maximal separation margin.
Several quadratic programming formulations exist in the data mining literature [28,
1, 2, 19] for these problems, which are becoming increasingly important because of
the large number of practical applications [6, 26]. The common variation among the
optimization models is in the choice of the subset of the variables (w and γ) selected
to measure the separation margin and the norm used for the misclassification error.

We first introduce some notation chosen to be consistent with that typically used
in the data mining literature. We let A ∈ �m×k be a (typically dense) matrix repre-
senting a set of observations drawn from two sample populations, where m is the total
number of observations and k the number of features measured for each observation,
with k 	 m. Typically, the observation matrix A is scaled so that ‖A‖∞ ≈ k. Let
D ∈ �m×m be a diagonal matrix defined as

Di,i :=

{
+1 if i ∈ P+,
−1 if i ∈ P−,

where P+ and P− are the indices of the elements in the two populations. We use the
notation e to represent a vector of all ones of the appropriate dimension.

The standard SVM [28, 6] is the following optimization problem:

minw,γ,y
1
2 ‖w‖22 + νeT y

subject to D(Aw − eγ) + y ≥ e,
y ≥ 0.

(2.2)

The essential idea is to minimize a weighted sum of the one-norm of the misclassifica-
tion error, eT y, and the two-norm of w, the normal to the hyperplane being derived.
The relationship between minimizing ‖w‖2 and maximizing the margin of separation
is described, for example, in [22]. Here, ν is a parameter weighting the two compet-
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ing goals related to misclassification error and margin of separation. The inequality
constraints implement the misclassification error.

Various modifications of (2.2) are developed in the literature. The motivation
for many of them is typically to improve the tractability of the problem and to allow
novel reformulations in the solution phase. For example, one formulation incorporates
γ into the objective function:

minw,γ,y
1
2 ‖w, γ‖22 + νeT y

subject to D(Aw − eγ) + y ≥ e,
y ≥ 0.

(2.3)

This formulation is described in [20] to allow successive overrelaxation to be applied
to the (dual) problem.

A different permutation replaces the one-norm of y in (2.3) with the two-norm,
such that the nonnegativity constraint on y becomes redundant. The resulting prob-
lem, first introduced in [22], is then

minw,γ,y
1
2 ‖w, γ‖22 + ν

2 ‖y‖22
subject to D(Aw − eγ) + y ≥ e.

(2.4)

An active set method on the Wolfe dual of (2.4) is proposed in [22] to calculate a solu-
tion. Concurrent with work described here, Mangasarian and Musicant advocated the
use of the Sherman–Morrison–Woodbury update formula in their active set algorithm.

Another variant considered [5] is a slight modification of (2.4):

minw,γ,y
1
2 ‖w‖22 + ν

2 ‖y‖22
subject to D(Aw − eγ) + y ≥ e.

(2.5)

We can also use a one-sided Huber M-estimator [16] for the misclassification
error within the linear SVM. This function is a convex quadratic for small values
of its argument and is linear for large values. The resulting quadratic program is a
combination of (2.2) and (2.5),

minw,γ,y,t
1
2 ‖w‖22 + ν1

2 ‖t‖22 + ν2e
T y

subject to D(Aw − eγ) + t+ y ≥ e,
y ≥ 0,

(2.6)

where ν1 and ν2 are two parameters. We note that ν2
ν1

is the switching point be-
tween the quadratic and linear error terms. When ν1 → ∞ or ν2 → ∞, we recover
(2.2) or (2.5), respectively. A similar unification of (2.3) and (2.4) can be made by
incorporating γ into the objective function of (2.6). For completeness, this problem
is

minw,γ,y,t
1
2 ‖w, γ‖22 + ν1

2 ‖t‖22 + ν2e
T y

subject to D(Aw − eγ) + t+ y ≥ e,
y ≥ 0.

(2.7)

As stated, these problems are not in a form matching (2.1). However, the Wolfe
duals [18] of (2.2)–(2.7) are, respectively,
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minx
1
2x

TDAATDx− eTx
subject to eTDx = 0,

0 ≤ x ≤ νe,
(2.8)

minx
1
2x

TDAATDx+ 1
2x

TDeeTDx− eTx
subject to 0 ≤ x ≤ νe,

(2.9)

minx
1
2νx

Tx+ 1
2x

TDAATDx+ 1
2x

TDeeTDx− eTx
subject to x ≥ 0,

(2.10)

minx
1
2νx

Tx+ 1
2x

TDAATDx− eTx
subject to eTDx = 0,

x ≥ 0,
(2.11)

minx
1

2ν1
xTx+ 1

2x
TDAATDx− eTx

subject to eTDx = 0,
0 ≤ x ≤ ν2e,

(2.12)

minx
1

2ν1
xTx+ 1

2x
TDAATDx+ 1

2x
TDeeTDx− eTx

subject to 0 ≤ x ≤ ν2e,
(2.13)

which are of the desired form. In addition to the papers cited above, several specialized
codes have been applied to solve (2.8); for example, see [24]. Once the dual problems
above are solved, the hyperplane in the primal problems can be recovered as follows:

• w = ATDx, and γ is the multiplier on eTDx = 0 for (2.2), (2.5), and (2.6).
• w = ATDx, and γ = −eTDx for (2.3), (2.4), and (2.7).

Clearly, (2.8)–(2.13) are in the class of problems considered. Rather than become
embroiled in a debate over the various formulations, we show that our method can
be successfully applied to any of them, and we leave the relative merits of each to be
discussed by application experts in the machine learning field.

2.2. Huber regression. A problem related to the SVM is to determine a Huber
M-estimator, as discussed in [17, 21, 28, 31]. For an inconsistent system of equations,
Aw = b, an error residual is typically minimized, namely,

∑m
i=1 ρ((Aw−b)i). In order

to deemphasize outliers and avoid nondifferentiability when ρ(·) = | · |, the Huber
M-estimator [16] has been used.

The corresponding optimization problem is a convex quadratic program,

minw,y,t
1
2 ‖t‖22 + νeT y

subject to −y ≤ Aw − b− t ≤ y,

whose dual has the form

minx
ν
2 ‖x‖22 + bTx

subject to ATx = 0,
−e ≤ x ≤ e.

The dual has the structure considered whenever the number of observations m is
enormous and the number of features k is small. The aforementioned references
indicate how to recover a primal solution from the dual.
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3. Interior-point method. Since (2.1) is a convex quadratic program, the
Karush–Kuhn–Tucker first-order optimality conditions [18] are both necessary and
sufficient. These optimality conditions can be written as the mixed complementarity
problem 


S +RHRT −BT −I I

B 0 0 0
I 0 0 0
−I 0 0 0






x
λ
w
v


+




c
−b
−
u


 ⊥

x free,
λ free,
w ≥ 0,
v ≥ 0,

(3.1)

where we have augmented the system with slack variables to handle general lower and
upper bounds. The ⊥ notation is defined componentwise by using

• a ⊥ b ≥ 0 if and only if a ≥ 0, b ≥ 0, and ab = 0,
• a ⊥ b free if and only if a = 0.

If the lower or upper bounds are infinite, then the corresponding w and v variables
are removed from the problem. The reason for adding slack variables is to eliminate
the bounds on x and make the initial starting-point calculation easy.

The basic idea of an interior-point method for (3.1) is to solve the equivalent
nonlinear system of equations

(S +RHRT )x−BTλ− w + v = −c,
Bx = b,

x−  = y,
u− x = z,
Wy = 0,
V z = 0,

(3.2)

with w ≥ 0, v ≥ 0, y ≥ 0, and z ≥ 0, where W and V are the diagonal matrices
formed from w and v. Furthermore, y and z represent the variables complementary
to w and v. Convergence results for these methods can be found in [30] and are not
discussed here. Specializations of the interior-point method to the SVM case can be
found in [27].

The Mehrotra predictor-corrector method [23] is a specific type of interior-point
method. The iterates for the algorithm are guaranteed to remain interior to the
simple bounds; that is, wi > 0, vi > 0, yi > 0, and zi > 0 for each iteration i. During
the predictor phase, we calculate the Newton direction for (3.2), while the corrector
moves the iterate closer to the central path. The direction (∆x,∆λ,∆w,∆v,∆y,∆z)
is calculated by solving the linearization



S +RHRT −BT −I I 0 0
B 0 0 0 0 0
I 0 0 0 −I 0
−I 0 0 0 0 −I
0 0 Yi 0 Wi 0
0 0 0 Zi 0 Vi







∆x
∆λ
∆w
∆v
∆y
∆z




=




−c− (S +RHRT )xi +BTλi + wi − vi
b−Bxi

− xi + yi
−u+ xi + zi

−Wiyi + σ (wi)
T yi+(vi)

T zi
2m e

−Vizi + σ (wi)
T yi+(vi)

T zi
2m e



,
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where σ ∈ [0, 1] is a chosen parameter. Different choices for σ give rise to the predictor
and the corrector steps, respectively. Since these two systems just differ in the right-
hand sides, in the following we simplify our presentation by omitting the details of
these vectors and replacing them with generic terms r.

The particular structure of the above linearization allows us to eliminate the
variables ∆w, ∆v, ∆y, and ∆z from the system. Thus, at each iteration of the
algorithm, we solve two systems of linear equations of the form[

C +RHRT −BT

B 0

] [
∆x
∆λ

]
=

[
r1
r2

]
,(3.3)

where

C := S + Y −1
i Wi + Z−1

i Vi(3.4)

is iteration dependent and r1 and r2 are the appropriate right-hand sides. The right-
hand sides are the only values that change between the predictor and corrector step.
See [11] for further information on the calculation of the right-hand sides and diagonal
modification.

For the remainder of this section, we look at the linear algebra necessary to
calculate the direction at each iteration. We initially develop the case where S is
positive definite and we have only simple bounds. We then discuss the modification
made for arbitrary linear constraints. We finish with the most general case, where S
is not assumed to be positive definite.

3.1. Simple bound-constrained case. We first describe the method in the
simplest context, that of the SVM formulation in (2.10). In this case, S = 1

ν I is
positive definite, R = D

[
A −e ], H = I, and B is not present. The linear system

(3.3) reduces to

(C +RHRT )∆x = r1.(3.5)

While the matrices R and H are constant over iterations, the matrix C in (3.4) and
r1 are iteration dependent.

The matrix in (3.5) is a rank-k update to an easily invertible matrix. Therefore,
we can use the Sherman–Morrison–Woodbury [13] formula

(C +RHRT )−1 = C−1 − C−1R(H−1 +RTC−1R)−1RTC−1

to solve for ∆x. It is trivial to form C−1 and H−1 because they are both positive
definite diagonal matrices. The matrix H−1 +RTC−1R is a (small) symmetric k× k
matrix that, once formed, can be handled by standard dense linear algebra subrou-
tines. Since this matrix is independent of r1, we have to form and factor this small
dense matrix only once per iteration. That is, we can use the same factors in both
the predictor and the corrector steps. To summarize, to solve (3.5), we carry out the
following steps.

Algorithm SMW.
1. Calculate t1 = RTC−1r1.
2. Solve (H−1 +RTC−1R)t2 = t1.
3. Determine ∆x = C−1(r1 −Rt2).
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Note that t1 and t2 are small k-vectors. Furthermore, the calculation in step 1 can
be carried out at the same time the matrix required in step 2 is being formed. Thus,
a complete solve requires two passes through the data stored as R, namely, one for
steps 1 and 2 and one for step 3. This feature is important for the out of core
implementation discussed in section 4.

3.2. Constrained case. We now turn to the case where the quadratic program
under consideration still has a positive definite Q matrix but the problem has a small
number of linear constraints. For example, problem (2.11) falls into this class, where
S = 1

ν I is positive definite, R = DA, H = I, and B = eTD. Note that B is a nonzero,
1×m matrix with full row rank.

The predictor-corrector method requires the solution of (3.3) at each iteration.
We have already shown how to apply (C + RHRT )−1 using Algorithm SMW. We
use this observation to eliminate ∆x = (C + RHRT )−1(r1 + BT∆λ) from (3.3) and
generate the following system in ∆λ:

B(C +RHRT )−1BT∆λ = r2 −B(C +RHRT )−1r1.(3.6)

Since B has full row rank and C +RHRT is symmetric positive definite, we conclude
that B(C+RHRT )−1BT is symmetric and positive definite. Hence, it is nonsingular,
and the linear system (3.6) is solvable for any r1 and r2.

To use (3.6), we must solve the system

(C +RHRT )
[
T1 t2

]
=
[
BT r1

]
with multiple right-hand sides corresponding to the columns of BT and r1. However,
we never need to form or factor (C + RHRT ) explicitly, since we can solve for all
the right-hand sides simultaneously using Algorithm SMW, incurring the cost only of
storing T1, an m× n matrix, and t2. Note that in our SVM examples, n = 1.

Let us review the steps needed to solve (3.3).
1. Form T1 = (C + RHRT )−1BT and t2 = (C + RHRT )−1r1 using a simulta-

neous application of Algorithm SMW.
2. Calculate t3 = r2 −Bt2 using the solution from step 1.
3. Form the n× n matrix T2 = BT1.
4. Solve T2∆λ = t3, for the solution of (3.6).
5. Calculate ∆x = t2 + T1∆λ.

Steps 2 and 3 can be done concurrently with step 1. Specifically, we can accumulate
T2 and t3 as the elements in T1 and t2 become available from step 3 of Algorithm
SMW. Per iteration, this scheme requires only two passes through the data in R, all
in step 1, and one pass through T1 in step 5.

Furthermore, since the predictor-corrector method requires two solves of the form
(3.3) per iteration with different r1 and r2, the extra storage used for T1 means that
we need to calculate T1 only once per iteration. For efficiency, we reuse the factors of
C + RHRT in step 2 of Algorithm SMW and T2 in step 4 of the above algorithm in
both the predictor and corrector steps of the interior-point algorithm.

3.3. General case. Unfortunately, this is not the end of the story because for-
mulations (2.8) and (2.9) do not have a positive definite matrix S but instead use
S = 0. In fact, these problems also have lower and upper bounds. In this setting,
while the matrix C = Y −1W + Z−1V (for appropriately defined W , V , Y , and Z)
is positive definite on the interior of the box defined by the bound constraints, the
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interior-point method typically runs into numerical difficulties when the solution ap-
proaches the boundary of the box constraints.

Algorithmically, we would like the optimization problem to have a positive definite
S matrix. When S is already positive definite, no modifications are needed in (2.1).
For example, (2.10) and (2.11) have positive definite Q matrices and are strongly
convex quadratic programs.

However, when S is only positive semidefinite (or zero), we can use a proximal-
point modification [25]. Proximal-point algorithms augment the objective function
with a strongly convex quadratic term and repeatedly solve the resulting quadratic
program until convergence is achieved. That is, given xi, they solve the quadratic
program

minx
1
2x

TQx+ cTx+ η
2 ‖x− xi‖22

subject to Bx = b,
x ≥ 0

(3.7)

for some η > 0, possibly iteration dependent, to find a new xi+1. The algorithm
repeatedly solves subproblems of the form (3.7) until convergence occurs. Properties
of such algorithms are developed in [25, 7], where it is shown that if the original
problem has a solution, then the proximal-point algorithm converges to a particular
element in the solution set of the original problem. Furthermore, each of the quadratic
subproblems is strongly convex.

This approach may be used to solve (2.8) and (2.9), for example. However,
rather than solving each subproblem (3.7) exactly, we instead solve the subproblems
inexactly by applying just one step of the interior-point method before updating the
subproblem. Thus, in effect, we are solving at each iteration the system of equations[

C +RHRT + ηI −BT

B 0

] [
∆x
∆λ

]
=

[
r1
r2

]
.

Therefore, when using the proximal-point perturbation algorithm, we use the same
interior-point implementation and simply modify the C matrix.

Since a proximal-point perturbation can cause the algorithm to take many itera-
tions, our code initiates the proximal-point perturbation algorithm only when numer-
ical difficulties are encountered. We identify numerical difficulties with an increase in
the error for satisfying the equations. This technique switches to the proximal-point
algorithm when necessary.

The linear algebra issues are now the same as the issues already covered above
except for the particular values present in S. The remaining challenge is to solve
massive problems. The implementation is discussed in the next section, where we use
an out of core computation to reduce memory requirements.

4. Implementation. An interesting feature of the SVM problem is the vol-
ume of data, which can lead to quadratic programs with between 10 and 100 million
variables and a Q matrix that would be dense if formed explicitly. Quadratic pro-
gramming codes explicitly using the Q matrix will not work well for these problems.
We need a method for which we can utilize specialized linear algebra. Therefore, we
use the Mehrotra predictor-corrector algorithm [23] as implemented in OOQP [11] as
the basis for our interior-point method. The OOQP code is written in such a way
that we can easily tailor the linear algebra to the application. This feature can be
exploited to enable the solution of large data mining problems.
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The linear algebra outlined in section 3 is used in our implementation. As men-
tioned in section 3, we simultaneously solve systems of equations involving different
right-hand side vectors and also reuse appropriate vectors and matrices for the pre-
dictor and corrector steps. However, because of the target size, we must effectively
deal with the volume of data. Potentially, round-off or accumulation errors could
become significant, so we want to minimize these as much as possible. Finally, we
want to use a termination condition independent of the problem size. These topics
are discussed in the following subsections along with further information on selecting
a starting point. Clearly, the fact that interior-point algorithms typically require only
a small number of iterations is crucial for performance.

The scaling of the problem can affect the behavior of the numerical linear algebra
used to calculate the solution. For example, we experimented with the substitution
x̃ = x

ν in (2.8) when ν > 1. This helped to some extent when the standard OOQP
starting point was used, but was not necessary with the special starting point de-
scribed next.

4.1. Starting point. The starting point chosen for the method can significantly
impact both the theoretical and practical performance of the algorithm. To achieve
flexibility in the starting-point choice, we use the augmented system in (3.2) that has
removed the bounds on x.

We know that the majority of the variables are zero at a solution to the SVM
problem because the zero variables correspond to those observations correctly classi-
fied. Therefore, the starting point uses x0 = 0 and λ0 = 0. We choose w0 and v0 so
that w0 − v0 = c. That is, the residual in the first equation of (3.2) at the starting
point is zero. Since c = −e for the SVM, we set w0 = (ν + 1)e and v0 = (ν + 2)e.
We are then left with a choice for the slack variables, y0 and z0, added to the aug-
mented system for w and v. To retain parity with our choice for w0 and v0, we set
y0 = (ν +2)e and z0 = (ν +1)e. We use the same starting point for the formulations
without upper bounds but note that v and z are removed from the problem.

Better numerical performance might be achieved by the algorithm with an alter-
native starting point. For example, we expect that at a solution, most elements of y
will be zero and most elements of z will be ν. This fact is not reflected in the current
choice of y0. We did not perform any further investigation of this topic.

4.2. Data issues. Consider a model with 50 million observations and suppose
there are 35 features, each represented by a 1-byte quantity. Then, the observation
matrix R is 50, 000, 000×35 and consumes 1.75 gigabytes of storage. If the features are
measured as double-precision values, the storage requirement balloons to 14 gigabytes.
Furthermore, the quadratic program has 50 million variables. Therefore, each double-
precision vector requires 400 megabytes of space. If we assume 10 vectors are used,
an additional 4 gigabytes of storage is necessary. Thus, the total space requirement
for the algorithm on a problem of this magnitude is between 5.75 and 18 gigabytes.
Clearly, an in core solution is not possible on today’s machines.

We must attempt to perform most, if not all, of the operations using data kept
out of core, while still achieving adequate performance. All of the linear algebra
discussed in section 3 accesses the data sequentially. Therefore, while working on one
buffer (block) of data, we can be reading the next from disk. The main computational
component is constructing the matrix M = H−1 +RTC−1R (see step 2 of Algorithm
SMW). We begin by splitting R and C−1 into p buffers of data and calculate

M = H−1 +

p∑
j=1

RTj (C
−1)jRj .
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Note that C is a diagonal matrix in the examples considered but that more general
matrices can be handled with more sophisticated splitting techniques.

To summarize, we perform the following steps to calculate M .
1. Request R1 and (C−1)1 from disk, and set M = H−1.
2. For j = 1 to p− 1 do

(a) Wait for Rj and C−1
j to finish loading.

(b) Request Rj+1 and C−1
j+1 from disk.

(c) Accumulate M = M +RTj (C
−1)jRj .

3. Wait for Rp and C−1
p to finish loading.

4. Accumulate M = M +RTp (C
−1)pRp.

The code uses asynchronous I/O constructs to provide the request and wait function-
ality. The remainder of the linear algebra in section 3 can be calculated similarly.
The code performs as many of the required steps as possible concurrently with the
reading of the Rj buffers from disk.

The amount of data kept in core is significantly reduced with such a scheme. The
tradeoff is that the code is not as fast as an in core implementation. In section 5, we
quantify the impact of the out of core calculation.

4.3. Numerical considerations. Because of the number of variables in the
problems solved, we can run into significant round-off errors while performing the
linear algebra, particularly when accumulating the matrices. A naive implementation
of Algorithm SMW that does nothing to address these problems results in diver-
gence of the interior-point method for a moderately sized problem with one million
observations. In an attempt to limit the effect of these numerical errors, we use a
combination of aggregation to identify a block and bucketing within the block for the
computations.

4.3.1. Aggregation. Consider the construction of the matrix H−1 +RTC−1R
using the above technique. The aggregation technique accumulates the RTj (C

−1)jRj
components in temporary matrices, Ml for l = 1, . . . , L, and then merges these as
M =

∑L
l=1 Ml. Specifically, the initialization and accumulation steps are updated

from the algorithm above into the following final form.
1. Request R1 and (C−1)1 from disk, and set M1 = H−1 and Ml = 0 for

l = 2, . . . , L.
2. For j = 1 to p− 1 do

(a) Wait for Rj and C−1
j to finish loading.

(b) Request Rj+1 and C−1
j+1 from disk.

(c) Accumulate M(j mod L)+1 = M(j mod L)+1 +RTj (C
−1)jRj .

3. Wait for Rp and C−1
p to finish loading.

4. Accumulate M(p mod L)+1 = M(p mod L)+1 +RTp (C
−1)pRp.

5. Merge M =
∑L
l=1 Ml.

Our merge is implemented by repeatedly adding the L
2 neighbors as depicted in Fig-

ure 4.1 (termed pairwise summation in [15]). A similar procedure is used for the
vector computations. The code uses L = 8 for the calculations. We note that the
above algorithm is dependent on the buffer size read from disk. This dependency is
removed in the code by further partitioning Rj and C−1

j into smaller buffers with
50,000 elements. This is a heuristic to limit the size of the intermediate summation
values without having to perform an expensive sorting operation.
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Fig. 4.1. Accumulation diagram.

4.3.2. Bucketing. While aggregation accumulates small batches of results, the
bucketing strategy accumulates results of the same order of magnitude. The code
uses 11 buckets with the ranges listed in Table 4.1. Whenever a result needs to be
accumulated, it is assigned to the appropriate bucket. At the end of the computation,
the buckets are merged. We decided to add first the positive and negative buckets of
the same magnitude, and then accumulate the buckets starting with the smallest in
magnitude. Again, this is a heuristic that does not require a sort of the data being
accumulated. For summations involving numbers of the same sign, the accumulation
from smallest to largest is as recommended in [29]. The addition of the positive and
negative buckets of the same magnitude is designed to alleviate cancellation effects.

An example is given in [15] to test the effects of ordering on summations. The
example has a large value M such that in floating-point arithmetic 1+M ≡M , with
the requirement that the values 1, 2, 3, 4,M,−M should be summed. Our bucketing
and summation scheme results in the following summation:

(((1 + 2) + 3) + 4) + (M −M).

Furthermore, the correct result is calculated independent of the initial ordering of the
values, and no sort is required. Further details on other orderings and examples can
be found in [15].

Since some of our calculations have mixed signs and some involve just positive
numbers, the combination of heuristics, aggregation to identify a block and bucketing
within each block, was found to be very effective.

Table 4.1
Bucket ranges.

Range
Bucket Lower bound Upper bound
1 −∞ −108
2 −108 −104
3 −104 −1
4 −1 −10−4

5 −10−4 −10−8

6 −10−8 10−8

7 10−8 10−4

8 10−4 1
9 1 104

10 104 108

11 108 ∞
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4.4. Termination criteria. The termination criterion is based on the inf-norm
of the Fischer–Burmeister function [9] for the complementarity problem (3.1), with an
appropriate modification for the presence of equations [8]. If we denote all variables
in (3.1) by x and the affine function on the left of (3.1) by F (x), then each component
of the Fischer–Burmeister function is defined by

φ(xi, Fi(x)) :=
√
x2
i + Fi(x)2 − xi − Fi(x)

for those variables with lower bounds of zero and by φ(xi, Fi(x)) = −Fi(x) for vari-
ables without bounds. We can see from this definition that φ(xi, Fi(x)) = 0 if and
only if the complementarity relationship is satisfied between xi and Fi(x). The inf-
norm is independent of the number of variables in the problem and can be stably
calculated given evaluations of the linear functions in (3.1). We further note that
the function F can be evaluated during the calculation of the right-hand side in the
predictor step. Therefore, the function calculation does not cost an additional pass
through the data. We use a termination criterion of 10−6 for the Fischer–Burmeister
function within the code, which is much more stringent than the default criterion
for OOQP. In Figure 4.2 we plot the (log) residual as a function of the iteration for
problem (2.8) with 10 million observations.

We terminate unsuccessfully whenever the iteration limit is reached or we fail to
achieve a decrease in the residual for satisfying the equations in the interior-point
method for six consecutive iterations and the complementarity residual (wT y + vT z)

is less than 10−15

2m .
The machine learning community sometimes terminates an algorithm based upon

conditions other than optimality, such as tuning set accuracy [20]. Similar criteria
could be used within our code, but we prefer to terminate at an optimal solution to
the quadratic program.
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Fig. 4.2. Log residual as a function of iterations for problem (2.8) with 10 million observations.
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5. Computational results. All of the tests were run on a 296 MHz Sun Ul-
trasparc with two processors and 768 megabytes of RAM. We stored all data on a
locally mounted disk with 18 gigabytes of storage space available. This disk is not
backed up. This setup prevents all overhead due to network communication and disk
contention with nightly backups. Since the disk is not dedicated, our results reflect
some effects due to contention with other users.

The asynchronous I/O routines are implemented using threads. Thus, both of
the processors can be used for the tests. However, the workstation is shared by many
individuals. During our tests the second processor was typically running a different
user’s jobs. Further results on a uniprocessor machine indicate that the impact of the
second processor is minimal.

5.1. Data sets. For experimentation, we generated a separable, random data
set with 34 features. We did this by constructing a separating hyperplane and then
creating data points and classifying them with the hyperplane. The data generated
contains 60 million observations of 34 features, where each feature has an integer value
between 1 and 10. Multiplication by D was performed while the data was generated,
with De being encoded as an additional column to the observation set. Each of the
feature measurements is a 1-byte quantity. A nonseparable dataset was constructed
by randomly changing the classification of the observations with a 1% probability.
The nonseparable dataset has exactly 600,108 misclassified observations.

We limited the size to 60 million observations to avoid problems with the 2-
gigabyte file size restriction imposed by various operating systems. To increase the
size further without changing operating system, we could store the original data in
multiple files.

5.2. Out of core impact. The impact on performance of using an out of core
implementation was tested by using the formulation in (2.10) with ν = 1 on the sepa-
rable dataset. Since S is positive definite in this case, no proximal-point modification
was added.

The first property investigated was the effect of out of core computations on per-
formance using asynchronous I/O. To test the performance, we ran problems for sizes
varying between 200,000 and 1 million observations. A data buffer size of 100,000
observations (elements) for each matrix (vector) was used for the out of core com-
putations. We ran each of the tests five times and used the minimum values in the
figures. The average time per iteration is reported in Figure 5.1 for in core, asyn-
chronous I/O, and synchronous I/O implementations. While the asynchronous I/O is
not as fast as keeping everything in core, we note only an 8.2–9.9% increase in time
over the in core implementation for the chosen buffer and problem sizes. Synchronous
I/O results in a 9.4–13.1% increase. For both of these tests the maximum percentage
increase in time occurred with a problem size of 800,000 elements. We conclude that
an out of core implementation of the algorithm uses limited memory but results in
increased time. We believe that the enormous decrease in the amount of RAM used
for a less than 10% increase in time is a reasonable tradeoff to make. A case can also
be made for using the easier to implement synchronous I/O.

The next set of experiments was designed to determine the impact of modifying
the file buffer size. For these tests, we fixed the problem size to 1 million observations
and varied the file buffer size from 50,000 to 500,000 elements. The average time per
iteration is plotted in Figure 5.2. The results indicate that a file buffer size of around
250,000 elements is optimal with a 9.0% increase in time over the in core solution.
The total amount of data buffered in main memory is between 110 and 152 megabytes
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Fig. 5.1. Average time per iteration for various problem sizes with a fixed file buffer size of
100,000 elements.

depending on the problem formulation used. Based on these results, we decided to
use asynchronous I/O and a buffer size of 250,000 elements for the remainder of the
numerical experiments.

5.3. Baseline comparison. We next investigated the performance of our interior-
point algorithm compared with other methods from the machine learning community.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
70

70.5

71

71.5

72

72.5

Buffer Size in Hundred Thousand Observations

A
ve

ra
ge

 T
im

e 
pe

r 
Ite

ra
tio

n 
(in

 S
ec

on
ds

)

Fig. 5.2. Average time per iteration for various file buffer sizes with a fixed problem size of
1,000,000 observations.
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Fig. 5.3. Total time comparison of the different formulations and SVMTorch with varying
problem sizes on the separable dataset.

We used SVMTorch [4] for this series of tests because the code is freely available and,
according to the documentation, is specifically tailored for large-scale problems. We
compiled both codes with the same compiler and options and converted the datasets
into the binary format requested by SVMTorch. We ran SVMTorch using a linear
kernel with ν = 1. All other options, including the termination tolerance, were set to
their default values.

Figure 5.3 reports the total running time for SVMTorch and each of (2.8)–(2.11)
on the separable dataset with various numbers of observations. From these results,
SVMTorch is 1.6–6.1 times slower than our codes on the separable dataset depending
on the size and formulation chosen.

Results on the nonseparable dataset are more dramatic. SVMTorch took 1156.3
seconds to find a solution with 10,000 observations. Our interior-point codes took 5.8,
5.8, 8.6, and 9.8 seconds with formulations (2.8)–(2.11), respectively. These numbers
indicate that SVMTorch is between 116 and 196 times slower on the nonseparable
dataset. The magnitude becomes even larger when the number of observations is
increased. With 50,000 observations, we let SVMTorch spend over 15 hours of CPU
time in 380,000 iterations before terminating the SVMTorch code with a “current
error” of 2.15. These numbers indicate that the SVMTorch code is at best more than
1,060 times slower than our interior-point code on this particular dataset. We did not
perform any further tests with this code.

5.4. Sensitivity to ν. The next set of experiments was to determine the sensi-
tivity of the method to increases in ν. In all of these tests, a proximal-perturbation
of η = 10−5 was added for the models in (2.8) and (2.9) when the error in solving
the equations increased. We report in Figures 5.4 and 5.5 the number of iterations
taken by the interior-point methods for various values of ν between 1 and 10,000 on
the separable and nonseparable datasets with 1 million observations, respectively. On
the separable dataset we notice increases in the number of iterations taken to find a
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solutions. The iteration counts taken on the nonseparable dataset also increase. For
(2.8) and (2.9), a small percentage of the variables at the solution were at the upper
bound for all values of ν in both the separable and nonseparable tests. We note that
on the nonseparable dataset for ν = 1, 000 and ν = 10, 000, all of the formulations
failed to achieve termination tolerances; they stopped with final and best residuals
reported in Table 5.1. Further improvements to the linear algebra implementation

10
0

10
1

10
2

6

8

10

12

14

16

18

Value for ν

Ite
ra

tio
ns

(8)
(9)
(10)
(11)

Fig. 5.5. Iteration comparison of the different formulations with varying ν on the nonseparable
dataset.



800 MICHAEL C. FERRIS AND TODD S. MUNSON

Table 5.1
Final and best residuals reported for the different formulations with ν = 1, 000 and ν = 10, 000

on the nonseparable dataset.

ν = 1, 000 ν = 10, 000
Formulation Final Best Final Best
(2.8) 2.12e-6 1.38e-6 2.78e-5 1.71e-5
(2.9) 2.65e-6 1.36e-6 1.84e-5 1.04e-5
(2.10) 5.73e-6 3.76e-6 6.87e-5 3.50e-5
(2.11) 8.57e-6 3.93e-6 3.73e-5 2.60e-5

would need to be investigated in order to produce reasonable results for larger values
of ν.

5.5. Massive problems. The final set of experiments was designed to determine
the reliability of the algorithm on the various formulations and the scalability of the
implementation to massive problems. Specifically, we varied the problem size between
1 and 60 million observations. In all of these tests ν = 1 was used, and for the models
in (2.8) and (2.9) a proximal-perturbation of η = 10−5 was added when the error in
solving (3.3) increased.

Each model was run one time with problem sizes of 1, 5, 10, 20, and 60 million
observations. We plot average time per iteration in Figure 5.6 and number of iterations
as functions of problem size in Figures 5.7 and 5.8, respectively. The similarity in the
average time per iteration between formulations (2.10) and (2.11) (and also between
(2.8) and (2.9)) is indistinguishable. To avoid clutter, we plot the results only for
(2.8) and (2.11) in Figure 5.6. The total times are reported in Figures 5.9 and 5.10.

The average time per iteration appears to grow almost linearly with the problem
size. This result is to be expected, as the majority of the time taken per iteration is
in constructing H−1 + RTC−1R. The number of floating-point operations necessary
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to calculate this quantity grows linearly with problem size m (but quadratically with
the number of features k). The extra time needed for (2.8) is due to the treatment of
upper bounds.

A surprising result for the constrained formulations, (2.8) and (2.11), on the
separable dataset is that the number of iterations remains fairly flat as the problem
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Fig. 5.9. Total time comparison of the different formulations with varying problem size on the
separable dataset.

size increases and even decreases for some of the larger problems. As expected, the
number of iterations taken for (2.9) and (2.10) increases with the dimension of the
problem. We note a large difference in the number of iterations taken to converge for
formulations (2.8) and (2.9) even though the problems are similar. The main reason
for this difference is that many small steps are taken when solving (2.9).

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

Problem Size in Millions of Observations

To
ta

l T
im

e 
(in

 M
in

ut
es

)

(8)
(9)
(10)
(11)

Fig. 5.10. Total time comparison of the different formulations with varying problem size on
the nonseparable dataset.



INTERIOR-POINT METHODS FOR SVM 803

All of the formulations performed extremely well on the nonseparable dataset,
with very little variation in the number of iterations. These facts are counterintuitive
and are probably related to the random nature of the model. However, more tests on
“real” datasets need to be performed before drawing any firm conclusions.

The constrained formulations (2.8) and (2.11) appear to be the most tractable for
interior-point methods. Both of these formulations solved the 60-million observation
problem in 15–22.5 hours on a standard workstation. Formulations (2.9) and (2.10)
also work for the 60-million observation problem but take longer times.

We believe the strength of this approach is its scalability and reliability. While it
may be possible to adjust the parameters of the interior-point method or the parame-
ters of the proximal-point iteration for improved performance, we have elected to use
the same defaults on all problems and have not encountered any numerical difficulties
beyond those documented in section 5.4.

6. Conclusions. We have developed an interior-point code for solving several
quadratic programming formulations of the linear SVM. We are able to solve large
problems reasonably by exploiting the linear algebra and using out of core computa-
tions. Scalability of the approach has been demonstrated.

The linear algebra can be parallelized easily, and further speedups can be realized
through storage of the data across multiple disks. More sophisticated corrector imple-
mentations [14] of the interior-point code can be used to further reduce the iteration
count. These are topics for future work, along with extensions to nonlinear SVM, and
techniques to further reduce the number of data scans.
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Abstract. We develop a semismoothness concept for nonsmooth superposition operators in
function spaces. The considered class of operators includes nonlinear complementarity problem
(NCP)-function-based reformulations of infinite-dimensional nonlinear complementarity problems
and thus covers a very comprehensive class of applications. Our results generalize semismoothness
and α-order semismoothness from finite-dimensional spaces to a Banach space setting. For this
purpose, a new infinite-dimensional generalized differential is used that is motivated by Qi’s finite-
dimensional C-subdifferential [Research Report AMR96/5, School of Mathematics, University of New
South Wales, Australia, 1996]. We apply these semismoothness results to develop a Newton-like
method for nonsmooth operator equations and prove its local q-superlinear convergence to regular
solutions. If the underlying operator is α-order semismooth, convergence of q-order 1 + α is proved.
We also establish the semismoothness of composite operators and develop corresponding chain rules.
The developed theory is accompanied by illustrative examples and by applications to NCPs and a
constrained optimal control problem.
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ferentials, nonlinear complementarity problems, superlinear convergence, optimal control problems
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1. Introduction. In this paper, we develop a semismoothness concept for non-
smooth operators in function spaces and establish q-superlinear convergence of a
Newton-like method for semismooth operator equations. Results on convergence with
rate > 1 are also presented. The class of operators we consider includes those ob-
tained by nonlinear complementarity problem (NCP)-function-based reformulations
of NCPs in function spaces. These problems arise frequently in practice, e.g., in the
form of first-order optimality conditions of constrained elliptic [62, 63], parabolic [64],
and flow control problems [62, 60]. As an illustrative example of the application to
optimal control, we will discuss the elliptic control problem (1.6) in detail. The nu-
merical results in [63, 62, 60] show that the semismooth Newton method developed
in this paper solves constrained control problems very efficiently.

The notion of semismoothness was introduced by Mifflin [43] for real-valued func-
tions defined on finite-dimensional spaces. Qi [50] and Qi and Sun [52] extended
semismoothness to mappings between finite-dimensional spaces and showed that, al-
though the underlying mapping is in general nonsmooth, Newton’s method can be
generalized to semismooth equations and converges locally with q-superlinear rate to
a regular solution [49, 50, 52]. For related early approaches to nonsmooth Newton
methods, we refer to [40, 41, 47]. In particular, Kummer [40, 41] has established
q-superlinear convergence for a general, abstract class of nonsmooth Newton methods
under conditions that include (1.1).

Written in a form most convenient for our purposes, a mapping f : R
k → R

l is
called semismooth at x if f is Lipschitz near x and directionally differentiable at x,
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and if

max
M∈∂f(x+h)

‖f(x+ h)− f(x)−Mh‖ = o
(‖h‖) as h→ 0,(1.1)

where ∂f denotes Clarke’s generalized Jacobian [13]. See section 2 for details. Fur-
ther, if f is α-order semismooth, 0 < α ≤ 1, then the small-order term in (1.1)

can be improved to O(‖h‖1+α). An important source of semismooth equations are
reformulations of the NCP

yi ≥ 0, Zi(y) ≥ 0, yiZi(y) = 0, i = 1, . . . , k,(1.2)

with a continuously differentiable function Z : R
k → R

k. In this approach, which can
also be applied to more general problems (mixed complementarity problem, MCP;
variational inequality problem, VIP), an NCP-function [57], i.e., a function φ : R

2 → R

with the property

φ(x) = 0 ⇐⇒ x1 ≥ 0, x2 ≥ 0, x1x2 = 0,

is applied componentwise to the NCP to rewrite it equivalently in the form

Φ(y) = 0, where Φ(y) =
(
φ(y1, Z1(y)), . . . , φ(yk, Zk(y))

)T
.(1.3)

Frequently used NCP-functions are φ(x) = min{x1, x2} as well as the Fischer–
Burmeister function (see [22])

φFB(x) =
√
x2

1 + x2
2 − x1 − x2.(1.4)

Both are semismooth (of order 1), and thus the function Φ in (1.3) is also semismooth.
Therefore, semismooth Newton methods can be applied to solve (1.3). The strong
theoretical properties of this approach, its numerical potential, and extensions to more
general problems (MCP, VIP) have been extensively studied in recent years (see, e.g.,
[17, 19, 20, 36, 37, 61]) and have led to very efficient Newton-like methods (see, e.g.,
[45]). Although smooth NCP-functions can be constructed [42], they suffer from the
fact that ∇φ(0) = 0 necessarily must hold since the curve {x ∈ R

2 : φ(x) = 0} has a
kink at x = 0. As a consequence, the use of smooth NCP-functions requires a strict
complementarity condition, whereas this can be avoided by working with nondifferen-
tiable NCP-functions. Since the introduction of the semismooth Fischer–Burmeister
function, many researchers agree that semismooth NCP-functions are a very powerful
tool for developing efficient algorithms with strong theoretical properties.

The objective of this paper is to extend the notions of semismoothness and α-
order semismoothness, respectively, to nonlinear superposition operators in function
spaces, and to develop a corresponding superlinearly convergent Newton-like method.
Hereby, we are motivated by applications arising in mathematical modeling and opti-
mal control, which often (see below) can be cast as pointwise bound-constrained VIP
posed in function spaces. As our main example we consider the following NCP: Find
y ∈ Lp(Ω) such that

y ≥ 0, Z(y) ≥ 0, yZ(y) = 0(1.5)

holds pointwise a.e. on Ω, where Ω ⊂ R
n is Lebesgue measurable with positive and

finite measure, Lp(Ω) is the Lebesgue space of p-integrable functions, and the operator
Z : Lp(Ω) → Lr(Ω), 1 ≤ r < p ≤ ∞, is continuously Fréchet differentiable. For the
purpose of illustration, we now show how a particular optimal control problem can



SEMISMOOTH NEWTON METHODS IN FUNCTION SPACES 807

be converted to an NCP of the form (1.5). The problem we describe will serve as
a model problem (chosen to be simple for convenience) to which our theory and the
developed Newton method are readily applicable. Consider the following distributed
optimal control problem of an elliptic partial differential equation with upper bounds
on the control:

minimize
w∈L2(Ω)

J(w)
def
=

1

2
‖u(w)− ud‖2L2(Ω) +

λ

2
‖w − wd‖2L2(Ω)

subject to w ≤ b on Ω,

(1.6a)

where u = u(w) ∈ H1
0 (Ω) (the usual Sobolev space) is the weak solution of the

uniformly elliptic state equation

−
n∑

i,j=1

∂

∂xi

(
aij
∂u

∂xj

)
= w on Ω.(1.6b)

We assume λ > 0, aij ∈ L∞(Ω), ud ∈ L2(Ω), and wd, b ∈ L∞(Ω). Denoting by
∇J(w) ∈ L2(Ω) the L2-Riesz representation of the gradient of J , it will be shown in
Example 5.6 that w̄ solves the control problem if and only if ȳ = b− w̄ solves the NCP
(1.5) with Z(y) = −∇J(b−y). We will further discuss this problem in Example 5.6 and
in section 6.2. We stress that this problem is meant for the purpose of illustration, and
thus we decided to consider this particularly simple linear-quadratic control problem,
which we hope is easily accessible to most readers. For more advanced applications to
the optimal control of nonlinear partial differential equations, we refer the interested
reader to [62, 60].

In order to reformulate (1.5) as a nonsmooth operator equation, we use an NCP-
function to rewrite the pointwise complementarity conditions in (1.5) as equations.
Doing this, (1.5) can be cast equivalently in form of the operator equation

Φ(y) = 0, where Φ(y)(ω)
def
= φ(y(ω), Z(y)(ω)), ω ∈ Ω.(1.7)

In this paper, we consider superposition operators of the more general form

Ψ : Y → Lr(Ω), Ψ(y)(ω) = ψ(F (y)(ω)),(1.8)

with mappings ψ : R
m → R and F : Y → ∏m

i=1 L
ri(Ω), where 1 ≤ r ≤ ri < ∞, Y

is a real Banach space, and Ω ⊂ R
n is a bounded open domain. Obviously, choosing

Y = Lp(Ω), r1 = r2 = r, m = 2, ψ = φ, and F : y ∈ Y �→ (y, Z(y)), we have
Ψ = Φ with Φ and Ψ as in (1.7) and (1.8), respectively, so that reformulated NCPs
are included as special cases in our analysis. Essentially, our working assumptions are
that ψ is Lipschitz continuous and semismooth and that F is continuously Fréchet
differentiable. The detailed assumptions are given below. The main result of this
paper is a semismoothness-like estimate of the form

sup
M∈∂◦Ψ(y+s)

‖Ψ(y + s)−Ψ(y)−Ms‖Lr = o(‖s‖Y ) as s→ 0 in Y .(1.9)

We also give conditions under which the remainder term in (1.9) is of the order

O(‖s‖1+αY ), 0 < α ≤ 1. In this case we call Ψ α-order semismooth. The mul-
tifunction (i.e., set-valued mapping) ∂◦Ψ : Y ⇒ L(Y, Lr) denotes an appropriate
vector-valued generalized differential of Ψ, which is related to, and motivated by, Qi’s
finite-dimensional C-subdifferential [51]. The estimate (1.9) generalizes (1.1) to the
function space setting. We will not require that Ψ be directionally differentiable, be-
cause this is not needed in the analysis of Newton’s method. We remark that several
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authors [24, 40, 44, 67] have studied conditions of the form (1.9) in finite dimensions
independently of the papers [50] and [52].

Based on (1.9), we develop a locally q-superlinearly convergent Newton method
for the nonsmooth operator equation

Ψ(y) = 0.(1.10)

Moreover, in the case in which Ψ is α-order semismooth, we prove convergence with
q-rate 1 + α. In analogy to BD (Bouligand differential)-regularity assumptions for
finite-dimensional semismooth Newton methods, we impose a regularity condition on
the elements of the generalized differential. Further, as was observed earlier in the
context of related local convergence analyses in function space [38, 64], we have to
incorporate a smoothing step to overcome the nonequivalence of norms. We also will
provide an example showing that this smoothing step can be indispensable.

Recently, a different semismoothness concept for operator equations was pro-
posed by Chen, Nashed, and Qi [12]. Our approach differs significantly from the
one in [12]. There, the notion of a slanting function is introduced, and a general-
ized derivative, the slant derivative, is obtained as the collection of all limits of the
slanting function as yk → y. Semismoothness is then defined by imposing appropri-
ate conditions on the approximation properties of the slanting function and the slant
derivative.

Although the differentiability properties of superposition operators with smooth
ψ are well investigated (see, e.g., the expositions [6] and [7]), this is not the case
for nonsmooth functions ψ. Further, even if ψ is smooth, for operator equations of
the form (1.10) the availability of local convergence results for Newton-like methods
appears to be very limited.

As an important application and to illustrate our results, we discuss reformu-
lations (1.7) of the NCP (1.5). Furthermore, we show how the constrained elliptic
control problem (1.6) can be converted to an equivalent NCP that meets all our
assumptions.

There are also close connections between the NCP-function approach and non-
interior path-following methods for NCPs [11], which recently were introduced and
analyzed in finite dimensions. Hereby, the NCP-function φ is embedded in a class
of smooth perturbations φσ, where σ ≥ 0 is a parameter. For σ > 0 the function
φσ is smooth, whereas φ0 = φ. For the Fischer–Burmeister function φFB , e.g., the
functions φσ can be obtained by adding the term σ under the square root. The main
idea of these methods, transcribed to our setting, consists of following the trajectory
of solutions to the corresponding perturbed operator equations Φσ(y) = 0 as σ → 0.
Usually corrector steps are computed by Newton’s method. In the asymptotic phase
σ → 0, the behavior of Newton’s method on the unperturbed equation plays a key role
in achieving fast local convergence. We therefore believe that the results presented
in this paper will also be helpful to investigate path-following methods in a function
space setting.

We emphasize that the number of applications fitting into our framework is huge,
in particular those involving complementarity; see [15, 18, 21, 26, 28, 39, 46, 48].
Many of these applications arise from infinite-dimensional variational inequalities that
model systems continuous in time and/or space [15, 18, 26, 39, 46], and are therefore
posed in function spaces. Hence, the development and analysis of efficient abstract
algorithms for the solution of the infinite-dimensional problem (1.5) is very desirable
in order to derive robust, efficient, and mesh-independent methods for the solution
of the discretized problem. The nonsmooth Newton method developed in this paper
is directly applicable to NCP-function-based reformulations of the NCP (1.5) and
can therefore be seen as a generalization of semismooth Newton methods for finite-
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dimensional NCPs.
For the development of a semismoothness concept we have to choose an appropri-

ate vector-valued generalized differential for the operator Ψ. Although the available
literature on generalized differentials and subdifferentials is mainly focused on real-
valued functions (see, e.g., [10, 13, 14, 55] and the references therein), several authors
have proposed and analyzed generalized differentials for nonlinear operators between
infinite-dimensional spaces [16, 25, 32, 53, 58]. In our approach, we work with a
generalized differential that exploits the structure of Ψ. Roughly speaking, our gen-
eral guidance hereby is to transcribe, at least formally, componentwise operations
in R

k to pointwise operations in function spaces. To sketch the idea, note that the
finite-dimensional analogue of the operator Ψ is the mapping

Ψf : R
k → R

l, Ψf
j(x) = ψ(F j(x)), j = 1, . . . , l,

with ψ as above and C1-mappings F j : R
k → R

m. We have the correspondences
ω ∈ Ω ↔ j ∈ {1, . . . , l}, y ∈ Y ↔ x ∈ R

k, and F (y)(ω) ↔ F j(x). Componentwise
application of the chain rule for Clarke’s generalized gradient [13] shows that the
C-subdifferential of Ψf consists of matrices M ∈ R

l×k having rows of the form

Mj =

m∑
i=1

dji (F
j
i )

′(x), with dj ∈ ∂ψ(F j(x)).

Note that the collection of all these matrices M can be an overestimate of the C-
subdifferential, since the chain rule asserts only that ∂[ψ(F j(x))] ⊂ ∂ψ(F j(x))(F j)′(x).
Carrying out the same construction for Ψ in a purely formal manner suggests that we
choose a generalized differential for Ψ consisting of operators of the form

v ∈ Y �→
m∑
i=1

di · (F ′
i (x)v), with (d1, . . . , dm)(ω) ∈ ∂ψ(F (y)(ω)) a.e. on Ω,

where the inclusion on the right is meant in the sense of measurable selections. One
advantage of this approach, which motivates our choice of the generalized differential
∂◦Ψ, is that it consists of relatively “concrete” objects as compared to those inves-
tigated in, e.g., [16, 25, 32, 53, 58], which necessarily are more abstract since they
are not restricted to a particular structure of the underlying operator. It is not the
objective of this paper to investigate the connections between the generalized differ-
ential ∂◦Ψ and other generalized differentials. There are close relationships, but we
leave it as a topic for future research. Here, we concentrate on the development of a
semismoothness concept based on ∂◦Ψ, a related nonsmooth Newton’s method, and
the relations to the respective finite-dimensional analogues.

As already mentioned, the literature on Newton-like methods for the solution of
NCPs or, closely related, bound-constrained optimization problems posed in function
spaces is very limited. Here, we call an iteration Newton-like if each iteration es-
sentially requires the solution of a linear operator equation. We point out that in
this sense sequential quadratic programming (SQP) methods for problems involving
inequality constraints [1, 2, 3, 4, 5, 29, 59] are not Newton-like, since each iteration
requires the solution of a quadratic programming problem (or, put differently, a lin-
earized generalized equation), which is in general significantly more expensive than
solving a linear operator equation. Therefore, the methods considered in this paper,
rather than being applied directly to the nonlinear problem, could also be of interest
as subproblem solvers for SQP methods.

Probably the prior investigations most closely related to ours are the analysis of
Bertsekas’ projected Newton method by Kelley and Sachs [38] and the investigation



810 MICHAEL ULBRICH

of affine-scaling interior-point Newton methods by Ulbrich and Ulbrich [64]. Both
papers deal with bound-constrained minimization problems in function spaces and
establish the local q-superlinear convergence of their respective Newton-like meth-
ods. In both approaches the convergence results are obtained by directly estimating
the remainder terms appearing in the analysis of the Newton iteration. In that way,
specific properties of the solution are exploited, and a strict complementarity con-
dition is assumed in both papers. During the revision of our paper, a very similar
investigation by Hintermüller, Ito, and Kunisch [30] came to our attention.1 Therein,
linear complementarity problems motivated by constrained optimal control problems
are considered. It is shown that the primal dual active set strategy [8, 9] can be
interpreted as a semismooth Newton method of the form investigated in the present
paper. In [30], fast local convergence is proved by a direct analysis, and, in its recent
revision [31], a second proof is given by applying the semismoothness results that we
develop in the current work. The general framework of our presentation requires,
except in special situations, that we augment the nonsmooth Newton iteration by a
smoothing step. The algorithm in [30] does not require a smoothing step, since, in
our terminology, a special NCP-function is used and the underlying operator has a
smoothing property. The idea here is very similar to the construction of smoothing
steps described in Example 6.7 and is discussed in Remark 6.8; see also [31]. We
refer the interested reader to [62, Chapter 4], where we develop a general class of
smoothing-step-free Newton methods for VIPs.

In the present paper, we develop our results for the general problem class (1.10)
and derive the applicability to NCPs as a simple, but important special case. In the
context of NCPs and optimization, we do not have to assume any strict complementar-
ity condition. Further, we organize our analysis of Newton’s methods by decomposing
it in two steps: First, we develop a semismoothness result that replaces differentiabil-
ity in ordinary Newton methods. Second, an invertibility condition on the members
of the generalized differential is introduced. This regularity condition can be verified
conveniently by using the sufficient conditions that we recently developed in [63, 62]¿

In section 2 we review some concepts of finite-dimensional nonsmooth analysis
that are important in our context, in particular, generalized differentials and semi-
smoothness. Our working assumptions are stated in section 3. In section 4 we in-
troduce the generalized differential ∂◦Ψ and investigate some of its properties. In
section 5 a semismoothness and α-order semismoothness concept for the operator Ψ
is proposed and studied in detail. The results are illustrated by applications to NCPs.
In particular, we demonstrate the necessity of our assumptions by several (counter-)
examples. In section 6 we propose a Newton-like method for the solution of the
nonsmooth operator equation (1.10) and use our semismoothness results to establish
its q-superlinear convergence. In the case of an α-order semismooth operator Ψ, we
prove convergence of q-order 1+α. Applications to NCPs are provided as illustrative
examples, and the computation of smoothing steps is discussed. We also show how to
avoid smoothing steps in certain situations. Furthermore, we consider the application
of the semismooth Newton method to the elliptic control problem (1.6) and address
its discretization. In section 7 we show that under appropriate assumptions the com-
position of semismooth operators is again semismooth, and we develop two chain
rules. Finally, in section 8, we establish some further properties of our generalized
differential.

Notation. Given a Banach space Y , we denote by ‖·‖Y its norm, by BY its open
unit ball, and by B̄Y its closed unit ball; in the special case Y = (Rn, ‖ · ‖p), we prefer

1The author is thankful to Michael Hintermüller for sending him the paper [30] and the revised
manuscript [31].
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to write Bnp and B̄np , respectively. On a product space
∏
i Yi, we choose ‖y‖ΠiYi =∑

i ‖y‖Yi as a norm. L(Y,Z) denotes the Banach space of bounded linear operators
from the Banach space Y to the Banach space Z, equipped with the operator norm
‖ · ‖Y,Z . By 〈v, w〉Ω we denote the dual pairing between v ∈ Lp(Ω) and w ∈ Lp′(Ω),
1/p + 1/p′ = 1. The indicator function of a measurable set Q ⊂ Ω, taking the value
one on Q and zero on its complement Qc = Ω \ Q, is denoted by 1Q. We write
µ for the Lebesgue measure on R

n. Given a function w ∈ L∞(Ω) and an operator
A ∈ L(Y, Lp(Ω)), we define the operator w ·A ∈ L(Y, Lp(Ω)) that takes y ∈ Y to the
function ω ∈ Ω �→ w(ω)(Ay)(ω). The Fréchet derivative of an operator H is denoted
by H ′. For convenience, we will write

∑
i and

∏
i instead of

∑m
i=1 and

∏m
i=1.

2. Generalized differentials and semismoothness in finite dimensions.
We begin with an overview of the semismoothness concept in finite dimensions. Let
the vector-valued function f : R

k → R
l be given. We first collect some notions

from nonsmooth analysis. Assume that f is locally Lipschitz continuous. According
to Rademacher’s theorem, the set Uf ⊂ R

k of all points x at which f fails to be
differentiable is a Lebesgue null set. Here, the fact that f is a mapping between finite-
dimensional spaces is crucial. Using this, generalized Jacobians can be constructed as
follows.

Definition 2.1. Let f be locally Lipschitz. We define the following generalized
Jacobians of f at x:

(a) the Bouligand (B-) subdifferential:

∂Bf(x)
def
=
{
M ∈ R

l×k : ∃(xj) ⊂ R
k \ Uf : xj → x, f ′(xj)→M

}
,

where f ′ denotes the Jacobian of f ,
(b) Clarke’s generalized Jacobian, the convex hull of ∂Bf(x):

∂f(x)
def
= co ∂Bf(x),

(c) Qi’s C-subdifferential: ∂Cf(x)
def
= ∂f1(x)× · · · × ∂fl(x).

These generalized differentials induce multifunctions ∂Bf, ∂f, ∂Cf : R
k ⇒ R

l×k.
They have the following properties:

(1) ∂Bf , ∂f , and ∂Cf are nonempty and compact-valued. Moreover, ∂f and ∂Cf
are convex-valued.

(2) The multifunctions ∂Bf , ∂f , and ∂Cf are upper semicontinuous (see Defini-
tion A.2 or [13, p. 29]).

(3) ∂Bf(x) ⊂ ∂f(x) ⊂ ∂Cf(x) for all x.
Based on Clarke’s generalized Jacobian, Qi [50] and Qi and Sun [52] introduced the
following notion of semismoothness.

Definition 2.2. f is semismooth at x ∈ R
k if it is locally Lipschitz and, for all

h ∈ R
k, the limit

lim
M∈∂f(x+th′)
h′→h,t→0+

Mh′

exists and is finite.
The following characterization, however, is more appropriate for our purposes.
Proposition 2.3. Let f be locally Lipschitz. Then f is semismooth at x if and

only if f is directionally differentiable at x and

max
M∈∂f(x+h)

‖f(x+ h)− f(x)−Mh‖2 = o(‖h‖2) as h→ 0.(2.1)
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Proof. In [52, Theorem 2.3] it is shown that the locally Lipschitz continuous
function f is semismooth at x if and only if f is directionally differentiable at x and

max
M∈∂f(x+h)

‖Mh− f ′(x, h)‖2 = o(‖h‖2) as h→ 0.(2.2)

Furthermore, since f is locally Lipschitz continuous on the finite-dimensional space
R
k, directional differentiability implies B-differentiability (see [56]):

‖f(x+ h)− f(x)− f ′(x, h)‖2 = o(‖h‖2) as h→ 0.(2.3)

It is now straightforward to see that, under (2.3), the conditions (2.1) and (2.2) are
equivalent.

Definition 2.4. f is α-order semismooth, 0 < α ≤ 1, at x ∈ R
k if it is locally

Lipschitz and directionally differentiable at x, and if

max
M∈∂f(x+h)

‖Mh− f ′(x, h)‖2 = O
(‖h‖1+α2

)
as h→ 0.

The following consequence of α-order semismoothness will be important.
Proposition 2.5 (see [23, Lemmas 2 and 17]). Let f be α-order semismooth at

x, 0 < α ≤ 1. Then

max
M∈∂f(x+h)

‖f(x+ h)− f(x)−Mh‖2 = O(‖h‖1+α2 ) as h→ 0,(2.4)

‖f(x+ h)− f(x)− f ′(x, h)‖2 = O
(‖h‖1+α2

)
as h→ 0.(2.5)

It is obvious that useful semismoothness concepts can also be obtained by replac-
ing ∂f by other suitable generalized derivatives. This was investigated in a general
framework by Jeyakumar [33, 34] and by Xu [66, 67]. Here, we sketch only Jeyaku-
mar’s approach, in which he introduced the concept of ∂∗f -semismoothness, where
∂∗f is an approximate Jacobian [35]. For the definition of approximate Jacobians, we
refer to [35]; in what follows, it is sufficient to know that an approximate Jacobian of
f : R

k �→ R
l is a closed-valued multifunction ∂∗f : R

k ⇒ R
l×k with nonempty values

and that ∂Bf , ∂f , and ∂Cf are approximate Jacobians.
Definition 2.6. Let f : R

k �→ R
l be continuous, and let an approximate Jacobian

∂∗f of f be given.
(a) The function f is called weakly ∂∗f -semismooth at x if

sup
M∈co∂∗f(x+h)

‖f(x+ h)− f(x)−Mh‖2 = o(‖h‖2) as h→ 0.(2.6)

(b) The function f is ∂∗f -semismooth at x if
(i) f is B-differentiable at x (e.g., locally Lipschitz near x and directionally

differentiable at x; see [56]) and
(ii) f is weakly ∂∗f-semismooth at x.

Note that ∂f -semismoothness coincides with semismoothness. Obviously, we can
define weak ∂∗f -semismoothness of order α by requiring the order O(‖h‖1+α2 ) in (2.6).

Finally, we consider a Newton-like method for the solution of the nonsmooth
equation

f(x) = 0,(2.7)

where f : R
k → R

k is weakly ∂∗f -semismooth or weakly ∂∗f -semismooth of the order
α, respectively, at the solution x̄. For this system of equations, Newton-like methods
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were developed that converge locally q-superlinearly [33, 49, 50, 52]; see also [40, 41].
A representative result is the following.

Proposition 2.7. Denote by x̄ ∈ R
k a solution of (2.7), and let the initial point

x0 ∈ R
k be given. Consider the following Newton-like iteration:

For j = 0, 1, 2, . . . as long as f(xj) �= 0:
Choose Mj ∈ ∂∗f(xj) and compute xj+1 = xj + sj, where

Mjsj = −f(xj).

Assume that
(a) f is weakly ∂∗f-semismooth (or weakly ∂∗f-semismooth of the order α) at x̄.
(b) There exist η > 0 and C > 0 such that, for all x ∈ x̄+ηBk2 , everyM ∈ ∂∗f(x)

is nonsingular with ‖M−1‖2 ≤ C (regularity assumption).
Then there exists δ > 0 such that for all x0 ∈ x̄ + δBk2 the above iteration either
terminates with xj = x̄ or generates a sequence (xj) that converges q-superlinearly
(or with q-order 1 + α) to x̄.

Proof. As long as xj ∈ x̄ + ηBk2 , the iteration is well defined by (b). Setting
ej = xj − x̄ and using f(x̄) = 0, we have

Mjej+1 =Mjsj +Mjej = −f(xj) +Mjej = f(x̄)− f(x̄+ ej) +Mjej .

This, (a), and (b) yield

‖ej+1‖2 ≤ ‖M−1
j ‖2 ‖f(x̄+ ej)− f(x̄)−Mjej‖2 = o(‖ej‖2) as xj → x̄.(2.8)

By (a) we can choose δ ∈ (0, η] so small that

‖f(x̄+ h)− f(x̄)−Mh‖2 ≤
‖h‖2
2C

for all M ∈ ∂∗f(x̄+ h) and all h ∈ δBk2 .(2.9)

Note that this holds trivially for h = 0. Hence, for all xj ∈ x̄+ δBk2 with xj �= x̄, we
have ‖ej+1‖2 ≤ ‖ej‖2 /2 by (2.8), and thus xj+1 ∈ x̄ + (‖ej‖2 /2)Bk2 ⊂ x̄ + (δ/2)Bk2 .
Inductively, we conclude that for all x0 ∈ x̄ + δBk2 the algorithm is well defined and
either terminates finitely or generates a sequence (xj) converging to x̄. In the case of
finite termination, we have f(xj) = 0 and, by (2.9) and the choice of δ, we see that,
for any M ∈ co∂∗f(x̄+ ej),

‖ej‖2
2
≥ C ‖f(xj)− f(x̄)−Mej‖2 ≥ ‖M−1‖2 ‖Mej‖2 ≥ ‖ej‖2 ;

hence xj = x̄. On the other hand, if the algorithm generates an infinite sequence
xj → x̄, then we see from (2.8) that the rate of convergence is q-superlinear. If f is
weakly ∂∗f -semismooth of order α at x̄, then we can improve the order in (2.8) to

O(‖ej‖1+α2 ) and obtain convergence with q-rate 1 + α.
Remark 2.8. In many cases, the approximate Jacobian is upper semicontinuous

and compact-valued, particularly if ∂Bf , ∂f , or ∂Cf are used. Then it is easy to show
that the regularity condition of Proposition 2.7(b) is already satisfied if allM ∈ ∂∗f(x̄)
are nonsingular.

3. Assumptions. In the rest of the paper, we will impose the following assump-
tions on F and ψ.

Assumption 3.1. There are 1 ≤ r ≤ ri < qi ≤ ∞, 1 ≤ i ≤ m, such that
(a) the operator F : Y →∏

i L
ri(Ω) is continuously Fréchet differentiable;



814 MICHAEL ULBRICH

(b) the mapping y ∈ Y �→ F (y) ∈∏i L
qi(Ω) is locally Lipschitz continuous—i.e.,

for all y ∈ Y there exists an open neighborhood U = U(y) and a constant
LF = LF (U) such that∑

i
‖Fi(y1)− Fi(y2)‖Lqi ≤ LF ‖y1 − y2‖Y for all y1, y2 ∈ U ;

(c) the function ψ : R
m → R is Lipschitz continuous of rank Lψ > 0—i.e.,

|ψ(x1)− ψ(x2)| ≤ Lψ ‖x1 − x2‖1 for all x1, x2 ∈ R
m;

(d) ψ is semismooth.
Remark 3.2. Since by assumption the domain Ω is bounded, we have the contin-

uous embedding Lq(Ω) ⊂ Lp(Ω) whenever 1 ≤ p ≤ q ≤ ∞.
Remark 3.3. Note that in Assumption 3.1 the only difference between the oper-

ators in (a) and (b) is the topology of the range space. As mentioned in Remark 3.2,
the Lqi-norms are stronger than the corresponding Lri-norms.

For semismoothness of order > 0 we will strengthen Assumption 3.1 to obtain the
following.

Assumption 3.4. As Assumption 3.1, but with (a) and (d) replaced as follows:
There exists α ∈ (0, 1] such that

(a′) the operator F : Y → ∏
i L

ri(Ω) is α-order Hölder continuously Fréchet
differentiable;

(d′) ψ is α-order semismooth.
Note that for the special case Y =

∏
i L

qi(Ω) and F = idY we have

Ψ : y ∈ Y �→ ψ(y),

and it is easily seen that Assumptions 3.1 or 3.4, respectively, reduce to (c) and (d)
or (c) and (d′), respectively.

Under Assumption 3.1, the operator Ψ defined in (1.8) is well defined and locally
Lipschitz continuous.

Proposition 3.5. Let Assumption 3.1 hold. Then for all 1 ≤ q ≤ qi, 1 ≤ i ≤ m,
and thus in particular for q = r, the operator Ψ defined in (1.8) maps Y locally
Lipschitz continuously into Lq(Ω).

Proof. Using Lemma A.1, we first prove Ψ(Y ) ⊂ Lq(Ω), which follows from

‖Ψ(y)‖Lq = ‖ψ(F (y))‖Lq ≤ ‖ψ(0)‖Lq + ‖ψ(F (y))− ψ(0)‖Lq
≤ cq,∞(Ω)|ψ(0)|+ Lψ

∑
i
‖Fi(y)‖Lq

≤ cq,∞(Ω)|ψ(0)|+ Lψ
∑

i
cq,qi(Ω) ‖Fi(y)‖Lqi .

To establish the local Lipschitz continuity, denote by LF the local Lipschitz constant
in Assumption 3.1(b) on the set U , and let y1, y2 ∈ U be arbitrary. Then, again by
Lemma A.1,

‖Ψ(y1)−Ψ(y2)‖Lq ≤ Lψ
∑

i
‖Fi(y1)− Fi(y2)‖Lq

≤ Lψ
∑

i
cq,qi(Ω) ‖Fi(y1)− Fi(y2)‖Lqi

≤ LψLF
(

max
1≤i≤m

cq,qi(Ω)

)
‖y1 − y2‖Y .

4. An infinite-dimensional generalized differential. For the development
of a semismoothness concept for the operator Ψ defined in (1.8), we have to choose
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an appropriate generalized differential. As we already mentioned in the introduction,
our aim is to work with a differential that is as closely connected to finite-dimensional
generalized Jacobians as possible. Hence, we will propose a generalized differential
∂◦Ψ in such a way that its natural finite-dimensional discretization contains Qi’s
C-subdifferential; see section 6.2.

Our construction is motivated by a formal pointwise application of the chain
rule. In fact, suppose for the moment that the operator y ∈ Y �→ F (y) ∈ C(Ω̄)m is
strictly differentiable, where C(Ω̄) denotes the space of continuous functions equipped
with the max-norm. Then for fixed ω ∈ Ω the function f : y �→ F (y)(ω) is strictly
differentiable with derivative f ′(y) ∈ L(Y,Rm),

f ′(y) : v �→ (F ′(y)v)(ω).

The chain rule for generalized gradients [13, Theorem 2.3.10], applied to the real-
valued mapping y �→ Ψ(y)(ω) = ψ(f(y)), yields

∂
(
Ψ(y)(ω)

) ⊂ ∂ψ(f(y)) ◦ f ′(y) =

{
g ∈ Y ∗

∣∣∣∣∣ 〈g, v〉 =
∑
i di(ω)

(
F ′
i (y)v

)
(ω),

d(ω) ∈ ∂ψ(F (y)(ω)
)

}
.

(4.1)

Furthermore, we can replace “⊂” by “=” if ψ or −ψ is regular (e.g., if ψ is convex or
concave) or if the linear operator f ′(y) is onto; see [13, Theorem 2.3.10]. Following the
above motivation and returning to the general setting of Assumption 3.1, we define
the generalized differential ∂◦Ψ(y) in such a way that for all M ∈ ∂◦Ψ(y) the linear
form v �→ (Mv)(ω) is an element of the right-hand side in (4.1), as follows.

Definition 4.1 (generalized differential ∂◦Ψ). Let Assumption 3.1 hold. For Ψ
as defined in (1.8) we define the generalized differential ∂◦Ψ : Y ⇒ L(Y, Lr),

∂◦Ψ(y)
def
=

{
M ∈ L(Y, Lr)

∣∣∣∣∣ M : v �→∑
i di ·

(
F ′
i (y)v

)
,

d measurable selection of ∂ψ
(
F (y)

)
}
.(4.2)

Remark 4.2. The superscript “◦” is chosen to indicate that this generalized
differential is designed for superposition operators.

The generalized differential ∂◦Ψ(y) is nonempty. To show this, we first prove the
next claim.

Lemma 4.3. Let the Assumption 3.1(a) hold, and let d ∈ L∞(Ω)m be arbitrary.
Then the operator

M : v ∈ Y �→
∑

i
di ·
(
F ′
i (y)v

)
is an element of L(Y, Lr), and

‖M‖Y,Lr ≤
∑

i
cr,ri(Ω) ‖di‖L∞ ‖F ′

i (y)‖Y,Lri .(4.3)

Proof. By Assumption 3.1(a) and Lemma A.1

‖Mv‖Lr =
∥∥∥∑

i
di ·
(
F ′
i (y)v

)∥∥∥
Lr
≤
∑

i
‖di‖L∞ ‖F ′

i (y)v‖Lr
≤
(∑

i
cr,ri(Ω) ‖di‖L∞ ‖F ′

i (y)‖Y,Lri
)
‖v‖Y for all v ∈ Y ,

which shows that (4.3) holds and M ∈ L(Y, Lr).
In the next step, we show that the multifunction

∂ψ(F (y)) : ω ∈ Ω �→ ∂ψ(F (y)(ω)) ⊂ R
m
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is measurable (see Definition A.3 or [54, p. 160]).
Lemma 4.4. Any closed-valued, upper semicontinuous multifunction Γ : R

k ⇒ R
l

is Borel measurable.
Proof. Let C ⊂ R

l be compact. We show that Γ−1(C) is closed. To this end,
let xk ∈ Γ−1(C) be arbitrary with xk → x∗. Then there exist zk ∈ Γ(xk) ∩ C,
and, due to the compactness of C, we achieve by transition to a subsequence that
zk → z∗ ∈ C. Since xk → x∗, upper semicontinuity yields that there exist ẑk ∈ Γ(x∗)
with (zk − ẑk) → 0 and thus ẑk → z∗. Therefore, since Γ(x∗) is closed, we obtain
z∗ ∈ Γ(x∗)∩C. Hence, x∗ ∈ Γ−1(C), which proves that Γ−1(C) is closed and therefore
a Borel set.

Corollary 4.5. The multifunction ∂ψ(F (y)) : Ω ⇒ R is measurable.
Proof. By Lemma 4.4, the compact-valued and upper semicontinuous multifunc-

tion ∂ψ is Borel measurable. Now, for all closed sets C ⊂ R
m, we have, setting

u = F (y) ∈∏i L
ri(Ω),

∂ψ(F (y))−1(C) = u−1(∂ψ−1(C)).

This set is measurable since ∂ψ−1(C) is a Borel set and u is a (class of equivalent)
measurable function(s).

The next result is a direct consequence of Lipschitz continuity; see [13, 2.1.2].
Lemma 4.6. Under Assumption 3.1(c) there holds ∂ψ(x) ⊂ [−Lψ, Lψ]m for all

x ∈ R
m.

Combining this with Corollary 4.5 yields the following.
Lemma 4.7. Let Assumption 3.1 hold. Then for all y ∈ Y , the set

K(y) = {d : Ω→ R
m : d measurable selection of ∂ψ(F (y))}(4.4)

is a nonempty subset of LψB̄
m
L∞ ⊂ L∞(Ω)m.

Proof. By the theorem on measurable selections [54, Corollary 1C] and Corollary
4.5, ∂ψ(F (y)) admits at least one measurable selection d : Ω→ R

m, i.e.,

d(ω) ∈ ∂ψ(F (y)(ω)) a.e. on Ω.

From Lemma 4.6 it follows that d ∈ LψB̄mL∞ .
We now can prove the next result.
Proposition 4.8. Under Assumption 3.1, for all y ∈ Y the generalized differen-

tial ∂◦Ψ(y) is nonempty and bounded in L(Y, Lr).
Proof. Lemma 4.7 ensures that there exist measurable selections d of ∂ψ(F (y))

and that all these d are contained in LψB̄
m
L∞ . Hence, Lemma 4.3 shows that

M : v �→
∑

i
di ·
(
F ′
i (y)v

)
is in L(Y, Lr). The boundedness of ∂◦Ψ(y) follows from (4.3).

We now have everything at hand for introducing a semismoothness concept that
is based on the generalized differential ∂◦Ψ. We postpone the investigation of further
properties of ∂◦Ψ to sections 7 and 8. There, we will establish chain rules, the convex-
valuedness, weak compact-valuedness, and the weak graph closedness of ∂◦Ψ.

5. Semismoothness in function spaces. In this section, we develop a semi-
smoothness concept for the operator Ψ defined in (1.8). Our notion of semismoothness
is similar to Jeyakumar’s weak semismoothness in Definition 2.6(a). In place of the
finite-dimensional approximate Jacobian, we work with the generalized differential
∂◦Ψ. Since we will show in Theorem 8.1 that ∂◦Ψ is convex and closed (even compact)
in the weak operator topology, there is no need to take the closed convex hull of ∂◦Ψ
as is done in (2.6).
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Definition 5.1. The operator Ψ is semismooth at y ∈ Y if

sup
M∈∂◦Ψ(y+s)

‖Ψ(y + s)−Ψ(y)−Ms‖Lr = o(‖s‖Y ) as s→ 0 in Y .(5.1)

Ψ is α-order semismooth, 0 < α ≤ 1, at y ∈ Y if

sup
M∈∂◦Ψ(y+s)

‖Ψ(y + s)−Ψ(y)−Ms‖Lr = O
(‖s‖1+αY

)
as s→ 0 in Y .(5.2)

This definition is easily extended to general operators between Banach spaces.
Of course, an appropriate generalized differential must be available. In this paper,
we only deal with the superposition operator Ψ, and thus we dispense with a more
general definition of semismoothness.

In the following main theorem we establish the semismoothness and the β-order
semismoothness, respectively, of the operator Ψ.

Theorem 5.2.
(a) Under Assumption 3.1, the operator Ψ is semismooth.
(b) Let Assumption 3.4 hold. Assume that there exists a γ > 0 such that the set

Ωε =

{
ω : max

‖h‖1≤ε

(
ρ
(
F (y)(ω), h

)− ε−α ‖h‖1+α1

)
> 0

}
, ε > 0,

with the residual function ρ : R
m × R

m → R given by

ρ(x, h) = max
zT∈∂ψ(x+h)

|ψ(x+ h)− ψ(x)− zTh|,

has the following decrease property:

µ(Ωε) = O(εγ) as ε→ 0+.(5.3)

Then the operator Ψ is β-order semismooth at y with

β = min

{
γν

1 + γ/q0
,
αγν

α+ γν

}
, where

q0 = min
1≤i≤m

qi, ν =
q0 − r
q0r

if q0 <∞, ν =
1

r
if q0 =∞.

(5.4)

The proof of this theorem will be presented in section 5.1.
Remark 5.3. Condition (5.3) requires the measurability of the set Ωε, which will

be verified in the proof. We also remark that the α-order semismoothness of ψ implies
µ(Ωε)→ 0 as ε→ 0; see the discussion after Remark 5.4.

Remark 5.4. As we will see in Lemma 5.8, it would be sufficient to require only
the β-order Hölder continuity of F ′ in Assumption 3.4(a′), with β ≤ α as defined in
(5.4).

It might be helpful to give an explanation of the abstract condition (5.3) here.
For convenient notation, let x = F (y)(ω). Due to the α-order semismoothness of ψ

provided by Assumption 3.4, we have ρ
(
x, h

)
= O(‖h‖1+α1 ) as h→ 0; see Proposition

2.5. In essence, Ωε is the set of all ω ∈ Ω where there exists h ∈ εB̄m1 for which
this asymptotic behavior is not yet observed, because the remainder term ρ

(
x, h

)
exceeds ‖h‖1+α1 by a factor of at least ε−α, which grows infinitely as ε → 0. From
the continuity of the Lebesgue measure it is clear that µ(Ωε) → 0 as ε → 0. The
decrease condition (5.3) essentially states that the measure of the set Ωε where F (y)
takes “bad values,” i.e., values at which the radius of small residual is very small,
decreases with the rate εγ .
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The following Example 5.5 demonstrates the applicability of Theorem 5.2 to
NCPs. It also provides a very concrete interpretation of condition (5.3).

Example 5.5 (application to NCPs). The reformulation of NCPs (1.5) in the
form (1.7) leads to an important special case of the operator equations (1.10) under
consideration. Let the operator Z : Lp(Ω) → Lr(Ω), 1 ≤ r < p ≤ ∞, be given, and
consider the NCP (1.5), which we restate for convenience:

y ≥ 0, Z(y) ≥ 0, yZ(y) = 0.(5.5)

In section 1 we showed that we can apply an NCP-function φ to transform (5.5) into
the equivalent operator equation

Φ(y) = 0, where Φ(y)(ω) = φ(y(ω), Z(y)(ω)), ω ∈ Ω.(5.6)

We now view the operator Φ as a special case of the more general class of operators
Ψ defined in (1.8) and interpret Assumptions 3.1 and 3.4 in this context. To this end,
we choose Y = Lp(Ω), set r1 = r2 = r, and define

F : y ∈ Y �→ (y, Z(y)) ∈ Lr1(Ω)× Lr2(Ω).

Then (5.6) is equivalent to (1.10) with ψ = φ. Assume that
(1) the operator Z : Lp(Ω)→ Lr(Ω) is continuously Fréchet differentiable;
(2) there is q ∈ (r,∞] such that Z : Lp(Ω)→ Lq(Ω) is locally Lipschitz continu-

ous;
(3) φ is Lipschitz continuous;
(4) φ is semismooth.

Then Assumption 3.1 is satisfied with q1 = p and q2 = q. In fact, (1) and the
continuous embedding Lp(Ω) ⊂ Lr(Ω) imply Assumption 3.1(a). Further, (2) and the
Lipschitz continuity of the identity u ∈ Lp(Ω) �→ u ∈ Lp(Ω) yield Assumption 3.1(b).
Finally, (3) and (4) imply Assumption 3.1(c)–(d). Therefore, we can apply Theorem
5.2 and obtain that Φ is semismooth:

sup
M∈∂◦Φ(y+s)

‖Φ(y + s)− Φ(y)−Ms‖Lr = o(‖s‖Lp) as s→ 0 in Lp(Ω).(5.7)

Further, we have for all M ∈ ∂◦Φ(u) and v ∈ Y
Mv = d1v + d2 · (Z ′(y)v),(5.8)

where d ∈ L∞(Ω)2 is a measurable selection of ∂φ(y, Z(y)).
In Example 5.6 we will show that the optimal control problem (1.6) can be con-

verted to an equivalent NCP for which the above assumptions (1), (2) are satisfied.
In the rest of this example we focus on semismoothness of order β > 0. As above,

we see that Assumption 3.4 holds if instead of (1) and (4) we require the following:
(1′) The operator Z : Lp(Ω) → Lr(Ω) is α-Hölder continuously Fréchet differen-

tiable.
(4′) φ is α-order semismooth.

If condition (5.3) is also satisfied, we can apply Theorem 5.2 to derive the β-order
semismoothness of Φ.

Once we have chosen a particular NCP-function, condition (5.3) can be made
very concrete. We discuss this for the Fischer–Burmeister function φ = φFB , which
is Lipschitz continuous and 1-order semismooth and thus satisfies Assumptions 3.4(c)
and (d′) with α = 1. Further, this function is C∞ on R

2 \ {0} with derivatives

∇φ(x) =
x

‖x‖2
−
(
1
1

)
, ∇2φ(x) =

1

‖x‖32

(
x2

2 −x1x2

−x1x2 x2
1

)
.
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The eigenvalues of ∇2φ(x) are 0 and ‖x‖−1
2 . In particular, we see that ‖∇2φ(x)‖2 =

‖x‖−1
2 explodes as x→ 0. If 0 /∈ [x, x+h], then Taylor expansion of φ(x) about x+h

yields, with appropriate τ ∈ [0, 1],

ρ(x, h) = |φ(x+ h)− φ(x)−∇φ(x+ h)Th| = 1

2
|hT∇2φ(x+ τh)h| ≤ ‖h‖22

2 ‖x+ τh‖2
.

Furthermore, ρ(0, h) = 0, ρ(x, 0) = 0. Our aim is to show that (5.3) is equivalent to
the condition

µ ({0 < ‖F (y)‖1 < ε}) = O(εγ) as ε→ 0.(5.9)

Obviously, this follows easily when we have established the following relation:

{0 < ‖F (y)‖1 < ε} ⊂ Ωε ⊂ {0 < ‖F (y)‖1 < (1 + 2−1/2)ε}.(5.10)

To show the first inclusion in (5.10), let ω be such that x = F (y)(ω) satisfies 0 <
‖x‖1 < ε, and choose h = −tx, where t ∈ (1,

√
2) is such that ‖h‖1 ≤ ε. Then a

straightforward calculation yields

ρ(x, h) = 2 ‖x‖2 ≥
√

2 ‖x‖1 =

√
2

t
‖h‖1 > ‖h‖1 ≥ ε−1 ‖h‖21 .

This implies that ω ∈ Ωε and thus proves the first inclusion.
To show the second inclusion in (5.10), let u = F (y). If u(ω) = 0, then certainly

ω /∈ Ωε, since then ρ(u(ω), ·) ≡ 0. If on the other hand ‖u(ω)‖1 ≥ (1 + 2−1/2)ε, then
we have for all h ∈ εB̄2

1

ρ
(
u(ω), h

) ≤ ‖h‖22
2 ‖u(ω) + τh‖2

≤ ‖h‖21√
2 ‖u(ω) + τh‖1

≤ ε−1 ‖h‖21 ,

and thus ω /∈ Ωε.
Having established the equivalence of (5.3) and (5.9), the meaning of (5.3) be-

comes apparent: The set {0 < ‖F (y)‖1 < ε} on which the decrease rate in measure is
assumed is the set of all ω where strict complementarity holds, but is less than ε, i.e.,
0 < |y(ω)| + |Z(y)(ω)| < ε. In a neighborhood of these points the curvature of φ is
very large since ‖∇2φ‖ is big. This requires that |F (y+s)(ω)−F (y)(ω)| must be very
small in order to have a sufficiently small residual ρ(F (y)(ω), F (y+ s)(ω)−F (y)(ω)).

We stress that a violation of strict complementarity, i.e., y(ω) = Z(y)(ω) = 0,
does not cause any problems, since then ρ(F (y)(ω), ·) = ρ(0, ·) ≡ 0.

In the next example, we return to the control problem (1.6).
Example 5.6 (application to a control problem). We consider the constrained

elliptic control problem (1.6) and show that it is equivalent to an NCP satisfying the
conditions (a) and (b) derived in the previous Example 5.5. Further, we establish ad-
ditional results that will be useful in section 6.2 where we describe how the developed
semismooth Newton method can be applied to solve the control problem.

Denote by A ∈ L(H1
0 , H

−1) the linear operator on the left-hand side of (1.6b).
Due to the uniform ellipticity assumption, it is well known thatA is a homeomorphism,
so that, using the continuous embedding L2(Ω) ⊂ H−1(Ω) = H1

0 (Ω)∗, the control-to-
state mapping w ∈ L2(Ω) �→ u(w) = A−1w ∈ H1

0 (Ω) is continuous linear and thus
smooth with Fréchet derivative u′(w) : v ∈ L2(Ω) �→ A−1v ∈ H1

0 (Ω). Therefore,
denoting by ∇J(w) ∈ L2(Ω) the L2-Riesz representation of the gradient of J , we have

∇J(w) = (A−1)∗(A−1w − ud) + λ(w − wd).



820 MICHAEL ULBRICH

The first-order necessary (and here also sufficient) optimality conditions for (1.6a)
result in the pointwise complementarity system

w ≤ b, ∇J(w) ≤ 0, (w − b)∇J(w) = 0 on Ω.(5.11)

Introducing the new unknown y = b−w ∈ L2(Ω) and the operator Z : L2(Ω)→ L2(Ω),
Z(y) = −∇J(b−y), the optimality system (5.11) is equivalent to the NCP (5.5); their
solutions are related via the identity w = b− y. Now choose p such that

p ∈ (2,∞] if n = 1, p ∈ (2,∞) if n = 2, and p ∈
(
2,

2n

(n− 2)

)
if n ≥ 3.

(5.12)

Then the continuous embedding H1
0 (Ω) ⊂ Lp(Ω) holds. We have

Z(y) = G(y) + λy, where G(y) = (A−1)∗(A−1(y − b) + ud) + λ(wd − b).
Since (A−1)∗(A−1(y−b)+ud) ∈ H1

0 (Ω) ⊂ Lp(Ω) for y ∈ L2(Ω) and λ(wd−b) ∈ L∞(Ω),
G maps L2(Ω) continuously affine linearly into Lp(Ω).

Next, consider a solution y of the NCP. If y(x) = 0, then 0 ≤ Z(y)(x) = G(y)(x)+
λy(x) = G(y)(x). If y(x) �= 0, then y(x) > 0 and Z(y)(x) = 0, which implies
y(x) = −λ−1G(y)(x) > 0. This shows y = max{−λ−1G(y), 0} ∈ Lp(Ω).

Therefore, with p as in (5.12), the NCP corresponding to the control problem has
the following properties:

(1) Any solution of the NCP lies in Lp(Ω), with p > 2 as in (5.12).
(2) Z : L2(Ω)→ L2(Ω) is continuous affine linear.
(3) Z(y) = G(y) + λy, where G : L2(Ω) → Lp(Ω), p > 2 as in (1), is continuous

affine linear. In particular, Z maps Lp(Ω) continuously affine linearly to
Lp(Ω).

From these results we can immediately derive the assumptions (1), (2), and (1′) in
Example 5.5. In fact, from (1) here we see that we can pose the problem in Lp(Ω)
instead of L2(Ω). Now let q = p and r = 2. Then (2) shows that Z maps Lp(Ω)
continuously affine linearly to Lr(Ω), and thus condition (1) of Example 5.5, and
even condition (1′) with α = 1, hold. From (3) we conclude that Z maps Lp(Ω)
continuously affine linearly to Lq(Ω) with q = p. This establishes condition (2) of
Example 5.5.

The control problem of the previous example is further considered in section 6.2.
Remark 5.7. In Example 5.6 we saw that NCPs arising in practice sometimes

satisfy stronger assumptions than those stated in Example 5.5. A typical situation is
the following: The NCP is posed in the Hilbert space L2(Ω), and Z : L2(Ω)→ L2(Ω)
is continuously Fréchet differentiable. Further, one can find p, q > 2 such that Z maps
Lp(Ω) locally Lipschitz continuously to Lq(Ω). Finally, any solution of the NCP can
be shown to lie in Lp(Ω). This is the situation we had in Example 5.6.

5.1. Proof of Theorem 5.2. We can simplify the analysis by exploiting the
following fact.

Lemma 5.8. Let Assumption 3.1 hold and suppose that the operator

Λ : u ∈
∏

i
Lqi(Ω) �→ ψ(u) ∈ Lr(Ω)

is semismooth at u = F (y). Then the operator Ψ : Y → Lr(Ω) defined in (1.8) is
semismooth at y. Further, if Assumption 3.4 holds and Λ is α-order semismooth at
u = F (y), then Ψ is α-order semismooth at y.

Proof. We first observe that, given anyM ∈ ∂◦Ψ(y+s), there isMΛ ∈ ∂◦Λ(F (y+
s)) such that M = MΛF

′(y + s). In fact, there exists a measurable selection d ∈
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L∞(Ω)m of ∂ψ(ω) such that M =
∑
i di · F ′

i (y + s), and obviously MΛ : v �→∑
i divi

yields an element of ∂◦Λ(F (y + s)) with the desired property. A more general chain
rule will be established in Theorem 7.2.

Setting u = F (y), v = F (y + s)− F (y), and w = F (y + s), we have

sup
M∈∂◦Ψ(y+s)

‖Ψ(y + s)−Ψ(y)−Ms‖Lr

≤ sup
MΛ∈∂◦Λ(w)

‖Λ(w)− Λ(u)−MΛF
′(y + s)s‖Lr

≤ sup
MΛ∈∂◦Λ(w)

‖Λ(w)− Λ(u)−MΛv‖Lr

+ sup
MΛ∈∂◦Λ(w)

∥∥MΛ

(
F (y + s)− F (y)− F ′(y + s)s

)∥∥
Lr

def
= ρΛ + ρMF .

By the local Lipschitz continuity of F and the semismoothness of Λ, we obtain

ρΛ = o(‖v‖ΠiLqi ) = o(‖s‖Y ) as s→ 0 in Y .

Further, since d ∈ LψB̄mL∞ by Lemma 4.7, we have by Assumption 3.1(a)

‖ρMF ‖Lr ≤ Lψ
∑

i
‖Fi(y + s)− Fi(y)− F ′

i (y + s)s‖Lr
≤ Lψ

∑
i
cr,ri(Ω) ‖Fi(y + s)− Fi(y)− F ′

i (y + s)s‖Lri
= o(‖s‖Y ) as s→ 0 in Y .

This proves the first result.
Now let Assumption 3.4 hold and Λ be α-order semismooth at u = F (y).

Then ρΛ and ρMF are both of the order O(‖s‖1+αY ), which implies the second
assertion.

For the proof of Theorem 5.2 we need, as a technical intermediate result, the
Borel measurability of the function

ρ : R
m × R

m → R, ρ(x, h) = max
zT∈∂ψ(x+h)

|ψ(x+ h)− ψ(x)− zTh|.(5.13)

We prove this by showing that ρ is upper semicontinuous. Readers familiar with this
type of result might want to skip the proof of Lemma 5.9.

Recall that a function f : R
l → R is upper semicontinuous at x if

lim sup
x′→x

f(x′) ≤ f(x).

Equivalently, f is upper semicontinuous if and only if {x : f(x) ≥ a} is closed for all
a ∈ R.

Lemma 5.9. Let f : (x, z) ∈ R
l × R

m �→ R be upper semicontinuous. Moreover,
let the multifunction Γ : R

l ⇒ R
m be upper semicontinuous and compact-valued. Then

the function

g : R
l → R, g(x) = max

z∈Γ(x)
f(x, z),

is well defined and upper semicontinuous.
Proof. For x ∈ R

l, let (zk) ⊂ Γ(x) be such that

lim
k→∞

f(x, zk) = sup
z∈Γ(x)

f(x, z).
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Since Γ(x) is compact, we may assume that zk → z∗(x) ∈ Γ(x). Now, by the upper
semicontinuity of f ,

f
(
x, z∗(x)

) ≥ lim sup
k→∞

f(x, zk) = sup
z∈Γ(x)

f(x, z) ≥ f(x, z∗(x)).
Thus, g is well defined, and there exists z∗ : R

l → R
m with g(x) = f(x, z∗(x)).

We now prove the upper semicontinuity of g at x. Let (xk) ⊂ R
l tend to x in

such a way that

lim
k→∞

g(xk) = lim sup
x′→x

g(x′),

and set zk = z∗(xk) ∈ Γ(xk). By the upper semicontinuity of Γ, there exists (ẑk) ⊂
Γ(x) with (ẑk − zk)→ 0 as k →∞.

Since Γ(x) is compact, a subsequence can be selected such that the sequence (ẑk),
and thus (zk), converges to some ẑ ∈ Γ(x). Now, using that f is upper semicontinuous
and ẑ ∈ Γ(x),

lim sup
x′→x

g(x′) = lim
k→∞

g(xk) = lim
k→∞

f(xk, zk) = lim sup
k→∞

f(xk, zk) ≤ f(x, ẑ) ≤ g(x).

Therefore, g is upper semicontinuous at x.
Lemma 5.10. Let ψ : R

m → R be locally Lipschitz continuous. Then the function
ρ defined in (5.13) is well defined and upper semicontinuous.

Proof. Since ∂ψ is upper semicontinuous and compact-valued, the multifunction

(x, h) ∈ R
m × R

m �→ ∂ψ(x+ h)

is upper semicontinuous and compact-valued as well. Further, the mapping

(x, h, z) �→ |ψ(x+ h)− ψ(x)− zTh|
is continuous, and we may apply Lemma 5.9, which yields the assertion.

Proof of Theorem 5.2. By Lemma 5.8, it suffices to prove the semismoothness (of
order β) of the operator

Λ : u ∈
∏

i
Lqi(Ω) �→ ψ(u) ∈ Lr(Ω).

(a) Semismoothness. In Lemma 5.10 we showed that the function

ρ : R
m × R

m → R, ρ(x, h) = max
zT∈∂ψ(x+h)

|ψ(x+ h)− ψ(x)− zTh|,

is upper semicontinuous and thus Borel measurable. Hence, for u, v ∈∏i L
ri(Ω), the

function ρ(u, v) is measurable. We define the measurable function

a =
ρ(u, v)

‖v‖1 + 1{v=0}
.

Since ρ(u(ω), v(ω)) = 0 whenever v(ω) = 0, we obtain

ρ(u, v) = a ‖v‖1.
Furthermore,

a(ω) =
ρ
(
u(ω), v(ω)

)
‖v(ω)‖1 + 1{v=0}(ω)

=
o
(‖v(ω)‖1)

‖v(ω)‖1 + 1{v=0}(ω)
→ 0 as v(ω)→ 0.(5.14)
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Due to the Lipschitz continuity of ψ, we have

ρ(x, h) ≤ 2Lψ ‖h‖1,(5.15)

which implies a ∈ 2LψB̄L∞ .
Now let (vk) tend to zero in the space

∏
i L

qi(Ω), and set ak = a|v=vk . Then
every subsequence of (vk) itself contains a subsequence (vk′) such that vk′ → 0 a.e.
on Ω. By (5.14), this implies ak′ → 0 a.e. on Ω. Since (ak′) is bounded in L∞(Ω), we
conclude

lim
k′→∞

‖ak′‖Lt = 0 for all t ∈ [1,∞).

Hence, in Lt(Ω), 1 ≤ t < ∞, zero is an accumulation point of every subsequence of
(ak). This proves ak → 0 in all spaces Lt(Ω), 1 ≤ t <∞.

Since the sequence (vk), vk → 0, was arbitrary, we thus have proven that, for all
1 ≤ t <∞,

‖a‖Lt → 0 as ‖v‖ΠiLqi → 0.

Now we can use Hölder’s inequality to obtain

‖ρ(u, v)‖Lr(Ω) ≤
∑

i
‖avi‖Lr ≤

∑
i
‖a‖Lpi ‖vi‖Lqi

≤
(

max
1≤i≤m

‖a‖Lpi
)
‖v‖ΠiLqi = o

(‖v‖ΠiLqi ) as ‖v‖ΠiLqi → 0,
(5.16)

where pi = qir
qi−r if qi < ∞, and pi = r if qi = ∞. Note that here we exploited the

fact that r < qi. This proves the semismoothness of Λ.
(b) Semismoothness of order β. We now suppose that Assumption 3.4 and, in

addition, (5.3) hold. First, note that for fixed ε > 0 the function

(x, h) ∈ R
m × R

m �→ ρ(x, h)− ε−α ‖h‖1+α1

is upper semicontinuous and that the multifunction

x ∈ R
m �→ εB̄m1

is compact-valued and upper semicontinuous. Hence, by Lemma 5.9, the function

x ∈ R
m �→ max

‖h‖1≤ε

(
ρ(x, h)− ε−α ‖h‖1+α1

)
is upper semicontinuous and therefore Borel measurable. This proves the measur-
ability of the set Ωε appearing in (5.3). For ε > 0 and 0 < β ≤ α we define the
set

Ωβε =
{
ω : ρ

(
u(ω), v(ω)

)
> ε−β ‖v(ω)‖1+β1

}
and observe that

Ωβε ⊂ Ωε ∪ {‖v‖1 > ε} def
= Ωε ∪ Ω′

ε.

In fact, let ω ∈ Ωβε be arbitrary. The nontrivial case is ‖v(ω)‖1 ≤ ε. We then obtain
for h = v(ω)

ρ
(
u(ω), h

)
> ε−β ‖h‖1+β1 = ε−αεα−β ‖h‖1+β1 ≥ ε−α ‖h‖α−β1 ‖h‖1+β1 = ε−α ‖h‖1+α1 ,
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and thus, since ‖h‖1 ≤ ε,
max

‖h‖1≤ε

(
ρ
(
u(ω), h

)− ε−α ‖h‖1+α1

)
> 0,

showing that ω ∈ Ωε.
In the case q0 = min1≤i≤m qi <∞ we derive the estimate

µ(Ω′
ε) = µ ({‖v‖1 > ε}) ≤

∥∥ε−1 ‖v‖1
∥∥q0
Lq0 (Ω′

ε)

≤ ε−q0
(
max
i
cq0,qi(Ω

′
ε)
)q0 ‖v‖q0ΠiLqi = ε−q0O

(‖v‖q0ΠiLqi ) .
If we choose ε = ‖v‖λΠiLqi , 0 < λ < 1, then

µ(Ωβε) ≤ µ(Ωε) + µ(Ω′
ε) = O

(‖v‖γλΠiLqi )+O(‖v‖(1−λ)q0
ΠiLqi

)
.

This estimate is also true in the case q0 = ∞, since then µ(Ω′
ε) = 0 as soon as

‖v‖ΠiLqi < 1. This can be seen by noting that then for a.a. ω ∈ Ω the following holds:

‖v(ω)‖1 ≤ ‖‖v‖1‖L∞ ≤ ‖v‖ΠiLqi ≤ ‖v‖
λ
ΠiLqi

= ε.

Introducing ν = q0−r
q0r

if q0 <∞, and ν = 1/r otherwise, for all 0 < β ≤ α, we obtain,

using (5.15) and Lemma A.1,

‖ρ(u, v)‖Lr(Ωβε) ≤
∥∥2Lψ ‖v‖1 ∥∥Lr(Ωβε) ≤ 2Lψcr,q0(Ωβε) ‖v‖Lq0 (Ωβε)m

≤ 2Lψµ(Ωβε)
ν ‖v‖Lq0 (Ωβε)m

= O
(‖v‖1+γλνΠiLqi

)
+O

(‖v‖1+(1−λ)νq0
ΠiLqi

)
.

(5.17)

Again, we have used here the fact that r < q0 ≤ qi, which allowed us to take advantage
of the smallness of the set Ωβε.

Finally, on Ωcβε, (1 + β)r ≤ q0, 0 < β ≤ α, holds with our choice ε = ‖v‖λΠiLqi
‖ρ(u, v)‖Lr(Ωcβε) ≤

∥∥∥ε−β ‖v‖1+β1

∥∥∥
Lr(Ωcβε)

≤ cr, q01+β
(Ωcβε) ‖v‖−βλΠiLqi

‖v‖1+βLq0 (Ωcβε)
m

= O
(‖v‖1+β(1−λ)

ΠiLqi

)
.

Therefore,

‖ρ(u, v)‖Lr = O
(‖v‖1+γλνΠiLqi

)
+O

(‖v‖1+(1−λ)νq0
ΠiLqi

)
+O

(‖v‖1+β(1−λ)
ΠiLqi

)
.

We now choose 0 < λ < 1 and β > 0 with β ≤ α, (1 + β)r ≤ q0, in such a way that
the order of the right-hand side is maximized. In the case (1+α)r ≥ q0 the minimum
of all three exponents is maximized for the choice β = q0−r

r = νq0 and λ = q0
γ+q0

.

Then all three exponents are equal to 1 + γνq0
γ+q0

, and thus

‖ρ(u, v)‖Lr = O

(
‖v‖1+

γνq0
γ+q0

ΠiLqi

)
.(5.18)

If, on the other hand, (1 + α)r < q0, then the third exponent is smaller than the
second one for all 0 < λ < 1 and 0 < β ≤ α. Further, it is not difficult to see that
under these constraints the first and third exponent become maximal for β = α and
λ = α

α+γν and attain the value 1 + αγν
α+γν . Hence,

‖ρ(u, v)‖Lr = O

(
‖v‖1+

αγν
α+γν

ΠiLqi

)
.(5.19)

Combining (5.18) and (5.19) proves the β-order semismoothness of Λ with β as in
(5.4).
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5.2. Illustrations. In this section we give two examples to illustrate the above
analysis by pointing out the necessity of the main assumptions and by showing that
the derived results cannot be improved in several respects.

In order to prevent our examples from being too academic, we will not work with
the simplest choices possible. Rather, we will throughout use reformulations of NCPs
based on the Fischer–Burmeister function.

The examples address the following items:
• Example 5.11 shows the necessity of the norm gap between Lqi- and Lr-norms.
• Example 5.12 discusses the sharpness of our order of semismoothness β in

Theorem 5.2 for varying values of γ.
At the indicated places (5.16) and (5.17) in the above proof, we needed the gap
between the Lr- and Lqi-norms in order to apply Hölder’s inequality. The following
example illustrates that Theorem 5.2 does not hold in general if we drop the condition
ri < qi in Assumption 3.1.

Example 5.11 (Necessity of the norm gap r < qi). We return to the setting of
NCPs as described in Example 5.5. Under the assumptions stated there, we obtain
from Theorem 5.2 that the estimate (5.7) holds, where 1 ≤ r < q ≤ ∞. Our aim
here is to show that the requirement r < q is indispensable in the sense that (5.7) is
violated in general for r ≥ q.

As we will see in section 6, the estimate (5.7) at a solution y of the NCP is the
main tool for proving fast local convergence of Newton’s method. Hence, we will
construct a simple NCP with a unique solution for which (5.7) fails to hold whenever
r ≥ q. Hereby, we use the Fischer–Burmeister NCP-function φFB defined in (1.4) for
the reformulation (5.6) of the NCP.

Let 1 < p ≤ ∞ be arbitrary, choose Ω = (0, 1), and set

Z(y)(ω) = y(ω) + ω.

Obviously, ȳ ≡ 0 is the unique solution of the NCP. Choosing q = p, φ = φFB , and
α = 1, the assumption in Example 5.5, and hence also Assumption 3.4, is satisfied for
all r ∈ [1, p). To show that the requirement r < p is really necessary to obtain the
semismoothness of Φ, we will investigate the residual

R(s)
def
= Φ(ȳ + s)− Φ(ȳ)−Ms, M ∈ ∂◦Φ(ȳ + s),(5.20)

at ȳ ≡ 0 with s ∈ L∞(Ω), s ≥ 0, s �= 0. Our aim is to show that for all r ∈ [1,∞]

‖R(s)‖Lr = o(‖s‖Lp) as s→ 0 in L∞ =⇒ r < p(5.21)

holds. To this end, let s ∈ Lp(Ω), s ≥ 0, y, v ∈ Lp(Ω) and define F (y) = (y, Z(y)).
Then

Φ(y)(ω) = φ(y, Z(y))(ω) = φ(y(ω), y(ω) + ω),

(F ′(y)v)(ω) = (v, Z ′(y)v)(ω) = (v(ω), v(ω))

for almost all ω. Also, since ȳ ≡ 0, any M ∈ ∂◦Φ(ȳ+ s) = ∂◦Φ(s) satisfies, for almost
all ω,

(Mv)(ω) ∈ ∂φ(F (s)(ω))(F ′(s)v)(ω) = ∂φ(σ, σ + ω)(v(ω), v(ω))

with σ = s(ω). Thus,

(Mv)(ω) = φ′(σ, σ + ω)(v(ω), v(ω)),
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since φ is smooth except at the origin and (s(ω), s(ω) + ω) �= (0, 0) for almost all ω.
Using this, a straightforward calculation gives

|R(s)(ω)| = |φ(σ, σ + ω)− φ(0, ω)− φ′(σ, σ + ω)(σ, σ)| = ω − ω(σ + ω)√
2σ2 + 2σω + ω2

a.e. on Ω = (0, 1). Now let 0 < ε < 1. For the special choice sε
def
= ε1(0,ε), i.e.,

sε(ω) = ε for ω ∈ (0, ε), and sε(ω) = 0 otherwise, we obtain

‖sε‖Lp = ε
p+1
p (1 < p <∞), ‖sε‖L∞ = ε.

In particular, sε → 0 in L∞ as ε→ 0. For almost all 0 < ω < ε there holds

|R(sε)(ω)| ≥ ω
(
1− sup

0<t<1

1 + t√
2 + 2t+ t2

)
=

5− 2
√

5

5
ω ≥ ω

10
.

Hence, ‖R(sε)‖L∞ ≥ ε
10 ≥

‖sε‖Lp
10 , and for all r ∈ [p,∞)

‖R(sε)‖Lr ≥
1

10

(∫ ε

0

ωrdω

) 1
r

=
ε
r+1
r

10(r + 1)
1
r

≥ ‖sε‖Lp
10(r + 1)

1
r

.

Therefore, (5.21) is proved. This shows that in (5.7) the norm on the left-hand side
must be stronger than on the right-hand side.

Next, we show that, at least in the case q0 ≤ (1 + α)r, the order of our semi-
smoothness result is sharp. By showing this for varying values of γ, we also observe
that decreasing values of γ reduce the maximum order of semismoothness exactly as
stated in Theorem 5.2. Hence, our result does not overestimate the role of γ.

Example 5.12 (order of semismoothness and its dependence on γ). We consider
the following NCP, which generalizes the one in Example 5.11: Let 1 < p ≤ ∞ be
arbitrary, set Ω = (0, 1), and choose

Z(y)(ω) = y(ω) + ωθ, θ > 0.

Obviously, ȳ ≡ 0 is the unique solution of the NCP. Choosing q = p, φ = φFB , and
α = 1, the assumptions in Example 1.5, and hence also Assumption 3.4, is satisfied
for all r ∈ [1, p).

From Z(ȳ)(ω) = (0, ωθ) it follows that γ = 1/θ is the maximum value for which
condition (5.9), and thus the equivalent condition (5.3), is satisfied.

With the residual R(s) as defined in (5.20), we obtain

|R(s)(ω)| = ωθ − ωθ(s(ω) + ωθ)√
2s(ω)2 + 2s(ω)ωθ + ω2θ

.

For ε ∈ (0, 1) and sε
def
= εθ1(0,ε) we have

‖sε‖Lp = ε
pθ+1
p (1 < p <∞), ‖sε‖L∞ = εθ.

Further, for 0 < ω < ε we have

|R(sε)(ω)| ≥ ωθ
(
1− sup

0<t<1

1 + t√
2 + 2t+ t2

)
=

5− 2
√

5

5
ωθ ≥ ω

θ

10
.

Hence, for all r ∈ [1, p)

‖R(sε)‖Lr ≥
1

10

(∫ ε

0

ωrθdω

) 1
r

=
ε
rθ+1
r

10(rθ + 1)
1
r

≥ ‖sε‖
prθ+p
prθ+r

Lp

10(rθ + 1)
1
r

=
‖sε‖

1+ γν
1+γ/q0

Lp

10(rθ + 1)
1
r

,
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with q0 = p = q, γ = 1/θ, and ν as in (5.4). This shows that the value of β given in
Theorem 5.2 is sharp for all values of θ (and thus γ) at least as long as q0 ≤ (1+α)r,
which in the current setting can be written as p ≤ (1 + α)r.

We think that in the case q0 > (1 + α)r our value of β could still be slightly
improved by splitting Ω into more than the two parts Ωβε and Ωcβε by choosing
different values εk for ε that correspond to different powers of ‖v‖ΠiLqi . In order to
keep the analysis as clear as possible, we will not pursue this idea any further in the
current paper.

6. Semismooth Newton method. We now apply the developed semismooth-
ness results to derive a superlinearly convergent Newton-type method for the solution
of the nonsmooth operator equation

Ψ(y) = 0,(6.1)

with Ψ as defined in (1.8). Throughout this chapter, let ȳ ∈ Y denote a solution to
(6.1). We impose the following regularity condition on ∂◦Ψ.

Assumption 6.1. There exist a Banach space Y0 ⊃ Y (Y continuously embedded)
and positive constants η, CM−1 such that, for all y ∈ ȳ + ηBY , every M ∈ ∂◦Ψ(y)
can be extended to an invertible operator M ∈ L(Y0, L

r) with ‖M−1‖Lr,Y0
≤ CM−1 .

Example 6.2 (application to NCP). In the following, we want to discuss why the
introduction of the additional space Y0 is of importance. To this end, we consider
the reformulation of the NCP (1.5) in the form (5.6), as described in Example 5.5.
Recall that the operators M ∈ ∂◦Φ(y) assume the form (5.8). Now define Ω1 =
{ω ∈ Ω : d2(ω) = 0}. Then for all ω ∈ Ω1 we have

(Mv)(ω) = d1(ω)v(ω).

This shows that (i) M can only be expected to be invertible (between appropriate
spaces) if d1 �= 0 on Ω1 and (ii) Mv is in general not more regular (in the Lp-sense)
than v and vice versa. Therefore, it is not appropriate to assume that M ∈ L(Y, Lr)
is continuously invertible, as the norm on Y = Lp is stronger than on Lr. However, it
is reasonable to assume that M is an Lr-automorphism. This leads to the regularity
Assumption 6.1 with Y0 = Lr(Ω), which can be verified to hold for many NCPs
arising in practice; see [63, 62]. In [63] and [62] sufficient conditions for regularity are
established that are widely applicable and easy to apply.

Being aware of the potential gap between the Y0- and Y -norms, we propose the
following Newton method for the solution of (6.1). The algorithm includes a smooth-
ing step to overcome the discrepancy of norms, which will be discussed in section
6.1.

Algorithm 6.3 (semismooth Newton method).
0. Choose an initial point y0 ∈ Y sufficiently close to a solution ȳ ∈ Y of (6.1).

Set k = 0.
1. If Ψ(yk) = 0, then stop with solution yk.
2. Compute Mk ∈ ∂◦Ψ(yk), determine sk ∈ Y0 by solving

Mksk = −Ψ(yk),

and set ynk+1 = yk + sk.
3. Perform a smoothing step:

ynk+1 ∈ Y 0 �→ yk+1 ∈ Y.

4. Increment k by one and go to Step 1.
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For the smoothing step we require the following.
Assumption 6.4. There exists CS > 0 such that, for all k, the following holds:

‖yk+1 − ȳ‖Y ≤ CS‖ynk+1 − ȳ‖Y0 .

The local convergence proof for Algorithm 6.3 will clarify the role of the smoothing
step.

Theorem 6.5. Let Assumptions 3.1, 6.1, and 6.4 hold. Then there exists δ > 0
such that for all y0 ∈ ȳ+δBY Algorithm 6.3 is well defined and either terminates with
a solution yk of (6.1) or generates a sequence (yk) ⊂ Y that converges q-superlinearly
to ȳ.

Under the stronger Assumption 3.4 and (5.3), the rate of convergence is of q-order
1 + β, with β > 0 given in (5.4).

Proof. Let yk ∈ ȳ + δBY with δ ∈ (0, η] sufficiently small. Then, by Assumption
6.1, the step sk is well defined. Furthermore, using Assumption 6.1, Ψ(ȳ) = 0, and
Theorem 5.2 gives, as δ → 0,

‖ynk+1 − ȳ‖Y0
= ‖yk −M−1

k Ψ(yk)− ȳ‖Y0
= ‖M−1

k (Mk(yk − ȳ)−Ψ(yk))‖Y0

≤ ‖M−1
k ‖Lr,Y0 ‖0−Ψ(yk)−Mk(ȳ − yk)‖Lr

≤ CM−1 ‖Ψ(ȳ)−Ψ(yk)−Mk(ȳ − yk)‖Lr = o(‖yk − ȳ‖Y ),

(6.2)

and thus, due to the properties of the smoothing step (see Assumption 6.4),

‖yk+1 − ȳ‖Y ≤ CS‖ynk+1 − ȳ‖Y0
= o(‖yk − ȳ‖Y ).

We conclude that, if δ is sufficiently small and y0 ∈ ȳ+ δBY , then inductively, as long
as Ψ(yk) �= 0, the new point yk+1 is well defined and yk+1 ∈ ȳ + δBY . Furthermore,

‖yk+1 − ȳ‖Y = o(‖yk − ȳ‖Y ).

This establishes the q-superlinear convergence.
Under Assumption 3.4 and (5.3), we can strengthen (6.2) to

‖ynk+1 − ȳ‖Y0 = O
(‖yk − ȳ‖1+βY

)
as k →∞,

where β is given by (5.4). Hence, using the properties of the smoothing step,

‖yk+1 − ȳ‖Y = O
(‖yk − ȳ‖1+βY

)
as k →∞,

which proves convergence with q-order 1 + β.

6.1. Remarks on smoothing steps. Examples 5.11 and 6.2 demonstrate that
the incorporation of a smoothing step into the Newton method in general cannot be
avoided. However, the smoothing step is needed only in pathological cases, and it
turns out to be quite common in practice that such bad situations do not occur very
often. Since the design of smoothing steps is by no means trivial and its computation
usually requires at least an additional evaluation of F , it would be valuable to have
criteria at hand that indicate whether a smoothing step is needed. The underlying
idea would be to run the algorithm without a smoothing step unless the indicator
tells us that a smoothing is required. In the following, we discuss several aspects of
this issue.

1. If the norms on Y0 and Y are equivalent, then no smoothing step is needed;
i.e., yk+1 = ynk+1 can be chosen for all k.
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2. If in the kth iteration there holds

‖ynk+1 − ȳ‖Y ≤ CS‖ynk+1 − ȳ‖Y0 ,(6.3)

then the smoothing step can be skipped, i.e., yk+1 = ynk+1 can be chosen. However,
since ȳ is not available, this condition cannot be checked at runtime.

3. We now derive a condition that necessarily holds if a smoothing step may
be skipped. To this end, assume that ynk+1 satisfies (6.3) and that yk satisfies the
smoothness condition

‖yk − ȳ‖Y ≤ CS ‖yk − ȳ‖Y0
.(6.4)

Then, as shown in the proof of Theorem 6.5, for any κ > 0 there is a δ > 0 such that
for all yk ∈ ȳ + δBY

‖ynk+1 − ȳ‖Y0 ≤ κ ‖yk − ȳ‖Y ≤ κCS ‖yk − ȳ‖Y0

holds, and thus

‖ynk+1 − ȳ‖Y ≤ CS‖ynk+1 − ȳ‖Y0 ≤ κCS ‖yk − ȳ‖Y ≤ κC2
S ‖yk − ȳ‖Y0

.

Therefore,

‖sk‖Y0
≥ ‖yk − ȳ‖Y0

− ‖ynk+1 − ȳ‖Y0
≥ (1− κCS) ‖yk − ȳ‖Y0

,

‖sk‖Y ≤ ‖yk − ȳ‖Y + ‖ynk+1 − ȳ‖Y ≤ (1 + κCS)CS ‖yk − ȳ‖Y0
,

and for κ < 1/CS we conclude that

‖sk‖Y ≤
1 + κCS
1− κCSCS ‖sk‖Y0

→ CS ‖sk‖Y0
as κ→ 0.

We obtain the following result.
Lemma 6.6. If, for fixed ĈS > CS, yk is sufficiently close to ȳ in Y and

‖sk‖Y > ĈS ‖sk‖Y0
,(6.5)

then at least one of the conditions (6.3), (6.4) is violated.
Therefore, if (6.5) occurs and we have good reasons to believe that (6.4) is sat-

isfied (e.g., good residual reduction ‖Ψ(yk)‖Lq  ‖Ψ(yk−1)‖Lq with q = maxi qi and

smoothness of sk−1 in the sense that, e.g., ‖sk−1‖Y ≤ ĈS/2 ‖sk−1‖Y ), we will perform
a smoothing step to obtain yk+1 from ynk+1. If, on the other hand, it is doubtful that
yk satisfies (6.4), we have to return to iteration k and recompute yk from ynk by a
smoothing step.

Numerical tests showed that the following simpler rule without backtracking
works well in practice: Perform a smoothing step ynk+1 �→ yk+1 if (6.5) holds, and
choose yk+1 = ynk+1, otherwise.

So far, we have not described how smoothing steps can be obtained. We do this
now for the case of NCP reformulations.

Example 6.7 (smoothing steps for NCPs). We consider operators arising from
nonsmooth reformulations of NCPs as described in Example 5.5 and further inves-
tigated in the Examples 5.11 and 6.2. The following construction of a smoothing
step follows an idea in [38]; see also [64]. In addition to the assumptions stated in
Example 5.5, let us assume that the operator Z : Lp(Ω) → Lr(Ω) assumes the form
Z(y) = G(y) + λy, where λ ∈ L∞(Ω) is positive and bounded away from zero, and
G : Lr(Ω) �→ Lp(Ω) is Lipschitz continuous. Note that G(y) is smoother than its
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preimage y, since Lp(Ω) ⊂ Lr(Ω) with nonequivalent norms. This form of Z arises,
e.g., in the first-order necessary optimality conditions of a large class of optimal con-
trol problems with bounds on the control and L2-regularization [38, 60, 62, 63, 64].
In particular, in Example 5.6(2) we already observed this structure of Z when we
considered the elliptic control problem (1.6). This is further discussed in section 6.2.

It is well known and easy to verify that ȳ ∈ Lp(Ω) solves the NCP if and only if

S(ȳ)
def
= (ȳ − λ−1Z(ȳ))+ = ȳ,

where u+(ω)
def
= max{u(ω), 0}. Further, for all y ∈ Lr(Ω) there holds S(y) = λ−1G(y)−

with u−
def
= (−u)+. Hence, using |u− − v−| ≤ |u− v|, we obtain for all y ∈ Lr(Ω)

|S(y)− ȳ| = |S(y)− S(ȳ)| = λ−1 |G(y)− −G(ȳ)−| ≤ λ−1 |G(y)−G(ȳ)| ,

and therefore

‖S(y)− ȳ‖Lp ≤ ‖λ−1‖L∞ ‖G(y)−G(ȳ)‖Lp ≤ LG‖λ−1‖L∞ ‖y − ȳ‖Lr ,

where LG is the Lipschitz constant of G. This shows that the mapping ynk �→
yk

def
= S(ynk ) is a smoothing step with CS = LG‖λ−1‖L∞ for Y = Lp(Ω) and Y0 =

Lr(Ω).
Remark 6.8. The idea of constructing smoothing steps can actually be used for

a reformulation so that no smoothing step is required in the Newton method because
the resulting operator is semismooth from Lr(Ω) to Lr(Ω). The following approach
can be found in more generality in [62] and is motivated by [30]. In fact, let λ > 0,
and consider the NCP with Z(y) = G(y) + λy, where we assume that, for suitable
1 ≤ r < p ≤ ∞, the operatorG : Lr(Ω)→ Lr(Ω) is continuously Fréchet-differentiable
and that G : Lr(Ω) → Lp(Ω) is locally Lipschitz continuous. According to Example
6.7, the NCP is equivalent to

y − S(y) = 0.

The operator S(y) = (y−λ−1Z(y))+ = max{−λ−1G(y), 0} is a superposition operator
S(y) = Ψ(y) = ψ(F (y)) with

ψ(t) = max{−λ−1t, 0}

and F (y) = G(y). Application of Theorem 5.2 with m = 1, Y = Lr(Ω), r1 = r, and
q1 = p now yields the semismoothness of the operator Ψ : Lr(Ω)→ Lr(Ω). Choosing
the special NCP-function φ(x) = x1 −max{x1 − λ−1x2, 0} = min{x1, λ

−1x2}, we see
that

Φ(y) = φ(y, Z(y)) = y −max{y − λ−1Z(y), 0} = y − S(y)

holds. It is straightforward to verify the identity ∂◦Φ(y) = I − ∂◦Ψ(y). Due to the
semismoothness of Ψ, we obtain that Φ : Lr(Ω)→ Lr(Ω) is semismooth:

sup
M∈∂◦Φ(y+s)

‖Φ(y + s)− Φ(y)−Ms‖Lr

= sup
M∈∂◦Ψ(y+s)

‖Ψ(y + s)−Ψ(y)−Ms‖Lr = o(‖s‖Lr ) as ‖s‖Lr → 0.

Application of the semismooth Newton iteration to Φ(y) = 0 then essentially results
in the method described and analyzed in [30], which is equivalent to the primal dual
active set strategy [9].
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6.2. Application to a control problem. In this section we show how Al-
gorithm 6.3 can be used to solve the constrained elliptic control problem (1.6). In
Example 5.6 we converted (1.6) to an equivalent NCP and analyzed its properties. We
recall that our choices were Y = Lp(Ω), r1 = r2 = r = 2, and q1 = q2 = q = p with
p > 2 as in (5.12). We observed that the operator Z meets all of the assumptions of
Example 5.5. Therefore, the superposition operator Φ resulting from a reformulation
as operator equation (5.6) is semismooth if the NCP-function φ is Lipschitz continu-
ous and semismooth. The operator Φ is β-order semismooth with β as in Theorem 5.2
if, in addition, φ is α-order semismooth and (5.3) holds. Let us choose Y0 = L2(Ω).

For the application of Algorithm 6.3, several operations have to be performed.
For convenience, we drop the index k and denote by y ∈ Lp(Ω) the current iterate.

We first describe the computation of

Z(y) = G(y) + λy, G(y) = (A−1)∗(A−1(y − b) + ud) + λ(wd − b).
This requires the solution of two elliptic equations, the state equation (1.6b) with
right-hand side w = b− y and the adjoint equation

−
n∑

i,j=1

∂

∂xi

(
aji
∂v

∂xj

)
= ud − u on Ω;(6.6)

then G(y) = v + λ(wd − b) and Z(y) = G(y) + λy. Now Φ(y) is easily obtained by
applying the NCP-function φ pointwise to the pair of functions (y, Z(y)).

Next, we need to know what an element M of the generalized differential ∂◦Φ(y)
looks like. We have

M = d1 · I + d2 · Z ′(y) = d1 · I + d2 · ((A−1)∗A−1 + λI)

= (d1 + λd2) · I + d2 · (A−1)∗A−1,

with di ∈ L∞(Ω), (d1, d2) ∈ ∂φ(y, z) a.e. on Ω, where z = Z(y). For φ = φFB we
obtain (d1, d2) = φ′(y, z) pointwise a.e. on

{
x :
(
y(x), z(x)

) �= (0, 0)
}

and (d1, d2) ∈
∂φ(0, 0) =

{
(τ1 − 1, τ2 − 1) : τ21 + τ22 ≤ 1

}
pointwise a.e. on

{
x :
(
y(x), z(x)

)
= (0, 0)

}
.

It is easy to see that d1, d2 ≤ 0 and 2 − √2 ≤ |d1 + d2| ≤ 2 +
√

2 a.e. on Ω. Other
NCP-functions, e.g., φ(s, t) = min{s, t}, have similar properties. Therefore, the New-
ton system in step 2 of Algorithm 6.3 assumes the form

ds+ d2 · (A−1)∗A−1s = −Φ(y) with d = d1 + λd2.(6.7)

Note that d and d−1 are bounded in L∞ and that d1d2 ≥ 0.
We briefly sketch the way in which (6.7) can be solved efficiently by multigrid

methods. With s1 = A−1s and s2 = (A−1)∗s1 we have s = −d−1(Φ(y) + d2s2), and
s1, s2 ∈ H1

0 (Ω) solve the weakly coupled elliptic system

As1 = −d−1Φ(y)− d−1d2s2, A∗s2 = s1.(6.8)

This system can be solved very efficiently by multigrid methods; see, e.g., [27, sec-
tion 11]. Alternatively, we can eliminate s2 from (6.8) and obtain the compact fixed
point problem

s1 = −A−1
(
d−1Φ(y) + d−1d2 · (A−1)∗s1

)
,

to which a multigrid method of the second kind [27, section 16] can be applied. Within
each iteration, premultiplication by A−1 and (A−1)∗ has to be performed, which again
can be done by invoking fast solvers.
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Finally, a smoothing step is required. Note that the operator Z(y) = G(y)+λy has
exactly the structure we need to construct smoothing steps as described in Example
6.7, since G maps continuous affine linearly (and thus Lipschitz continuously) to
Lp(Ω), with p > 2 as in (5.12). Computation of a smoothing step is not cheap,
since, as shown above, evaluation of G requires us to solve two elliptic equations, the
state equation (1.6b) and the adjoint equation (6.6). Therefore, it is advantageous to
avoid smoothing steps if possible, which can be done by using the heuristics that we
developed in section 6.1. Alternatively, the smoothing step can be avoided by using
the special reformulation described in Remark 6.8.

The regularity condition in Assumption 6.1 can be verified by using either of
the sufficient conditions derived in [63] and [62]; see those papers for details. The
convergence results of Theorem 6.5 are thus applicable.

We end this section by addressing discretization. For simplicity, we consider
a finite difference approximation on a regular computational grid covering Ω and
consisting of N interior grid points. Corresponding to the functions u, w, ud, wd, b,
we obtain the grid functions u,w,ud,wd,b ∈ R

N , which represent the node values.
Furthermore, using an appropriate finite-difference stencil, we obtain the discrete state
equation

Au = w,(6.9)

where A ∈ R
N×N approximates the differential operator A. Let the diagonal matrix

L ∈ R
N×N represent the discrete L2-inner product, e.g., Lii = hn if the grid is

equidistant with step size h. The discrete objective function is

J(w) =
1

2
(A−1w − ud)

TL(A−1w − ud) +
λ

2
(w −wd)

TL(w −wd).

The pointwise control constraint w ≤ b is discretized by w ≤ b (componentwise).
The Euclidean gradient of J is

∇J(w) = (A−1)TL(A−1w − ud) + λL(w −wd).

For proper scaling, we have to transform ∇J(w) to the discrete L2 inner product
represented by L. The resulting gradient, which is the discrete counterpart of ∇J(w),
is given by

J′(w)
def
= L−1∇J(w) = L−1(A−1)TL(A−1w − ud) + λ(w −wd).

The discrete optimality system reads (noting that L is positive diagonal)

wi ≤ bi, J′
i(w) ≤ 0, (w − b)iJ

′
i(w) = 0, i = 1, . . . , N,(6.10)

and corresponds to (5.11). As in the continuous case, we introduce y = b−w and

Z : R
N → R

N , Z(y) = −J′(b− y).

Then (6.10) is equivalent to the finite-dimensional NCP (1.2) with k = N , y = y, and
Z = Z. We apply an NCP-function φ to write the NCP equivalently in the form

Φ(y) = 0, where Φ(y) =
(
φ(y1,Z1(y)), . . . , φ(yN ,ZN (y))

)T
.

As a discretization of ∂◦Φ we choose ∂◦Φ(y), the set of all matrices M ∈ R
N×N ,

M = D1 + D2Z
′(y) = D1 + D2

(
L−1(A−1)TLA−1 + λI

)
,

D1,D2 ∈ R
N×N diagonal, (D1,D2)ii ∈ ∂φ(yi,Zi(y)).
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As discussed earlier, we have for the ith row of ∂◦Φ(y)

[∂◦Φ(y)]i = ∂φ(yi,Zi(y))
d

dy

(
yi

Zi(y)

)
⊃ ∂Φi(y)

by the chain rule for generalized gradients, with equality if, e.g., φ or −φ is regular.
Therefore, ∂CΦ(y) ⊂ ∂◦Φ(y), and hence we can choose M as in the ordinary finite-
dimensional semismooth Newton method. Since computing elements of ∂◦Φ(y) can
be easier than computing those of ∂CΦ(y), we point out that the estimate

sup
M∈∂◦Φ(y+s)

‖Φ(y + s)− Φ(y)−Ms‖ = o(‖s‖) as s→ 0

is easy to prove if φ is semismooth and Z is continuously differentiable (which is

the case here). The estimate holds with “o(‖s‖)” replaced by “O(‖s‖1+α)” if φ is
α-order semismooth, 0 < α ≤ 1, and Z′ is α-order Hölder continuous (which is the
case here). Therefore, the discrete equivalent of the infinite-dimensional semismooth
Newton method converges q-superlinearly to regular solutions (with order 1 + α in
the case of α-order ∂◦Φ-semismoothness); see Proposition 2.7. For numerical results,
we refer to [63, 62].

7. Semismooth composite operators and chain rules. In this section we
show that our class of semismoothness operators is closed under composition, which
is helpful, e.g., for proving semismoothness of a particular operator by breaking it up
into simpler pieces. Furthermore, we establish chain rules for composite operators.
We consider the scenario in which F = G ◦H is a composition of the operators

G : X �→
∏

i
Lri(Ω), H : Y �→ X,

with X a Banach space, and in which ψ = ψ1 ◦ ψ2 is a composition of the functions

ψ1 : R
l → R, ψ2 : R

m → R
l.

We impose assumptions on ψ1, ψ2, G, and H to ensure that F and ψ satisfy Assump-
tion 3.1. The following is one way to do this.

Assumption 7.1. There are 1 ≤ r ≤ ri < qi ≤ ∞, 1 ≤ i ≤ m, such that
(a) the operators G : X → ∏

i L
ri(Ω) and H : Y → X are continuously Fréchet

differentiable;
(b) the operator G maps X locally Lipschitz continuously into Lqi(Ω);
(c) the functions ψ1 and ψ2 are Lipschitz continuous;
(d) ψ1 and ψ2 are semismooth.
It is straightforward to strengthen these assumptions such that they imply As-

sumption 3.4. For brevity, we will not discuss the extension of the next theorem to
semismoothness of order β, which is easily established by slight modifications of the
assumptions and the proofs.

Theorem 7.2. Let Assumption 7.1 hold, and let F = G ◦ H and ψ = ψ1 ◦ ψ2.
Then the following hold:

(a) F and ψ satisfy Assumption 3.1.
(b) Ψ as defined in (1.8) is semismooth.
(c) The operator ΨG : z ∈ X �→ ψ(G(z)) ∈ Lr(Ω) is semismooth and the follow-

ing chain rule holds:

∂◦Ψ(y) = ∂◦ΨG(H(y))H ′(y) = {MGH
′(y) :MG ∈ ∂◦ΨG(H(y))} .
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(d) If l = 1 and ψ1 is strictly differentiable (see [13, p. 30]), then the operator
Ψ2 : y ∈ Y �→ ψ2(F (y)) ∈ Lr(Ω) is semismooth and the following chain rule
holds:

∂◦Ψ(y) = ψ′
1(Ψ2(y))∂

◦Ψ2(y) = {ψ′
1(Ψ2(y)) ·M2 :M2 ∈ ∂◦Ψ2(y)} .

Proof. (a) Assumption 7.1(a) implies Assumption 3.1(a); Assumption 3.1(b) fol-
lows from Assumption 7.1(a),(b); Assumption 7.1(c) implies Assumption 3.1(c); and
Assumption 3.1(d) holds by Assumption 7.1(d), since the composition of semismooth
functions is semismooth.

(b) By (a), we can apply Theorem 5.2.
(c) Assumption 7.1 implies Assumption 3.1 with G and X instead of F and Y .

Hence, ΨG is semismooth by Theorem 5.2.
For the proof of the “⊂” part of the chain rule, let M ∈ ∂◦Ψ(y) be arbitrary. By

definition, there exists a measurable selection d of ∂ψ(F (y)) such that

M =
∑

i
di · F ′

i (y).

Now, since F ′
i (y) = G′

i(H(y))H ′(y),

M =
∑

i
di ·G′

i

(
H(y)

)
H ′(y) =MGH

′(y), where

MG =
∑

i
di ·G′

i

(
H(y)

)
.(7.1)

Obviously, we have MG ∈ ∂◦ΨG(H(y)).
To prove the reverse inclusion, note that any MG ∈ ∂◦ΨG(H(y)) assumes the

form (7.1) with appropriate measurable selection d ∈ ∂ψ(F (y)). Then

MGH
′(y) =

∑
i
di ·
(
G′
i(H(y))H ′(y)

)
=
∑

i
di · F ′

i (y),

which shows MGH
′(y) ∈ ∂◦Ψ(y).

(d) Certainly, F and ψ2 satisfy Assumption 3.1 (with ψ2 replaced by ψ). Hence,
Theorem 5.2 yields the semismoothness of Ψ2. We proceed by noting that a.e. on Ω

ψ′
1(Ψ2(y)(ω))∂ψ2(F (y)(ω)) = ∂ψ(F (y)(ω))(7.2)

holds, where we have applied the chain rule for generalized gradients [13, Theo-
rem 2.3.9] and the identity ∂ψ1 = {ψ′

1}; see [13, Proposition 2.2.4].
We first prove the “⊃” direction of the chain rule. Let M2 ∈ ∂◦Ψ2 be arbitrary.

It assumes the form

M2 =
∑

i
d̂i · F ′

i (y),

where d̂ ∈ L∞(Ω)m is a measurable selection of ∂ψ2(F (y)). Now for any operator M

contained in the right-hand side of the assertion we have with d
def
= ψ′

1(Ψ2(y))d̂

M = ψ′
1

(
Ψ2(y)

) ·M2 =
∑

i
di · F ′

i (y).

Obviously, d ∈ L∞(Ω)m and, by (7.2), d is a measurable selection of ∂ψ(F (y)). Hence,
M ∈ ∂◦Ψ(y).

Conversely, to prove “⊂”, let M ∈ ∂◦Ψ(y) be arbitrary, and denote by d ∈
L∞(Ω)m the corresponding measurable selection of ∂ψ(F (y)). Now let d̃ ∈ L∞(Ω)m

be a measurable selection of ∂ψ2(F (y)), and define d̂ ∈ L∞(Ω)m by

d̂(ω) = d̃(ω) on Ω0 = {ω : ψ′
1(Ψ2(y)(ω)) = 0}, d̂(ω) =

d(ω)

ψ′
1(Ψ2(y)(ω))

on Ω \ Ω0.
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Then d̂ is measurable and d = ψ′
1(Ψ2(y))d̂. Further, d̂(ω) = d̃(ω) ∈ ∂ψ2(F (y)) on Ω0

and, using (7.2),

d̂(ω) =
d(ω)

ψ′
1(Ψ2(y)(ω))

∈ ψ
′
1(Ψ2(y)(ω))∂ψ2(F (y))

ψ′
1(Ψ2(y)(ω))

= ∂ψ2(F (y)) on Ω \ Ω0.

Thus, d̂ is a measurable selection of ∂ψ2(F (y)), and consequently also d̂ ∈ L∞(Ω)m

due to the Lipschitz continuity of ψ2. Therefore,

M2 =
∑

i
d̂i · F ′

i (y) ∈ ∂◦Ψ2(y),

and thus M ∈ ψ′
1(Ψ2(y)) · ∂◦Ψ2(y), as asserted.

8. Further properties of the generalized differential. We now establish
that our generalized differential is convex-valued, weak compact-valued, and weakly
graph closed. These properties can provide a basis for future research on the con-
nections between ∂◦Ψ and other generalized differentials, particularly the Thibault
generalized differential [58] and the Ioffe–Ralph generalized differential [32, 53]. As
weak topology on L(Y, Lr) we use the weak operator topology, which is defined by
the seminorms M �→ |〈w,Mv〉Ω|, v ∈ Y , w ∈ Lr′(Ω), the dual space of Lr(Ω).

The following result will be of importance.
Lemma 8.1. Under Assumption 3.1, the set K(y) defined in (4.4) is convex and

weak∗ sequentially compact in L∞(Ω)m for all y ∈ Y .
Proof. From Lemma 4.7 we know that K(y) ⊂ LψB̄mL∞ is nonempty and bounded.

Further, the convexity of ∂ψ(x) implies the convexity of K(y). Now let sk ∈ K(y)
tend to s in L2(Ω)m. Then for a subsequence sk′(ω)→ s(ω) holds for almost all ω ∈ Ω.
Since ∂ψ(u(ω)) is compact, this implies that for almost all ω ∈ Ω, s(ω) ∈ ∂ψ(u(ω))
holds and thus s ∈ K(y). Hence, K(y) is a bounded, closed, and convex subset of
L2(Ω)m and therefore weak sequentially compact in L2(Ω)m. Therefore, K(y) is also
weak∗ sequentially closed in L∞(Ω)m, for, if (sk) ⊂ K(y) converges weakly∗ to s in
L∞(Ω)m, then 〈w, sk − s〉Ω → 0 for all w ∈ L1(Ω)m ⊃ L2(Ω)m, showing that sk → s
weakly in L2(Ω)m. Thus, K(y) is weak∗ sequentially closed and bounded in L∞(Ω)m.
Since L1(Ω)m is separable, this yields that K(y) is weak∗ sequentially compact.

8.1. Convexity and weak compactness. As further useful properties of ∂◦Ψ
we establish the convexity and weak compactness of its images as follows.

Theorem 8.2. Under Assumption 3.1, the generalized differential ∂◦Ψ(y) is non-
empty, convex, and weakly sequentially compact for all y ∈ Y . If Y is separable, then
∂◦Ψ(y) is also weakly compact for all y ∈ Y .

Proof. The nonemptiness was already stated in Theorem 4.8. Convexity follows
immediately from the convexity of the set K(y) derived in Lemma 4.7. We now prove
weak sequential compactness. Let (Mk) ⊂ ∂◦Ψ(y) be any sequence. Then

Mk =
∑

i
dki · F ′

i (y),

with dk ∈ K(y); see (4.4). Lemma 8.1 yields that K(y) is weak∗ sequentially compact
in L∞(Ω)m. Hence, we can select a subsequence such that (dk) converges weak∗ to
d∗ ∈ K(y) in L∞(Ω)m. Define M∗ =

∑
i d

∗
i · Fi(y) and observe that M∗ ∈ ∂◦Ψ(y)

since d∗ ∈ K(y). It remains to prove thatMk →M∗ weakly. Let w ∈ Lr′(Ω) = Lr(Ω)′

and v ∈ Y be arbitrary. We set zi = w · F ′
i (y)v and note that zi ∈ L1(Ω). Hence,

|〈w, (Mk −M∗)v〉Ω| ≤
∑

i
|〈w, (dk − d∗)i · F ′

i (y)v〉Ω|
=
∑

i
|〈zi, (dk − d∗)i〉Ω| −→ 0 as k →∞.

(8.1)
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Therefore, the weak sequential compactness is shown.
By Lemma 4.3, ∂◦Ψ(y) is contained in a closed ball in L(Y, Lr), on which the

weak topology is metrizable if Y is separable (note that 1 ≤ r < ∞ implies that
Lr(Ω) is separable). Hence, in this case the weak compactness follows from the weak
sequential compactness.

8.2. Weak graph closedness of the generalized differential. Finally, we
prove that the multifunction ∂◦Ψ is weakly graph closed as follows.

Theorem 8.3. Let Assumption 3.1 be satisfied, and let (yk) ⊂ Y and (Mk) ⊂
L(Y, Lr(Ω)) be sequences such that Mk ∈ ∂◦Ψ(yk) for all k, yk → y∗ in Y , and
Mk → M∗ weakly in L(Y, Lr(Ω)). Then M∗ ∈ ∂◦Ψ(y∗) holds. If, in addition, Y
is separable, then the above assertion also holds if we replace the sequences (yk) and
(Mk) by nets.

Proof. Let yk → y∗ in Y and ∂◦Ψ(yk) ! Mk → M∗ weakly. We have the
representations Mk =

∑
i dki · F ′

i (yk) with measurable selections dk of ∂ψ(uk), where
uk = F (yk). We also introduce u∗ = F (y∗). The multifunction ω ∈ Ω �→ ∂ψ(u∗(ω))
is closed-valued (even compact-valued) and measurable. Furthermore, the function
(ω, h) �→ ‖dk(ω)− h‖2 is a normal integrand on Ω×R

m [54, Corollary 2P]. Hence, by
[54, Theorem 2K], the multifunctions Sk : Ω→ R

m,

Sk(ω) = arg min
h∈∂ψ(u∗(ω))

‖dk(ω)− h‖2 ,

are closed-valued (even compact-valued) and measurable. We choose measurable se-
lections sk of Sk. The sequence (sk) is contained in the (by Lemma 8.1) sequentially
weak∗ compact set K(y∗) ⊂ L∞(Ω)m. Further, by Lemma 4.7, we have dk ∈ LψB̄mL∞ .

Hence, by transition to subsequences, we achieve sk → s̄ ∈ K(y∗) weak∗ in
L∞(Ω)m, and dk → d̄ ∈ LψB̄mL∞ weak∗ in L∞(Ω)m. Therefore, (dk − sk) → (d̄ − s̄)
weak∗ in L∞(Ω)m and thus also weakly in L2(Ω)m. Since uk → u∗ in

∏
i L

qi(Ω), we
achieve by transition to a further subsequence that uk → u∗ a.e. on Ω. Hence, since
dk(ω) ∈ ∂ψ(uk(ω)) for almost all ω ∈ Ω and ∂ψ is upper semicontinuous, we obtain
from the construction of sk that (dk − sk) → 0 a.e. on Ω. The sequence (dk − sk) is
bounded in L∞(Ω)m and thus the Lebesgue convergence theorem yields (dk−sk)→ 0
in L2(Ω)m. From (dk − sk) → 0 and (dk − sk) → (d̄ − s̄) weakly in L2(Ω)m, we see
d̄ = s̄. We thus have

dk → d̄ = s̄ ∈ K(y∗) weak∗ in L∞(Ω)m.

This shows that M̄
def
=
∑
i d̄i · F ′

i (y
∗) ∈ ∂◦Ψ(y∗). It remains to prove that Mk → M̄

weakly. To show this, let w ∈ Lr′(Ω) = Lr(Ω)′ and v ∈ Y be arbitrary. Then with
zki = w · F ′

i (yk)v and zi = w · F ′
i (y

∗)v, zki, zi ∈ L1(Ω) holds and

‖zki − zi‖L1 ≤ ‖w‖Lr′ ‖F ′
i (yk)v − F ′

i (y
∗)v‖Lr → 0 as k →∞.

Hence we obtain, similarly as in (8.1),

|〈w, (Mk − M̄)v〉Ω| ≤
∑

i

∣∣〈w, dki · F ′
i (yk)v − d̄i · F ′

i (y
∗)v〉Ω

∣∣
=
∑

i

∣∣〈dki, zki〉Ω − 〈d̄i, zi〉Ω∣∣
≤
∑

i

(|〈d̄i − dki, zi〉Ω|+ ‖dki‖L∞ ‖zi − zki‖L1

)→ 0 as k →∞.

This implies that M∗ = M̄ ∈ ∂◦Ψ(y∗) and completes the proof of the first assertion.
Now let (yκ) ⊂ Y and (Mκ) ⊂ L(Y, Lr(Ω)) be nets such that Mκ ∈ ∂◦Ψ(yκ) for

all κ, yκ → y∗ in Y , and Mκ →M weakly in L(Y, Lr(Ω)). Since (yκ) finally stays in
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any neighborhood of y∗ and since F ′ is continuous, we see from (4.3) that without loss
of generality we may assume that (Mκ) is contained in a bounded ball B ⊂ L(Y, Lr).
Since, due to the assumed separability of Y , B is metrizable with respect to the weak
topology, we see that we can work with sequences instead of nets.

9. Concluding remarks and future work. In this work, a new semismooth-
ness theory for superposition operators in function spaces was developed. Our semi-
smoothness concept uses a new generalized differential that generalizes Qi’s finite-
dimensional C-subdifferential. The developed results were shown to be applicable to
NCP-function-based reformulations of NCPs posed in function spaces. Using this
semismoothness theory, a Newton-like method for nonsmooth operator equations
was developed, which, depending on the order of semismoothness of the operator,
converges q-superlinearly or with q-order 1 + α to a regular solution. For illustra-
tion, the application of the algorithm to the control-constrained optimal control of
an elliptic partial differential equation was discussed in detail. We also established
the semismoothness of composite operators and developed corresponding chain rules.
Furthermore, the multifunction ∂◦Ψ was shown to have several useful properties, in
particular weak graph closedness, which can be helpful, e.g., in the development of
relationships between ∂◦Ψ and other vector-valued generalized differentials.

In the author’s Habilitation thesis [62], the presented results are further developed
in various directions. In particular, it is shown how our semismooth Newton method
can be extended to handle mixed problems of the form

Ψ(y) = 0, G(y) = 0,

where G : Y → Z is a smooth operator. This problem class includes reformulations of
Karush–Kuhn–Tucker conditions for many optimal control and variational inequality
problems. The main challenge hereby is the choice of a suitable regularity condition
on the operators (M,G′(y)), M ∈ ∂◦Ψ(y), and the development of sufficient condi-
tions for regularity that extend the ones given in [61]. It is also possible to establish
superlinear convergence of an inexact semismooth Newton method under a Dennis–
Moré-type condition. A further interesting question is how our locally convergent
Newton method can be made globally convergent in an efficient way. Here, one can
use that the merit function y ∈ Y �→ ‖Ψ(y)‖2L2 /2 is continuously differentiable under
reasonable assumptions, which are satisfied, e.g., for ψ = φFB and qi ≥ 2. Therefore,
a convergence theory similar to the one developed in [65] for affine-scaling trust-region
methods for bound-constrained nonlinear optimization in function spaces is transfer-
able to our setting. For the finite-dimensional analogue of the presented algorithm,
globalization techniques were developed in, e.g., [17, 19, 36, 61]. A particular trust-
region globalization for our semismooth Newton method can be found in [62]. The
proposed class of Newton methods was successfully applied to the elliptic control
problem (1.6) (see [63]), nonlinear elliptic control problems [62], obstacle problems
[62], and flow control problems [62, 60]. In all cases, the method was very efficient
and achieved a superlinear rate of convergence. We plan further numerical tests and
will report on the results in forthcoming papers.

We plan further investigations in the future. In particular, it would be interesting
to establish the mesh-independence of the proposed semismooth Newton method.
Also, the efficient implementation of the algorithm presents further challenges. In
particular, the possibility of obtaining approximations of Mk by replacing F ′

i (yk)
with quasi-Newton matrices is a question that should be addressed. Furthermore,
depending on the particular problem, multigrid methods can provide a powerful tool
for the computation of Newton steps. We have sketched this approach briefly in section
6.2. Our preliminary numerical tests with multilevel semismooth Newton methods,
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reported in [62], are very promising, and we are currently starting to investigate this
multilevel approach in more detail.

Appendix.

A consequence of Hölder’s inequality. The following estimate is frequently
used in our analysis. It follows immediately from Hölder’s inequality.

Lemma A.1. Let Ω be bounded, 1 ≤ p ≤ q ≤ ∞, and

cp,q(Ω)
def
= µ(Ω)

q−p
pq if p < q <∞, cp,∞(Ω)

def
= µ(Ω)1/p if p <∞,

cp,q(Ω)
def
= 1 if p = q.

Then for all v ∈ Lq(Ω) there holds

‖v‖Lp ≤ cp,q(Ω) ‖v‖Lq .
Upper semicontinuity and measurability of multifunctions. For conve-

nience, we also provide the definition of upper semicontinuity and measurability of
multifunctions (see [13, 54]).

Definition A.2. A multifunction Γ : U ⇒ R
l defined on U ⊂ R

k is upper
semicontinuous at x ∈ U if for all ε > 0 there exists δ > 0 such that

Γ(x′) ⊂ {z + h : z ∈ Γ(x), ‖h‖ < ε} for all x′ ∈ U , ‖x′ − x‖ < δ.
Definition A.3. A multifunction Γ : U ⇒ R

l defined on the measurable set
U ⊂ R

k is called measurable [54, p. 160] if it is closed-valued and if for all closed (or
open, or compact; see [54, Proposition 1A]) sets C ⊂ R

l the preimage

Γ−1(C) = {x ∈ U : Γ(x) ∩ C �= ∅}
is measurable.
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[47] J.-S. Pang, A B-differentiable equation-based, globally and locally quadratically convergent
algorithm for nonlinear programs, complementarity and variational inequality problems,
Math. Programming, 51 (1991), pp. 101–131.

[48] J.-S. Pang, Complementarity problems, in Handbook of Global Optimization, R. Horst and
P. M. Pardalos, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995,
pp. 271–338.

[49] J.-S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3
(1993), pp. 443–465.

[50] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[51] L. Qi, C-differential operators, C-differentiability and generalized Newton methods, Research
Report AMR96/5, School of Mathematics, University of New South Wales, Sydney, New
South Wales, Australia, 1996.

[52] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993),
pp. 353–367.

[53] D. Ralph, Rank-1 support functionals and the rank-1 generalized Jacobian, piecewise linear
homeomorphisms, Ph.D. thesis, Computer Sciences Department, University of Wisconsin,
Madison, WI, 1990.

[54] R. T. Rockafellar, Integral functionals, normal integrands and measurable selections, in
Nonlinear Operators and the Calculus of Variations, Lecture Notes in Math. 543, J. P.
Gossez, E. J. Lami Dozo, J. Mawhin, and L. Waelbroeck, eds., Springer, Berlin, 1976,
pp. 157–207.

[55] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
[56] A. Shapiro, On concepts of directional differentiability, J. Optim. Theory Appl., 66 (1990),

pp. 477–487.
[57] D. Sun and L. Qi, On NCP-functions, Computational optimization—A tribute to Olvi Man-

gasarian, Part II, Comput. Optim. Appl., 13 (1999), pp. 201–220.
[58] L. Thibault, On generalized differentials and subdifferentials of Lipschitz vector-valued func-

tions, Nonlinear Anal., 6 (1982), pp. 1037–1053.
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Abstract. Reoptimization techniques for an interior point method applied to solving a sequence
of linear programming problems are discussed. Conditions are given for problem perturbations that
can be absorbed in merely one Newton step. The analysis is performed for both short-step and
long-step feasible path-following methods. A practical procedure is then derived for an infeasible
path-following method. It is applied in the context of crash start for several large-scale structured
linear programs. Numerical results with OOPS, a new object-oriented parallel solver, demonstrate
the efficiency of the approach. For large structured linear programs, crash start leads to about 40%
reduction in the number of iterations and translates into a 25% reduction of the solution time. The
crash procedure parallelizes well, and speed-ups between 3.1–3.8 on four processors are achieved.

Key words. interior point methods, warm-start, crash start
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1. Introduction. A number of optimization algorithms require solving a se-
quence of linear programs. This is a common situation, for example, in the cutting
plane methods [13], decomposition [6, 4], branch-and-bound and branch-and-cut ap-
proaches for mixed integer optimization [24], and many others. The problems in such
a sequence are often similar, i.e., the later instance is only a minor perturbation of
the earlier one. Hence the optimal solution of the earlier problem (or, more generally,
a close-to-optimality solution of it with some desirable properties) should be a good
starting point for the subsequent problem.

Interior point methods are reputed to have difficulties when they are (naively)
applied in this context. Indeed, the efficiency of a practical interior point algorithm
critically depends on the ability of the algorithm to stay close to the central path. It
is no surprise that, after the problem has been perturbed, the optimal solution of the
earlier problem (that necessarily must have been very close to the boundary of the
feasible region) is a very bad starting point for a new problem with a different optimal
partition. The difficulty of reoptimization may be decreased by the choice of a suitable
nonoptimal point lying in the neighborhood of the central path [9] and reoptimization
from it. Such an approach has an intuitive justification: a suitable nonoptimal point
is not yet too close to the boundary of the feasible region, and hence it is able to
absorb larger perturbations to the problem.

This approach has already been used in two different classes of reoptimization
problems. In the first one, the size of the problem increases: a set of new constraints
or a set of new variables is added to the previous linear program. This is, for exam-
ple, the case in a cutting plane method (or a column generation method) widely used
in combinatorial optimization or branch-and-cut approaches to integer programming.
The advantages of the application of interior point methods in this context have been
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recognized by Mitchell and Todd [17, 19], who were the first to try practical reop-
timization procedures in the primal projective algorithm. An implementation of the
warm-starting technique for the infeasible primal-dual method applied to solving re-
stricted master problems in the cutting plane scheme was described in [9]. The reader
interested in the use of interior point methods to solve combinatorial optimization
problems should consult [18] and the references therein.

In the second important class of problems that need reoptimization, the size of
the problem does not change, but the parameters such as the coefficient matrix, the
right-hand side, the objective function, and/or the variable bounds do change. This
is the case, for example, when subproblems in Dantzig–Wolfe decomposition [6] are
solved (the objective of the linear program changes), when subproblems in Benders de-
composition [4] are solved (the right-hand-side vector of the linear program changes),
or when a variable has its bound tightened in the branch-and-bound technique (this
again results in the perturbation of the right-hand-side vector). Preliminary results
from applying an interior point-based reoptimization procedure for solving subprob-
lems to the decomposition of large-scale structured linear programs have been reported
in [11], where a straightforward extension of the method of [9] was used.

A reoptimization strategy similar to the one proposed here has been analyzed
recently by Yıldırım and Wright [27]. In their approach, all intermediate iterates
(approximate µ-centers) are stored. Once the perturbation to the problem is known,
one of the earlier stored µ-centers is chosen. This point is supposed to be sufficiently
far away from the optimal solution to absorb the perturbation of the problem and to
restore feasibility in only one Newton step. Yıldırım and Wright derive bounds on
the size of absorbable perturbations. Their bounds depend on the problem size and
the problem condition number. Two different condition numbers are used, the one of
Nunez and Freund [20] and the one that follows from Dikin [7]. Unfortunately, none
of these numbers can be easily computed. Therefore it is not obvious how to use these
results in practice.

The approach proposed in this paper is different. We introduce a new relative
measure of perturbations. The perturbations in the primal and dual spaces are com-
pared with the primal and dual slack variables, respectively, corresponding to a given
starting point. We derive bounds on the largest possible perturbations that can be
absorbed by a given approximate µ-center without significantly affecting its proxim-
ity measures hence allowing easy continuation of the path-following algorithm. We
discuss the two cases of short-step and long-step methods, including a recent result
on O(√n log n log(1/ε)) complexity of the latter due to Peng, Roos, and Terlaky [21].

We are aware of the gap between theory and practice. The former provides
complexity estimates and necessarily relies on worst-case analysis. The approach
proposed in this paper can be used in practice. Our relative measure of perturbations
needs very little effort to be computed; it can thus be determined for a list of candidate
starting points and used to choose the most suitable one. We also discuss how the
theoretical developments that we have made for this feasible path-following method
can be applied in the infeasible method known to be the most efficient interior point
method in practice [14, 3].

One of the difficulties in the implementation of interior point methods is the choice
of the starting point; cf. [3] and the references therein. Most implementations of
interior point methods use some variation of Mehrotra’s starting point [16]. Although
for the self-dual embedding, which is believed to be less sensitive, any starting point
is acceptable, there is still an issue of finding a good initial point [2]. In this paper



844 JACEK GONDZIO AND ANDREAS GROTHEY

we will consider only the standard primal-dual interior point method.
Unlike the simplex method, which can take advantage of an advanced starting

basis [5, 12, 15], the interior point method is known to be incapable of doing so. It
is common to consider warm-starting interior point methods from an approximate µ-
center. However, reoptimization techniques are also of interest if an advanced starting
point is known not from a previous solve of a similar problem but, for example,
by a crash procedure. The issues involved are the same, but the situation is more
challenging since the advanced starting points are generally not µ-centers (or even
close to one).

In the second part of this paper we study this problem in the context of interior
point methods applied to solving very large structured linear programs, and we pro-
vide evidence that advanced crash starting points can be constructed for them. Our
crashing procedure relies on decomposition but in general constructs infeasible and
not necessarily well-centered starting points. We use the reoptimization procedure
presented in this paper to start the primal-dual algorithm from such points. Nu-
merical results obtained with OOPS, the object-oriented parallel solver [10], confirm
that our crash routine can save up to 30-40% of iterations compared with use of the
standard starting point.

The paper is organized as follows. In section 2 we briefly state the problem, recall
some known facts about the worst-case complexity of the path-following methods,
and introduce the notation used throughout the paper. In section 3 we derive bounds
on the largest perturbations (primal and dual infeasibilities) that can be absorbed by
a well-centered point in one Newton step. We show that the proximity measure of
the updated point is worsened only slightly so that the path-following method may
continue from this point without affecting the worst-case complexity result. In sec-
tion 4 we translate our findings into computational practice. In particular, we discuss
how to deal with large perturbations of the problem by gradually taking them into
account in subsequent iterations. We also relax the constraint of maintaining close
proximity to the central path; instead, we rely on the use of the multiple centrality
corrections technique [8]. In section 5 we formulate desired properties of good candi-
dates for the starting point in an interior point method and discuss how such points
can be obtained through the use of decomposition techniques for large structured lin-
ear programs. In section 6 we illustrate our findings with computational results for a
number of structured linear programs. One class of problems originates from network
optimization [10] and the other is a well-studied multistage stochastic programming
formulation of the asset liability management problem [28]. In section 7 we give our
conclusions.

2. Preliminaries. We consider a primal-dual path-following method for linear
programming. The theory for this class of methods has been discussed in detail in
the excellent book of Wright [25]; in our developments we shall refer to several results
that can be found in this book. In this section we shall deal with the feasible method.

Consider a pair of linear programs, the primal

minimize cT0 x

subject to A0x = b0,(2.1)

x ≥ 0,

where c0, x ∈ Rn, b0 ∈ Rm, and A0 ∈ Rm×n has full row rank, and its dual

maximize bT0 y
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subject to AT0 y + s = c0,(2.2)

s ≥ 0,

where y ∈ Rm and s ∈ Rn. We assume that the feasible sets of the primal and dual
problems (2.1) and (2.2) have nonempty interiors

F0 = {(x, y, s)|A0x = b0, A
T
0 y + s = c0, (x, s) > 0} 
= ∅.

Hence for any µ > 0 there exists a uniquely defined point (x(µ), y(µ), s(µ)), x(µ) >
0, s(µ) > 0, that satisfies the following first-order optimality conditions for the asso-
ciated barrier problem:

A0x = b,

AT0 y + s = c,(2.3)

XSe = µe,

whereX and S are diagonal matrices with the elements xj and sj , respectively, e ∈ Rn
is the n-vector of all ones, and µ > 0 is the barrier parameter. Such a point is called
a µ-center.

We assume that a feasible path-following algorithm is used so that all of its iterates
are primal and dual feasible. However, they are not necessarily perfectly centered.
We shall consider two neighborhoods of the central path appropriate for the short-
step and the long-step algorithms, respectively. The short-step algorithm keeps all its
iterates in

N2(θ) = {(x, y, s) ∈ F0 | ‖XSe− µe‖2 ≤ θµ},(2.4)

where 0 ≤ θ < 1. For the long-step algorithm we shall use the following neighborhood:

N∞(γl, γu) = {(x, y, s) ∈ F0 | γl µ ≤ xjsj ≤ γu µ ∀j},(2.5)

where 0 < γl ≤ 1 ≤ γu. The reader should notice that our definition of the N∞(γl, γu)
neighborhood is a slight modification of the usual N−∞(γ) neighborhood of [25].

2.1. Complexity bounds for the path-following algorithms. Below we re-
mind the reader of the current best complexity results for linear optimization with the
path-following algorithm. We recall them in a form that explicitly uses the parameter
κ associated with the quality of the initial solution. Assume that we seek an ε-optimal
solution of a linear program, and that an initial well-centered feasible point is given
such that µ0 = (1/ε)κ. The short-step method finds the ε-optimal solution in at most
O((κ+ 1)

√
n log(1/ε)) iterations. The classical long-step method finds the ε-optimal

solution in at most O((κ+1)n log(1/ε)) iterations. Peng, Roos, and Terlaky [21] have
recently given a new result for a large-update method. Their method performs only
O((κ + 1) log(1/ε)) updates of the barrier parameter. However, it requires many so-
called inner iterations (O(√n)) to restore centrality after the barrier update, giving
an overall complexity bound of O((κ + 1)

√
n log n log(1/ε)). It is not obvious that

this method should be viewed as a long-step algorithm, but we link our results to it
as well.

2.2. Reoptimization problem. Assume that an approximate µ-center has been
found for the primal-dual pair (2.1)–(2.2) and that the linear optimization problem
has changed. Namely, all its data A0, b0, and c0 has been replaced with the new values
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A, b, and c (where again A is assumed to have full row rank). Unlike in the method of
[9], we assume that the size of the linear problem has not changed. We can thus use
the approximate µ-center as an iterate for the new problem. In the new first-order
conditions all three equations may possibly be violated. Let us define the residuals

 ξb
ξc
ξµ


 =


 b−Ax

c−AT y − s
µe−XSe


 .(2.6)

All entries of ξµ are of orderO(µ) because the point (x, y, s) is an approximate µ-center
of (2.1)–(2.2). However, primal and dual infeasibilities ξb and ξc can be arbitrarily
large.

We shall express these infeasibilities in the scaling related to the current primal-
dual point. In the following section we shall prove sufficient conditions that such
scaled perturbations have to satisfy to make reoptimization possible. For a current
approximate µ-center (x, y, s), primal perturbation ξb, and dual perturbation ξc we
define the relative residual vectors

ξ̃b = X−1AT (AAT )−1ξb and ξ̃c = S−1ξc,(2.7)

where X−1 and S−1 is the usual notation for diagonal n×n matrices built of elements
x−1
j and s−1

j , respectively.
Before we go any further, the reader should be warned that one cannot expect to

eliminate terms that depend on the problem dimension from the complexity bounds.
Instead, following [27], we will concentrate on terms that depend on the quality of
the initial point, namely, on the parameter κ present in every bound. The aim of
our warm-starting procedure is to find a new point (x̄, ȳ, s̄) that is primal and dual
feasible for the perturbed problem and corresponds to a new barrier parameter µ̄ with
the value close to µ.

3. Absorbing primal and dual infeasibilities. Assume that an approximate
µ-center has been found for (2.1)–(2.2) and that it is used to compute the Newton
direction for the new linear program in which both primal and dual feasibility is
violated. Consider the following Newton equation system:

 A 0 0
0 AT I
S 0 X


 ·

 ∆x

∆y
∆s


 =


 ξb

ξc
0


 .(3.1)

We draw the reader’s attention to the fact that the Newton direction attempts to
correct only primal and dual infeasibilities, but the complementarity products xjsj
are not recentered (although they will obviously change, possibly worsen, once the
step is made). A few manipulations give the following Newton direction for dual
variables,

∆y = (AXS−1AT )−1(AXS−1ξc + ξb),(3.2)

and the following Newton direction for primal variables and dual slacks,

∆x=(XS−1AT (AXS−1AT )−1AXS−1−XS−1) ξc+XS−1AT (AXS−1AT )−1ξb,(3.3)

∆s=(I −AT (AXS−1AT )−1AXS−1) ξc−AT (AXS−1AT )−1ξb.(3.4)
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In our analysis we shall rely on bounds of norms of the following matrix:

Q = I − S−1AT (AXS−1AT )−1AX.

Lemma 3.1. If (x, y, s) ∈ N2(θ), then ‖Q‖2 ≤ ( 1+θ
1−θ )

1/2.
Proof. Since (x, y, s) ∈ N2(θ), we have (1 − θ)µ ≤ xjsj ≤ (1 + θ)µ for all j =

1, 2, . . . , n. Further, we have 1
(xjsj)1/2

≤ 1
(1−θ)1/2µ1/2 and (xjsj)

1/2 ≤ (1 + θ)1/2µ1/2.

Since

Q = X−1/2S−1/2(I −X1/2S−1/2AT (AXS−1AT )−1AX1/2S−1/2)X1/2S1/2

and the matrix in outer parenthesis is an orthogonal projection on the null space of
AX1/2S−1/2 (and hence its 2-norm is equal to 1), we can write

‖Q‖2 ≤ ‖X−1/2S−1/2‖2 · 1 · ‖X1/2S1/2‖2 ≤
(
1 + θ

1− θ

)1/2

,

which completes the proof.
Lemma 3.2. If (x, y, s) ∈ N∞(γl, γu), then ‖Q‖2 ≤ (γuγl )

1/2.
The proof is omitted because it is very similar to the proof of Lemma 3.1.
Let us observe that, for both neighborhoods, the bound on the norm of Q depends

only on the constants that define the proximity of the point to the central path.
Below we shall also use the ∞-norm of Q. We shall rely on the simple relation
‖Q‖∞ ≤

√
n ‖Q‖2 that holds for any square n× n matrix.

Our reoptimization procedure is divided into two steps. In the first step the total
infeasibility is absorbed by making a full step in the Newton direction. In the next
step the good quality of the proximity to the central path has to be restored. The
second step is needed by the short-step algorithm and by Peng, Roos, and Terlaky’s
[21] large-update algorithm, but it may be omitted in the large-step path-following
algorithm.

We analyze independently the cases of perturbations in the primal and dual spaces
and use techniques that are similar to those applied by Yıldırım and Todd [26] to ana-
lyze the sensitivity of interior point solutions subject to perturbations in vectors b and
c (cf. Propositions 1 and 2 in [26]). One of the key features of the approach presented
in this paper is that the primal perturbation ξb is used only in the primal direction
∆x, while the dual perturbation ξc is used only in the dual direction (∆y,∆s). More
precisely, our feasibility restoration directions are obtained by substituting ξc = 0 into
(3.3) and ξb = 0 into (3.2) and (3.4).

Decoupling the primal and dual directions gives the algorithm added flexibility to
recover from infeasibilities, particularly in situations where primal and dual infeasibil-
ities differ substantially, as is the case when subproblems in Benders or Dantzig–Wolfe
decomposition are solved [11] or in our application to crash start (section 5). Note
that decoupling the steps results in only a slight increase in computational cost, since
both steps can be obtained using the same Cholesky factors.

3.1. Restoring dual feasibility. After setting ξb = 0 (i.e., ignoring primal
infeasibility), from (3.4) and (2.7) we obtain

S−1∆s = (I − S−1AT (AXS−1AT )−1AX)S−1ξc = Q ξ̃c.(3.5)

We shall now analyze two cases: the short-step and the long-step path-following
algorithms.
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Lemma 3.3. Let (x, y, s) ∈ N2(θ) and β <
√
n. If ‖ξ̃c‖2 ≤ β√

n
· ( 1−θ

1+θ )
1/2, then the

full Newton step in the dual space is feasible and it absorbs the total infeasibility ξc.
For θ = 0.25, β = 0.1, and

√
n ≥ 100 the new point (x̄, ȳ, s̄) = (x, y +∆y, s +∆s) ∈

N2(0.5).
Proof. From Lemma 3.1, (3.5), and the assumption of this lemma, we find that

‖S−1∆s‖2 ≤ β/
√
n < 1. Therefore |∆sj/sj | ≤ β/

√
n < 1, and hence the full Newton

step in the dual space is feasible. After this step, the dual feasibility is restored.
It remains to prove the result about the proximity of the new point to the new

µ̄-center. We prove first that the new barrier parameter after a full step in the Newton
direction in the dual space does not change significantly compared with the previous
one. This new barrier parameter is defined as follows:

nµ̄ =
∑
j

(
xjsj + xjsj

∆sj
sj

)
.

The inequality ‖S−1∆s‖2 ≤ β/
√
n implies that −β/√n ≤ ∆sj

sj
≤ β/

√
n and

−β√
n
xjsj ≤ xjsj

∆sj
sj
≤ β√

n
xjsj ;

hence

−β√
n
nµ ≤

∑
j

xjsj
∆sj
sj
≤ β√

n
nµ,

and so the new barrier parameter µ̄ satisfies

nµ(1− β/
√
n) ≤ nµ̄ ≤ nµ(1 + β/

√
n).

We need to evaluate the proximity of the new primal-dual pair to the new µ̄-center.
First observe that

‖X̄S̄e− µ̄e‖2 ≤ ‖X̄S̄e−XSe‖2 + ‖XSe− µe‖2 + ‖µe− µ̄e‖2.
Each of these three terms can be bounded from above:

‖X̄S̄e−XSe‖2 =


∑

j

(xjsj
∆sj
sj

)2


1/2

≤
(
n (1 + θ)2 µ2 β2

n

)1/2

= (1 + θ)β µ,

‖XSe− µe‖2 ≤ θµ,

‖µe− µ̄e‖2 ≤
(
n
β2

n
µ2

)1/2

= βµ.

Therefore

‖X̄S̄e− µ̄e‖2 ≤ ((1 + θ)β + θ + β)µ.

For θ = 0.25 and β = 0.1 we have (1+ θ)β+ θ+β = 0.475. Also since µ(1−β/
√
n) ≤

µ̄ ≤ µ(1 + β/
√
n) for

√
n ≥ 100, we have 0.99µ ≤ µ̄ ≤ 1.01µ and

‖X̄S̄e− µ̄e‖2 ≤ 0.475µ ≤ 0.475

0.99
µ̄ ≤ 0.5µ̄,
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which completes the proof.
The choice of constants in Lemma 3.3 has ensured that the new point (x̄, ȳ, s̄)

belongs to a slightly larger neighborhood of the central path, N2(0.5). It suffices to
make only one pure centering step to get back to the original smaller neighborhood
N2(0.25). This completes the analysis for the short-step method.

The analysis in the case of the long-step algorithm differs slightly because we
assume that the current µ-center belongs to a large neighborhood N∞(0.5, 2.0), and
that, after absorbing infeasibility, the new point belongs to a larger neighborhood
N∞(0.25, 2.5). We do not need any recentering step in this case (we just accept a
slightly larger neighborhood; cf. [25]).

Lemma 3.4. Let (x, y, s) ∈ N∞(γl, γu) and β < 1. If ‖ξ̃c‖∞ ≤ β/‖Q‖∞, then the
full Newton step is feasible and it absorbs the total infeasibility ξc. For γl = 0.5, γu =
2.0, and β = 0.1 the new point (x̄, ȳ, s̄) = (x, y +∆y, s+∆s) ∈ N∞(0.25, 2.5).

Proof. From (3.5) and the assumption of this lemma, we find that ‖S−1∆s‖∞ ≤
β < 1 and from S∆x+X∆s = 0 also that ‖X−1∆x‖∞ = ‖S−1∆s‖∞ < 1. Hence the
full Newton step is feasible. After this step, feasibility is restored.

Similarly to the proof of Lemma 3.3, we bound the new barrier parameter µ̄ and
analyze the proximity of the new iterate to the central path. From the inequality
‖S−1∆s‖∞ ≤ β we get

−β nµ ≤
∑
j

xjsj
∆sj
sj
≤ β nµ

and thus the new barrier parameter µ̄ satisfies

nµ(1− β) ≤ nµ̄ ≤ nµ(1 + β).

We still need to prove that componentwise the centrality has not been worsened too
much. To prove the claim, we need to show that

0.25µ̄ ≤ x̄j s̄j ≤ 2.5µ̄.

Indeed, we find that

x̄j s̄j = xjsj + xjsj
∆sj
sj
≥ (γl − γuβ)µ ≥ γl − γuβ

1 + β
µ̄,

x̄j s̄j = xjsj + xjsj
∆sj
sj
≤ (γu + γuβ)µ ≤ γu + γuβ

1− β
µ̄.

For γl = 0.5, γu = 2.0, and β = 0.1 we obtain the required result.
Note that the first part of Lemma 3.4 also follows from Proposition 2 in [26].
The case of the large-update method [21] requires one more comment. This

algorithm uses a different proximity measure

Ψ(v) =
∑
j

ψ(vj), where ψ(vj) =
v2
j − 1

2
+

v1−q
j − 1

q − 1
,

in which vj =
√

xjsj
µ , j = 1, 2, . . . , n, and q ≥ 1 is an additional parameter. From

Lemma 5.3 in [21] we have

Ψ(v) ≤ 1

2
‖v−q − v‖22.
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We leave it to the reader to prove the following bridge result.
Lemma 3.5. Let two constants γl and γu such that 0 < γl ≤ 1 ≤ γu be given. If

(x, y, s) ∈ N∞(γl, γu), then Ψ(v) ≤ C n, where C is a constant independent of n.
As a consequence of Lemma 3.5, we can apply Lemma 2.7 from [21] to conclude

that after at most O(n q+1
2q ) recentering iterations the proximity measure of the new

point, Ψ(v′), will be reduced from O(n) to O(1), thus allowing the continuation of
the large-update method.

Summing up, for three different variants of the path-following algorithm we have
given conditions on the perturbation in the dual space that can be easily absorbed in
one Newton step without affecting the key properties of a given algorithm.

3.2. Restoring primal feasibility. The case of restoring primal feasibility can
be dealt with in a very similar way to that of section 3.1.

After setting ξc = 0 (i.e., ignoring dual infeasibility), from (3.3) and (2.7) we
obtain

X−1∆x = S−1AT (AXS−1AT )−1ξb

= S−1AT (AXS−1AT )−1AXX−1AT (AAT )−1ξb(3.6)

= (I −Q) ξ̃b.

It is worth noting that we use a relative primal residual ξ̃b = X−1AT (AAT )−1ξb ∈
Rn instead of the real perturbation vector ξb ∈ Rm. This has a common-sense
justification that any primal infeasibility has to be absorbed through changes of the
primal variables.

Let us observe that computing the direction ∆x could also involve, through (3.2)
and (3.4), the computation of directions in the dual space (∆y,∆s), but the latter
are skipped without being used. Although we do apply the primal-dual framework to
compute feasibility restoration directions, we use the primal perturbation only in the
primal feasibility restoration direction (3.6), and the dual perturbation only in the
dual feasibility restoration direction (3.5).

We omit the detailed analysis of the case of primal perturbations. We formulate
two lemmas analogous to Lemmas 3.3 and 3.4 but skip their proofs because they are
almost identical to those of Lemmas 3.3 and 3.4. For these omitted proofs the reader
should observe that the bound on the relative step in the primal space (3.6) involves
the matrix I −Q, and by using Lemma 3.1 we have

‖I −Q‖2 ≤ ‖Q‖2 + 1 ≤
(
1 + θ

1− θ

)1/2

+ 1.

Lemma 3.6. Let (x, y, s)∈N2(θ) and β<
√
n. If ‖ξ̃b‖2 ≤ β√

n
/(( 1+θ

1−θ )
1/2+1), then

the full Newton step in the primal space is feasible and it absorbs the total infeasibility
ξb. For θ = 0.25, β = 0.1, and

√
n ≥ 100 the new point (x̄, ȳ, s̄) = (x + ∆x, y, s) ∈

N2(0.5).
Lemma 3.7. Let (x, y, s) ∈ N∞(γl, γu) and β < 1. If ‖ξ̃b‖∞ ≤ β/(‖Q‖∞ + 1),

then the full Newton step is feasible and it absorbs the total infeasibility ξb. For γl =
0.5, γu = 2.0, and β = 0.1 the new point (x̄, ȳ, s̄) = (x+∆x, y, s) ∈ N∞(0.25, 2.5).

The case of large update method [21] is covered by the use of Lemmas 3.7 and 3.5.
For ease of the presentation, we have split our analysis into two independent cases

for the primal and the dual spaces. It is possible to perform the analysis in the presence
of perturbations in both spaces at the same time. Then, however, to evaluate the new
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complementarity products x̄j s̄j = (xj + ∆xj)(sj + ∆sj), we would have to consider
the products ∆xj∆sj . Having bounds on ‖X−1∆x‖∞ and ‖S−1∆s‖∞ allows us to
bound these products with terms proportional to xjsj . Hence the componentwise
changes to the complementarity products can also be bounded by terms proportional
to xjsj , which themselves are bounded by terms proportional to µ. Therefore very
similar analysis holds when both infeasibilities have to be absorbed at the same time,
but the proofs become longer.

We have left the discussion of the simultaneous treatment of both primal and
dual perturbations to the following section, in which also some other issues of imple-
mentation of our reoptimization technique are addressed.

4. From theory to practice. There still exists an important gap between the
theory and the computational practice of interior point methods. The theory for
feasible path-following algorithms is more elegant and provides better complexity
bounds than that for the infeasible algorithms (cf. [25], Chapters 5 and 6). On the
other hand, the implementations of interior point methods use infeasible algorithms.
In these approaches the primal and dual feasibility is expected to be attained together
with optimality, although, in practice, the infeasibilities are often reduced much earlier
than the duality gap gets decreased below the optimality tolerance.

The infeasible primal-dual algorithm follows the central path; i.e., in subsequent
iterations it makes (one) damped step in the Newton direction towards the solution of
the first-order optimality conditions for the barrier problem and reduces the barrier
parameter. The iterates of this algorithm stay in a large neighborhood of the central
path (cf. [25], page 109). In our implementation of the infeasible primal-dual method
(applied to (2.1)–(2.2)), this neighborhood is defined by the following inequalities:

‖A0x− b0‖ ≤ εp(µ)(||r0
b ||+ 1),

‖AT0 y + s− c0‖ ≤ εd(µ)(||r0
c ||+ 1),

γlµ ≤ xjsj ≤ γuµ, j = 1, 2, . . . , n.

(4.1)

The two vectors r0
b = A0x

0 − b0 and r0
c = AT0 y

0 + s0 − c0 are the violations of the
primal and dual constraints, respectively, at the initial point (x0, y0, s0). The relative
feasibility tolerances εp(µ) and εd(µ) decrease with µ and reach zero at µ = 0. The
parameters γl and γu control the discrepancy between the largest and the smallest
complementarity products.

If we expect that reoptimizations will be done, then we impose stronger require-
ments on the reduction of the primal and dual infeasibilities by a fast reduction of
the feasibility tolerances. This occasionally requires an additional recentering step
in which we preserve the duality gap but reduce the infeasibilities. Such a step uses
multiple centrality correctors [8] and is expected to reduce the discrepancy between
the largest and the smallest complementarity products.

Following [9], if we solve a given linear optimization problem (2.1)–(2.2) and ex-
pect that reoptimizations will be done later, then we modify the infeasible primal-dual
algorithm and ask for a nearly optimal µ-center to be saved for future reoptimization.
That is, we find a point (x, y, s) that satisfies

‖A0x− b0‖ ≈ 0,

‖AT0 y + s− c0‖ ≈ 0,

γlµ ≤ xjsj ≤ γuµ, j = 1, 2, . . . , n,

(4.2)
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for some small barrier parameter µ, which guarantees near-optimality.
Let us observe that an exact µ-center satisfies both primal and dual feasibility

constraints and the parameter µ controls its distance to optimality since the duality
gap at this point is

cT0 x− bT0 y = cT0 x− xTAT0 y = xT (c0 −AT0 y) = xT s = nµ.(4.3)

In the usual applications, the path-following algorithm terminates when the duality
gap drops below a predetermined relative optimality tolerance ε, i.e., when

|cT0 x− bT0 y| ≤ ε(|cT0 x|+ 1),(4.4)

with ε usually taking the values 10−6 or 10−8. However, instead of using (4.4) as
the stopping criterion, we can use (4.2). Here the algorithm stops at an approximate
µ-center corresponding to the predetermined barrier parameter µ (thereby controlling
the required distance to optimality). Once we obtain a rough estimate of the optimal
objective value z̃ = cT0 x, e.g., when (4.4) is already satisfied for ε0 = 10−1, we limit
the decrease of the barrier to

µ = ε̂
|z̃|
n

.(4.5)

From (4.2), (4.3), and (4.5) we see that an approximate µ-center corresponding to
such a µ is a nearly optimal solution with the relative precision ε̂.

The choice of the tolerance ε̂ (and, in consequence, the parameter µ) depends on
how significant the expected changes to the problem might be. If we expect violent
modifications of the problem, then a larger value of ε̂, say 10−1 or 10−2, is suggested.
For expected small perturbations to the problem, we suggest a closer-to-optimality
point with ε̂ equal to 10−3 or 10−4. It is also possible to store several candidate points
and to delay the decision on which of them should be used in reoptimization to the
time when primal and dual perturbations ξb and ξc have become known.

From now on we assume that an approximate µ-center (x, y, s) that satisfies (4.2)
is stored and that the data in the linear program changes from A0, b0, and c0 to A, b,
and c. Naturally, we cannot expect that the feasible point for an earlier problem will
be feasible for the new one. We accept the possible violation of both primal and dual
feasibility constraints in the new problem,

ξb = b−Ax 
= 0 and ξc = c−AT y − s 
= 0,

and compute the relative perturbation vectors ξ̃b and ξ̃c from (2.7). Following the
theoretical developments of section 3, since we work with the long-step (infeasible)
path-following algorithm, we could use the ∞-norms of the relative perturbation vec-
tors and verify whether they satisfy the assumptions of Lemmas 3.4 and 3.7. If we
knew ‖Q‖∞, we could check whether ‖ξ̃c‖∞ ≤ β/‖Q‖∞ and ‖ξ̃b‖∞ ≤ β/(‖Q‖∞ + 1).
Since we do not know ‖Q‖∞, we could replace it with an upper bound

√
n (γuγl )

1/2 or

with what we expect to be its reasonable estimate |Q|. Regardless of whether the real
norm ‖Q‖∞ or only its estimate |Q| are used, this would still allow us to predict how
successful the feasibility restoration direction could be. In particular, if the conditions
of Lemmas 3.4 and 3.7 were not satisfied, we could use for warm-starting another µ-
center which is further from optimality. Such a point could possibly absorb larger
perturbations in the primal and dual spaces. If we had a whole history of iterates
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stored as suggested in [27], we could backtrack to an approximate µ-center corre-
sponding to a barrier parameter that is sufficiently large to absorb the perturbations
ξb and ξc.

In the practical algorithm, we compute S−1∆s from (3.5) and X−1∆x from (3.6)
and then perform the ratio tests for the stepsizes in the primal and dual spaces

α̂P := max {α > 0 : x+ α∆x ≥ 0},(4.6)

α̂D := max {α > 0 : s+ α∆s ≥ 0}.(4.7)

Obviously, α̂P ≥ 1/‖X−1∆x‖∞ > 0 and α̂D ≥ 1/‖S−1∆s‖∞ > 0. If the stepsizes
α̂P and α̂D are small, say they fall below a prescribed tolerance α̂P ≤ αmin or
α̂D ≤ αmin, then we spread the absorption of primal and dual perturbations across a
few subsequent iterations. To achieve this, we scale infeasibilities and use

ξ
′
b = δP ξb and ξ

′
c = δD ξc,(4.8)

where δP , δD ∈ (0, 1) specify the fraction of infeasibilities that we expect could be
absorbed in a single Newton step. We could obviously set δP = α̂P and δD = α̂D;
however, we have found that this is sometimes too pessimistic. Therefore we choose
δ > 1 and define

δP = δ α̂P and δD = δ α̂D.(4.9)

Although the analysis deals independently with the infeasibilities in two spaces, our
practical reoptimization procedure takes them into account at the same time. We use
the primal-dual framework (i.e., Newton equation system (3.1)) and ignore primal
infeasibility in the dual step and dual infeasibility in the primal step. We thus have
to solve two systems of equations like (3.1) with ξc = 0 and with ξb = 0, respectively.
(Both these systems use the same factorization, of course.) For the first few iterations
of the reoptimization algorithm the step in the primal space results from ξb, the step
in the dual space results from ξc, and only the recentering steps use both directions
at the same time.

It is important to mention that we combine the step in which feasibility pertur-
bations are absorbed with the use of multiple centrality correctors [8]. Hence after
the step has been made, the proximity of the new point to the central path is not
necessarily worsened compared with that of the previous iterate. This is an impor-
tant feature of our approach because we expect that not all the perturbations can be
absorbed in this single interior point iteration; instead, few more iterations may be
needed to restore feasibility in the perturbed problem. Therefore we need the inter-
mediate points be as well centered as possible to be good candidates for absorbing
the remaining feasibility perturbations.

Summing up, if large perturbations have to be dealt with, our practical re-
optimization procedure absorbs them gradually, making slow progress towards op-
timality in a new problem at the same time. One could interpret this as passing
through a family of problems with data changing gradually from A0, b0, c0 to A, b, c.

Let us summarize our findings in the reoptimization algorithm below. We assume
that (x, y, s) is an approximate µ-center for (2.1) and (2.2), and that in the new linear
program this point produces infeasibilities ξb and ξc given by (2.6). The procedure
uses the following parameters: γl = 0.5 and γu = 2.0 define the neighborhood of
the central path (2.5), δ = 2.0 determines how much of the perturbations we expect
to absorb in one primal-dual iteration (cf. (4.9)), and αmin = 0.1 is a threshold for
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acceptable stepsizes in the primal and dual spaces. We draw the reader’s attention
to the fact that our procedure does not choose how much backtracking is needed
because we use only one µ-center saved for future warm-starting. The procedure
could obviously be enhanced by a simple test based on Lemmas 3.4 and 3.7 to choose
a suitable starting point from the list of candidates if such a list were available.

Reoptimization with the primal-dual method

Input
(x, y, s): approximate µ-center (4.2);

Parameters
γl, γu: relative threshold values for outlier complementarity products;
δ: parameter in (4.8) and (4.9);
αmin: the minimum acceptable stepsize;

Initialize
∆x: primal feasibility restoring direction (3.6);
∆y,∆s: dual feasibility restoring direction (3.2) (with ξb = 0) and (3.5);
α̂P , α̂D: stepsizes (4.6) and (4.7) in the primal and dual spaces;

Absorb infeasibility
while (α̂P ≤ αmin or α̂D ≤ αmin), do

if (α̂P ≤ αmin), then
scale primal direction:
∆x := δα̂P∆x;

endif
if (α̂D ≤ αmin), then

scale dual direction:
∆y := δα̂D∆y,
∆s := δα̂D∆s;

endif

define the predictor direction ∆p = (∆x,∆y,∆s);
∆ = Recenter(∆p);
MakeStep (∆);
at the new point, recompute:

(∆x,∆y,∆s) from (3.6), (3.2) (with ξb=0), and (3.5);
α̂P , α̂D from (4.6) and (4.7);

end-while

In our implementation γl = 0.5, γu = 2.0, δ = 2.0, and αmin = 0.1.
Two procedures in this algorithm need further comments. In the Recenter(∆p)

procedure, the direction ∆p = (∆x,∆y,∆s) is used as a predictor direction for the
multiple centrality correctors technique [8]. Centrality correctors usually alter ∆p and
replace it with a new direction ∆. Centrality correctors aim at two goals: firstly to
increase the stepsizes from 1/δ = 0.5 to larger values αP , αD ∈ (0.5, 1) and secondly
to improve the centrality of the new iterate, i.e., to decrease the spread between the
largest and the smallest complementarity products in it. In the procedure MakeStep,
the maximum feasible stepsizes in the primal and dual spaces are determined along
direction ∆, the variables are updated from (x, y, s) to (x̄, ȳ, s̄), and infeasibilities ξb
and ξc are recomputed.

The reoptimization procedure terminates when a significant portion of the initial
perturbations in the primal and dual spaces have already been absorbed, and for the
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remaining infeasibilities ξb and ξc the stepsizes in both spaces exceed the threshold
αmin. We have found that at this point there is no more need for special feasibility
restoration steps. The usual infeasible primal-dual method can be used to terminate
the optimization.

5. Crash start of an interior point method. In this paper, we report results
on the application of the reoptimization technique to the problem of finding a good
advanced starting point. In the next section we will present a decomposition-based
technique which aims to find an approximate µ-center quickly without using an in-
terior point method for the whole system. This point is then used as the starting
point for our reoptimization method. Since this advanced solution is not the result
of solving a similar linear program, we cannot assume that we have a well-centered
point to begin with. In other words, in addition to possible large perturbations of the
primal and dual feasibility, ξµ in (2.6) may also be large.

Guided by the theoretical results of section 3, we realize that if some of the
primal or dual slack variables are very close to zero, then the relative primal and dual
perturbations (2.7) may become huge and this would inevitably lead to very small
stepsizes α̂P and α̂D in the reoptimization procedure (cf. (4.6) and (4.7)). Therefore,
when constructing a candidate for a starting point, we shall bound these variables
away from zero. Additionally, since the theory indicates through Lemma 3.2 that
the ratio between the largest and the smallest complementarity products (bounded
by γu/γl) contributes to the increase of ‖Q‖, we shall pay particular attention to
limiting the spread of complementarity products even at the expense of increasing
primal and dual infeasibilities ξb and ξc.

Summing up, we shall look for a candidate initial point (x∗, y∗, s∗) that satisfies
the following requirements:

1. ∃µ∗ : γlµ
∗ ≤ x∗

js
∗
j ≤ γuµ

∗ for some 0 < γl ≤ 1 ≤ γu with γu/γl small;
2. µ∗ is small;
3. primal and dual infeasibilities ξb = b0 − A0x

∗ and ξc = c0 − AT0 y
∗ − s∗ are

small.
One could design different heuristics or more rigorous algorithms that would gen-

erate a good candidate point (x∗, y∗, s∗) along these lines. We want to apply our crash
procedure to the solution of large structured linear programs. Hence we expect that
the key to its success lies in exploiting the structure of the problem. Our approach
uses one iteration of a decomposition method to guess the initial point. We describe
our heuristic in detail in the following sections.

Many real-life linear programs display some particular block structures. The
structure usually results from system dynamics, uncertainty, spatial distribution, or
other factors that lead to the creation of huge problems made up of small, nearly
identical parts which have to be coordinated through time, uncertainty, space, or other
dimensions. Moreover, modeling very complicated real-life optimization problems
often requires nested embedding of structures. The presence of special structure in
the problem should be exploited by an interior point method. It can simplify and/or
accelerate the execution of linear algebra operations [10].

The problem structure may also be used to find an advanced starting point. We
shall illustrate this idea on two well-known classes of specially structured problems:
the primal block-angular and the dual block-angular ones. Although for ease of pre-
sentation we shall restrict our discussion to those two classes, we shall apply a similar
approach also to more complicated linear programs that display nested block struc-
tures which combine those two.
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Let us recall that the constraint matrix of the linear program with the primal
block-angular structure has the following form:

A =




A1

A2

. . .

An
B1 B2 · · · Bn B0


 ,(5.1)

where Ai ∈ Rmi×ni , i = 1, . . . , n, and Bi ∈ Rm0×ni , i = 0, . . . , n. Matrix A then has
M = m0 +

∑n
i=1 mi rows and N =

∑n
i=0 ni columns. The constraint matrix of the

linear program with the dual block-angular structure has the following form:

A =




A1 C1

A2 C2

. . .
...

An Cn


 ,(5.2)

where Ai ∈ Rmi×ni , i = 1, . . . , n, and Ci ∈ Rmi×k, i = 1, . . . , n. Matrix A then
has M =

∑n
i=1 mi rows and N = k +

∑n
i=1 ni columns. In the following sections

we will use the partitioning of objective and variable vectors c = [c1, . . . , cn, c0], x =
[x1, . . . , xn, x0] and likewise the vectors of right-hand sides b = [b1, . . . , bn, b0] in (5.1)
and b = [b1, . . . , bn] in (5.2). Dual variables y for constraints and s for the non-
negativity constraints on x are partitioned as b and x, respectively.

5.1. Decomposition-based starting point. A problem whose constraint ma-
trix is of the forms (5.1), (5.2) lends itself obviously to a decomposition approach.
In our experience such a strategy is efficient at finding a near-optimal point quickly;
however, it might take a long time to converge to within a specified tolerance. The
idea is therefore to construct a starting point for the interior point method from infor-
mation obtained after one iteration of a decomposition scheme applied to the original
problem. One major aim will be to construct a point which is as close to primal and
dual feasibility as possible. Assume we apply the Dantzig–Wolfe decomposition [6]
to (5.1). After dualizing the coupling constraint, the problem decomposes, and each
of the subproblems could be solved independently. We could then combine the sub-
problem solutions to obtain an advanced starting point for the interior point method.
The difficulty with this approach is that while the resulting point is dual feasible in
the complete problem, there would be a considerable violation of primal feasibility in
the (earlier ignored) coupling constraint. Similarly, applying Benders decomposition
[4] to (5.2) and combining subproblem solutions would yield a point which is primal
feasible while violating dual feasibility (corresponding to ignored linking variables).
Our idea therefore is to combine the two decomposition approaches. Problems (5.1)
and (5.2) are extended into forms that allow the application of both Dantzig–Wolfe
and Benders decomposition. We will first apply Dantzig–Wolfe decomposition; from
its solution, values of complicating variables to use in Benders decomposition can
be derived. The Benders subproblem is then solved, and from the solutions of both
sets of subproblems we will construct a point which is close to both primal and dual
feasibility.

A scheme to solve optimization problems by iterating between Dantzig–Wolfe and
Benders subproblems has been suggested as cross-decomposition by van Roy [22] and
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Vlahos [23]. We will revise the cross-decomposition algorithm applied to problems
of form (5.1) and (5.2). Note, however, that cross-decomposition requires strong
assumptions about boundedness and feasibility of the resulting subproblems, which
are not satisfied in our case. We will therefore suggest modifications to the algorithm
which make it suited for our application.

5.2. Cross-decomposition for primal block-angular structure. Assume in
the next two sections that the system matrix A is of form (5.1). The problem could
be solved by Dantzig–Wolfe decomposition. However, introducing extra variables
hi, i = 0, . . . , n, and constraints Bixi − hi = 0, i = 0, . . . , n, leads to the augmented
problem

min
x0,...,xn≥0
h0,...,hn

n∑
i=0

cTi xi s.t. Aixi = bi, i = 1, . . . , n,
Bixi − hi = 0, i = 0, . . . , n,

n∑
i=0

hi = b0

(5.3)

and enables us to apply Benders decomposition using h = (h0, . . . , hn) as complicating
variables. The cross-decomposition scheme applied to (5.3) would proceed as follows:
a guess of the multiplier ŷ0 on the

∑
hi = b0 constraint is obtained. With this the

Dantzig–Wolfe subproblem

vD(ŷ0) = min
x0,...,xn≥0

n∑
i=0

(ci −BT
i ŷ0)

Txi s.t. Aixi = bi, i = 1, . . . , n,(5.4)

is solved. From its solution (x∗
0, . . . , x

∗
n), values ĥi = Bix

∗
i of the Benders complicating

variables are obtained, and with these the Benders subproblem

vP (ĥ) = min
x0,...,xn≥0

n∑
i=0

cTi xi s.t. Aixi = bi, i = 1, . . . , n,

Bixi = ĥi, i = 0, . . . , n,

(5.5)

is solved. Multipliers y∗0,i on the Bixi = ĥi constraints are obtained and averaged
ŷ0 = (

∑
i y

∗
0,i)/(n + 1), which is then used again in (5.4). Note that problems (5.4)

and (5.5) separate into n and n + 1 smaller problems, respectively. However, in
(5.4) the subproblems might be unbounded, and in (5.5) the subproblems might be
infeasible. We will now show how this procedure can be used to construct an advanced
starting point.

5.3. Crash start for a primal block-angular problem. We are aiming for
a point that is both near to primal and dual feasibility and close to the central path.
Using the particular system matrix (5.1), we therefore aim to satisfy (compare (2.3))

ci −ATi yi −BT
i y0 − si = 0,(5.6)

c0 −BT
0 y0 − s0 = 0,(5.7)

Aixi = bi,(5.8)
n∑
i=0

Bixi = b0,(5.9)

SiXie = µe,(5.10)

S0X0e = µe,(5.11)

si, xi, s0, x0 ≥ 0.(5.12)
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Let us now assume that an estimate ŷ0 of the complicating constraint multiplier is
available (we have used ŷ0 = e in the tests). With this the Dantzig–Wolfe subproblem
(5.4) is solved. At the solution (denoted by superscripts (1)) the following KKT
conditions hold:

ci −ATi y
(1)
i −BT

i ŷ0 − s
(1)
i = 0, i = 1, . . . , n,(5.13)

Aix
(1)
i = bi, i = 1, . . . , n.(5.14)

Note that as long as ci −BT
i ŷ0 ≥ 0, problem (5.4) is bounded, a condition which will

be satisfied in our test problems. From this, estimates h
(1)
i = Bix

(1)
i of the Benders

complicating variables are obtained. Projecting them on the
∑

hi = b0 constraint

by (ĥi)j = (h
(1)
i )j(b0)j/(

∑
h

(1)
i )j , the Benders subproblem (5.5) is solved with ĥi as

complicating variables. Note that this subproblem is not necessarily feasible, and thus
(5.5) is replaced by a penalized version

vP (ĥ) = min
x0,...,xn≥0

p
+
i
,p

−
i

≥0

n∑
i=0

cTi xi+γeT (p+
i +p−i ) s.t. Aixi = bi, i = 1, . . . , n,

Bixi − ĥi = p+
i − p−i , i = 0, . . . , n,

(5.15)
whose solution (denoted by superscripts (2)) satisfies the KKT conditions

ci −ATi y
(2)
i −BT

i y
(2)
0,i − s

(2)
i = 0,(5.16)

Aix
(2)
i = bi,(5.17)

Bix
(2)
i − ĥi = p+

i − p−i .(5.18)

After solving (5.4) and (5.15), we can accumulate an estimated solution (x∗, y∗, s∗)
to the linear programming problem of form (5.1) as follows:

x∗
i = x

(2)
i ,

y∗i = y
(1)
i ,

s∗i = s
(1)
i ,

x∗
0 = max

{
B−1

0

(
b0 −

n∑
i=1

Bix
(2)
i

)
, 0

}
,

y∗0 = ŷ0,

s∗0 = c0 −BT
0 ŷ0,

where it is assumed that B−1
0 is easy to compute (such as when B0 is diagonal). With

these choices, dual feasibility is ensured by (5.13) and the definition of s∗0. Aix
∗
i = bi

holds by (5.17), and
∑0
i=1 Bix

∗
i − b0 =

∑n
i=1(p

+
i − p−i ), which should be small due to

our choice of objective in (5.15). Thus the guess is close to primal feasibility. A good
spread of complementarity products is achieved as follows.

All subproblems are solved by an interior point method. Rather than ensuring
convergence of the subproblem, we are aiming for a point on the central path for a
relatively small µ. To achieve this, we choose a target value µ̂ (µ̂ = 0.01 has been
used in the tests) and obtain an estimate z̃i ≈ cTi xi of the optimal objective value for
each subproblem. The subproblems are solved using

εi =
µ̂ni
|z̃i|(5.19)
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in (4.4) as a stopping criterion (see the discussion leading to (4.5)), and two additional
recentering steps using multiple centrality correctors are performed. Further, we set
(x∗

0)j = max{1, (x∗
0)j}, (s∗0)j = max{µ̂, (s∗0)j}. This ensures that

X∗
i S

∗
i e ≈ µ̂e, X∗

0S
∗
0e ≥ µ̂e,(5.20)

so that the point (x∗, y∗, s∗) should be reasonably well centered for the application of
the interior point method.

5.4. Cross-decomposition for dual block-angular structure. For the case
in which the system matrix A is of form (5.2) we proceed similarly. We will start by
stating the cross-decomposition for this case. In order to apply the Dantzig–Wolfe
scheme, we need to introduce additional variables x0,i, i = 1, . . . , n, and constraints
x0,i − x0 = 0, i = 1, . . . , n, to arrive at the augmented problem

min
x0,xi,x0,i≥0

i=1,...,n

n∑
i=0

cTi xi s.t. Aixi + Cix0,i = bi, i = 1, . . . , n,
x0,i − x0 = 0, i = 1, . . . , n.

(5.21)

The cross-decomposition starts by relaxing the x0,i − x0 = 0 constraints. Initial

multipliers λ̂ = (λ̂1, . . . , λ̂n) are guessed and the subproblem

vD(λ̂) = min
x0,xi,x0,i≥0

i=1,...,n

n∑
i=0

cTi xi+

n∑
i=1

λ̂Ti (x0,i−x0) s.t. Aixi+Cix0,i = bi, i = 1, . . . , n,

(5.22)
is solved. The optimal value of x0 is obtained and used as complicating variable x̂0

in the Benders subproblem

vP (x̂0) = min
xi,x0,i≥0

i=1,...,n

n∑
i=1

cTi xi + cT0 x̂0 s.t. Aixi + Cix0,i = bi,
x0,i = x̂0.

(5.23)

Multipliers λ∗
i on the x0,i = x̂0 constraints are obtained and used as new λ̂i in the

next iteration of (5.22). Note that again (5.23) and (5.22) separate into smaller
subproblems. Further, (5.22) might be unbounded, just as (5.23) might be infeasible.
We will now derive the way in which we modify this scheme to construct an advanced
starting point which is close to primal and dual feasibility.

5.5. Crash start for the dual block-angular problem. From the KKT con-
ditions of the augmented system (5.21),

∑n
i=1 λi = c0 needs to be satisfied at the

solution. We therefore restrict ourselves to such choices of λ̂ and use, for instance,
λ̂i = c0/n as a starting guess. With this choice, subproblem (5.22) simplifies to

vD(λ̂)= min
xi,x0,i≥0

i=1,...,n

n∑
i=1

(cTi xi + λ̂Ti x0,i) s.t Aixi + Cix0,i = bi, i = 1, . . . , n,(5.24)

and separates into n smaller subproblems. The Benders complicating variables x̂0

could be obtained by x̂0 =
∑

x0,i/n. In our test problems, however, the Ci are the
negatives of projection matrices, so that a large value of x̂0 is likely to lead to a feasible
Benders subproblem. Therefore we have used (x̂0)j = maxj{(x0,i)j}. Problem (5.23),
however, might still be infeasible, so again it is replaced by a penalized version

vP (x̂0)= min
x1,...,xn≥0

p
+
i
,p

−
i

≥0

n∑
i=1

(cTi xi+γeT (p+
i +p−i )) s.t. Aixi+p+

i −p−i = bi−Cix̂0,(5.25)
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where the x0,i have also been substituted out. If new estimates λ̂i are needed, they

can be obtained as λ̂i = −CT
i y

∗
i − s∗i , as can be motivated by the KKT conditions for

the augmented system.
The estimate for an advanced solution is again obtained by combining the solu-

tions of (5.24) and (5.25). We are aiming to find a point close to the central path for
an LP with system matrix (5.2), so we aim to satisfy

ci −ATi yi − si = 0,(5.26)

c0 −
n∑
i=1

CT
i yi − s0 = 0,(5.27)

Aixi + Cix0 = bi,(5.28)

SiXie = µe,(5.29)

S0X0e = µe,(5.30)

si, xi, s0, x0 ≥ 0.(5.31)

The solutions to the Lagrangian subproblem (5.24) (denoted by superscripts (1)) and
the Benders subproblem (5.25) (superscripts (2)) satisfy, respectively,

ATi y
(1)
i + s

(1)
i = ci,(5.32)

CT
i y

(1)
i + s

(1)
0,i = λ̂i,(5.33)

Aix
(1)
i + Cix

(1)
0,i = bi,(5.34)

ATi y
(2)
i + s

(2)
i = ci,(5.35)

Aix
(2)
i + Cix̂0 + p+

i −p−i = bi.(5.36)

We combine these solutions by choosing

x∗
i = x

(2)
i ,

y∗i = y
(1)
i ,

s∗i = s
(1)
i ,

x∗
0 = x̂0,

s∗0 =
∑

s
(1)
0,i .

With these choices, (5.26) is satisfied by (5.32); (5.27) follows from (5.33), together

with the definition of s∗0 and the fact that c0 =
∑

λ̂i. Together the advanced solution
is dual feasible. Further, we have that the residual of (5.28) is p+

i − p−i , which should
be small.

To obtain a fairly well centered point, we apply the same heuristic as in the last
section. We solve subproblems only to a relative accuracy of εi given by (5.19) and
set (x∗

0)j = max{1, (x∗
0)j}, (s∗0)j = max{µ̂, (s∗0)j}.

6. Numerical results. We have tested our approach in the context of OOPS,
the object-oriented parallel solver [10]. We have implemented the reoptimization
procedure and our crash procedure for constructing an advanced starting point as
described in section 5. We have applied the crash starting in the solution of several
different classes of structured linear programs.
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Table 6.1
Problem statistics.

Problem Rows Columns Blks

MCNF RN 14232 72996 119
MCNF R2 3621 16600 60
MCNF R4 6981 20850 70
MCNF R6 8715 51300 86
MCNF R13 88613 460000 288
MCNF R14 159602 637600 398
MSND PB1 22213 72514 81
MSND PB2 59021 207901 102
MSND PB3 54657 188266 109
MSND PB4 83561 294735 123
MSND PB5 242570 886178 179
JOSBP T1 1021 2400 26
JOSBP T2 3414 7266 43
JOSBP T3 13053 26860 80
JOSBP P1 3241 6970 42
JOSBP P2 6492 13978 59
JOSBP P3 14221 32760 92
ALM P1 66666 166665 101
ALM P2 666666 1666665 101
ALM P3 1222221 3333330 101

Our computational results demonstrate the performance of the crash procedure
and give an insight into the practical behavior of the reoptimization strategy. All
classes of problems solved in this paper are well documented in the literature, so
we restrict their description to an explanation of the associated block structures.
These problems originate from network optimization [1] and multistage stochastic
programming applied to asset liability management [28].

Multicommodity network flow problems (MCNF) are of primal block-angular
structure; all other problems display a nested dual block-angular structure: multi-
commodity survivable network design (MSND) and joint optimal synthesis of base
and spare capacity (JOSBP) problems have primal block-angular subblocks. Detailed
formulations of all these problems can be found in [10]. The asset liability manage-
ment (ALM) problems have dual block-angular subblocks.

We have used the algorithm to generate an advanced starting point as described
in section 5 with a few minor variations. First note that not all the slack variables
p+
i , p

−
i in (5.15) and (5.25) are necessary since some slacks might be easily picked up

by the problem variables. We have removed these slacks from the subproblems as far
as possible. Further, for the ALM problems the complicating variable costs c0 are
zero and the default choice of λ̂ (λ̂i = c0/n = 0) would lead to unbounded Lagrangian

relaxation subproblems. We have therefore used a different choice of λ̂, still satisfying∑
i λ̂i = c0 = 0, that guarantees bounded subproblems.
In Table 6.1 we report problem statistics. The problems are grouped by category.

For each problem we give its size in numbers of rows and columns and the number
of diagonal blocks. In Table 6.2 we report the results of our method. The column
following the problem name contains the number of iterations to reach optimal solution
from the default starting point (which is based on Mehrotra [16]). The final block
states the results for our algorithm. Its first column reports the number of iterations of
the interior point method starting from the crash point and using the reoptimization.
The following columns give some useful numbers: ‖ξ̃b‖∞ and ‖ξ̃c‖∞ at the start of
the reoptimization, γu/γl as a measure of initial centrality of the generated point, and
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Table 6.2
Solution statistics.

Default Advanced starting point

Problem Iters Iters ‖ξ̃b‖∞ ‖ξ̃c‖∞ (γu/γl)
1
2 itf αP αD

MCNF RN 31 22 7.1e+3 6.9e-1 2236 22 3.0e-2 7.9e-2
MCNF R2 20 12 4.0e+3 4.8e-4 875 12 1.8e-2 7.2e-2
MCNF R4 18 10 2.7e+4 1.1e-3 504 8 1.6e-1 2.8e-1
MCNF R6 20 12 7.4e+4 3.4e-3 1240 11 1.3e-2 7.5e-2
MCNF R13 37 26 3.9e+5 5.0e-3 3435 26 8.5e-3 3.3e-2
MCNF R14 49 38 3.3e+5 3.0e-3 3332 37 1.1e-2 1.4e-2
MSND PB1 25 20 2.81 0.97 269 10 8.3e-2 5.8e-2
MSND PB2 33 20 1.94 0.96 369 14 3.1e-2 6.6e-2
MSND PB3 29 17 1.40 0.97 359 12 1.0e-1 1.6e-2
MSND PB4 36 22 1.66 0.97 462 18 1.2e-1 1.8e-3
MSND PB5 51 29 1.59 0.97 589 20 2.6e-2 4.6e-3
JOSBP T1 15 12 14.3 0.99 74 8 3.6e-2 3.0e-1
JOSBP T2 22 19 13.6 0.97 108 18 9.3e-3 1.3e-2
JOSBP T3 28 22 1.23 1.00 32 13 1.3e-2 1.2e-2
JOSBP P1 25 19 1.17 1.00 42 13 1.6e-2 4.6e-2
JOSBP P2 27 22 0.96 1.00 41 13 1.1e-2 4.2e-2
JOSBP P3 40 37 0.70 1.00 34 7 1.0e-2 3.5e-2
ALM P1 21 12 2.7e+3 0.96 741 4 3.5e-1 3.9e-1
ALM P2 44 22 4.6e+3 0.97 2280 5 3.6e-3 2.7e-1
ALM P3 66 30 8.4e+4 0.98 2626 6 2.6e-2 2.5e-1

Table 6.3
Speed-ups for parallel implementation.

Default start Advanced start
Prob 1 proc 2 procs 4 procs 1 proc 2 procs 4 procs

Time Time s-up Time s-up Time Time s-up Time s-up
R13 1855 952 1.95 468 3.96 1427 734 1.94 377 3.79
R14 3560 1782 1.99 892 3.99 2730 1387 1.97 715 3.82
PB4 644 373 1.73 185 3.38 625 361 1.73 180 3.47
PB5 3255 1859 1.75 1003 3.25 2662 1491 1.78 850 3.13
P2 6070 3124 1.94 1674 3.62 3593 1813 1.98 1067 3.36
P3 29752 15143 1.96 7804 3.81 16039 8350 1.92 5118 3.13

itf, the number of steps needed to reach max{‖ξc‖∞, ‖ξb‖∞} ≤ 0.01, together with
the initial stepsizes in primal and dual spaces as an indication of how fast primal and
dual feasibility is regained.

It can be seen that in all cases the interior point method needed fewer iterations
to converge to a solution from our advanced starting point than from the default
starting point. On average about 33% of iterations could be saved. For the six largest
of our test problems, an average of 40% of iterations was saved, and this translated
into a 25% decrease in CPU time, as can be seen in Table 6.3.

For all problem classes the advanced starting point is dual feasible. However,
for the dual block-angular problems s∗0 might have to be bounded away from zero,
resulting in a scaled dual infeasibility of ≈ 1. For classes MSND and JOSPB, our
choice for x∗

0 is expected to lead to a solution of (5.25) with zero slacks, resulting
in a primal feasible advanced starting point; for the other classes, however, primal
feasibility is more difficult to achieve. These observations are reflected in the results.

It should be noted that for most problems the measure of centrality γu/γl is fairly
large. This results as expected from the earlier discussion in small initial stepsizes
αP , αD and hence a large number of iterations to regain feasibility. However, en-
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couragingly, even in these adverse circumstances, the reoptimization strategy obtains
good results.

Our implementation, OOPS, of the primal-dual method is a parallel solver, and
the crash start has been implemented in parallel in the obvious way by distributing
the Benders and Dantzig–Wolfe subproblems amongst processors. The program has
been run on a Sun Enterprise 6500 parallel computer with four processors. Table 6.3
states the CPU times (first values) and obtained speed-ups (second values) on two
and four processors for the largest of our test problems. Speed-ups between 3.1–3.8
were obtained. These are consistent with the speed-ups obtained for OOPS without
crash start.

7. Conclusions. We have discussed a strategy that exploits a well-centered so-
lution of one linear program to generate a good starting point for a perturbed problem.
We have given bounds on the size of perturbations of the primal and dual feasibility
that can be absorbed in merely one Newton step. Our bounds critically depend on the
size of perturbations measured in the scaled space of primal-dual solutions and can
easily be computed in practical situations that require warm-starting. They can thus
be used to facilitate a choice of one well-centered point from the list of candidates if
such a list is available.

We have performed the analysis for the feasible path-following methods. We have
shown that the measure of proximity to the central path appropriate for each of these
methods will not be corrupted by the feasibility restoration step (if the perturbations
are small, of course). We have then translated our findings into a computational prac-
tice of infeasible path-following method. The practical reoptimization strategy spreads
the process of restoring feasibility into few subsequent iterations. If the perturbations
are large, then only a fraction of them is absorbed in a single iteration.

Finally, we have applied the reoptimization technique to allow the start of an
interior point method from almost an arbitrary point. We have provided numerical
results which confirm that this strategy works well for large structured linear programs
and that it can be efficiently implemented in parallel.
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Abstract. This paper addresses complementarity problems motivated by constrained optimal
control problems. It is shown that the primal-dual active set strategy, which is known to be extremely
efficient for this class of problems, and a specific semismooth Newton method lead to identical
algorithms. The notion of slant differentiability is recalled and it is argued that the max-function
is slantly differentiable in Lp-spaces when appropriately combined with a two-norm concept. This
leads to new local convergence results of the primal-dual active set strategy. Global unconditional
convergence results are obtained by means of appropriate merit functions.
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1. Introduction. This paper is motivated by linearly constrained quadratic
problems of the type {

minJ(y) = 1
2 (y,Ay)− (f, y)

subject to y ≤ ψ,(P)

where A is positive definite and f, ψ are given. In previous contributions [IK1, IK2,
BIK, BHHK] we proposed a primal-dual active set strategy as an extremely efficient
method to solve (P). We shall show in the present work that the primal-dual active
set method can be interpreted as a semismooth Newton method. This opens up a
new interpretation and perspective of analyzing the primal-dual active set method.
Both the finite dimensional case with y ∈ R

n and the infinite dimensional case with
y ∈ L2(Ω) will be considered. While our results are quite generally applicable the
main motivation arises from infinite dimensional constrained variational problems
and their discretization. Frequently such problems have a special structure which
can be exploited. For example, in the case of discretized obstacle problems A can be
an M-matrix, and for constrained optimal control problems A is a smooth additive
perturbation of the identity operator.

The analysis of semismooth problems and the Newton algorithm to solve
such problems has a long history for finite dimensional problems. We refer to se-
lected papers [Q1, Q2, QS] and the references therein. Typically, under appropriate
semismoothness and regularity assumptions locally superlinear convergence rates of
semismooth Newton methods are obtained. Since many definitions used in the above
papers depend on Rademacher’s theorem, which has no analogue in infinite dimen-
sions, very recently, e.g., in [CNQ, U] new concepts for generalized derivatives and
semismoothness in infinite dimensional spaces were introduced. In our work we pri-
marily use the notion of slant differentiability from [CNQ] which we recall for the
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reader’s convenience at the end of this section. For the problem under considera-
tion it coincides with the differentiability concept in [U]. This will be explained in
section 4.

Let us briefly outline the structure of the paper. In section 2 the relationship
between the primal-dual active set method and semismooth Newton methods is ex-
plained. Local as well as global convergence for finite dimensional problems, which is
unconditional with respect to initialization in certain cases, is addressed in section 3.
The global convergence results depend on properties of the matrix A. For instance,
the M-matrix property required in Theorem 3.2 is typically obtained when discretizing
obstacle problems (see, e.g., [H, KNT]) by finite differences or finite elements. The-
orem 3.3 can be connected to discretizations of control constrained optimal control
problems. Some relevant numerical aspects of the conditions of Theorem 3.3 are dis-
cussed at the end of section 4. An instance of the perturbation result of Theorem 3.4
is given by discretized optimal control problems with sufficiently small cost parameter.
Perturbations of M-matrices resulting from discretized obstacle problems and state
constrained optimal control problems (see, e.g., [Ca]) fit into the framework of The-
orem 3.4. In section 4 slant differentiability properties of the max-function between
function spaces are analyzed. Superlinear convergence of semismooth Newton meth-
ods for optimal control problems with pointwise control constraints is proved. Several
alternative methods were analyzed to solve optimal control problems with pointwise
constraints on the controls. Among them are the projected Newton method, analyzed,
e.g., in [HKT, KS] and affine scaling interior point Newton methods [UU]. We plan to
address nonlinear problems in a future work. Let us stress, however, that nonlinear
iterative methods frequently rely on solving auxiliary problems of the type (P), and
solving them efficiently is important.

To briefly describe some of the previous work in the primal-dual active set method,
we recall that this method arose as a special case of generalized Moreau–Yosida ap-
proximations to nondifferentiable convex functions [IK1]. Global convergence proofs
based on a modified augmented Lagrangian merit function are contained in [BIK]. In
[BHHK] comparisons between the primal-dual active set method and interior point
methods are carried out. In [IK2] the primal-dual active set method was used to
solve optimal control of variational inequalities problems. For this class of problems,
convergence proofs are not yet available.

We now turn to the notion of differentiability which will be used in this paper.
Let X and Z be Banach spaces and consider the nonlinear equation

F (x) = 0 ,(1.1)

where F : D ⊂ X → Z, and D is an open subset of X.
Definition 1. The mapping F : D ⊂ X → Z is called slantly differentiable in

the open subset U ⊂ D if there exists a family of mappings G : U → L(X,Z) such
that

lim
h→0

1

‖h‖ ‖F (x+ h)− F (x)−G(x+ h)h‖ = 0(A)

for every x ∈ U .
We refer to G as a slanting function for F in U . Note that G is not required to be

unique to be a slanting function for F in U . The definition of slant differentiability
in an open set is a slight adaptation of the terminology introduced in [CNQ], where
in addition it is required that {G(x) : x ∈ U} is bounded in L(X,Z). In [CNQ] also
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the term slant differentiability at a point is introduced. In applications to Newton’s
method this presupposes knowledge of the solution, whereas slant differentiability of
F in U requires knowledge of a set which contains the solution. Under the assump-
tion of slant differentiability in an open set, Newton’s method converges superlinearly
for appropriate choices of the initialization. While this discussion is perhaps more
philosophical than mathematical, we mention it because the assumption of slant dif-
ferentiability in an open set parallels the hypothesis of knowledge of the domain within
which a second order sufficient optimality condition is satisfied for smooth problems.

Kummer [K2] introduced a notion similar to slant differentiability at a point
and coined the name Newton map. He also pointed out the discrepancy between
the requirements needed for numerical realization and for the proof of superlinear
convergence of the semismooth Newton method.

The following convergence result is already known [CNQ].
Theorem 1.1. Suppose that x∗ is a solution to (1.1) and that F is slantly

differentiable in an open neighborhood U containing x∗ with slanting function G(x).
If G(x) is nonsingular for all x ∈ U and {‖G(x)−1‖ : x ∈ U} is bounded, then the
Newton iteration

xk+1 = xk −G(xk)−1F (xk)

converges superlinearly to x∗, provided that ‖x0 − x∗‖ is sufficiently small.
We provide the short proof since it will be used to illustrate the subsequent

discussion.
Proof. Note that the Newton iterates satisfy

‖xk+1 − x∗‖ ≤ ‖G(xk)−1‖ ‖F (xk)− F (x∗)−G(xk)(xk − x∗)‖,(1.2)

provided that xk ∈ U . Let B(x∗, r) denote a ball of radius r centered at x∗ contained
in U and let M be such that ‖G(x)−1‖ ≤M for all x ∈ B(x∗, r). We apply (A) with
x = x∗. Let η ∈ (0, 1] be arbitrary. Then there exists ρ ∈ (0, r) such that

‖F (x∗ + h)− F (x∗)−G(x∗ + h)h‖ < η

M
‖h‖ ≤ 1

M
‖h‖(1.3)

for all ‖h‖ < ρ. Consequently, if we choose x0 such that ‖x0 − x∗‖ < ρ, then
by induction from (1.2), (1.3) with h = xk − x∗ we have ‖xk+1 − x∗‖ < ρ and in
particular xk+1 ∈ B(x∗, ρ). It follows that the iterates are well-defined. Moreover,
since η ∈ (0, 1] is chosen arbitrarily xk → x∗ converges superlinearly.

Note that replacing property (A) by a condition of the type

lim
h→0

1

‖h‖ ‖F (x)− F (x− h)−G(x)h‖ = 0

would require a uniformity assumption with respect to x ∈ U for Theorem 1.1 to
remain valid in the case where X is infinite dimensional.

Let us put the concept of slant differentiability into perspective with the notion of
semismoothness as introduced in [Mi] for real-valued functions and extended in [QS]
to finite dimensional vector-valued functions. Semismoothness of F : U ⊂ R

n → R
m

in the sense of Qi and Sun [QS] implies

‖F (x+ h)− F (x)− V h‖ = O(‖h‖)(1.4)
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for x ∈ U , where V is an arbitrary element of the generalized Jacobian ∂F (x + h)
in the sense of Clarke [C, Prop. 2.6.2]. Thus, slant differentiability introduced in
Definition 1 is a more general concept. In fact, the slanting functions according to
Definition 1 are not required to be elements of ∂F (x+h). On the other hand, if (1.4)
holds for x ∈ U ⊂ R

n, then a single-valued selection V (x) ∈ ∂F (x), x ∈ U , serves as
a slanting function in the sense of Definition 1.

We shall require the notion of a P-matrix which we recall next.
Definition 2. An n × n-matrix is called a P-matrix if all its principal minors

are positive.
It is well known [BP] that A is a P-matrix if and only if all real eigenvalues of A

and of its principal submatrices are positive. Here B is called a principal submatrix
of A if it arises from A by deletion of rows and columns from the same index set
J ⊂ {1, . . . , n}.

2. The primal-dual active set strategy as semismooth Newton method.
In this section we consider complementarity problems of the form{

Ay + λ = f,
y ≤ ψ, λ ≥ 0, (λ, y − ψ) = 0 ,

(2.1)

where (·, ·) denotes the inner product in R
n, A is an n × n-valued P-matrix, and f ,

ψ ∈ R
n. The assumption that A is a P-matrix guarantees the existence of a unique

solution (y∗, λ∗) ∈ R
n × R

n of (2.1) [BP]. In the case where A is symmetric positive
definite (2.1) is the optimality system for

minJ(y) =
1

2
(y,Ay)− (f, y)

subject to y ≤ ψ.
(P)

Note that the complementarity system given by the second line in (2.1) can equiva-
lently be expressed as

C(y, λ) = 0, where C(y, λ) = λ−max(0, λ+ c(y − ψ))(2.2)

for each c > 0. Here the max-operation is understood componentwise.
Consequently, (2.1) is equivalent to{

Ay + λ = f,
C(y, λ) = 0.

(2.3)

The primal-dual active set method is based on using (2.2) as a prediction strategy;
i.e., given a current primal-dual pair (y, λ), the choice for the next active and inactive
sets is given by

I = {i : λi + c(y − ψ)i ≤ 0} and A = {i : λi + c(y − ψ)i > 0}.
This leads to the following algorithm.

Primal-dual active set algorithm.
(i) Initialize y0, λ0. Set k = 0.
(ii) Set Ik = {i : λki + c(yk − ψ)i ≤ 0}, Ak = {i : λki + c(yk − ψ)i > 0}.
(iii) Solve

Ayk+1 + λk+1 = f,

yk+1 = ψ on Ak, λk+1 = 0 on Ik.
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(iv) Stop, or set k = k + 1 and return to (ii).
Above we utilize yk+1 = ψ on Ak to stand for yk+1

i = ψi for i ∈ Ak. Let us now
argue that the above algorithm can be interpreted as a semismooth Newton method.
For this purpose it will be convenient to arrange the coordinates in such a way that
the active and inactive ones occur in consecutive order. This leads to the block matrix
representation of A as

A =

(
AIk AIkAk
AAkIk AAk

)
,

where AIk = AIkIk and analogously for AAk . Analogously the vector y is partitioned
according to y = (yIk , yAk) and similarly for f and ψ. In section 3 we shall argue
that v → max(0, v) from R

n → R
n is slantly differentiable with a slanting function

given by the diagonal matrix Gm(v) with diagonal elements

Gm(v)ii =

{
1 if vi > 0,
0 if vi ≤ 0.

Here we use the subscript m to indicate particular choices for the slanting function of
the max-function. Note that Gm is also an element of the generalized Jacobian (see [C,
Definition 2.6.1]) of the max-function. Semismooth Newton methods for generalized
Jacobians in Clarke’s sense were considered, e.g., in [Q1, QS].

The choice Gm suggests a semismooth Newton step of the form

AIk AIkAk IIk 0
AAkIk AAk 0 IAk

0 0 IIk 0
0 −cIAk 0 0





δyIk
δyAk
δλIk
δλAk


= −




(Ayk + λk − f)Ik
(Ayk + λk − f)Ak

λkIk−c(yk − ψ)Ak


 ,(2.4)

where IIk and IAk are identity matrices of dimensions card(Ik) and card(Ak). The
third equation in (2.4) implies that

λk+1
Ik = λkIk + δλIk = 0(2.5)

and the last one yields

yk+1
Ak = ψAk .(2.6)

Equations (2.5) and (2.6) coincide with the conditions in the second line of step (iii)
in the primal-dual active set algorithm. The first two equations in (2.4) are equivalent
to Ayk+1 + λk+1 = f , which is the first equation in step (iii).

Combining these observations we can conclude that the semismooth Newton up-
date based on (2.4) is equivalent to the primal-dual active set strategy.

We also note that the system (2.4) is solvable since the first equation in (2.4)
together with (2.5) gives

(A δy)Ik + (A yk)Ik = fIk ,

and consequently by (2.6)

AIk y
k+1
Ik = fIk −AIkAk ψAk .(2.7)

Since A is a P-matrix, AIk is regular and (2.7) determines yk+1
Ik . The second equation

in (2.4) is equivalent to

λk+1
Ak = fAk − (Ayk+1)Ak .(2.8)

In section 4 we shall consider (P) in the space L2(Ω). Again one can show that
the semismooth Newton update and the primal-dual active set strategy coincide.
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3. Convergence analysis: The finite dimensional case. This section is
devoted to local as well as global convergence analysis of the primal-dual active set
algorithm to solve {

Ay + λ = f,
λ−max(0, λ+ c(y − ψ)) = 0,

(3.1)

where f ∈ R
n, ψ ∈ R

n, A ∈ R
n×n is a P-matrix, and the max-operation is understood

componentwise. To discuss slant differentiability of the max-function we define for an
arbitrarily fixed δ ∈ R

n the matrix-valued function Gm : R
n → R

n×n by

Gm(y) = diag (g1(y1), . . . , gn(yn)),(3.2)

where gi : R→ R is given by

gi(z) =




0 if z < 0 ,
1 if z > 0 ,
δi if z = 0 .

Lemma 3.1. The mapping y → max(0, y) from R
n to R

n is slantly differentiable
on R

n, and Gm defined in (3.2) is a slanting function for every δ ∈ R
n.

Proof. Clearly, Gm ∈ L(Rn) and {‖Gm(y)‖ : y ∈ R
n} is bounded. We introduce

D : R
n × R

n → R by

D(y, h) = ‖max(0, y + h)−max(0, y)−Gm(y + h)h‖.
It is simple to check that

D(y, h) = 0 if ‖h‖∞ < min {|yi| : yi �= 0} =: β.

Consequently, the max-function is slantly differentiable.
Remark 3.1. Note that the value of the generalized derivative Gm of the max-

function can be assigned an arbitrary value at the coordinates satisfying yi = 0. The
numerator D in Definition 1 satisfies D(y, h) = 0 if ‖h‖∞ < β. Moreover, for every
γ > β there exists h satisfying

D(y, h) ≥ β and ‖h‖∞ = γ.

Here we assume that β := 0 whenever {i|yi �= 0} = ∅. Consequently, for β > 0 the
mapping

γ �→ sup {‖max(0, y + h)−max(0, y)−Gm(y + h)h‖∞ : ‖h‖∞ = γ}
is discontinuous at γ = β and equals zero for γ ∈ (0, β).

Let us now turn to the convergence analysis of the primal-dual active set method
or, equivalently, the semismooth Newton method for (3.1). Note that the choice Gm
for the slanting function in section 2 corresponds to a slanting function with δ = 0.
In view of (2.5)–(2.8) for k ≥ 1 the Newton update (2.4) is equivalent to(

AIk 0
AAkIk IAk

)(
δyIk
δλAk

)
= −

(
AIkAkδyAk + δλIk

AAkδyAk

)
(3.3)

and

δλi = −λki , i ∈ Ik, and δyi = ψi − yki , i ∈ Ak.(3.4)
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Let us introduce F : R
n × R

n → R
n × R

n by

F (y, λ) =

(
Ay + λ− f
λ−max(0, λ+ c(y − ψ))

)
,

and note that (3.1) is equivalent to F (y, λ) = 0. As a consequence of Lemma 3.1 the
mapping F is slantly differentiable and the system matrix of (2.4) is a slanting function
for F with the particular choice Gm for the slanting function of the max-function.
We henceforth denote the slanting function of F by GF .

Let (y∗, λ∗) denote the unique solution to (3.1) and x0 = (y0, λ0) the initial values
of the iteration. From Theorem 1.1 we deduce the following fact.

Theorem 3.1. The primal-dual active set method or, equivalently, the semi-
smooth Newton method converge superlinearly to x∗ = (y∗, λ∗), provided that ‖x0−x∗‖
is sufficiently small.

The boundedness requirement of (GF )−1 according to Theorem 1.1 can be derived
analogously to the infinite dimensional case; see the proof of Theorem 4.1.

In our finite dimensional setting this result can be obtained alternatively by ob-
serving that Gm corresponds to a generalized Jacobian in Clarke’s sense combined
with the convergence results for semismooth Newton methods in [Q1, QS]. In fact,
from (2.4) we infer that GF (x∗) is a nonsingular generalized Jacobian, and Lemma 3.1
proves the semismoothness of F at x∗. Hence, Theorem 3.2 of [QS] yields the locally
superlinear convergence property. For a discussion of the semismoothness concept in
finite dimensions we refer the reader to [Q1, QS].

Furthermore, since (3.1) is strongly semismooth, by utilizing Theorem 3.2 of [QS]
the convergence rate can even be improved. Indeed, the primal-dual active set strategy
converges locally with a q-quadratic rate. For the definition of strong semismoothness
we refer the reader to [FFKP].

We also observe that if the iterates xk = (yk, λk) converge to x∗ = (y∗, λ∗), then
they converge in finitely many steps. In fact, there are only finitely many choices of
active/inactive sets and if the algorithm would determine the same sets twice, then
this contradicts convergence of xk to x∗. We refer to [FK] for a similar observation
for a nonsmooth Newton method of the types discussed in [Q1, QS, K1], for example.

Let us address global convergence next. In the following two results sufficient
conditions for convergence for arbitrary initial data x0 = (y0, λ0) are given. We recall
that A is referred to as an M-matrix, if it is nonsingular, (mij) ≤ 0, for i �= j, and
M−1 ≥ 0. Our notion of an M-matrix coincides with that of nonsingular M-matrices
as defined in [BP].

Theorem 3.2. Assume that A is an M-matrix. Then xk → x∗ for arbitrary
initial data. Moreover, y∗ ≤ yk+1 ≤ yk for all k ≥ 1 and yk ≤ ψ for all k ≥ 2.

For a proof of Theorem 3.2 we can utilize the proof of Theorem 1 in [H], where a
(primal) active set algorithm is proposed and analyzed. However, we provide a proof
in Appendix A since, in contrast to the algorithm in [H], the primal-dual active set
strategy makes use of the dual variable λ and includes arbitrarily fixed c > 0. From
the proof in Appendix A it can be seen that for unilaterally constrained problems c
drops out after the first iteration. We point out that, provided the active and inactive
sets coincide, the linear systems that have to be solved in every iteration of both
algorithms coincide. In practice, however, λ and c play a significant role and make a
distinct difference between the performance of the algorithm in [H] and the primal-
dual active set strategy. In fact, the primal-dual active set strategy fixes λk+1

i = 0
for i ∈ Ik. The decision whether an inactive index i ∈ Ik becomes an active one,
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i.e., whether i ∈ Ak+1, is based on

λk+1
i + c(yk+1

i − ψi) > 0 .

In contrast, the (primal) active set algorithm in [H] uses the criterion

fi − (Ayk+1)i + (yk+1
i − ψi) > 0

instead. Clearly, if the linear system of both algorithms are solved approximately
(e.g., by some iterative procedure) then the numerical behavior may differ.

Remark 3.2. Concerning the applicability of Theorem 3.2 we recall that many
discretizations of second order differential operators give rise to M-matrices.

For a rectangular matrix B ∈ R
n×m we denote by ‖ · ‖1 the subordinate matrix

norm when both R
n and R

m are endowed with the one-norms. Moreover, B+ denotes
the n ×m-matrix containing the positive parts of the elements of B. The following
result can be applied to discretizations of constrained optimal control problems. We
refer to the end of section 4 for a discussion of the conditions of Theorem 3.3 in the
case of control constrained optimal control problems.

Theorem 3.3. If A is a P-matrix and for every partitioning of the index set
into disjoint subsets I and A we have ‖(A−1

I AIA)+‖1 < 1 and
∑
i∈I(A−1

I yI)i ≥ 0

for yI ≥ 0, then limk→∞ xk = x∗.
Proof. From (3.3) we have

(yk+1 − ψ)Ik = (yk − ψ)Ik +A−1
Ik AIkAk(yk − ψ)Ak +A−1

Ik λ
k
Ik

and upon summation over the inactive indices∑
Ik

(yk+1
i − ψi) =

∑
Ik

(yki − ψi) +
∑
Ik

(
A−1

Ik AIkAk(yk − ψ)Ak
)
i

+
∑
Ik

(A−1
Ik λ

k
Ik)i.

(3.5)

Adding the obvious equality∑
Ak

(yk+1
i − ψi)−

∑
Ak

(yki − ψi) = −
∑
Ak

(yki − ψi)

to (3.5) implies

n∑
i=1

(yk+1
i − yki ) ≤ −

∑
Ak

(yki − ψi) +
∑
Ik

(A−1
Ik AIkAk(yk − ψ)Ak)i .(3.6)

Here we used the fact λkIk = −δλIk ≤ 0, established in the proof of Theorem 3.2.

There it was also argued that ykAk ≥ ψAk . Hence, it follows that

n∑
i=1

(yk+1
i − yki ) ≤ −‖yk − ψ‖1,Ak + ‖(A−1

Ik AIkAk)+‖1 ‖yk − ψ‖1,Ak < 0 ,(3.7)

unless yk+1 = yk. Consequently,

yk →M(yk) =

n∑
i=1

yki
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acts as a merit function for the algorithm. Since there are only finitely many possible
choices for active/inactive sets there exists an iteration index k̄ such that Ik̄ = Ik̄+1.

Moreover, (yk̄+1, λk̄+1) is a solution to (3.1). In fact, in view of (iii) of the algorithm
it suffices to show that yk̄+1 and λk̄+1 are feasible. This follows from the fact that

due to Ik̄ = Ik̄+1 we have c(yk̄+1
i − ψi) = λk̄+1

i + c(yk̄+1
i − ψi) ≤ 0 for i ∈ Ik̄ and

λk̄+1
i + c(yk̄+1

i − ψi) > 0 for i ∈ Ak̄. Thus the algorithm converges in finitely many
steps.

Remark 3.3. Let us note as a corollary to the proof of Theorem 3.3 that in the
case where A is an M-matrix then M(yk) =

∑n
i=1 y

k
i is always a merit function. In

fact, in this case the conditions of Theorem 3.3 are obviously satisfied.
A perturbation result. We now discuss the primal-dual active set strategy for the

case where the matrix A can be expressed as an additive perturbation of an M-matrix.
Theorem 3.4. Assume that A = M +K with M an M-matrix and with K an

n×n-matrix. Then, if ‖K‖1 is sufficiently small, (3.1) admits a unique solution x∗ =
(y∗, λ∗), the primal-dual active set algorithm is well-defined, and limk→∞ xk = x∗.

Proof. Recall that as a consequence of the assumption that M is an M-matrix all
principal submatrices of M are nonsingular M-matrices as well [BP]. Let S denote
the set of all subsets of {1, . . . , n}, and define

ρ = sup
I∈S
‖M−1

I KI‖1 .

Let K be chosen such that ρ < 1
2 . For every subset I ∈ S the inverse of AI exists

and can be expressed as

A−1
I =

(
II +

∞∑
i=1

(−M−1
I KI

)i)
M−1

I .

As a consequence the algorithm is well-defined. Proceeding as in the proof of Theo-
rem 3.3 we arrive at

n∑
i=1

(yk+1
i − yki ) = −

∑
i∈A

(yki − ψi) +
∑
i∈I

(
A−1

I AIA(yk − ψ)A
)
i

+
∑
i∈I

(A−1
I λ

k
I)i ,

(3.8)

where λki ≤ 0 for i ∈ I and yki ≥ ψi for i ∈ A. Here and below we drop the index k
with Ik and Ak. Setting g = −A−1

I λ
k
I ∈ R

|I| and since ρ < 1
2 we find

∑
i∈I
gi ≥ ‖M−1

I λ
k
I‖1 −

∞∑
i=1

‖M−1
I KI‖i1‖M−1

I λ
k
I‖1

≥ 1− 2ρ

1− ρ ‖M
−1λkI‖1 ≥ 0 ,

and consequently by (3.8)

n∑
i=1

(yk+1
i − yki ) ≤ −

∑
i∈A

(yki − ψi) +
∑
i∈I

(A−1
I AIA(yk − ψ)A)i .

Note that A−1
I AIA ≤ M−1

I KIA −M−1
I KI(M + K)−1

I AIA. Here we have used
(M +K)−1

I −M−1
I = −M−1

I KI(M +K)−1
I and M−1

I MIA ≤ 0. Since yk ≥ ψ on A,
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it follows that ‖K‖1 can be chosen sufficiently small such that
∑n
i=1(yk+1

i − yki ) < 0
unless yk+1 = yk, and hence

yk �→ M(yk) =

n∑
i=1

yki

is a merit function for the algorithm. The proof is now completed in the same manner
as that of Theorem 3.3.

The assumptions of Theorem 3.4 do not require A to be a P-matrix. From its
conclusions existence of a solution to (3.1) for arbitrary f follows. This is equivalent to
the fact that A is a P-matrix [BP, Thm. 10.2.15]. Hence, it follows that Theorem 3.4
represents a sufficient condition for A to be a P-matrix.

Observe further that the M-matrix property is not stable under arbitrarily small
perturbations since off-diagonal elements may become positive. This implies certain
limitations of the applicability of Theorem 3.2. Theorem 3.4 guarantees that conver-
gence of the primal-dual active set strategy for arbitrary initial data is preserved for
sufficiently small perturbations K of an M-matrix. Therefore, Theorem 3.4 is also of
interest in connection with numerical implementations of the primal-dual active set
algorithm.

Remark 3.4. The primal-dual active set strategy can be interpreted as a predic-
tion strategy which, on the basis of (yk, λk), predicts the true active and inactive sets,
i.e.,

A∗ = {i : λ∗i + c(y∗i − ψi) > 0} and I∗ = {1, . . . , n} \ A∗ .

To further pursue this point we define the following partitioning of the index set at
iteration level k:

IG = Ik ∩ I∗, IB = Ik ∩ A∗, AG = Ak ∩ A∗, AB = Ak ∩ I∗ .

The sets IG, AG give a good prediction, the sets IB and AB a bad prediction. Let us
denote by GF (xk) the system matrix of (2.4) and let ∆y = yk+1−y∗, ∆λ = λk+1−λ∗.
If the primal-dual active set method is interpreted as a semismooth Newton method,
then the convergence analysis is based on the identity

GF (xk)




∆yIk
∆yAk
∆λIk
∆λAk


 = − (F (xk)− F (x∗)−GF (xk)(xk − x∗)

)
=: Ψ(xk) .(3.9)

Without loss of generality we can assume that the components of the equation λ −
max{0, λ+ c(y − ψ)} = 0 are ordered as (IG, IB ,AG,AB). Then the right-hand side
of (3.9) has the form

Ψ(xk) = −col
(
0Ik , 0Ak , 0IG , λ

∗
IB , 0AG , c(ψ − y∗)AB

)
,(3.10)

where 0Ik denotes a vector of zeros of length |Ik|, λ∗IB denotes a vector of λ∗ coordi-

nates with index set IB , and analogously for the remaining terms. Since yk ≥ ψ on
Ak and λk ≤ 0 on Ik we have

‖ψ − y∗‖AB ≤ ‖yk − y∗‖AB and ‖λ∗‖IB ≤ ‖λk − λ∗‖IB .(3.11)
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Exploiting the structure of GF (xk) and (3.10) we find

∆yAG = 0, ∆yAB = (ψ − y∗)AB , ∆λIG = 0, ∆λIB = −λ∗IB .(3.12)

On the basis of (3.9)–(3.12) we can draw the following conclusions:
(i) If xk → x∗, then there exists an index k̄ such that IB = AB = ∅ for all
k ≥ k̄. Consequently, Ψ(xk̄) = 0 and, as we noted before, if xk → x∗, then
convergence occurs in finitely many steps.

(ii) By (3.9)–(3.11) there exists a constant κ ≥ 1 independent of k such that

‖∆y‖+ ‖∆λ‖ ≤ κ (‖(yk − y∗)AB‖+ ‖(λk − λ∗)IB‖
)
.

Thus if the incorrectly predicted sets are small in the sense that

‖(yk − y∗)AB‖+ ‖(λk − λ∗)IB‖ ≤ 1
2κ−1

(
‖(yk − y∗)AB,c‖
+ ‖(λk − λ∗)IB,c‖

)
,

where AB,c (IB,c) denotes the complement of the indices AB (IB), then

‖yk+1 − y∗‖+ ‖λk+1 − λ∗‖ ≤ 1
2

(‖yk − y∗‖+ ‖λk − λ∗‖) ,
and convergence follows.

(iii) If y∗ < ψ and λ0 + c(y0 − ψ) ≤ 0 (e.g., y0 = ψ, λ0 = 0), then the algorithm
converges in one step. In fact, in this case AB = IB = ∅ and Ψ(x0) =
0.

Finally, we shall point out that Theorems 3.2–3.4 establish global convergence
of the primal-dual active set strategy or, equivalently, semismooth Newton method
without the necessity of a line search. The rate of convergence is locally superlinear.
Moreover, it can be observed from (2.4) that if Ik = Ik′ for k �= k′, then yk = yk

′
and

λk = λk
′
. Hence, in case of convergence no cycling of the algorithm is possible, and

termination at the solution of (2.1) occurs after finitely many steps.

4. The infinite dimensional case. In this section we first analyze the notion
of slant differentiability of the max-operation between various function spaces. Then
we turn to the investigation of convergence of semismooth Newton methods applied
to (P). We close the section with a numerical example for superlinear convergence.

Let X denote a space of functions defined over a bounded domain or manifold
Ω ⊂ R

n with Lipschitzian boundary ∂Ω, and let max(0, y) stand for the pointwise
maximum operation between 0 and y ∈ X. Let δ ∈ R be fixed arbitrarily. We
introduce candidates for slanting functions Gm of the form

Gm(y)(x) =




1 if y(x) > 0 ,
0 if y(x) < 0 ,
δ if y(x) = 0 ,

(4.1)

where y ∈ X.
Proposition 4.1.
(i) Gm can in general not serve as a slanting function for max(0, ·) : Lp(Ω) →
Lp(Ω) for 1 ≤ p ≤ ∞.

(ii) The mapping max(0, ·) : Lq(Ω) → Lp(Ω) with 1 ≤ p < q ≤ ∞ is slantly
differentiable on Lq(Ω) and Gm is a slanting function.
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The proof is deferred to Appendix A.
We refer to [U] for a related investigation of the two-norm problem involved in

Proposition 4.1 in the case of superposition operators. An example in [U] proves
the necessity of the norm gap for the case in which the complementarity condition is
expressed by means of the Fischer–Burmeister functional.

We now turn to (P) posed in L2(Ω). For convenience we repeat the problem
formulation 

minJ(y) =
1

2
(y,Ay)− (f, y)

subject to y ≤ ψ,
(P)

where (·, ·) now denotes the inner product in L2(Ω), f , and ψ ∈ L2(Ω), A ∈ L(L2(Ω))
is self-adjoint, and

(Ay, y) ≥ γ‖y‖2(H1)

for some γ > 0 independent of y ∈ L2(Ω). There exists a unique solution y∗ to (P)
and a Lagrange multiplier λ∗ ∈ L2(Ω) such that (y∗, λ∗) is the unique solution to{

Ay∗ + λ∗ = f,
C(y∗, λ∗) = 0,

(4.2)

where C(y, λ) = λ −max(0, λ + c(y − ψ)), with the max-operation defined pointwise
a.e. and c > 0 fixed. The primal-dual active set strategy is analogous to the finite
dimensional case. We repeat it for convenient reference.

Primal-dual active set algorithm in L2(Ω).
(i) Choose y0, λ0 in L2(Ω). Set k = 0.
(ii) Set Ak = {x : λk(x) + c(yk(x)− ψ(x)) > 0} and Ik = Ω\Ak.
(iii) Solve

Ayk+1 + λk+1 = f,
yk+1 = ψ on Ak, λk+1 = 0 on Ik.

(iv) Stop, or set k = k + 1 and return to (ii).
Under our assumptions on A, f , and ψ it is simple to argue the solvability of the

system in step (iii) of the above algorithm.
For the semismooth Newton step as well we can refer back to section 2. At

iteration level k with (yk, λk) ∈ L2(Ω) × L2(Ω) given, it is of the form (2.4) where
now δyIk denotes the restriction of δy (defined on Ω) to Ik and analogously for the
remaining terms. Moreover, AIkAk = E∗

IkA EAk , where EAk denotes the extension-
by-zero operator for L2(Ak) to L2(Ω)-functions, and its adjoint E∗

Ak is the restriction
of L2(Ω)-functions to L2(Ak), and similarly for EIk and E∗

Ik . Moreover, AAkIk =
E∗

AkA EIk , AIk = E∗
IkA EIk , and AAk = E∗

AkA EAk . It can be argued precisely
as in section 2 that the primal-dual active set strategy and the semismooth Newton
updates coincide, provided that the slanting function of the max-function is taken
according to

Gm(u)(x) =

{
1 if u(x) > 0,
0 if u(x) ≤ 0,

(4.3)

which we henceforth assume.
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Proposition 4.1 together with Theorem 1.1 suggest that the semismooth Newton
algorithm applied to (4.2) may not converge in general. We therefore restrict our
attention to operators A of the form

A = C + βI, with C ∈ L(L2(Ω), Lq(Ω)), where β > 0, q > 2.(H2)

We show next that a large class of optimal control problems with control con-
straints can be expressed in the form (P) with (H2) satisfied.

Example 1. We consider the optimal control problem


minimize 1
2‖y − z‖2L2 + β

2 ‖u‖2L2

subject to −∆y = u in Ω, y = 0 on ∂Ω ,
u ≤ ψ, u ∈ L2(Ω) ,

(4.4)

where z ∈ L2(Ω), ψ ∈ Lq(Ω), and β > 0. Let B ∈ L(H1
o (Ω), H−1(Ω)) denote

the operator −∆ with homogeneous Dirichlet boundary conditions. Then (4.4) can
equivalently be expressed as{

minimize 1
2‖B−1u− z‖2L2 + β

2 ‖u‖2L2

subject to u ≤ ψ, u ∈ L2(Ω) .
(4.5)

In this case A ∈ L(L2(Ω)) turns out to be Au = B−1JB−1u + βu, where J is
the embedding of H1

o (Ω) into H−1(Ω), and f = B−1z. Condition (H2) is obviously
satisfied.

In (4.4) we considered the distributed control case. A related boundary control
problem is given by


minimize 1

2‖y − z‖2L2(Ω) + β
2 ‖u‖2L2(∂Ω)

subject to −∆y + y = 0 in Ω, ∂y∂n = u on ∂Ω ,
u ≤ ψ, u ∈ L2(∂Ω) ,

(4.6)

where n denotes the unit outer normal to Ω along ∂Ω. This problem is again a
special case of (P) with A ∈ L(L2(∂Ω)) given by Au = B−∗JB−1u + βu, where
B−1 ∈ L(H−1/2(Ω), H1(Ω)) denotes the solution operator to

−∆y + y = 0 in Ω, ∂y∂n = u on ∂Ω ,

and f = B−∗z. Moreover, C = B−∗JB−1
|L2(Ω) ∈ L(L2(∂Ω), H1/2(∂Ω)) with J the

embedding of H1/2(Ω) into H−1/2(∂Ω), and hence (H2) is satisfied as a consequence
of the Sobolev embedding theorem.

For the sake of illustration it is also worthwhile to specify (2.5)–(2.8), which were
found to be equivalent to the Newton update (2.4) for the case of optimal control
problems. We restrict ourselves to the case of the distributed control problem (4.4).
Then (2.5)–(2.8) can be expressed as


λk+1
Ik = 0, uk+1

Ak = ψAk ,

E∗
Ik
[
(B−2 + βI)EIku

k+1
Ik −B−1z + (B−2 + βI)EAkψAk

]
= 0 ,

E∗
Ak
[
λk+1 +B−2uk+1 + βuk+1 −B−1z

]
= 0 ,

(4.7)
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where we set B−2 = B−1JB−1. Setting pk+1 = B−1z −B−2uk+1, a short computa-
tion shows that (4.7) is equivalent to



−∆yk+1 = uk+1 in Ω , yk+1 = 0 on ∂Ω ,

−∆pk+1 = z − yk+1 in Ω , pk+1 = 0 on ∂Ω ,

pk+1 = βuk+1 + λk+1 in Ω ,

uk+1 = ψ in Ak , λk+1 = 0 in Ik .

(4.8)

This is the system in the primal variables (y, u) and adjoint variables (p, λ), previously
implemented in [BHHK, BIK] for testing the algorithm.

At this point we remark that the primal-dual active set strategy has no straight-
forward infinite dimensional analogue for state constrained optimal control problems
and obstacle problems [H]. For state constrained optimal control problems the La-
grange multiplier is only a measure in general, and hence the core steps (ii) and (iii)
of our algorithm are no longer meaningful. For details on the regularity issue we
refer the reader to [Ca]. Theorem 3.2 proves global convergence of the primal-dual
active set strategy or, equivalently, semismooth Newton method for discretized obsta-
cle problems. However, no comparable result can be expected in infinite dimensions.
The main reason comes from the fact that the systems that would have to be solved
in step (iii) are the first order conditions related to the problems

min 1
2 (Ay, y)L2(Ω) − (f, y)L2(Ω) such that y = ψ a.e. on Ak .

Again the multiplier associated with the equality constraint is only a measure in
general.

Our main intention is to consider control constrained problems as in Example 1.
To prove convergence under assumptions (H1), (H2) we utilize a reduced algorithm
which we explain next.

The operators EI and EA denote the extension by zero, and their adjoints are
restrictions to I and A, respectively. The optimality system (4.2) does not depend on
the choice of c > 0. Moreover, from the discussion in section 2 the primal-dual active
set strategy is independent of c > 0 after the initialization phase. For the specific
choice c = β system (4.2) can equivalently be expressed as

βy∗ − βψ + max(0, Cy∗ − f + βψ) = 0 ,(4.9)

λ∗ = f − Cy∗ − βy∗ .(4.10)

We shall argue in the proof of Theorem 4.1 that the primal-dual active set method
in L2(Ω) for (y, λ) is equivalent to the following algorithm for the reduced system
(4.9)–(4.10), which will be shown to converge superlinearly.

Reduced algorithm.
(i) Choose y0 ∈ L2(Ω) and set k = 0.
(ii) Set Ak = {x : (f − Cyk − βψ)(x) > 0}, Ik = Ω \ Ak.
(iii) Solve

βyIk + (C(EIkyIk + EAkψAk))Ik = fIk

and set yk+1 = EIkyIk + EAkψAk .
(iv) Stop, or set k = k + 1 and return to (ii).
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Theorem 4.1. Assume that (H1), (H2) hold and that ψ and f are in Lq(Ω).
Then the primal-dual active set strategy or, equivalently, the semismooth Newton
method converge superlinearly if ‖y0 − y∗‖ is sufficiently small and λ0 = β(y0 − ψ).

The proof is given in Appendix A. It consists essentially of two steps. In the first
equivalence between the reduced algorithm and the original one is established, and
in the second one slant differentiability of the mapping F̂ : L2(Ω) → L2(Ω) given by
F̂ (y) = max(0, Cy−f+βψ) is shown. With respect to the latter we can alternatively
utilize the theory of semismoothness of composite mappings as developed in [U]. For
this purpose we first recall the notion of semismoothness as introduced in [U]. Suppose
we are given the superposition operator

Ψ̃ : Y → Lr(Ω), Ψ̃(y)(x) = ψ̃(H(y)(x)),

where ψ̃ : R
m → R and H : Y → ∏m

i=1 L
ri(Ω), with 1 ≤ r ≤ ri < ∞, and Y is a

Banach space. Then Ψ̃ is called semismooth at y ∈ Y if

sup
G∈∂sΨ̃(y+h)

‖Ψ̃(y + h)− Ψ̃(y)−Gh‖Lr = O(‖h‖Y ) as h→ 0 in Y.(4.11)

Here ∂sΨ̃ denotes the generalized differential

∂sΨ̃(y) =

{
G ∈ L(Y, Lr)

∣∣∣ G : v �→∑
i di(y)(H

′
i(y)v), where d(y)

is a measurable selection of ∂ψ̃(H(y))

}
,(4.12)

where ∂ψ̃ is Clarke’s generalized Jacobian [C], and prime denotes the Fréchet deriva-
tive. In our context Y = Lr(Ω) = L2(Ω), m = 2, ri = 2, H(y) = (0, Cy−f+βψ), and
ψ̃(a, b) = max(a, b). Clearly, H is affine with respect to the second component. By
(H2), and since ψ ∈ Lq(Ω), f ∈ Lq(Ω), it follows that H is Lipschitz from L2(Ω) to
(Lq(Ω))2, with q > 2. Moreover, ψ̃ is semismooth in the sense of [QS]. Consequently,
Ψ̃ is semismooth in the sense of (4.11) by [U, Thm. 5.2].

In general, a slanting function G according to Definition 1 need not satisfy G(y) ∈
∂sΨ̃(y). However, the particular slanting function

Ĝ(y)v = Gm(Cy − f + βψ)Cv

with

Gm(u)(x) =

{
1 if u(x) ≥ 0,
0 if u(x) < 0

satisfies Ĝ(y) ∈ ∂sΨ̃(y). In fact, d(y) = (d1(y), d2(y)) = (0, Gm(Cy − f + βψ)) is a
measurable selection of ∂max(0, Cy − f + βψ). Thus, (4.12) yields

∂sΨ̃(y)v � G(y)v =
∑
i

di(y)(H
′
i(y)v) = Gm(Cy − f + βψ)Cv = Ĝ(y)v.

Consequently, from the proof of Theorem 6.4 in [U] we infer that the reduced algorithm
converges locally superlinearly.

Let us point out that the semismooth Newton method in [U] requires a smoothing
step while our primal-dual active set strategy does not. To explain the difference of
the two approaches, we note that with respect to (P) the following NCP problem is
considered in [U]: Find y ∈ Y such that

y − ψ ≤ 0, Z(y) := Ay − f ≥ 0, (y − ψ)Z(y) = 0.(4.13)
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Then (4.13) is reformulated by utilizing an NCP function. In our context, this yields

max(y − ψ, f −Ay) = 0.(4.14)

Following [U] one chooses Y = Lp(Ω), p > 2, and considers y �→ max(y − ψ, f −
Ay) from Lp(Ω) to L2(Ω) in order to introduce the norm gap which is required for
semismoothness according to (4.11). In Algorithm 6.3 of [U] the Newton step first
produces an update in L2(Ω), which requires smoothing to obtain the new iterate in
Lp(Ω) which is utilized in (4.14). In our formulation, (4.13) is reformulated as (4.9)
rather than (4.14). Here we can take advantage of the fact that (4.9) allows us to
directly exploit the smoothing property of the operator C. Consequently, we obtain a
superlinearly convergent Newton method without the necessity of a smoothing step.

If an appropriate growth condition is satisfied, then the superlinear convergence
result of Theorem 4.1 can be improved to superlinear convergence with a specific rate.
Let us suppose that there exists α > 0 such that

lim
h→0

1

‖h‖1+α ‖F (x∗ + h)− F (x∗)−G(x∗ + h)h‖ = 0 .(A’)

Then an inspection of the proof of Theorem 1.1 shows that the rate of convergence of
xk to x∗ is of q-order 1 + α; i.e., we have ‖xk+1 − x∗‖ = O(‖xk − x∗‖1+α) as k →∞.
To investigate (A’) for the specific F appearing in the proof of Theorem 4.1 one can
apply the general theory in [U]. We prefer to give an independent proof adapted to
our problem formulation. Let the assumptions of Theorem 4.1 hold and recall that
F : L2(Ω) → L2(Ω) is given by F (y) = βy − βψ + max(0, Cy − f + βψ). First we
consider the case 2 < q < +∞. The relevant difference quotient for the nonlinear
term which must be analyzed for (A’) to hold is given by

1

‖h‖1+αL2

‖max(0, C(y∗ + h)− f + βψ)−max(0, Cy∗ − f + βψ)

−Gm(Cy∗ + Ch− f + βψ)(Ch)‖L2

=
1

‖Ch‖1+αLq
‖max(0, w + Ch)−max(0, w)−Gm(w + Ch)(Ch)‖L2

‖Ch‖1+αLq

‖h‖1+αL2

,

where we set w = Cy∗ − f + βψ. Utilizing the fact that C ∈ L(L2(Ω), Lq(Ω)) it
suffices to consider

1

‖h‖1+αLq
‖Dw,h‖L2 =

1

‖h‖1+αLq
‖max(0, w + h)−max(0, w)−Gm(w + h)h‖L2 .

Here and below we use the notation introduced in the proof of Proposition 4.1(ii).
Proceeding as in the proof of Proposition 4.1(ii) we find for 1

σ + 1
τ = 1, σ ∈ (1,∞),

1

‖h‖1+αLq
‖Dw,h‖L2 ≤ 1 + |δ|

‖h‖1+αLq


|Ωε(h)|1/2τ

(∫
Ωε(h)

|w(x)|2σdx
)1/2σ

+|Ωε(w)|1/2τ
(∫

Ω0(h)\Ωε(h)
|w(x)|2σdx

)1/2σ

(4.15)

=
1 + |δ|
‖h‖1+αLq

(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )
(∫

Ω0(h)

|w(x)|2σdx
)1/2σ

.
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Let us set r = q
1+α . We have

(∫
Ω0(h)

|w(x)|2σdx
)1/2σ

≤
(∫

Ω0(h)

|w(x)| 2σqr |w(x)| 2σ(r−q)
r dx

)1/2σ

≤
(∫

Ω0(h)

|w(x)| 2σqr r
2σ

)1/r (∫
Ω0(h)

|w(x)| 2σ(r−q)
r

r
r−2σ

)(r−2σ)/2rσ

=

(∫
Ω0(h)

|w(x)|qdx
)1/r (∫

Ω0(h)

1

|w(x)| 2σ(q−r)
r−2σ

dx

)(r−2σ)/2rσ

,

where it is assumed that r = q
1+α > 2σ > 2. Since |w(x)| ≤ |h(x)| for x ∈ Ω0(h) we

find

1

‖h‖1+αLq
‖Dw,h‖L2

≤ (1 + |δ|)(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )
(∫

Ω0(h)

1

|w(x)| 2σ(q−r)
r−2σ

dx

)(r−2σ)/2rσ

.

Suppose that ∫
{x:|w(x)|�=0}

1

|w(x)| 2σ(q−r)
r−2σ

dx < +∞ .(4.16)

Then, following the argument in the proof of Proposition 4.1(ii), we have

lim
‖h‖Lq→0

1

‖h‖1+αLq
‖Dw,h‖L2 = 0 ,

and hence (A’) holds. Let us interpret the conditions on α and q. As already pointed
out we must have q > 2(1 + α) which for α = 0 is consistent with the requirement
that there must be a norm gap. The exponent in (4.16) can equivalently be expressed
as Q(α, q) = 2σαq

q−2σ(1+α) . Hence, for fixed q, the quotient Q(α, q) is increasing with α

and (4.16) is more likely to be satisfied for small rather than for large α. Similarly,
for fixed α, Q(α, q) is decreasing with respect to q (> 2σ(1 + α)), and hence (4.16)
has a higher chance to be satisfied for large rather than small q.

Convergence of q-order larger than 2 is possible if q > 2 and (4.16) holds for the
associated values of q and α. If w is Lipschitzian, then it must be of at most linear
growth across the boundary of the set {x : w(x) �= 0}. For this reason it is of interest
to consider the range of α-values satisfying 2αq

q−2(1+α) < 1. This necessitates α < 1
2 .

In the case q = +∞ we have for every σ > 1

(∫
Ω0(h)

|w(x)|2σdx
)1/2σ

=

(∫
Ω0(h)

|w(x)|2σ(1+α)|w(x)|−2σαdx

)1/2σ

≤ ‖h‖1+αL∞

(∫
Ω0(h)

|w(x)|−2σαdx

)1/2σ

.
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This estimate and (4.15) for q = +∞ yield

1

‖h‖1+αL∞
‖Dw,h‖L2 ≤(1 + |δ|)(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )

·
(∫

Ω0(h)

1

|w(x)|2σα dx
)1/2σ

.

Now suppose that for some σ > 1,∫
{x:|w(x)|�=0}

1

|w(x)|2σα dx < +∞ .(4.17)

Then, again following the arguments in the proof of Proposition 4.1, we obtain

lim
‖h‖L∞→0

1

‖h‖1+αL∞
‖Dw,h‖L2 = 0 ,

which shows that (A’) is satisfied.
Example 1 (continued). As already observed Theorem 4.1 is directly applicable to

problems (4.4) and (4.6) and confirms local superlinear convergence of the semismooth
Newton algorithm.

Convergence for (4.4) was already analyzed in [BIK] where it was proved that a
modified augmented Lagrangian acts as a merit function, provided that

β + γ ≤ c ≤ β − β
2

γ
+

β2

‖∆−1‖2(4.18)

for some γ > 0. Here ‖∆−1‖ denotes the operator norm of ∆−1 in L(L2(Ω)). This
previous convergence result is unconditional with respect to the initial condition, but
it restricts the range of β. Theorem 4.1 is a local result with respect to initialization
but does not restrict the range of β > 0. Further, the discussion following Theorem 4.1
provides rate of convergence results.

Let us also comment on the discretized version of (4.4). To be specific we consider
a two dimensional domain Ω endowed with a uniform rectangular grid, with ∆h denot-
ing the five-point-star discretization of ∆, and functions z, ψ, y, u discretized by means
of grid functions at the nodal points. Numerical results for this case were reported in
[BIK] and [BHHK], and convergence can be argued provided the discretized form of
(4.18) holds. Let us consider to which extent Theorems 3.2–3.4 provide new insight on
confirming convergence, which was observed numerically in practically all examples.
Theorem 3.2 is not applicable since Ah = βI+ ∆−2

h is not an M-matrix. Theorem 3.4
is applicable with M = βI and K = ∆−2

h , and asserts convergence if β is sufficiently
large. We also tested numerically the applicability of Theorem 3.3 and found that
for Ω = (0, 1)2 the norm condition was satisfied in all cases we tested with grid-size
h ∈ [10−2, 10−1] and β ≥ 10−4, whereas the cone condition

∑
i∈I(A−1

I yI)i ≥ 0 for
yI ≥ 0 was satisfied only for β ≥ 10−2, for the same range of grid-sizes. Still the func-
tion yk →M(yk) utilized in the proof of Theorem 3.4 behaved as a merit function for
the wider range of β ≥ 10−3. Note that the norm and cone condition of Theorem 3.4
involve only the system matrix A, whereasM(yk) also depends on the specific choice
of f and ψ.

Remark 4.1. Throughout the paper we used the function C defined in (2.2) as
a complementarity function. Another popular choice of complementarity function is
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given by the Fischer–Burmeister function

CFB(y, λ) =
√
y2 + λ2 − (y + λ) .

Note that CFB(0, λ) =
√
λ2 − λ = 2 max(0,−λ), and hence by Proposition 4.1 the

natural choices for slanting functions do not satisfy property (A).

Remark 4.2. Condition (H2) can be considered as yet another incidence, where a
two-norm concept for the analysis of optimal control problems is essential. It utilizes
the fact that the control-to-solution mapping of the differential equation is a smooth-
ing operation. Two-norm concepts were used for second order sufficient optimality
conditions and the analysis of SQP-methods in [M, I, IK3], for example, and also for
semismooth Newton methods in [U].

In view of the fact that (P) consists of a quadratic cost functional with affine
constraints the question arises whether superlinear convergence coincides with one
step convergence after the active/inactive sets are identified by the algorithm. The
following example illustrates the fact that this is not the case.

Example 2. We consider Example 1 with the specific choices

z(x1, x2) = sin(5x1) + cos(4x2), ψ ≡ 0, β = 10−5, and Ω = (0, 1)2.

A finite difference based discretization of (4.4) with a uniform grid of mesh size h = 1
100

and the standard five-point-star discretization of the Laplace operator was used. The
primal-dual active set strategy with initialization given by solving the unconstrained
problem and setting λ0

h = 0, was used. The exact discretized solution (u∗h, λ
∗
h, y

∗
h) was

attained in eight iterations. In Table 1 we present the values for

qku =
|ukh − u∗h|
|uk−1
h − u∗h|

, qkλ =
|λkh − λ∗h|
|λk−1
h − λ∗h|

,

where the norms are discrete L2-norms. Clearly these quantities indicate superlinear
convergence of ukh and λkh.

Table 1

k 1 2 3 4 5 6 7

qku 1.0288 0.8354 0.6837 0.4772 0.2451 0.0795 0.0043

qkλ 0.6130 0.5997 0.4611 0.3015 0.1363 0.0399 0.0026

We also tested whether the quantities appearing in the rate of convergence dis-
cussion are reflected in the numerical results. For this purpose note that for the
problem under consideration w appearing in (4.16) and (4.17) is given by w =
∆−2u∗ + ∆−1z + βψ. Roughly, (4.16) and (4.17) have a higher chance to be sat-
isfied with larger value for α if w is not smooth across the boundary of the set
{x : w(x) = 0}. In a numerical test we kept all problem data identical to those
specified above except for changing ψ to ψ(x1, x2) = x1x2 − 1. Note that this new
ψ increases the chance that (4.16) and (4.17) are satisfied. Moreover, increasing β
(for the same ψ) results in an increase of the influence of ψ to w. Thus we expect
an improved convergence as β is increased. For the new ψ and small β the algorithm
finds the solution in one less iteration. Increasing β results in a further reduction of
three iterations; see Tables 1 and 2.
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Table 2

qku
k 1 2 3 4 5 6

β = 10−5 1.0443 0.8359 0.6780 0.4679 0.2342 0.0614
β = 10−3 0.1410 0.0455 0.0041 – – –

Appendix A.

Proof of Theorem 3.2. The assumption that A is an M-matrix implies that for
every index partition I and A we have A−1

I ≥ 0 and A−1
I AIA ≤ 0; see [BP, p. 134].

Let us first show the monotonicity property of the y-component. Observe that for
every k ≥ 1 the complementarity property

λki = 0 or yki = ψi , for all i and k ≥ 1 ,(A.1)

holds. For i ∈ Ak we have λki +c(yki −ψi) > 0, and hence by (A.1) either λki = 0, which
implies yki > ψi, or λki > 0, which implies yki = ψi. Consequently, yk ≥ ψ = yk+1 on
Ak and δyAk = ψAk − ykAk ≤ 0. For i ∈ Ik we have λki + c(yki −ψi) ≤ 0 which implies

δλIk ≥ 0 by (2.4) and (A.1). Since δyIk = −A−1
Ik AIkAkδyAk − A−1

Ik δλIk by (3.3) it

follows that δyIk ≤ 0. Therefore yk+1 ≤ yk for every k ≥ 1.

Next we show that yk is feasible for all k ≥ 2. Due to the monotonicity of yk it
suffices to show that y2 ≤ ψ. Let V = {i : y1i > ψi}. For i ∈ V we have λ1

i = 0 by
(A.1), and hence λ1

i + c(y1i − ψi) > 0 and i ∈ A1. Since y2 = ψ on A1 and y2 ≤ y1 it
follows that y2 ≤ ψ.

To verify that y∗ ≤ yk for all k ≥ 1 note that

fIk−1
= λ∗Ik−1

+AIk−1
y∗Ik−1

+AIk−1Ak−1
y∗Ak−1

= AIk−1
ykIk−1

+AIk−1Ak−1
ψAk−1

.

It follows that

AIk−1

(
ykIk−1

− y∗Ik−1

)
= λ∗Ik−1

+AIk−1Ak−1

(
y∗Ak−1

− ψAk−1

)
.

Since λ∗Ik−1
≥ 0 and y∗Ak−1

≤ ψAk−1
the M-matrix properties of A imply that ykIk−1

≥
y∗Ik−1

for all k ≥ 1.

Turning to the feasibility of λk assume that for a pair of indices (k̄, i), k̄ ≥ 1,
we have λk̄i < 0. Then necessarily i ∈ Ak̄−1, yk̄i = ψi, and λk̄i + c(yk̄i − ψi) < 0.

It follows that i ∈ Ik̄, λk̄+1
i = 0, and λk̄+1

i + c(yk̄+1
i − ψi) ≤ 0, since yk+1

i ≤ ψi,
k ≥ 1. Consequently, i ∈ Ik̄+1 and by induction i ∈ Ik for all k ≥ k̄ + 1. Thus,
whenever a coordinate of λk becomes negative at iteration k̄, it is zero from iteration
k̄ + 1 onwards, and the corresponding primal coordinate is feasible. Due to finite
dimensionality of R

n it follows that there exists ko such that λk ≥ 0 for all k ≥ ko.
Monotonicity of yk and y∗ ≤ yk ≤ ψ for k ≥ 2 imply the existence of ȳ such that

lim yk = ȳ ≤ ψ. Since λk = Ayk + f ≥ 0 for all k ≥ ko, there exists λ̄ such that
limλk = λ̄ ≥ 0. Together with (A.1) it follows that (ȳ, λ̄) = (y∗, λ∗).

Remark A.1. From the proof it follows that if λk̄i < 0 for some coordinate i at
iteration k̄, then λki = 0 and yki ≤ ψi for all k ≥ k̄ + 1.

Proof of Proposition 4.1. (i) It suffices to consider the one dimensional case
Ω = (−1, 1) ⊂ R. We show that property (A) does not hold at y(x) = −|x|. Let us
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define hn(x) = 1
n on (− 1

n ,
1
n ) and hn(x) = 0 otherwise. Then∫ 1

−1

|max(0, y + hn)(x)−max(0, y)(x)− (Gm(y + hn)(hn)) (x)|p dx

=

∫
{x:y(x)+hn(x)>0}

|y(x)|pdx =

∫ 1
n

− 1
n

|y(x)|pdx =
2

p+ 1

(
1

n

)p+1

,

and ‖hn‖Lp = p
√

2/np+1. Consequently,

lim
n→∞

1
‖hn‖Lp ‖max(0, y + hn)−max(0, y)−Gm(y + hn)hn‖Lp = p

√
1
p+1 �= 0 ,

and hence (A) is not satisfied at y for any p ∈ [1,∞).
To consider the case p =∞ we choose Ω = (0, 1) and show that (A) is not satisfied

at y(x) = x. For this purpose define for n = 2, . . .

hn(x) =



−(1 + 1

n )x on (0, 1
n ] ,

(1 + 1
n )x− 2

n (1 + 1
n ) on ( 1

n ,
2
n ] ,

0 on ( 2
n , 1] .

Observe that En = {x : y(x) + hn(x) < 0} ⊃ (0, 1
n ]. Therefore

lim
n→∞

1
‖hn‖L∞([0,1])

‖max(0, y + hn)−max(0, y)−Gm(y + hn)hn‖L∞([0,1])

= lim
n→∞

n2

n+1‖y‖L∞(En) ≥ lim
n→∞

n
n+1 = 1,

and hence (A) cannot be satisfied.
(ii) Let δ ∈ R be fixed arbitrarily and y, h ∈ Lq(Ω), and set

Dy,h(x) = max(0, y(x) + h(x))−max(0, y(x))−Gm(y + h)(x)h(x) .

A short computation shows that

|Dy,h(x)|


≤ |y(x)| if (y(x) + h(x))y(x) < 0 ,
≤ (1 + |δ|) |y(x)| if y(x) + h(x) = 0 ,
= 0 otherwise.

(A.2)

For later use we note that from Hölder’s inequality we obtain for 1 ≤ p < q ≤ ∞

‖w‖Lp ≤ |Ω|r‖w‖Lq , with r =

{
q−p
pq if q <∞ ,

1
p if q =∞ .

From (A.2) it follows that only

Ω0(h) = {x ∈ Ω : y(x) �= 0, y(x)(y(x) + h(x)) ≤ 0}
requires further investigation. For ε > 0 we define subsets of Ω0(h) by

Ωε(h) = {x ∈ Ω : |y(x)| ≥ ε, y(x)(y(x) + h(x)) ≤ 0} .
Note that |y(x)| ≥ ε a.e. on Ωε(h) and therefore

‖h‖Lq(Ω) ≥ ε|Ωε(h)|1/q for q <∞ .
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It follows that

lim
‖h‖Lq(Ω)→0

|Ωε(h)| = 0 for every fixed ε > 0 .(A.3)

For ε > 0 we further define sets

Ωε(y) = {x ∈ Ω : 0 < |y(x)| ≤ ε} ⊂ {x : y(x) �= 0} .

Note that Ωε(y) ⊂ Ωε
′
(y) whenever 0 < ε ≤ ε′ and

⋂
ε>0 Ωε(y) = ∅. As a consequence

lim
ε→0+

|Ωε(y)| = 0 .(A.4)

From (A.2) we find

1

‖h‖Lq ‖Dy,h‖L
p ≤ 1 + |δ|

‖h‖Lq

(∫
Ω0(h)

|y(x)|pdx
)1/p

≤ 1 + |δ|
‖h‖Lq


(∫

Ωε(h)

|y(x)|pdx
)1/p

+

(∫
Ω0(h)\Ωε(h)

|y(x)|pdx
)1/p




≤ 1 + |δ|
‖h‖Lq


|Ωε(h)|(q−p)/(qp)

(∫
Ωε(h)

|y(x)|qdx
)1/q

+ |Ωε(y)|(q−p)/(qp)
(∫

Ω0(h)\Ωε(h)
|y(x)|qdx

)1/q



≤ (1 + |δ|)
(
|Ωε(h)|(q−p)/(qp) + |Ωε(y)(q−p)/(qp)|

)
.

Choose η > 0 arbitrarily and note that by (A.4) there exists ε̄ > 0 such that (1 +
|δ|)|Ωε̄(y)|(q−p)/(qp) < η. Consequently,

1

‖h‖Lq ‖Dy,h‖L
p ≤ (1 + |δ|)|Ωε̄(h)|(q−p)/(qp) + η

and by (A.3)

lim
‖h‖Lq→0

1

‖h‖Lq ‖Dy,h‖L
p ≤ η .

Since η > 0 is arbitrary the claim holds for 1 ≤ p < q <∞.
The case q =∞ follows from the result for 1 ≤ p < q <∞.
Proof of Theorem 4.1. Let yk, k ≥ 1, denote the iterates of the reduced algorithm

and define

λk+1 =

{
0 on Ik ,
(f − Cyk+1 − βψ)Ak on Ak for k = 0, 1, . . . .

We obtain λk + β(yk − ψ) = f − Cyk − βψ for k = 1, 2, . . . , and hence the active
sets Ak, the iterates yk+1 produced by the reduced algorithm and by the algorithm
in the two variables (yk+1, λk+1), coincide for k = 1, 2, . . . , provided the initialization
strategies coincide. This, however, is the case since due to our choice of λ0 and β = c
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we have λ0 + β(y0 −ψ) = f −Cy0 − βψ, and hence the active sets coincide for k = 0
as well.

To prove convergence of the reduced algorithm we utilize Theorem 1.1 with
F : L2(Ω) → L2(Ω) given by F (y) = βy − βψ + max(0, Cy − f + βψ). From Propo-
sition 4.1(ii) it follows that F is slantly differentiable. In fact, the relevant difference
quotient for the nonlinear term in F is

1

‖Ch‖Lq
∥∥max(0, Cy − f + βψ + Ch)−max(0, Cy − f + βψ)

− Gm(Cy − f + βψ + Ch)(Ch)
∥∥
L2

‖Ch‖Lq
‖h‖L2

,

which converges to 0 for ‖h‖L2 → 0. Here

Gm(Cy − f + βψ + Ch)(x) =

{
1 if (C(y + h)− f + βψ)(x) ≥ 0 ,
0 if (C(y + h)− f + βψ)(x) < 0 ,

so that in particular δ of (4.1) was set equal to 1 which corresponds to the “≤” sign
in the definition of Ik. A slanting function GF of F at y in direction h is therefore
given by

GF (y + h) = βI +Gm(Cy − f + βψ + Ch)C .

It remains to argue that GF (z) ∈ L(L2(Ω)) has a bounded inverse. Since for arbitrary
z ∈ L2(Ω), h ∈ L2(Ω)

GF (z)h =

(
βII + CI CIA

0 βIA

) (
hI
hA

)
,

where I = {x : (Cz − f + βψ)(x) ≥ 0} and A = {x : (Cz − f + βψ)(x) < 0}, it
follows from (H1) that GF (z)−1 ∈ L(L2(Ω)). Above we denoted CI = E∗

ICEI and
CIA = E∗

ICEA.
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Abstract. This paper contains a new convergence analysis for the Lewis and Torczon generalized
pattern search (GPS) class of methods for unconstrained and linearly constrained optimization.
This analysis is motivated by a desire to understand the successful behavior of the algorithm under
hypotheses that are satisfied by many practical problems. Specifically, even if the objective function
is discontinuous or extended-valued, the methods find a limit point with some minimizing properties.
Simple examples show that the strength of the optimality conditions at a limit point depends not
only on the algorithm, but also on the directions it uses and on the smoothness of the objective at
the limit point in question. The contribution of this paper is to provide a simple convergence analysis
that supplies detail about the relation of optimality conditions to objective smoothness properties
and to the defining directions for the algorithm, and it gives previous results as corollaries.

Key words. pattern search algorithm, linearly constrained optimization, surrogate-based opti-
mization, nonsmooth optimization, derivative-free convergence analysis
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1. Introduction. Generalized pattern search (GPS) algorithms were defined
and analyzed by Torczon [29] for derivative-free unconstrained optimization on contin-
uously differentiable functions using positive spanning directions. Lewis and Torczon
[24] introduced the idea of using positive spanning directions with GPS. In [23], they
showed that if the objective is continuously differentiable and if the set of directions
that define the local search is chosen properly with respect to the boundary of the
feasible region, then the GPS framework and convergence theory extend to bound-
constrained optimization. In [25], they showed the same results for problems with a
finite number of linear constraints. Both these extensions use the appealing “barrier”
strategy of declaring any infeasible point to be unacceptable as a next iterate. Our
purpose here is to provide a new unified analysis for the methods in [29, 23, 25] and
to help elucidate the relationship between the algorithm, the search directions, and
the local smoothness properties of the objective at certain specified limit points of the
algorithm.

The optimization problem considered in this paper is

min
x∈Ω

f(x), where f : �n → �∪ {∞}.(1.1)

We assume as in [25] that Ω = {x ∈ �n : � ≤ Ax ≤ u}, where A ∈ Qm×n is a rational
matrix, �, u ∈ {� ∪ {±∞}}m, and � ≤ u.
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GPS methods are extremely effective for some engineering design problems with
expensive function evaluations when used with less expensive surrogates [5, 6]. For
these and many other applied problems, a call to the subroutine that evaluates f(x)
may result unexpectedly in no value being returned even for a feasible x, which we
model as f(x) = ∞. Reasons for this behavior are discussed in [5], where GPS with
surrogates is shown to be effective on a helicopter rotor design example, for which
no value is returned roughly 66% of the time. The issue is discussed in a different
algorithmic and application context in [7, 8]. In such instances, we cannot assume
global smoothness, not even continuity. We are not the first to observe that GPS can
work well on nonsmooth problems, but previous convergence theorems do not apply
to such problems.

We view the barrier approach as applying the algorithm not to f but to the
barrier function fΩ = f + ψΩ, where ψΩ is the indicator function for Ω. It is zero on
Ω, and ∞ elsewhere. Clearly then, we do not evaluate f(x) if x is infeasible, because
we know that its value is immaterial since the algorithm works with fΩ, and the value
of fΩ is +∞ on all points that are either infeasible or at which f is declared to be
+∞:

fΩ(x) =

{
f(x) if x ∈ Ω,
∞ otherwise.

The reason that we treat together all the methods in [29, 23, 25] that use the barrier
approach is that, by viewing them as the same algorithm applied to fΩ, we can treat
them by corollaries of a single result, Theorem 3.7, that allows for extended values
and other nonsmooth behavior. Our approach is first to identify a class of promising
limit points produced by GPS applied to extended-valued discontinuous functions like
fΩ. To make statements about optimality conditions at these limit points, we work
not with fΩ but with f . If f is lower semicontinuous at such a limit point, we can
make a weak optimality statement. Then we apply the Clarke calculus [9] locally to f
at such a point to relate progressively stronger optimality conditions to progressively
stronger local smoothness assumptions at the limit point.

Thus, the structure of our results will be that, at some limit point whose existence
is asserted independent of certain assumptions, we make those additional assumptions
to draw stronger conclusions. This is standard for Newton or quasi-Newton methods
(e.g., [27, Theorem 8.6, p. 216] or virtually all of [22]), but it has not been the norm
for direct search methods.

Specifically, without assuming any smoothness, we observe that there is a conver-
gent subsequence of the sequence {xk} of iterates produced by the algorithm. Since
{f(xk)} generated by the algorithm is nonincreasing, it is convergent to a finite limit
if it is bounded below. Thus, if f is lower semicontinuous at any limit point x̄ of the
sequence of iterates, then f(x̄) ≤ lim infk f(xk) = limk f(xk). Our analysis is of inter-
est for the heat intercept design problem given in [21], where f is not continuous at
one of the limit points generated, but a plot suggests that it is lower semicontinuous.

Again without any smoothness assumptions, we show that there is a limit point
x̂ of a subsequence of {xk} consisting of iterates on progressively finer meshes. (A
formal definition of the mesh is given in section 2.) These specific iterates of interest
are mesh local optimizers in that they minimize the function on a positive spanning
set of neighboring mesh points. This will be made precise in section 2.

The directional tests that led GPS to refine the mesh at mesh local optimizers
are exactly that difference quotients be nonnegative for the Clarke generalized direc-
tional derivative at x̂. If the Clarke derivatives exist at x̂, as they will if f is locally
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Lipschitz at x̂, then these nonnegative difference quotients pass through the limit to
be nonnegative Clarke derivatives in the directions used.

Nonnegative directional derivatives on a set of positive spanning directions for �n
are a necessary condition for optimality, but that is not the usual first order condition.
To get the usual condition that the gradient is zero, we assume in addition that the
generalized gradient of f is a singleton. This extra smoothness causes the above
directional optimality conditions to hold for all directions in �n. We give examples
that supplement those in [1] and show that our results are sharp in that they predict
the behavior of the algorithm.

The remainder of the paper is organized as follows: in the next section, we will give
a brief description of the GPS algorithm class. We adhere to a slightly different, but
equivalent, version of the Lewis and Torczon algorithm. In section 3, we present the
assumptions together with a discussion of our local smoothness conditions, give the
key result and some immediate corollaries for unconstrained problems together with
a discussion of these results, and then go on to the results for the linear constraints.
Section 4 is devoted to some concluding remarks.

2. GPS algorithms. GPS algorithms for unconstrained or linearly constrained
minimization generate a sequence of iterates {xk} in �n with nonincreasing objective
function values. Each iteration is divided into two phases: an optional search and a
local poll, defined next.

In the search step, the barrier objective function fΩ is evaluated at a finite
number of points on a mesh (a discrete subset of �n defined below, whose fineness
is parameterized by the mesh size parameter ∆k > 0) to try to find one that yields
a lower objective function value than the incumbent. Any strategy may be used to
select the mesh points that are candidates to replace the incumbent, as long as only
finitely many points (including none) are selected.

This is a key point. The search step accommodates whatever heuristics the
user was already using to attack his or her problem using surrogates. One might do
some random search on the mesh using the surrogate, or, as in the Boeing Design
Explorer software [4], one might apply SQP to the surrogate problem and then move
the solution to a nearby mesh point to choose the candidates at which to evaluate the
expensive objective function in hopes of obtaining a better next iterate. Coope and
Price [11] offer a possibility for a related framework that does not require pushing a
surrogate solution to the mesh for it to become an acceptable trial point. In [13], they
apply the Clarke analysis given here with their related methods.

On the other hand, the freedom of the search step is definitely a theoretical
liability. In [1] and here, there are examples of nonempty searches that spoil chances
for the algorithm to find KKT points, and of empty searches that mire the algorithm
at a poor point when a naive random selection from the current mesh in the search
would generally lead to success. Regardless, this freedom must be retained. Indeed,
for the Boeing example [5, 6], the algorithm with surrogates is much more efficient
than Serafini’s implementation [28] of the Dennis–Torczon MDS/PDS algorithm [14].
This is not to disparage the MDS algorithm, which is very robust on that example.

Below, we will offer terminology consistent with that of Coope and Price to replace
the usual “successful/unsuccessful” terminology in the GPS literature. The original
terminology was adequate until it was recognized that the “unsuccessful” iterations
were the important ones because they produce mesh local optimizers, while successful
iterations produce only improved mesh points, which we define now.

When the incumbent is replaced, i.e., when fΩ(xk+1) < fΩ(xk), or equivalently,
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when f(xk+1) < f(xk), then xk+1 is said to be an improved mesh point. When the
search step fails to provide an improved mesh point, the poll step is invoked. This
second step consists of evaluating the barrier objective function at the neighboring
mesh points to see whether a lower function value can be found there.

When the poll step fails to provide an improved mesh point, then the current
incumbent solution is said to be a mesh local optimizer (i.e., its objective function
value is less than or equal to that of neighboring mesh points). The algorithm then
refines the mesh by setting the mesh size parameter

∆k+1 = τwk∆k(2.1)

for 0 < τwk < 1, where τ > 1 is a rational number that remains constant over all
iterations and wk ≤ −1 is an integer bounded below by the constant w− ≤ −1.

A feature first noted in Torczon [29] and also supported in the analysis given
here is that if either the search or poll step produces an improved mesh point, the
current iteration can stop, and the new point xk+1 �= xk has a strictly lower objective
function value, the mesh size parameter is kept the same or is increased to carry out
the next search step, and the process is reiterated. The coarsening of the mesh
follows the rule

∆k+1 = τwk∆k,(2.2)

where τ > 1 is defined above and wk ≥ 0 is an integer bounded above by w+ ≥ 0. Our
experience with surrogate-based search steps [5, 6] is that a great deal of progress
can be made with few function values, and at least n + 1 function evaluations are
needed to show only local mesh optimality, which indicates that the mesh needs to
be refined (see [24] for defining a minimal number of polling directions).

By modifying the mesh size parameters as above, it follows that for any k ≥ 0
there exists an integer rk ∈ Z such that

∆k = τ rk∆0.(2.3)

The basic ingredient in the definition of the mesh is a set of positive spanning
directions D in �n (more precisely, nonnegative linear combinations of the elements
of the set D span �n). There is great freedom in choosing these directions; only
the following additional rule needs to be respected: each direction dj ∈ D (for j =
1, 2, . . . , |D|) is the product Gz̄j of the nonsingular generating matrix G ∈ �n×n by an
integer vector z̄j ∈ Zn. Note that the same generating matrix is used for all directions.
For convenience, the set D is also viewed as a real n×|D| matrix. Similarly, we denote
the matrix whose columns are z̄j , for j = 1, 2, . . . , |D|, by Z̄; we can therefore write
D = GZ̄. At iteration k, the mesh is centered around the current iterate xk ∈ �n,
and its fineness is parameterized through the mesh size parameter ∆k as follows:

Mk = {xk +∆kDz : z ∈ Z |D|
+ },(2.4)

where Z+ is the set of nonnegative integers. This way of describing the mesh differs
from [29, 23, 25].

At each iteration, some positive spanning matrix Dk composed of columns of D
is used to construct the poll set. We write Dk ⊆ D to signify that the matrix Dk is
composed of columns of D. The poll set is composed of mesh points neighboring the
current iterate xk in the directions of the columns of Dk:

Poll set: {xk +∆kd : d ∈ Dk}.(2.5)
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Rules for selecting Dk may depend on the user’s dynamic intervention during the
current run, or, for example, on the iteration number or the current iterate, i.e.,
Dk = D(k, xk) ⊆ D.

The algorithm is stated formally as follows.

A basic GPS algorithm.
• Initialization:
Let x0 be such that fΩ(x0) is finite. Let D be a positive spanning set, and
let M0 be the mesh on �n defined by ∆0 > 0 and D0 (see (2.4)). Set the
iteration counter k to 0.

• Search and poll steps:
Perform the search and possibly the poll steps (or only part of them)
until an improved mesh point xk+1 with the lowest fΩ value so far is found
on the mesh Mk defined by (2.4).
– Optional search: Evaluate fΩ on a finite subset of trial points on the

mesh Mk defined by (2.4). (The strategy that gives the set of points
is usually provided by the user; it must be finite and the set can be
empty.)

– Local poll: Evaluate fΩ on the poll set defined in (2.5).
• Parameter update:
If the search or the poll step produced an improved mesh point, i.e., a
feasible iterate xk+1 ∈ Mk ∩ Ω for which fΩ(xk+1) < fΩ(xk), then update
∆k+1 ≥ ∆k according to rule (2.2).
Otherwise, fΩ(xk) ≤ fΩ(xk+∆kd) for all d ∈ Dk, and so xk is a mesh local
optimizer. Set xk+1 = xk and update ∆k+1 < ∆k according to rule (2.1).
Increase k ← k + 1 and go back to the search and poll step.

The search strategy is the key to the algorithm’s effectiveness, as we discussed
above. The convergence analysis is independent of the search step, provided that
it is finite and returns a point (or points) on the mesh. The poll step applied to
fΩ, as we will see, guarantees that the limit point provided by the algorithm satisfies
optimality conditions whose strength depends on the local smoothness of f at the
limit point.

3. Convergence analysis. Theorem 3.7 is our main result. It and Theorem 3.1
make no special assumptions about the crucial relationship between the directions D
and the feasible region Ω. This means that they apply to quite general uses of GPS (see
also the remark following Theorem 3.14); but, without a connection between Ω and
D, the resulting constrained optimality conditions are weak even when f is smooth.
Theorem 3.9 is the strongest result we expect for stationarity in the unconstrained
case (see [1] for supporting examples).

Since one of the objectives of the paper is to simplify the convergence analysis
of GPS, we include the proofs of all the results leading to our main theorem, even if
some of them can essentially be found in previous work modulo the slightly different
way of defining the mesh (we indicate the appropriate references).

3.1. Assumptions and smoothness requirements. We make the standard
assumption that all iterates produced by GPS lie in a compact set (see [2, 3, 10, 11, 12,
16, 17, 18]). A sufficient condition for this to hold is that the level set L(x0) = {x ∈
Ω : f(x) ≤ f(x0)} be compact. We cannot assume that L(x0) is compact because we
allow discontinuities and even f(x) =∞, and so we do not know that L(x0) is closed.
However, we can assume that L(x0) is bounded so that its closure is compact.
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Whatever we assume to ensure that the iterates are in a compact set, this already
implies that there are convergent subsequences of the iteration sequence. This is
enough to say that if f is lower semicontinuous at such a limit point x̄, then f(x̄) ≤
limk f(xk) for the entire iteration sequence. Of course, arbitrarily near a point at
which it is lower semicontinuous, f can be infinite, which means that there can be
points of the sort mentioned above at which f fails to evaluate arbitrarily near x̄,
but it also means that we can say nothing about any derivatives at such an x̄. For
that, we will consider an interesting set of subsequences identified by the algorithm.
Specifically, we will be concerned here, as in [2, 11, 12], with the iterates xk that are
mesh local optimizers for meshes that get infinitely fine. We will use x̄ to denote
generic limit points of the sequence of iterates, and x̂ for limit points of mesh local
optimizers for meshes that get infinitely fine. It is only at mesh local optimizers that
∆k is reduced. The analysis would be simpler if we assumed that the mesh size was
never coarsened, since obviously then the meshes would become infinitely fine for
every sequence of mesh local optimizers. However, we will not use this assumption,
since mesh coarsening can lead more rapidly to a deeper basin than might be found
without it.

To summarize, the convergence analysis provided below relies only on the follow-
ing assumptions.

A1: A function fΩ = f + ψΩ : � → � ∪ {+∞} and initial point x0 ∈ �n (with
fΩ(x0) <∞) are available.

A2: The constraint matrix A is rational.
A3: All iterates {xk} produced by the GPS algorithm lie in a compact set.

We now prove the following result with an immediate, but rather strange, impli-
cation—stationary points are the least interesting locally smooth limit points that
GPS produces, in the sense that all limit points have the same function value but
there are descent directions leading from any locally smooth nonstationary points. Of
course, if all the limit points are stationary points, then all are equally interesting.

Theorem 3.1. Under assumptions A1 and A3, there exists at least one limit
point of the iteration sequence {xk}. If f is lower semicontinuous at such a limit
point x̄, then limk f(xk) exists and is greater than or equal to f(x̄). If f is continuous
at every limit point of {xk}, then every limit point has the same function value.

Proof. Since f is lower semicontinuous at x̄, we know that for any subsequence
{xk}k∈K of the iteration sequence that converges to x̄, lim infk∈K f(xk) ≥ f(x̄),
which is finite. But since the subsequence of function values is a subsequence of a
nonincreasing sequence, they have the same limit inferior. Thus, the entire sequence
is also bounded below by f(x̄), and thus it converges.

To prove more, we will need to assume more. In addition to A1–A3, previous work
on pattern search algorithms assumes continuous differentiability of the function f on
a neighborhood of the level set L(x0) = {x ∈ Ω : f(x) ≤ f(x0)} (see [2, 23, 25, 29, 11,
12]). In the unconstrained case, Torczon [29] shows that for GPS there exists a limit
point x̄ satisfying ∇f(x̄) = 0, and our [2] shows the same result for every limit point x̂
of any sequence of mesh local optimizers for which limk∆k = 0. Note that, since every
limit point of the GPS sequence is a point of continuity in this case, nonstationary
limit points, whose possible existence is shown in [1], are very interesting because with
the right search step, or the right choice of directions, one can proceed to a point
with a better value of f . Our analysis below uses the weaker assumption of strict
differentiability (defined in the first paragraph of section 3.4) at such a limit point
instead of continuous differentiability on L(x0)).
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First we easily show (under no smoothness assumptions) the existence of at least
one limit point of a subsequence of mesh local optimizers on meshes that get infinitely
fine. Then, for those limit points at which f is strictly differentiable, we show that
the gradient is zero. To avoid confusion about the relative strength of assuming in
the context of GPS that f is locally Lipschitz, strictly differentiable at a point, or
continuously differentiable, we will provide examples following Theorems 3.7 and 3.9
for which those results apply and earlier results do not. The proofs of the mesh
refinement results were first given in [29] with a different description of the meshes.

We now proceed with some results on the behavior of the mesh and mesh size
parameter. These results do not depend at all on the smoothness of fΩ; they use
just the definition of the algorithm and integrality of the matrix Z used to construct
the set of directions D. For a different framework, Coope and Price [11] relax the
conditions on the mesh, but they assume that the meshes become infinitely fine. This
is an interesting tradeoff that puts the burden for ensuring that the meshes become
infinitely fine into the implementation but allows for search points off the mesh and
more freedom in the definition of the meshes.

3.2. Mesh refinement. The main result of this section is that there is a subse-
quence of mesh local optimizers for which the mesh size parameter goes to zero. The
first lemma shows that for each mesh Mk defined by (2.4), the minimal distance over
all pairs of distinct mesh points is bounded below by the mesh size parameter ∆k

times a scalar. In the Euclidean norm, the proof involves the smallest singular value
of G (see [29]).

Lemma 3.2. For any integer k ≥ 0, any norm for which any nonzero integer
vector has norm at least 1, and Mk defined by (2.4),

min
u �=v∈Mk

‖u− v‖ ≥ ∆k

‖G−1‖ .

Proof. Using (2.4), we let u = xk +∆kDzu and v = xk +∆kDzv be two distinct

points on Mk, with both zu and zv in Z |D|
+ . Then

‖u− v‖ = ∆k‖D(zu − zv)‖ = ∆k‖GZ̄(zu − zv)‖ ≥ ∆k
‖Z̄(zu − zv)‖
‖G−1‖ ≥ ∆k

‖G−1‖ .

The last part of the inequality is due to the fact that Z̄(zu − zv) is a nonzero integer
vector; thus its norm is greater than or equal to one.

The separation between mesh points shown by Lemma 3.2 depends on the direc-
tions inD being integer linear combinations of the columns of a fixed nonsingular n×n
generating matrix. For example, in �1, positive integer combinations of the columns
of D = [−1,+π] are a dense subset of the real line. This is not a counterexample to
Lemma 3.2, because the matrix [−1,+π] cannot be written as a scalar multiple of a
1× 2 integer matrix.

The next lemma shows that the mesh size parameters generated by the algorithm
are bounded above. (It is similar to a result in [2] for categorical variables.)

Lemma 3.3. Under assumptions A1 and A3, there exists a positive integer r+

such that ∆k ≤ ∆0τ
r+ for any integer k ≥ 0.

Proof. Using assumption A3, we let X be a compact set in �n that contains all
iterates, and denote its diameter by γ (i.e., the maximal distance between two of its
points). If ∆k > γ ·‖G−1‖, then Lemma 3.2 with (v = xk) ensures that any trial point
u ∈Mk different from xk would have been outside of X . But since no iterate is outside
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X , it follows that at any iteration whose mesh size parameter exceeds γ · ‖G−1‖, the
iterate xk is a mesh local optimizer. Thus ∆k is bounded above by γ · ‖G−1‖τw+

, and

the result follows by setting r+ large enough so that ∆0τ
r+ ≥ γ · ‖G−1‖τw+

.
The proof of the next result is identical in spirit to that of the same result in

Torczon [29] and that adapted in [2] for categorical variables.
Proposition 3.4. Under assumptions A1 and A3, the mesh size parameters

satisfy lim infk→+∞∆k = 0.
Proof. Suppose, by way of contradiction, that there exists a negative integer ρ

such that 0 < ∆0τ
ρ ≤ ∆k for all k ≥ 0. Combining (2.3) with Lemma 3.3 implies that

for any k ≥ 0, rk takes its value among the integers of the finite set {ρ, ρ+1, . . . , r+}.
Since xk+1 ∈ Mk, (2.4) assures that xk+1 = xk + ∆kDzk for some zk ∈ Z |D|

+ .
Using (2.3) by substituting ∆k = ∆0τ

rk , it follows that for any integer N ≥ 1

xN = x0 +

N−1∑
k=0

∆kDzk = x0 +∆0D

N−1∑
k=0

τ rkzk = x0 +
pρ

qr+
∆0D

N−1∑
k=0

prk−ρqr
+−rkzk,

where p and q are relatively prime integers satisfying τ = p/q. Since for any k the

term prk−ρqr
+−rkzk appearing in this last sum is an integer, it follows that all iterates

lie on the translated integer lattice generated by x0 and the columns of pρ/qr
+

∆0D.
Therefore, since all iterates belong to a compact set, it follows that there are only

finitely many different iterates, and thus one of them must be visited infinitely many
times. Therefore the rule presented in (2.2) is applied only finitely many times, and
the one in (2.1) is applied infinitely many times. This contradicts the hypothesis that
∆0τ

ρ is a lower bound for the mesh size parameter.

3.3. Main convergence result. Since the mesh size parameter shrinks only
when a mesh local optimizer is detected, Proposition 3.4 guarantees that there are
infinitely many mesh local optimizers. The following definition specifies the subse-
quences we use.

Definition 3.5. A subsequence of the GPS iterates consisting of mesh local op-
timizers, {xk}k∈K (for some subset of indices K), is said to be a refining subsequence
if {∆k}k∈K converges to zero.

The following shows the existence of convergent refining subsequences. Notice
that if coarsening of the mesh were not allowed (i.e., w+ were set at 0 in (2.2)), then
every subsequence of mesh local optimizers would be a refining subsequence, and so
the next result would be trivial.

Theorem 3.6. Under assumptions A1 and A3, there exists at least one conver-
gent refining subsequence.

Proof. Let K ′′ be the set of indices of iterates that are mesh local optimizers.
Since the mesh is refined only at iterations when a local mesh optimizer is detected,
Proposition 3.4 guarantees that there exists a subset of indices K ′ ⊂ K ′′ for which
{∆k}k∈K′ ↓ 0. Assumption A3 ensures that there exists a subset of indices K ⊂ K ′

for which the subsequence of iterates {xk}k∈K converges.
We show below that the limit of any refining subsequence satisfies directional first

order optimality conditions appropriate to the local smoothness of f . It is shown in [1]
that, even for a continuously differentiable f , the entire iteration sequence might not
converge. There may even be infinitely many limit points, and not all of these limit
points are stationary points.

Next is our basic, but key, result in which we apply Clarke’s [9] generalized direc-
tional derivatives in a very straightforward way to the pattern search analysis. The
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results that follow specialize this result. Clarke’s derivative at x̂ in the direction d is
defined for locally Lipschitz functions. Loosely speaking, it is defined to be the limit
superior of the directional derivatives (in the direction d) of sequences converging to
x̂. The precise definition is given in the proof (see (3.1)).

Theorem 3.7. Under assumptions A1–A3, if x̂ is any limit of a refining subse-
quence, if d is any direction in D for which f at a poll step was evaluated for infinitely
many iterates in the subsequence, and if f is Lipschitz near x̂, then the generalized
directional derivative of f at x̂ in the direction d is nonnegative, i.e., f◦(x̂; d) ≥ 0.

Proof. Let {xk}k∈K be a refining subsequence and x̂ its limit point obtained as
in the statement of the Theorem. Since f is locally Lipschitz near x̂, we have from
Clarke [9] by definition that

f◦(x̂; d) ≡ lim sup
y→x̂, t↓0

f(y + td)− f(y)

t
≥ lim sup

k∈K

f(xk +∆kd)− f(xk)

∆k
.(3.1)

We need to know that the difference quotients are defined. First note that since f is
Lipschitz near x̂, it must be finite near x̂. Note also that since a main point of the
paper is to allow for extended-valued functions and to justify the expedient of dealing
with constraints by declining to evaluate the function f at infeasible points, we made
the hypothesis that f was actually evaluated infinitely many times in the direction
d. Therefore, for k sufficiently large all the poll steps in the direction d, xk + ∆kd
are feasible. If they had not been, then fΩ would have been infinite there, and so f
would not have been evaluated. (Recall that if x �∈ Ω, then fΩ(x) is set at +∞ and
f(x) is not evaluated.)

Thus, we have that infinitely many of the right-hand quotients of (3.1) are de-
fined, and in fact they are the same as for fΩ. But since they are defined, all of
them must be nonnegative or else the corresponding poll step would have been suc-
cessful in identifying an improved mesh point. (Recall that refining subsequences are
constructed from mesh local optimizers.)

In the unconstrained case, there will always be a positive spanning set of directions
that satisfy the hypotheses of the previous theorem. In the constrained case, there
may be no such d if D is defined in a way incompatible with the geometry of the
constraints. (See the example in [23].) Thus in the next section, we will appeal to
the construction in [25] to ensure that a sufficiently rich set of directions is used for
bound or linear constraints. Again, we emphasize that GPS is a directional method,
and the choice of directions is crucial.

The following example illustrates Theorem 3.7 on a Lipschitz function. This
function looks like a convex function (quadratic, in fact) that has been contaminated
by local noise that decreases in amplitude near the minimizer. This behavior is
common enough in practice to be the target class for implicit filtering algorithms [19].

Example 3.8. Consider the function f : � → � defined as f(x) = x2(2 + sin(πx )).
This function possesses infinitely many local optima near 0. One can show that f is
Lipschitz near 0, but it is not strictly differentiable there, and so certainly it is not
continuously differentiable. In fact, the generalized gradient satisfies ∂f(0) = [−π, π].

If the GPS algorithm with empty search steps, x0 = 1
3 , ∆0 = 1, D = {−1, 1},

∆k+1 = ∆k when an improved mesh point is found, and ∆k+1 = 1
2∆k when a mesh

local optimizer is detected, is applied to this problem, then the sequence of iterates
{xk} converges to 0, where f◦(0;±1) = π ≥ 0, as Theorem 3.7 guarantees. The proof
of this claim can be seen from Table 3.1.

Theorem 3.7 is the key to our analysis. Its proof follows so directly from Clarke’s
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Table 3.1
In four consecutive iterations, the iterates go from xk = 1/α,∆k = 3/α, where α is a positive

integer, to xk+4 = xk/4,∆k+4 = ∆k/4.

k xk f(xk) ∆k f(xk − ∆k) f(xk + ∆k) Iteration status

4i 1
α

2
α2

3
α

f( 1−3
α

) ≥ 4
α2 f( 1+3

α
) ≥ 16

α2 mesh local optimizer

4i + 1 1
α

2
α2

3
2α

f( 2−3
2α

) = 1
2α2 f( 2+3

2α
) ≥ 25

4α2 improved mesh point

4i + 2 −1
2α

1
2α2

3
2α

f(−1−3
2α

) ≥ 4
α2 f(−1+3

2α
) = 2

α2 mesh local optimizer

4i + 3 −1
2α

1
2α2

3
4α

f(−2−3
4α

) ≥ 25
16α2 f(−2+3

4α
) = 1

8α2 improved mesh point

4(i + 1) 1
4α

1
8α2

3
4α

definition of the generalized directional derivative because unsuccessful polling at
mesh local optimizers belonging to convergent refining sequences provides exactly the
nonnegative difference quotients that Clarke’s derivatives need since xk → x̂ and
∆k ↓ 0. We believe that this illustrates an intimate relationship between Clarke’s
generalized directional derivatives and the directional algorithm GPS.

3.4. Corollaries for unconstrained optimization. Before we add the com-
plication of choosing directions for linear constraints, we give some corollaries of Theo-
rem 3.7 for the unconstrained case. In addition to the assumption that f is Lipschitz
near x̂, we assume that the generalized gradient of f at x̂ is a singleton. This is
equivalent to assuming that f is strictly differentiable at x̂, i.e., that there exists a

Dsf(x̂) ∈ �n such that limy→x̂,t↓0
f(y+tw)−f(y)

t = Dsf(x̂)
Tw for all w ∈ �n (see [9,

Proposition 2.2.1 or Proposition 2.2.4]). Since the generalized gradient is a singleton
∂f(x̂) = {Dsf(x̂)}, we use the standard notation for the gradient ∇f(x̂) = Dsf(x̂).

Theorem 3.9. Under assumptions A1 and A3, let Ω = �n and let x̂ be any limit
of a refining subsequence. If f is strictly differentiable at x̂, then ∇f(x̂) = 0.

Proof. Again from [9], if f is strictly differentiable at x̂, then for any direction
w �= 0, f◦(x̂;w) = ∇f(x̂)Tw. Now let D̂ be any positive spanning set that is used
infinitely many times in the refining subsequence; there must be at least one since D
is finite. Then by Theorem 3.7, for each d ∈ D̂, 0 ≤ ∇f(x̂)T d. Thus, if we write w as
a nonnegative linear combination of the elements of D̂, then we see immediately that
∇f(x̂)Tw ≥ 0. However, the same construction for −w shows that −∇f(x̂)Tw ≥ 0
and so ∇f(x̂) = 0.

The following example, based on a function taken from [20], illustrates the ap-
plicability of Theorem 3.9 by showing that any realization of GPS converges to the
global minimizer for this convex function, which is strictly differentiable at its mini-
mizer but not continuously differentiable. Previous GPS analysis techniques that use
global continuous differentiability do not apply to this example.

Example 3.10. Consider the convex function f : � → � defined as f(x) =∫ x
0
ϕ(u)du, where

ϕ(u) =

{
u if u ≤ 0,
1

1+κ if κ+ 1 > 1
u ≥ κ ∈ Z+.

The function f is Lipschitz near x̂ = 0. It is shown in [20] that f has kinks at 1
κ with

∂f( 1
κ ) = [ 1

κ+1 ,
1
κ ] for κ = 1, 2, . . .. The corollary of Proposition 2.2.4 in [9] guarantees

that f is not continuously differentiable near x̂. Furthermore, ∂f(0) reduces to the
singleton {0}, and the same Proposition ensures that f is strictly differentiable at x̂.
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Applying Theorem 3.9 guarantees that any instance of any pattern search al-
gorithm with any set of initial parameters generates a subsequence of iterates that
converges to the global minimizer x̂ = 0, where ∇f(x̂) = 0, since the function is Lip-
schitz everywhere, and 0 is the only point at which Clarke’s generalized derivatives
are nonnegative in all directions of a positive spanning set.

We certainly are not claiming that the weaker smoothness conditions that we
use imply that GPS methods always find a minimizer. This has been known to be
false since the inception of GPS methods. Simple convex counterexamples come from
starting at just the wrong point and choosing just the right ill-suited directions.

This can be seen by considering f(x) = |x1| + |x2| on �2 and starting with
x0 = (1, 0)T with D = {(1, 0)T , (−1, 1)T , (−1,−1)T }. The initial point x0 is a mesh
local optimizer for every ∆ > 0, and so the iteration never moves from x0 with an
empty search step. Our theorem applies to this simple example and describes exactly
what happens; f is regular at x̂, and the directional derivatives along the members of
D are nonnegative.

The following two corollaries assume continuous differentiability. We have dis-
cussed how, for our applications, this assumption is unlikely to be satisfied, except
perhaps locally. We include these results only to tie our results here to earlier results
that use global continuous differentiability. The first corollary strengthens our result
in [2]. It shows that the limit of the gradient for any refining subsequence converges
to zero, even if the subsequence itself does not converge.

Corollary 3.11. Let A1 and A3 hold for Ω = �n and f continuously differen-
tiable on a neighborhood of a compact set containing all the iterates {xk}. Then for
any refining subsequence {xk}k∈K , 0 = limk∈K ∇f(xk).

Proof. If x̂ is any limit point of a refining subsequence, then continuous differen-
tiability implies strict differentiability at x̂, and so ∇f(x̂) = 0 from Theorem 3.9.
Since the continuous image of a compact set is compact, the entire sequence of
gradients of any refining subsequence is in a compact set. Thus, there must be
a subsequence {xk}k∈K′ of the refining subsequence for which limk∈K′ ∇f(xk) =
lim supk∇f(xk). But then {xk}k∈K′ has a convergent subsequence, and its limit point
has a zero gradient because it is a limit point of a refining subsequence, and so 0 =
lim supk∇f(xk).

A consequence of the previous result is that, under the assumption that f is
continuously differentiable, any limit point of a refining sequence has a zero gradient.

The fact that under the assumption of continuous differentiability the limit of the
gradients of any refining subsequence is zero was pointed out in [15]. Earlier, under
strong restrictions on the algorithm, it was shown in [29] that 0 = limk∇f(xk). One
of those restrictions is that lim∆k = 0, which we proved above already is enough to
say that the limit of the gradients at the mesh local optimizers is zero since then they
are a refining subsequence. Thus, we will not discuss the restrictions needed for the
stronger result, since they are too constraining for our class of problems.

The next corollary is Torczon’s result from [29], strengthened by the same result
from [15].

Corollary 3.12. Let A1 and A3 hold for Ω = �n, and let f be continuously
differentiable on a neighborhood of a compact set containing all the iterates {xk}; then
some limit point x̂ of {xk} satisfies ∇f(x̂) = 0. The limit of the gradients for any
refining subsequence is zero.

Proof. Every refining subsequence is a subsequence of {xk}.
In summary, if assumptions A1 and A3 are satisfied, then the algorithm guaran-
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tees the following hierarchy of convergence behavior:

(i) If f is lower semicontinuous at any limit point x̄ of the GPS iteration sequence,
then Theorem 3.1 says that f(x̄) ≤ limk f(xk).

(ii) Every limit point of the iteration sequence at which f is continuous has the
same function value limk f(xk), whether or not it is a stationary point. Thus,
although there is always at least one limit point that is a stationary point,
if GPS produces a nonstationary limit point [1], then it is more promising
than any stationary limit point because they have the same function value,
but there is a descent direction from the nonstationary limit point. The
conclusion is that the directions used were poorly suited to the problem.

(iii) There is at least one x̂ that is a limit point of a refining subsequence; i.e., x̂
is a limit point of a sequence of local optimizers on meshes that get infinitely
fine. If the function f is lower semicontinuous but not even Lipschitz near x̂,
then nothing additional to the above is claimed about optimality conditions
satisfied by x̂.

(iv) If f is Lipschitz near x̂, then Theorem 3.7 holds and Clarke’s generalized
derivatives satisfy f◦(x̂; d) ≥ 0 for some directions d ∈ D that form a positive
spanning set. In addition, f(x̂) = limk f(xk) since f is continuous at x̂.

(v) If f is regular1 at x̂, then the directional derivatives satisfy f ′(x̂; d) ≥ 0 for
some directions d ∈ D, a positive spanning set, and f(x̂) = limk f(xk).

(vi) If f is strictly differentiable at x̂, then Theorem 3.9 holds and ∇f(x̂) = 0,
but its function value limk f(xk) is the same as at any other limit point of
the entire GPS iteration sequence at which f is continuous (by (ii)).

(vii) If f is globally continuously differentiable (as assumed in earlier analyses), this
means that every limit point of a refining subsequence is a stationary point
as in item (vi) and that the gradients of a refining subsequence converge to
zero, whether or not the subsequence converges. However, as was shown in
[1], there still can be limit points of the entire GPS iteration sequence that
are not stationary points. Though such points have the same function value
as the stationary points, there is a descent direction from such points that
leads to lower function values.

3.5. Linearly constrained convergence results. In this section, we will con-
sider only the case in which Ω is defined through a finite set of linear constraints. In
order to prove the relevant optimality results, we will have to assume that D, even
though finite, is rich enough to generate poll sets that conform to the geometry of
the boundary of Ω. Furthermore, to apply our proof technique, we must ensure that
the spanning sets that reflect this geometry get used infinitely many times as we con-
verge to a point on the boundary. Lewis and Torczon [25] show how to use standard
linear algebra tools to generate the requisite positive spanning matrices Dk ⊆ D. The
convergence analysis relies on assumption A2, the rationality of the constraint matrix
A.

We pause to remind the reader that, for x ∈ Ω, the tangent cone to Ω at x is
TΩ(x) = cl{µ(w−x) : µ ≥ 0, w ∈ Ω}. The normal cone to Ω at x is NΩ(x) and can be
written as the polar of the tangent cone: NΩ(x) = {v ∈ �n : ∀w ∈ TΩ(x), vTw ≤ 0}.
It is the nonnegative span of all the outwardly pointing constraint normals at x.

It would add unnecessary length to this paper to rewrite the construction given

1The function f is said to be regular at x if, for all v, the one-sided directional derivative exists
and coincides with f◦(x; v) (see Clarke [9]).
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by Lewis and Torczon [25] for D and the choice rule for Dk from D at each iteration
(their notation for Dk is Γk). The construction is presented there quite succinctly
in section 8 of [25] where they consider implementation issues, including difficulties
inherent to degenerate constraints. We will use the following abstracted version of
their direction choice.

Definition 3.13. A rule for selecting the positive spanning sets Dk = D(k, xk) ⊆
D conforms to Ω for some ε > 0 if, at each iteration k and for each y in the boundary
of Ω for which ‖y − xk‖ < ε, TΩ(y) is generated by nonnegative linear combinations
of the columns of a subset Dy

k of Dk.
With this definition, we are ready for our next convergence result. Note that if

xk ∈ Ω is not near the boundary, then Dk need only provide a positive spanning set
for �n, which is completely sensible. However, in our experience, it is best not to
take ε too small so that when the iterates approach the boundary with small values
of the mesh size parameter, the rule for selecting the mesh size parameter conforms
to the boundary of Ω. This is mitigated somewhat by allowing variable coarsening of
the mesh as in (2.2).

Theorem 3.14. Under assumptions A1–A3, if f is strictly differentiable at a
limit point x̂ of a refining subsequence and if the rule for selecting the positive spanning
sets Dk = D(k, xk) ⊆ D conforms to Ω for an ε > 0, then ∇f(x̂)Tw ≥ 0 for all
w ∈ TΩ(x̂) and −∇f(x̂) ∈ NΩ(x̂). Thus, x̂ is a KKT point.

Proof. If x̂ is interior to Ω, then the result is just Theorem 3.9, and thus we can
proceed directly to the case in which x̂ is on the boundary of Ω.

Suppose that the rule for selecting Dk ⊆ D conforms to Ω for some fixed ε > 0
and that there are finitely many linear constraints; then Dx̂

k generates TΩ(x̂) for large
k ∈ K. It follows that there can be only finitely many different such sets Dx̂

k for
k ∈ K. Let Dx̂ ⊆ D be one of them that occurs infinitely many times.

Theorem 3.7 implies that ∇f(x̂)T d ≥ 0 for every column d of Dx̂. But since
every w ∈ TΩ(x̂) is a nonnegative linear combination of the columns of Dx̂, then
∇f(x̂)Tw ≥ 0. To complete the proof, we multiply both sides by −1 and conclude
that −∇f(x̂) is in NΩ(x̂).

Remark 3.15. If f were only assumed to be Lipschitz near x̂, then we could still
conclude, as in Theorem 3.7, that f◦(x̂; d) ≥ 0 for every column d of Dx̂.

The following corollary is Lewis and Torczon’s result from [25], which relies on a
stronger differentiability assumption.

Corollary 3.16. If A1–A3 hold and f is continuously differentiable on a neigh-
borhood of a compact set containing all the iterates {xk}, and if the rule for selecting
the positive spanning sets Dk = D(k, xk) ⊆ D conforms to Ω for an ε > 0, then
there exists a limit point x̂ of {xk} such that ∇f(x̂)Tw ≥ 0 for all w ∈ TΩ(x̂) and
−∇f(x̂) ∈ NΩ(x̂). Thus, x̂ is a KKT point.

Proof. The proof follows from Theorem 3.14, since every refining subsequence
is a subsequence of {xk} and continuous differentiability implies strict differentiabil-
ity.

4. Concluding remarks. This paper puts together ways to choose the direc-
tions and results on properties of the mesh by Lewis and Torczon, some observations
of ours about what is needed to obtain convergence of those algorithms (such as refin-
ing subsequences), and elements of nonsmooth analysis set forth by Clarke. Clarke’s
analysis is perfectly suited to exposing the first order optimality conditions at limit
points of certain subsequences of the GPS iterates under weakened assumptions that
correspond to some real problems for which GPS is quite effective.
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We believe that our analysis helps confirm an observation of [25] that GPS meth-
ods for general constraints will not be based on the appealingly simple barrier strategy
of placing a high function value on infeasible trial points. This is because, to prove
the efficacy of the barrier strategy, the positive spanning set D, from which all the
GPS directions are chosen, is finite, and thus it cannot be certain to generate the tan-
gent cone at every boundary point of a nonpolygonal feasible region that the iteration
approaches.

In [3], we suggest and analyze a GPS algorithm for general constraints, based
not on a single objective but on the new filter approach of Fletcher and collaborators
[16, 17, 18]. In [26], Lewis and Torczon give a successive augmented Lagrangian
pattern search approach together with its convergence analysis. Ongoing work by
Coope and Price along the lines of [12] and [13] promises alternatives for general
constraints yet to be realized.

Acknowledgments. We wish to acknowledge a helpful referee and Major Mark
Abramson, USAF, for many insightful comments that improved the presentation of
this work.
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Abstract. In this paper, we present first- and second-order variational conditions for a convex
composite function g◦F , where g is a nonsmooth convex function and F is a vector-valued map. The
first-order results, which apply to (not necessarily locally Lipschitz) continuous maps F , not only
recapture the results of the special cases where F is locally Lipschitz or Gâteaux differentiable but
also yield sharp necessary variational conditions in these cases. The results are achieved by applying
a new strengthened notion of approximate Jacobian, called a Gâteaux (G-) approximate Jacobian,
without the use of the upper semicontinuity of the approximate Jacobian. These variational results
are generally derived by using a chain rule formula or by constructing upper convex approximations
to the composite function. These approaches often need the upper semicontinuity requirement of
a generalized Jacobian map. Such a requirement not only limits the derivation of sharp optimality
conditions, as the “small” approximate Jacobians (or generalized subdifferentials) lack an upper
semi-continuity property, but also restricts the treatment of Gâteaux differentiable maps F . This
situation is overcome by the use of G-approximate Jacobians. The second-order variational conditions
are shown to hold, in particular, in the case where F is continuously Gâteaux differentiable.
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1. Introduction. Consider the convex composite function g ◦ F , where F :
R
n → R

m is a vector-valued continuous map and g : R
m → R is a nonsmooth convex

function. The convex composite model functions g ◦ F , which arise in a variety of
practical optimization problems, have been extensively studied in the literature (see
[7, 11, 12, 18, 19, 23, 27, 28]). The new class of convex composite continuous func-
tions where F is continuous appear in the form of the norm, ||F (x)||, when solving
nonlinear equations Fi(x) = 0, i = 1, 2, . . . ,m, of continuous functions. They also
arise in the form of the max function, max(Fi, 0), when finding a feasible point of a
system of continuous nonlinear inequalities Fi(x) ≤ 0, i = 1, 2, . . . ,m. Recently, it
has been demonstrated that convex composite continuous functions play an important
role in the study of spectral functions such as the spectral abscissa and spectral radius
[2], which are convex composite continuous functions but are not locally Lipschitzian.
Variational analysis of such composite functions are of great interest in control the-
ory and related areas. A variant of the nonsmooth composite model function g ◦ F
where g is differentiable and F is continuous also comes to light in the optimization
reformulation of complementarity problems (see [6]).

The first-order variational conditions for the function g ◦ F are well known in
the cases where F is either continuously differentiable [1] or F is locally Lipschitzian
[4]. In these cases, the conditions have been obtained by applying a chain rule for-
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mula for the Clarke generalized Jacobian of F. These situations, where F is either
locally Lipschitzian and Gâteaux differentiable [12] or F is (not necessarily Lipschitz)
Gâteaux differentiable [25], were separately treated by constructing suitable upper
convex approximations to the composite functions g ◦ F , as the Clarke generalized
Jacobian-based chain rules are not flexible enough for handling Gâteaux differentiabil-
ity. The approximate Jacobians (see [13, 16, 14]) are flexible tools for studying (not
necessarily locally Lipschitz) continuous functions, and they yield sharp optimality
conditions for locally Lipschitz functions [26]. However, the development of a chain
rule formula for composite functions requires the upper semicontinuity of an approx-
imate Jacobian map (see [6, 15]). Such a requirement not only limits the derivation
of sharp optimality conditions (see [26]), as the “small” generalized subdifferentials
or approximate Jacobians lack an upper semicontinuity property, but also restricts
the treatment of Gâteaux differentiable maps F . To overcome this situation and to
obtain variational conditions for the convex composite function g ◦F , where F is nei-
ther locally Lipschitzian nor Gâteaux differentiable, we introduce a slightly stronger
version of the approximate Jacobian, called a Gâteaux (G-) approximate Jacobian.
Both the locally Lipschitz maps and the Gâteaux differentiable maps admit such a
G-approximate Jacobian, and so the composite function in these cases enjoy sharp
first-order variational conditions.

On the other hand, second-order variational conditions have so far been given
in the cases where F is either twice continuously differentiable [1, 3] or continu-
ously differentiable with locally Lipschitz derivatives (i.e., C1,1) [18, 19]. We present
second-order variational conditions in terms of G-approximate Jacobians for the com-
posite function g ◦ F , in particular, for the case where F is continuously Gâteaux
differentiable, but the derivative ∇F is not necessarily locally Lipschitz. These con-
ditions are obtained by extending the approach of Burke [1], Burke and Poliquin [3],
and Ioffe [10] and using approximate Hessians.

The outline of the paper is as follows. In section 2, we present definitions and
summarize the calculus of approximate Jacobians and introduce Gâteaux approximate
Jacobians and their connections to approximate Jacobians. In section 3, we present
constructions of approximate Jacobians for the composite function g ◦ F without
the upper semicontinuity of the approximate Jacobians and subsequently derive first-
order variational conditions. Finally, in section 4, we present general second-order
conditions for the composite function under much reduced smoothness condition on
F .

2. G-approximate Jacobians. We begin this section with some background
material on approximate Jacobians for nonsmooth maps and then present a new
notion, called G-approximate Jacobians, which are admitted, in particular, by both
locally Lipschitz maps and Gâteaux differentiable maps. Let F : R

n → R
m. For each

v ∈ R
m the composite function, (vF ) : R

n → R, is defined by

(vF )(x) = 〈v, F (x)〉 = vTF (x),
where 〈·, ·〉 denotes the Euclidean inner product. The upper Dini directional derivative
of (vF ) at x in the direction u ∈ R

n is defined by

(vF )+(x, u) := lim sup
t↓0

(vF )(x+ tu)− (vF )(x)

t
.

We denote by L(Rn,Rm) the space of all (m× n) matrices. The convex hull and the
closed convex hull of a set A are denoted by coA and coA, respectively. Let us now
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define the notion of an approximate Jacobian.
Definition 2.1 (approximate Jacobian). The map F : R

n → R
m admits an

approximate Jacobian, ∂F (x), at x ∈ R
n if ∂F (x) ⊆ L(Rn,Rm) is closed and for

each v ∈ R
m

(vF )+(x, u) ≤ sup
M∈∂F (x)

〈v,Mu〉 ∀u ∈ R
n.

An element M of ∂F (x) is called an approximate Jacobian matrix of F at x. The
set-valued map ∂F : R

n ⇒ L(Rn,Rm) is an approximate Jacobian of F if, for each
x ∈ R

n, ∂F (x) is an approximate Jacobian of F at x. We allow infinite values on
both sides of the above inequality.

Let us now introduce the notion of approximate Hessian for a Gâteaux differen-
tiable function f : R

n → R. Note that the Gâteaux derivative of f which is denoted
by ∇f is a map from R

n to R
n.

Definition 2.2 (approximate Hessian). The Gâteaux differentiable function
f : R

n → R admits an approximate Hessian ∂2f(x) at x if this set is an approximate
Jacobian to the derivative ∇f at x.

Note that ∂2f(x) = ∂∇f(x) and the matrix M ∈ ∂2f(x) is an approximate
Hessian matrix of f at x. Clearly, if f is twice differentiable at x, then ∇2f(x) is a
symmetric approximate Hessian matrix of f at x. Let us define ∂2

Bf(x) by

∂2
Bf(x) =

{
M : M = lim

n→∞∇
2f(xn), xn ∈ ∆, xn → x

}
,

where ∆ is the set of points in R
n where f is twice differentiable.

Recall that if f : R
n → R is C1,1, where f is continuously Gâteaux differentiable

with the locally Lipschitz derivative ∇f, then the generalized Hessian in the sense
of Hiriart-Urruty, Strodiot, and Hien Nguyen [8] is given by ∂2

Hf(x) = co∂2
Bf(x).

Clearly, ∂2
Hf(x) is a nonempty convex compact set of symmetric matrices. The second-

order directional derivative of f at x in the directions (u, v) ∈ R
n × R

n is defined by

f◦◦(x;u, v) = lim sup
y→x
s→0

〈∇f(y + su), v〉 − 〈∇f(y), v〉
s

.

Since for each (u, v) ∈ R
n × R

n,

(v∇f)+(x, u) ≤ f◦◦(x;u, v) = max
M∈∂2

B
f(x)
〈Mu, v〉 = max

M∈∂2
B
f(x)
〈Mv, u〉,

∂2
Bf(x) is an approximate Hessian of f at x.

Recall that a set-valued map T : R
n ⇒ R

k is said to be upper semicontinuous
at x ∈ R

n if for every ε > 0 there exists δ > 0 such that T (x + δBn) ⊆ T (x) + εBk,
where Bn and Bk are the closed unit balls in R

n and R
k, respectively.

We list here some elementary and useful calculus rules for approximate Jacobians
without proofs for the sake of convenience. We refer the interested reader to [13, 16,
17, 14] for details, examples, and applications of approximate Jacobians and Hessians.
(i) Nonuniqueness. If ∂F (x) ⊆ L(Rn,Rm) is an approximate Jacobian of F at x, then

every closed subset of L(Rn,Rm) which contains ∂F (x) is an approximate
Jacobian of F at x.

(ii) Gâteaux differentiability. If F : R
n → R

m is Gâteaux differentiable at x with the
derivative ∇F (x), then {∇F (x)} is an approximate Jacobian of F at x and
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any closed set containing ∇F (x) is also an approximate Jacobian of F at x.
Moreover, F is Gâteaux differentiable at x if and only if it admits a singleton
approximate Jacobian at this point. On the other hand, if F is continuously
differentiable at x and if ∂F (x) is any approximate Jacobian of F at x, then
∇F (x) ∈ co ∂F (x).

(iii) Locally Lipschitzian. Suppose that F is locally Lipschitz at x ∈ R
n. Then the

Clarke generalized Jacobian [5, 24]

∂CF (x) = co
{

lim
n→∞∇F (xn) : xn → x, {xn} ⊂ Ω

}
is an approximate Jacobian of F at x [13]. The set Ω is a dense set of points
in R

n on which F is differentiable. Moreover, if the locally Lipschitz map F
admits an approximate Jacobian map ∂F which is upper semicontinuous at
x, then ∂CF (x) ⊂ co ∂F (x).

(iv) Addition. If F,G : R
n → R

m and if ∂F (x) and ∂G(x) are approximate Jacobian
of F and G at x, respectively, then the closure of the set ∂F (x) + ∂G(x) is
an approximate Jacobian of F +G at x.

(v) Cartesian products. Let F : R
n → R

m and G : R
n → R

l be continuous. If
∂F (x) ⊆ L(Rn,Rm) and ∂G(x) ⊆ L(Rn,Rl) are approximate Jacobians of F
and G at x, respectively, then ∂F (x)× ∂G(x) is an approximate Jacobian of
F × G at x. In particular, if F = (f1, . . . , fm) and ∂f1(x), . . . , ∂fm(x) are
generalized subdifferentials of the scalar component functions f1, . . . , fm at
x, respectively, then ∂f1(x) × · · · × ∂fm(x) is an approximate Jacobian of f
at x.

(vi) Extremality. Let f : R
n → R be continuous. If ∂f(x) is an approximate Jacobian

of f at x and if x is a local minimizer (or a maximizer) of f , then 0 ∈ co∂f(x).
(vii) Generalized mean value theorem. Let F : R

n → R
m be continuous, and let ∂F

be an approximate Jacobian of F . Then for each pair of points a, b ∈ Rn, one
has

F (b)− F (a) ∈ co(∂F [a, b](b− a)).
If f : R

n → R is continuous and if ∂f is an approximate Jacobian of f , then there
exists some c ∈ (a, b) such that

f(b)− f(a) ∈ co(∂f(c)(b− a)).
(viii) Generalized Taylor’s expansion. Let f : R

n → R be continuously Gâteaux
differentiable on R

n; let x, y ∈ R
n. Suppose that for each z ∈ [x, y], ∂2f(z)

is an approximate Hessian of f at z. Then there exists ζ ∈ (x, y) such that

f(y) ∈ f(x) + 〈∇f(x), y − x〉+ 1

2
co 〈∂2f(ζ)(y − x), (y − x)〉.

Definition 2.3 (G-approximate Jacobian [20]). The map F : R
n → R

m admits
a G-approximate Jacobian ∂F (x) at x ∈ R

n if ∂F (x) ⊆ L(Rn,Rm) is closed and if

(∀u ∈ Rn) (∀t > 0) (∃ Mt ∈ ∂F (x)), F (x+ tu)− F (x) =Mt(tu) + o(t),

where o(t)
t → 0, as t→ 0.

Clearly, both Mt and o(t) depend on u. However, this dependence is suppressed
in the above definition for notational convenience. It is immediate from the definition
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that if F is Gâteaux differentiable at x with the derivative ∇F (x), then {∇F (x)} is
a G-approximate Jacobian of F at x. Now we see in the next proposition that every
G-approximate Jacobian at a point is an approximate Jacobian at that point.

Proposition 2.1. Let F : R
n → R

m. If ∂F (x) is a G-approximate Jacobian F
at x ∈ R

n, then it is also an approximate Jacobian of F at x.
Proof. Let u ∈ R

n and v ∈ R
m. Let {ti} be a sequence of positive numbers

converging to 0 such that

(vF )+(x, u) = lim
i→∞

(vF )(x+ tiu)− (vF )(x)

ti
.

Since ∂F (x) is a G-approximate Jacobian of F at x, for each i there existsMti ∈ ∂F (x)
such that

〈v, F (x+ tiu)〉 − 〈v, F (x)〉
ti

= 〈v, Mtiu〉+
〈
v,

o(ti)

ti

〉
.

Passing to the limit, we get that limi→∞
〈v, o(ti)〉

ti
= 0 and

(vF )+(x, u) = lim
i→∞

(vF )(x+ tiu)− (vF )(x)

ti
≤ sup

N∈∂F (x)

(
〈v,Nu〉+ 〈v, o(ti)〉

ti

)
= sup

N∈∂F (x)

〈v,Nu〉,

which shows that ∂F (x)is an approximate Jacobian of F at x.
The following example shows that an approximate Jacobian of a map at a point

is not necessarily a G-approximate Jacobian of the map at the point.
Example 2.1. Consider the function F : R

2 → R
2 defined by

F (x, y) = (|x| − |y|, |y| − |x|)T .

Then F is locally Lipschitz. It is simple to verify that the set

∂F (0) =

{(
1 −1
−1 1

)
,

(−1 1
1 −1

)}

is an approximate Jacobian of F at 0. However, it is not a G-approximate Jacobian
of F at 0. However, the following set ∂∗F (0) is both an approximate Jacobian of F
at 0 and a G-approximate Jacobian of F at 0:

∂∗F (0) =
{(

1 −1
−1 1

)
,

(−1 1
1 −1

)
,

(
1 1
−1 −1

)
,

(−1 −1
1 1

)}
.

Note that the Clarke Jacobian of F at 0 is given by

∂CF (0) = co

{(
1 −1
−1 1

)
,

(−1 1
1 −1

)
,

(
1 1
−1 −1

)
,

(−1 −1
1 1

)}
.

The next example shows that a locally Lipschitz function may admit a bounded G-
approximate Jacobian at a point, and the convex hull of the G-approximate Jacobian
is strictly contained in the Clarke generalized Jacobian at that point.
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Example 2.2. Let f : R
2 → R be defined by

f(x, y) =

{
x2 sin( 1

x ) + |y| if x �= 0,
|y| if x = 0.

Then f is locally Lipschitz at 0 and the set

∂f(0) = {(0, β) : β ∈ [−1, 1]}
is a G-approximate Jacobian of f at 0, which is strictly contained in the Clarke Ja-
cobian, given by

∂Cf(0) = {(α, β) : α, β ∈ [−1, 1]}.
Proposition 2.2. Let the map F : R

n → R
m be continuous. If ∂F is an

approximate Jacobian map of F which is upper semicontinuous at x, then co∂F (x) is
a G-approximate Jacobian of F at x.

Proof. Let u ∈ R
n and u �= 0, and let t > 0. Then it follows from the generalized

mean value theorem that

F (x+ tu)− F (x) ∈ co(∂F [x, x+ tu]tu) ⊂ co(∂F [x, x+ tu]tu) + t2||u||Bm.

Now, using Caratheodory’s theorem, we find nm + 1 matrices Nt,1, . . . , Nt,nm+1 of

∂F [x, x+ tu], bt ∈ Bm, and λt,1, . . . , λt,nm+1 ∈ [0, 1] such that
∑nm+1

i=1 λt,i = 1 and

F (x+ tu)− F (x) =
nm+1∑
i=1

λt,iNt,i(tu) + t
2||u||bt.

Since ∂F is upper semicontinuous at x, we can find Mt,i ∈ ∂F (x) such that ||Mt,i −
Nt,i|| → 0 as t→ 0. Now define

Mt :=

nm+1∑
i=1

λt,iMt,i ∈ co∂F (x)

and

o(t) :=

(
nm+1∑
i=1

λt,i(Nt,i −Mt,i)(tu) + t
2||u||bt

)
.

Then F (x+ tu)− F (x) =Mttu+o(t) and

lim
t→0

o(t)

t
= lim

t→0

(
nm+1∑
i=1

λt,i(Nt,i −Mt,i)u+ t||u||bt
)

= 0,

and hence co∂F (x) is a G-approximate Jacobian of F at x.
It is worth noting from the previous proposition that for a locally Lipschitz map

F the Clarke generalized Jacobian ∂CF (x) at x is a bounded G-approximate Jacobian
of F at x.

Let us look at several more numerical examples to illustrate the nature of G-
approximate Jacobians. The first example illustrates that a continuous map which is
not locally Lipschitz may admit a bounded G-approximate Jacobian at a point.
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Example 2.3. Let f : R→ R be defined by

f(x) =

{
x2 sin( 1

x2 ) if x �= 0,

0 if x = 0.

Then f is continuous but is not locally Lipschitz at 0. The set ∂f(0) = {0} is a
bounded G-approximate Jacobian of f at 0.

The following example shows that for a continuous map a G-approximate Jacobian
at a point may be an unbounded set.

Example 2.4. Let f : R→ R be defined by

f(x) =

{ √
x if x > 0,
−x if x ≤ 0.

Then f is continuous but is not locally Lipschitz at 0. It is easy to see that for each
u ∈ R and t > 0 the condition

f(0 + tu)− f(0) =Mt(u)(tu) + o(t)

is satisfied by o(t) ≡ 0, and Mt is defined by

Mt(u) =

{ 1√
tu

if u > 0,

−1 if u ≤ 0.

Hence, the set ∂f(0) = [−1, ∞) is a G-approximate Jacobian of f at 0.
We say that a differentiable function f : R

n → R admits a G-approximate Hessian
∂2f(x) at x if this set is a G-approximate Jacobian to the derivative ∇f at x.

3. Chain rules and first-order conditions. In this section, we see how an
approximate Jacobian for a convex composite continuous function g ◦ F, where F
is neither Gâteaux differentiable nor locally Lipschitzian, can be constructed using
a G-approximate Jacobian. It must be noted that in the case where F is con-
tinuous and ∂F (x) is an (unbounded) approximate Jacobian of F at x, the set
∂g(F (x))T co(∂F (x)) is, in general, not an approximate Jacobian for g ◦ F at x (see
[14]).

We also present a method for deriving first-order conditions for the convex com-
posite functions without the use of the upper semicontinuity of the approximate Jaco-
bian. Recall that the convex subdifferential ∂Cg(x) of a convex function g : R

n → R

at the point x is given by

∂Cg(x) =
{
v ∈ R

m | g(y)− g(x) ≥ vT (y − x) ∀y ∈ R
m
}

and is a closed and bounded convex subset of R
m.

Theorem 3.1. Let x ∈ R
n, let F : R

n → R
m, and let g : R

m → R be a convex
function. If ∂F (x) is a G-approximate Jacobian of F at x, then for each ε > 0 the
closure of the set

(∂Cg(F (x)) + εBm)T∂F (x))

is an approximate Jacobian of g ◦ F at x.
Proof. Let ε > 0. It is sufficient to show that, for every u ∈ R

n and every α ∈ R

which we may assume to be nonzero,

α(g ◦ F )+(x, u) ≤ sup
AT∈(∂Cg(F (x))+εBm)T (∂F (x))

αATu.(1)
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Let {ti} be a sequence of positive numbers converging to 0 such that

α(g ◦ F )+(x, u) = lim
i→∞

α
(g ◦ F )(x+ tiu)− (g ◦ F )(x)

ti
.(2)

The mean value theorem of convex analysis gives us that there exists yi ∈ (F (x), F (x+
tiu)), such that

αg(F (x+ tiu))− αg(F (x)) ∈ α∂Cg(yi)T (F (x+ tiu)− F (x)).

Since ∂F (x) is a G-approximate Jacobian of F at x, it follows that there exists Mi ∈
∂F (x) such that

F (x+ tiu)− F (x) =Mitiu+ o(ti),

where, as ti → 0, o(ti)
ti
→ 0. So

αg(F (x+ tiu))− αg(F (x)) ∈ α∂Cg(yi)T (Mitiu+ o(ti)).

This yields by the upper semicontinuity of ∂Cg that for sufficiently large i,

αg(F (x+ tiu))− αg(F (x)) ∈ α(∂Cg(F (x)) + εBm)T (Mitiu+ o(ti)).

Dividing by ti, we get that

1

ti
(αg(F (x+ tiu))− αg(F (x))) ∈ α(∂g(F (x)) + εBm)T

(
Miu+

o(ti)

ti

)
,

which yields that

1

ti
(αg(F (x+ tiu))− αg(F (x))) ≤ sup

v∈∂Cg(F (x))+εBm

αvT
(
Miu+

o(ti)

ti

)

≤ sup
v∈∂Cg(F (x))+εBm, M∈∂F (x)

αvTMu+
αvT o(ti)

ti
.

Since ∂Cg(F (x)) + εBm is bounded, it follows by letting ti → 0 that

α(g ◦ F )+(x, u) ≤ sup
A∈(∂Cg(F (x))+εBm)T ∂F (x)

αAu.

Corollary 3.1. Let x ∈ R
n, let F : R

n → R
m be a continuous map, and let

g : R
m → R be a convex function. If ∂F is an approximate Jacobian map of F which

is upper semicontinuous at x, then for each ε > 0 the closure of the set

(∂Cg(F (x)) + εBm)T co(∂F (x))

is an approximate Jacobian of g ◦ F at x.
Proof. The conclusion follows from the previous theorem and Proposition 2.2 by

noting that co(∂F (x)) is a G-approximate Jacobian of F at x.
Corollary 3.2. Let g : R

m → R be a convex function, and let F : R
n → R

m.
If ∂F (x) is a bounded G-approximate Jacobian of F at x ∈ R

n, then ∂g(F (x))T∂F (x)
is an approximate Jacobian of the composite function g ◦ F at x.
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Proof. In this case, for each ε > 0 the bounded set

(∂Cg(F (x)) + εBm)T∂F (x)

is a decreasing sequence of bounded approximate Jacobians of g ◦ F at x. Hence,

∂Cg(F (x))
T∂F (x) =

⋂
ε>0

(∂Cg(F (x)) + εBm)T∂F (x)

is also an approximate Jacobian of g ◦ f at x.
It is worth noting that the conclusion of this theorem continues to hold for lo-

cally Lipschitzian function g by replacing the convex subdifferential ∂Cg(F (x)) by the
locally bounded Clarke subdifferential ∂Cg(F (x)).

Corollary 3.3. Let g : R
m → R be a convex function, and let F : R

n → R
m

be a locally Lipschitz map at x ∈ R
n. Then ∂Cg(F (x))

T∂CF (x) is an approximate
Jacobian of the composite function g ◦ F at x. Moreover,

∂C(g ◦ F )(x) ⊂ co(∂Cg(F (x))
T∂CF (x)).

Proof. Since ∂CF (x) is a bounded G-approximate Jacobian for a locally Lipschitz
map F at x, it follows from the previous theorem that ∂Cg(F (.))

T∂CF (.) is an ap-
proximate Jacobian of g ◦F which is upper semicontinuous at x. The inclusion follows
from the fact that ∂C(g ◦ F )(x) is the smallest convex-valued approximate Jacobian
of g ◦ F which is upper semicontinuous at x.

Corollary 3.4. Let g : R
m → R be a convex function, and let F : R

n → R
m

be Gâteaux differentiable at x with the Gâteaux derivative ∇F (x) at x ∈ R
n. Then

∂Cg(F (x))
T ∇F (x) is an approximate Jacobian of the composite function g ◦F at x.

Proof. The conclusion follows from Corollary 3.2, as {∇F (x)} is a bounded G-
approximate Jacobian of F at x.

Observe that if g is convex and Gâteaux differentiable at F (x) and if F is Gâteaux
differentiable at x, then g ◦ F is Gâteaux differentiable at x and ∇(g ◦ F )(x) =
∇g(F (x)T∇F (x). This observation continues to hold for a locally Lipschitz Gâteaux
differentiable function g.

Now, by using the G-approximate Jacobian of F, we establish necessary and
sufficient conditions for optimality of the convex composite function g ◦ F, where F
is neither Gâteaux differentiable nor locally Lipschitz. The recession cones [21, 22,
24] pave the way for describing the optimality conditions involving unbounded G-
approximate Jacobians. Note that a vector u ∈ R

l is said to be a recession direction
of a nonempty set A in R

l if there is a sequence of positive numbers {tj} converging
to 0 and a sequence {aj} of elements of A such that u = limj→∞ tjaj . The set of
all recession directions of A is called the recession cone of A and is denoted by A∞.
Observe that a set is unbounded if and only if its recession cone is nontrivial.

Theorem 3.2 (necessary condition). Let x ∈ R
n, let F : R

n → R
m be a map,

and let g : R
m → R be a convex function. Assume that ∂F (x) is a G-approximate

Jacobian of F at x. If x is a local minimizer of the composite function g ◦ F, then

0 ∈ co∂Cg(F (x))
T∂F (x) ∪ co( ∂Cg(F (x))

T ((∂F (x))∞\{0})).

Proof. It follows from Theorem 3.1 that for each ε > 0 the closure of the set

(∂Cg(F (x)) + εBm)T∂F (x))
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is an approximate Jacobian of g ◦ F at x. Since g ◦ F attains a local minimum at x,
the necessary optimality condition (see section 2) gives us that

0 ∈ co(∂Cg(F (x)) + εBm)T∂F (x).

Take ε = 1
k , k ≥ 1. Then by Caratheodory’s theorem we can represent 0 as

0 =

n+1∑
j=1

µjk

(
ajk +

1

k
bjk

)T

cjk +
1

k
fk,(3)

where

µjk ≥ 0,

k+1∑
i=1

µjk = 1, ajk ∈ ∂Cg(F (x)), bjk ∈ Bm,

cjk ∈ ∂F (x), j = 1, . . . , n+ 1, and fk ∈ Bm.

Let

J := {1, 2, . . . , n+ 1}, J1 := {j ∈ J : {cjk}k≥1 is bounded}, and J2 := J \ J1.

Then (3) can be rewritten as

0 =


∑

j∈J1

µjk

(
ajk +

1

k
bjk

)T

cjk +
∑
j∈J2

µjk

(
ajk +

1

k
bjk

)T

cjk


+

1

k
fk.(4)

We may now assume, without loss of generality, that

µjk → µj ∈ [0, 1] and

n+1∑
j=1

µj = 1,

ajk → aj ∈ ∂Cg(F (x)), bjk → bj ∈ Bm, j = 1, . . . , n+ 1,

cjk → cj ∈ ∂F (x), j ∈ J1, and fk → f ∈ Bm.

Case 1. J2 = φ. In this case, by letting k →∞, (4) yields

0 =
n+1∑
j=1

µjaTj cj ∈ co ∂Cg(F (x))
T∂F (x).

Case 2. J2 �= φ.
Case 2(a). Assume that {µjkcjk}k≥1 is bounded for every j ∈ J2. Then µ

j = 0 for
all j ∈ J2. Hence

∑
j∈J1

µj = 1. So we may assume that

µjkcjk → cj ∈ (∂F (x))∞, j ∈ J2.

Passing (4) to limit, we get

0 ∈
∑
j∈J1

µjaTj cj +
∑
j∈J2

aTj cj

∈ (co ∂Cg(F (x))
T∂F (x) + co (∂Cg(F (x))

T (∂F (x))∞)

⊂ co ∂Cg(F (x))
T∂F (x),
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since co ∂Cg(F (x))
T∂F (x)+ co (∂Cg(F (x))

T (∂F (x))∞) ⊂ co ∂Cg(F (x))
T∂F (x). This

inclusion follows from the fact that

∂Cg(F (x))
T (∂F (x))∞ ⊂ (∂Cg(F (x))

T∂F (x))∞ ⊂ (co∂Cg(F (x))
T∂F (x))∞

and that

co ∂Cg(F (x))
T∂F (x) + co( ∂g(F (x))T (∂F (x))∞)

⊂ co ∂Cg(F (x))
T∂F (x) + (co( ∂Cg(F (x))

T∂F (x))∞
= co ∂Cg(F (x))

T∂F (x).

Case 2(b). Assume that there exists j ∈ J2 such that {µjkcjk}k≥1 is unbounded.
Then by taking subsequences instead we may assume there exists j0 ∈ J2 such that

‖µj0k cj0k‖ ≥ ‖µjkcjk‖ ∀j ∈ J2, k ≥ 1.

Then
µj
k
cjk

‖µj0
k
cj0k‖

→ cj ∈ (∂F (x))∞, j ∈ J2. Put J3 := {j ∈ J2 : cj �= 0}. Then J3 �= φ,
since j0 ∈ J3. Now, by dividing (4) by ‖µj0k cj0k‖ and passing to limit for k →∞, we
obtain

0 =
∑
j∈J3

aTj cj ∈ co (∂Cg(F (x))
T ((∂F (x))∞\{0})).

The example below shows that the optimality conditions for a convex composite
locally Lipschitz function, expressed in terms of G-approximate Jacobians, are sharper
than the corresponding conditions of the Clarke subdifferential.

Example 3.1. Consider the function F : R
2 → R

2 and g : R
2 → R defined,

respectively, by

F (x, y) = (2|x| − |y|, 2|y| − |x|)T and g(x, y) = x+ y.

Then F is locally Lipschitz, g is convex, and (g ◦ F )(x, y) = |x| + |y| . It is easy to
verify that a G-approximate Jacobian of F at 0 is given by

∂F (0) =

{(
2 −1
−1 2

)
,

(−2 1
1 −2

)
,

(
2 1
−1 −2

)
,

(−2 −1
1 2

)}
.

Clearly, 0 is a minimizer of g ◦ F and

0 ∈ co(∂Cg(F (0))
T∂F (0)) = co {(1 1), (−1 − 1), (1 − 1), (−1 1)} ⊂ ∂C(g ◦ F )(0),

where ∂C(g ◦ F )(0) = {(α, β) : α, β ∈ [−1, 1]}.
It is also worth observing that the above optimality condition yields a sharper

condition for convex composite functions g ◦ F in the case where F is locally Lip-
schitz and Gateaux differentiable than the corresponding conditions for the Clarke
generalized Jacobian.

Theorem 3.3 (sufficient condition). Let F : R
n → R

m be a continuous map,
let g : R

m → R be a convex function, and let a ∈ R
n . Suppose that F admits a G-

approximate Jacobian around a. If there exist a convex neighborhood N(a) of a such
that for each x ∈ N(a)� {a} there exists ε > 0 satisfying

wT (x− a) ≥ 0 ∀w ∈ co[(∂Cg(F (x)) + εBm)T∂F (x)],
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then a is a minimizer of g ◦ F on N(a).
Proof. Suppose to the contrary that a is not a minimizer of g ◦ F on N(a). Then

there exists x0 ∈ N(a) such that (g ◦ F )(x0) < (g ◦ F )(a). For each x ∈ (a, x0), let
εx > 0 be such that

wT (x− a) ≥ 0 ∀w ∈ co[(∂Cg(F (x)) + εxBm)T∂F (x)] .

By Theorem 3.1, the closure of the set

(∂Cg(F (x)) + εxBm)T∂F (x)

is an approximate Jacobian of g ◦ F at x. It now follows from the generalized mean
value theorem (see section 2) that there exists x̂ ∈ (a, x0) such that

(g ◦ F )(x0)− (g ◦ F )(a) ∈ co
[
(∂Cg(F (x̂)) + εx̂Bm)T∂F (x̂)(x0 − a)

]
.

Hence, we can find w ∈ co[(∂Cg(F (x̂)) + εx̂Bm)T∂F (x̂)] such that wT (x0 − a) < 0,
and so wT (x̂− a) < 0. This contradicts the hypothesis of the theorem.

4. Second-order conditions. In this section, we prove second-order results for
the convex composite function g ◦F, where g : R

m → R is convex and F : R
n → R

m is
Gâteaux differentiable. Here we extend the approach developed in [1, 3, 10] by using
our generalized variational calculus from previous sections.

The Lagrangian function corresponding to the convex composite function g ◦F is
defined by

L(x, y∗) = y∗TF (x)− g∗(y∗), x ∈ R
n, y∗ ∈ R

m,

where g∗ is the Fenchel conjugate function of g, which is given by

g∗(y∗) = sup{〈y∗, y〉 − g(y) : y ∈ R
m}, y∗ ∈ R

m.

Recall that the ε-subdifferential of g at y is given by

∂εg(y) = {y∗ ∈ R
m : g(z) ≥ g(y) + y∗T (z − y)− ε ∀z ∈ R

m}.

Let h : R
n → R. A real-valued function φ(x, u) defined on R

n × R
n is said to be

a Levitin–Miljutin–Osmolovskii (LMO)-approximation for h at z in the sense of Ioffe
[9] if φ(z, 0) = h(z), for any x in a neighborhood of z, the function u → φ(x, u) is
convex, and

lim inf
y→z,u→0

‖u‖−1(φ(y, u)− h(y + u)) ≥ 0.

Using this LMO-approximation, Ioffe established the following characterizations
of a local minimum of a locally Lipschitz function.

Lemma 4.1 (Proposition 5 in Ioffe [9]). Assume that h is a locally Lipschitz on
R
n and z ∈ R

n and that φ(x, u) is an LMO-approximation of h at z. Let βξ(x) =
−min{φ∗(x, u∗) : ‖u∗‖ ≤ ξ} for any fixed ξ > 0. Then the following conditions are
equivalent:

(i) h attains a local minimum at z;
(ii) 0 ∈ ∂φ(z, 0) and βξ attains a local minimum at z for any ξ > 0;
(iii) 0 ∈ ∂φ(z, 0) and βξ attains a local minimum at z for some ξ > 0.
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Observe from the convexity of g and Gâteaux differentiability F that the com-
posite function f := g ◦ F is directionally differentiable and its directional derivative
at x is given by

f ′(x, d) = g′(F (x),∇F (x)d).
Let

K(x) := {u ∈ R
n : g(F (x) + t∇F (x)u) ≤ g(F (x)) for some t > 0},

and let

D(x) := {u ∈ R
n : g′(F (x),∇F (x)u) ≤ 0}.

For z ∈ R
n, define

M0(z) = {y∗ ∈ R
m : y∗ ∈ ∂Cg(F (z)), y∗T∇F (z) = 0}.

Then clearly M0(z) �= ∅, provided 0 ∈ ∂Cg(F (z))T∇F (z). Now we state the second-
order optimality conditions for the function g ◦ F.

Theorem 4.1 (necessary condition). Let a ∈ R
n. Assume that g is a convex func-

tion and F is Gâteaux differentiable at a. Suppose that for each y∗ ∈ R
m, ∂2L(a, y∗) is

a G-approximate Hessian of L(., y∗) at a and that ∂2L(a, .) is upper semicontinuous
on R

m. If a is a local minimizer of g ◦ F , then
sup{uTMu :M ∈ ∂2L(a, y∗), y∗ ∈M0(a)} ≥ 0 ∀u ∈ K(a).

Proof. Let u ∈ K(a). First observe from Corollary 3.4 that

0 ∈ ∂Cg(F (a))∇F (a)
as g ◦ F attains a local minimum at a. This yields M0(a) �= ∅. Now let ε > 0. Then
it follows from Proposition 1 in Ioffe [9] that the function

ρε(x;u) = gε(∇F (a)u+ F (x))
is an LMO-approximation of f at a, where gε(y) = sup{y∗T y − g∗(y∗) : y∗ ∈
∂εg(F (x))}. Let η > 0, and define the function φηε by

φηε(x) = max {L(x, y∗) : y∗ ∈Mηε(a)} ,
where

Mηε(a) = {y∗ ∈ R
m : y∗ ∈ ∂εg(F (a)), ‖y∗T∇F (a)‖ ≤ η}.

If we show that

φηε(x) = −min{ρ∗ε (x, u∗) : ‖u∗‖ ≤ η},(5)

where ρ∗ε (x, u
∗) = sup{u∗Tu − ρε(x, u) : u ∈ R

n} is the Fenchel conjugate of ρε(x, ·),
then it follows from Lemma 4.1 that φηε attains a local minimum at a. To show (5),
note that

ρ∗ε (x, h
∗) = inf{g∗(y∗) + δ(y∗|∂εg(F (a))− y∗TF (x) : h∗ = y∗T∇F (a)}.
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Then

−min{ρ∗ε (x, h∗) : ‖h∗‖ ≤ η}
= max{− inf{g∗(y∗) + δ(y∗|∂εg(F (a))− y∗TF (x) : h∗ = y∗T∇F (a)} − δ(h∗|ηB)}
= max{y∗TF (x)− g∗(y∗)− δ(y∗|∂εg(F (a))− δ(Lx(a, y

∗)|ηB) : y∗ ∈ R
m}

= max{L(x, y∗) : y∗ ∈ ∂εg(F (a)), ||Lx(a, y
∗)|| ≤ η}

= φηε(x),

where B is the unit ball. Now from the classical mean value theorem and the definition
of G-approximate Hessian we get that for t sufficiently small positive,

g(F (a)) ≤ φηε(a+ tu)
= sup{L(a+ tu, y∗) : y∗ ∈Mηε(a)}
= sup{y∗TF (a+ tu)− g∗(y∗) : y∗ ∈Mηε(a)}
= sup{y∗TF (a) + y∗T∇F (a+ su)(tu)− g∗(y∗) : y∗ ∈Mηε(a)} for some s ∈ (0, t)

= sup{y∗TF (a) + y∗T∇F (a)(tu) + (su)TM(tu) + o(s)(tu)− g∗(y∗) : y∗ ∈Mηε(a)},
where M ∈ ∂2L(a, y∗). Since u ∈ K(a) and g is convex, there exists t0 > 0 such that

g(F (a) + t∇F (a)u) ≤ g(F (a)) ∀t ∈ [0, t0].

The basic properties of the Fenchel conjugate function of g give us

y∗T (F (a) + t∇F (a)u)− g∗(y∗) ≤ g(F (a) + t∇F (a)u) ≤ g(F (a))∀t ∈ [0, t0].

So, for sufficiently small t > 0,

sup {(st)(uTMu+ o(s)(tu) : y∗ ∈Mηε(a), M ∈ ∂2L(a, y∗)} ≥ 0.

Thus,

sup

{
uTMu+

o(s)u

s
: y∗ ∈Mηε(a), M ∈ ∂2L(a, y∗)

}
≥ 0.

As t ↓ 0, o(s)
s → 0, and so we obtain

sup {uTMu : y∗ ∈Mηε(a), M ∈ ∂2L(a, y∗)} ≥ 0.

This and the upper semicontinuity of ∂2L(a, .) yield the conclusion by noting that⋂
η>0,ε>0

Mηε(a) =M0(a).

Corollary 4.1. Let a ∈ R
n. Assume that g is a convex function and F is

Gâteaux differentiable at a. Suppose that for each y∗ ∈ R
m, ∂2L(a, y∗) is a bounded

G-approximate Hessian of L(., y∗) at a and that ∂2L(a, .) is upper semicontinuous
on R

m. If a is a local minimizer of g ◦ F , then
sup{uTMu :M ∈ ∂2L(a, y∗), y∗ ∈M0(a)} ≥ 0 ∀u ∈ K(a).
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Proof. We need only to notice that the conditions of the previous theorem are
now true for any u ∈ K(a) since ∂2L(a, y∗) is bounded for each y∗ ∈M0(a).

Theorem 4.2 (sufficient conditions). Let a ∈ R
n. Assume that g is a convex

function and F is continuously Gâteaux differentiable. Suppose that for each y∗ ∈
R
m, ∂2L(., y∗) is an approximate Hessian of L(., y∗). If M0(a) �= ∅ and if for each
u ∈ D(a)\{0} there exist ε > 0 and δ > 0 satisfying

inf
v∈u+δBn

sup
y∗∈M0(a)

inf
M∈co∂2L(a+εBn,y∗)

vTMv > 0,

then a is a strict local minimizer of order 2 for the function g ◦ F.
Proof. Suppose to the contrary that a is not a strict local minimizer of order 2

for g ◦ F . Then there exist {xk} ⊆ R
n, xk → a, and εk ↓ 0 as k → +∞ such that for

each k,

f(xk) ≤ f(a) + εk‖xk − a‖2.
We may assume that uk := xk−a

‖xk−a‖ → u ∈ D(a)\{0} as k → +∞. It now follows from

the definition of conjugate function that

g(F (xk)) = sup{y∗TF (xk)− g∗(y∗) : y∗ ∈ R
n}

≥ sup{y∗TF (a+ tkuk)− g∗(y∗) : y∗ ∈M0(a)},
where tk = ||xk − a|| → 0 as k →∞. Now, by the generalized Taylor’s expansion (see
section 2, (vii)), there exists sk > 0 with tk > sk and Mk ∈ co∂2L(a+ skuk, y

∗) such
that

y∗TF (a+ tkuk)− g∗(y∗)

= y∗TF (a)− g∗(y∗) + y∗T∇F (a)tkuk + 1

2
(tkuk)

TMk(tkuk) + o(t2k||uk||2),

where
o(t2k||uk||2)

t2
k

→ 0, as k →∞. From the conjugate duality theory and the assump-

tion that M0(a) is nonempty we get g(F (a)) = y∗TF (a)− g∗(y∗) and y∗T∇F (a) = 0,
for y∗ ∈M0(a), we obtain that

εk ≥ sup
y∗∈M0(a)

{
1

2
uk

TMkuk +
o(t2k||uk||2)

t2k

}
,

where Mk ∈ co∂2L(a+ skuk, y
∗). Let α > 0 be a constant such that

sup
y∗∈M0(a)

inf
M∈co∂2L(a+εBn,y∗)

vTMv ≥ α > 0 ∀v ∈ u+ δBn.

Let k0 be an integer sufficiently large such that uk ∈ u + δBn and Mk ∈ co∂2L(a +
εBn, y

∗) for k ≥ k0. Let k1 be another integer such that

εk − o(t2k||uk||2)
t2k

≤ α
4

for k ≥ k1.

Hence, we get that

α

4
≥ sup

y∗∈M0(a)

1

2
uk

TMkuk ≥ α
2
,
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which contradicts the hypothesis, and so the conclusion follows.
Corollary 4.2. Let a ∈ R

n. Assume that g is a convex function and F is C1,1

at a (i.e., F is continuously Gâteaux differentiable at a with locally Lipschitz ∇F ).
Then,

(i) if a is a local minimum of g ◦ F , then

max{Loo(a, y∗;u, u) : y∗ ∈M0(a)} ≥ 0∀u ∈ K(a);(6)

(ii) if M0(a) �= ∅ and if

max{−Loo(a, y∗;u,−u) : y∗ ∈M0(a)} > 0∀u ∈ D(a)\{0},

then a is a strict local minimum of order 2 for g ◦ F .
Proof. Now L(x, y∗) is C1,1, since F is C1,1. We choose ∂2L(x, y∗) = ∂2

HL(x, y
∗) at

each x and y∗, where ∂2
HL(., y

∗) is the Clarke generalized Hessian which is a bounded
G-approximate Hessian of L(., y∗) at x and is upper semicontinuous at x. Moreover,
for each u ∈ R

n,

Loo(a, y∗;u, u) = sup
M∈∂2

H
L(a, y∗)

uTMu,

−Loo(a, y∗;u,−u) = − sup
M∈∂2

H
L(a, y∗)

uTM(−u) = inf
M∈∂2

H
L(a, y∗)

uTMu.

Hence, the conclusion of (i) follows easily from the Corollary 4.1 and that of (ii) from
Theorem 4.2 using the upper semicontinuity of ∂2

HL(., y
∗).
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AN OPTIMIZATION APPROACH FOR RADIOSURGERY
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Abstract. We outline a new approach for radiosurgery treatment planning, based on solving a
series of optimization problems. We consider a specific treatment planning problem for a specialized
device known as the gamma knife, which provides an advanced stereotactic approach to the treatment
of tumors, vascular malformations, and pain disorders within the head. The sequence of optimization
problems involves nonlinear and mixed integer programs whose solution is required in a given planning
time (typically less than 30 minutes). This paper outlines several modeling decisions that result in
more efficient and robust solutions. Furthermore, it outlines a new approach for determining starting
points for the nonlinear programs, based on a skeletonization of the target volume. Treatment plans
generated for real patient data show the efficiency of the approach.

Key words. radiation therapy, optimization, treatment planning, gamma knife
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1. Introduction. Radiation therapy is the treatment of cancer with ionizing
radiation. This radiation, in the form of X-rays and gamma rays, damages the DNA
of the cells in the area being treated, interfering with their ability to divide and grow.
Cancerous cells are unable to repair this damage, and thus their growth is curtailed
and the tumor shrinks. Healthy cells may also be damaged by the radiation, but they
are more able to repair the damage and return to normal function. Radiation therapy
may be used to treat solid tumors, such as cancers of the skin, brain, and breast.
It can attack cancer cells both on the surface of the body and deep within. It can
be used as the sole form of treatment, or in conjunction with surgery (to shrink the
tumor before surgery, or to kill remaining cancer cells after surgery) or chemotherapy.

Devices for delivering the radiation allow a significant amount of control over
the characteristics of the radiation. Treatment plans, which specify the shapes of
the applied radiation beams, times of exposure, etc., should be designed in a way
that delivers a specified dose to the tumor while avoiding an excessive dose to the
surrounding healthy tissue and, in particular, to any important nearby organs. The
full potential of these devices to deliver optimal treatment plans has yet to be realized,
due to the complexity of the treatment design process. This paper describes how to
use advanced modeling techniques and state-of-the-art optimization algorithms for
the design of treatment plans that fully exploit the capabilities of this new generation
of technology.
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Fig. 1.1. Gamma knife treatment unit.

Specifically, we consider treatment planning for a specialized device known as the
gamma knife, which provides an advanced stereotactic approach to the treatment of
tumors, vascular malformations, and pain disorders within the head [7]; see Figure 1.1.
Inside a shielded treatment unit, beams from 201 cobalt-60 radioactive sources are
focused so that they intersect at a certain point in space, producing an ellipsoidal
region of high radiation dose referred to as a shot. A typical treatment consists of
a number of shots, of possibly different sizes and different durations, centered at
different locations in the tumor, whose cumulative effect is to deliver a certain dose
to the treatment area while minimizing the effect on surrounding tissue.

Treatment goals can vary from one neurosurgeon to the next. Therefore, a treat-
ment planning tool must be able to accommodate several different requirements.
Three typical such requirements are homogeneity, conformity, and avoidance. Ho-
mogeneity requires that the complete target volume must be covered by a dose that
has intensity at least β% of the maximum delivered dosage. The conformity require-
ment minimizes the dose to the nontarget volume. Avoidance requirements limit the
amount of dosage that is delivered to certain critical structures near to the target
area. There are standard rules established by the American Medical Association that
determine minimum homogeneity and conformity requirements.

The motivation for this problem, and the approaches that form the basis of this
work have appeared elsewhere [5, 6, 14]. The key contributions of this paper are as
follows:

1. The description and implementation of a heuristic approach to generate a
good starting point for the nonlinear programs used to model the treatment
planning approach (see section 3). The approach is based on skeletonization
ideas from computational graphics, is augmented using various optimization
subproblems, and leads to improved speed and quality of solutions (see sec-
tion 4).

2. Some practically motivated changes to the underlying models to improve ro-
bustness of the solution process and quality of the resulting treatment plan.
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In particular, several nonlinear programs have been replaced by a single (easy
to solve) mixed integer program, some “hard constraints” have been remod-
eled using inexact penalization, and least squares optimization has been used
for parameter estimation (see section 2).

3. Tuning of the model parameters to improve solution speed and robustness
(see section 4).

The resulting tool provides solutions to the problems that are currently under
study at the University of Maryland Medical School. The work described here has
enabled the simple prototype to be enhanced to the state in which it is usable without
the intervention of an optimization expert, as a mechanism for robustly improving the
operation of a complex medical system.

2. Models and solution process. The first step in building a treatment plan-
ning tool is to model the dose delivered to the patient by a given shot that is centered
at a given location. A nonlinear least squares model for this was developed in [5].
The total dose delivered to a voxel (i, j, k) from a given set of shots can be calculated
as

Dose(i, j, k) =
∑

(s,w)∈S×W
ts,wDw(xs, ys, zs, i, j, k),(2.1)

where S ∈ {1, 2, . . . , n} denotes the set of n shots considered in the optimization,
w ∈ W denotes the discrete width of a shot, ts,w is the time for which each shot (s, w)
is exposed, and Dw(xs, ys, zs, i, j, k) is the dose delivered to the voxel (i, j, k) by the
shot of size w that is centered at (xs, ys, zs):

Dw(xs, ys, zs, i, j, k)

=

2∑
p=1

λp


1− erf



√
(i− xs)2 + µyp(j − ys)2 + µzp(k − zs)2 − rp

σp




 .

The notation erf (x) represents the integral of the standard normal distribution from
−∞ to x. We fit the ten parameters λp, µ

y
p, µ

z
p, rp, and σp to the measured data

via least squares, with different values for each shot width (see [5] for details). These
values were then fixed at their computed values, and the expression for dose given in
(2.1) was used as the core of the optimization models described in the remainder of
this paper

2.1. Basic model and formulation. The basic optimization problem is to
determine a set of coordinates (xs, ys, zs), a discrete set of collimator sizes w, and ra-
diation exposure times ts,w. The main models used in the treatment planning process
are nonlinear and mixed integer programs, defined over a (grid) subset G of the voxels
in the target T .

At the core of the model lie the requirements for homogeneity, conformity, and
avoidance. Since these requirements are conflicting, a variety of techniques can be
used to balance their relative imposition. It is easy to specify homogeneity in the
models simply by imposing lower and upper bounds on the dose delivered to voxels in
the target T and minimizing the dose outside the target. Similar bounding techniques
can be used for avoidance requirements. Typically, however, the imposition of rigid
bounds leads to plans that are overly homogeneous and not conformal enough; that
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is, they provide too much dose outside the target. To overcome this problem, the
notion of “underdose” was suggested in [5]:

UnderDose(i, j, k) := max{0, θ −Dose(i, j, k)}.(2.2)

Informally, underdose measures how much the delivered dose is below the prescribed
dose θ on the target voxels. Our basic model attempts to minimize the sum of the
underdose on G subject to constraints on conformity, homogeneity, and avoidance.

To this point, our discussion has omitted the fact that we can use only a certain
number of size/location combinations in the treatment plan. Choosing the particu-
lar shot size at each location is a discrete optimization problem that is treated by
approximating the step function

H(t) =


 1 if t > 0,

0 if t = 0

by a nonlinear function,

H(t) ≈ Hα(t) :=
2 arctan(αt)

π
.

For increasing values of α, Hα becomes a closer approximation to the step function
H for t ≥ 0. This process is typically called smoothing.

The set of shot sizes for a given number of shots n is chosen by imposing the
constraint

n =
∑

(s,w)∈S×W
Hα(ts,w).(2.3)

This states that the total number of size/location combinations to be used is n.
The basic model attempts to minimize the underdose to the target, subject to

(2.3) and a constraint that the conformity of the plan exceed a certain (specified)
value:

min
∑

(i,j,k)∈G
UnderDose(i, j, k),

subject to Dose(i, j, k) =
∑

(s,w)∈S×W
ts,wDw(xs, ys, zs, i, j, k),

θ ≤ UnderDose(i, j, k) +Dose(i, j, k),

0 ≤ UnderDose(i, j, k),

0 ≤ Dose(i, j, k) ≤ 1 ∀(i, j, k) ∈ G,
C
NG
N ≤

∑
(i,j,k)∈G Dose(i, j, k)∑
(s,w)∈S×W D̄wts,w

,

n =
∑

(s,w)∈{1,... ,n}×W
Hα(ts,w),

0 ≤ ts,w ≤ t̄.

(2.4)

The constraints involving UnderDose coupled with the objective function enforce the
definition given in (2.2).
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C is an input parameter that specifies the conformity—it is multiplied byNG/N to
account for the fact that the number of target voxels in the gridNG is typically smaller
than the total number of voxels N in the target. In practice, for solution performance,
the constraint involving C is rearranged as a linear constraint by rationalizing the
denominator. The conformity index value C must be given in advance. We describe
how to estimate the value of C and the data D̄w for a specific tumor in section 2.2.

This model is essentially the same as described in [5], except that an upper bound
has been applied to the exposure times. While this upper bound was motivated by
application-specific considerations, it also helps increase solution robustness.

The mechanism for updating both G and α is described in section 2.3.

2.2. Conformity estimation. The conformity of the plan is harder to deal
with since it involves voxels outside of the target, of which there may be many. Fur-
thermore, a reasonable conformity for a given patient plan is very hard to estimate a
priori since it depends critically on the number of shots allowed and how the volume
of the target interacts with the volumes of the allowable shots.

The conformity index C is an estimate of the ratio of the dose delivered to the
target divided by the total dose delivered to the patient. The latter quantity is
estimated by summing the (measured) dose delivered (D̄w) by a shot of size w for
length ts,w to a “phantom.” Thus C is calculated by the following expression:

C =

∑
(i,j,k)∈T Dose(i, j, k)∑

(s,w)∈S×W D̄wts,w
.

Note that there are standard rules established by various professional and advisory
groups that specify acceptable conformity requirements. In previous work [5], we
attempted to estimate C by minimizing the total dose to the target, subject to hard
constraints on the amount of dose delivered at each voxel in the target. However,
instead of enforcing these hard constraints, we now propose the following optimization
model as a mechanism for determining C:

min
∑

(s,w)∈S×W
D̄wts,w,

subject to Dose(i, j, k) =
∑

(s,w)∈S×W
ts,wDw(xs, ys, zs, i, j, k),

θ ≤ UnderDose(i, j, k) +Dose(i, j, k),

0 ≤ UnderDose(i, j, k),

0 ≤ Dose(i, j, k) ≤ 1 ∀(i, j, k) ∈ T ,∑
(i,j,k)∈T

UnderDose(i, j, k) ≤ NPU ,

n =
∑

(s,w)∈{1,... ,n}×W
Hα(ts,w),

0 ≤ ts,w ≤ t̄.

(2.5)

The crucial constraint is the one involving both N , the number of voxels in
the target, and PU , a user-supplied estimate of the “average percentage” underdose
allowable on the target. By increasing the value of PU , the user is able to relax the
homogeneity requirement, thereby reducing the total dose delivered to the patient.
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Table 2.1
Comparison of conformity estimation models.

Old conformity model New conformity model

Patient C Obj.val. time C Obj.val. time

Patient 5 0.296 28.89 106.1 0.296 25.68 77.4

(0.007) (13.93) (32.9) (0.005) (12.93) (17.3)

Patient 6 0.246 17.81 397.0 0.247 14.89 358.3

(0.011) (14.54) (90.5) (0.009) (13.21) (56.2)

Patient 8 0.323 3.33 195.2 0.323 2.86 167.6

(0.007) (2.73) (60.8) (0.003) (1.79) (56.3)

(The model from [5] forced the underdose to be zero at every voxel in the target.)
Notice that reducing the total dose delivered to the patient typically increases C.
Thus, C is essentially a monotone function of PU . The upper bound on exposure
time t̄ is typically chosen as a large fraction of the maximum dose delivered to T
(here assumed to be 1) for the purposes of improving solver performance.

Table 2.1 indicates the motivation for this change. For a variety of patients, the
estimate of C is essentially the same, but it has smaller standard deviation (indicated
in parentheses) and smaller computing times. (For each of the patients, the starting
point for the conformity problem was randomly perturbed by up to two voxels in
each coordinate direction to generate the sample. The variance is calculated over a
set of 30 runs.) Furthermore, it seems clear that the final objective values arising from
the subsequent solves are better if these solves are seeded with the new conformity
estimation model solutions.

2.3. Solution process. A series of the following five optimization problems are
solved to determine the treatment plan. The reason the basic model in section 2.1
is solved iteratively (steps 2, 3, and 4) is an effort to reduce the total time required
to find the solution. Our experience shows that combining those three steps into
one increases the time to converge at least three-fold, which is often not clinically
acceptable.

1. Conformity estimation. In order to avoid calculating the dose delivered out-
side of the target, we first solve an optimization problem on the target to
estimate an “ideal” conformity for the particular patient for a given number
of shots; details can be found in section 2.2. The conformity estimate C is
passed to the basic model as an input parameter.

2. Coarse grid estimate. Given the estimate of conformity C, we then specify
a series of optimization problems whose purpose is to minimize the total
underdose on the target for the given conformity. In order to reduce the
computational time required to determine the plan, we first solve (2.4) on a
coarse grid subset of the target voxels. We have found it beneficial to use
in the model one or two more shot locations than the number requested by
the user, that is, S := {1, . . . , n+ 2}, and allow the optimization not only to
choose useful sizes but also to discard the extraneous shot locations.

3. Refined grid estimate. To keep the number of voxels in the optimization as
small as possible, we add to the coarse grid only those voxels on a finer grid
for which the homogeneity (bound) constraints are violated. This procedure
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improves the quality of the plan without greatly increasing the execution
time.
Note that it is possible for the solution from a previous optimization in this
sequence to suggest that multiple shots be centered at the same location (i.e.,
for a given s there are several nonzero ts,w). If, in addition, there are other
locations s′ that are not used at all in the solution at hand, we shift as many
of the multiple shots as possible to these unused locations. This maintains
the objective value of the current solution while giving any subsequent solves
the ability to move the different size shots independently. In our automatic
procedure we shift the largest value of ts,w to the unused location.

4. Shot reduction problem. In the solution steps given above, we use a small
value of α, typically 6, to impose the constraint (2.3) in an approximate
manner. In the fourth solve, we increase the value of α to 100 in an attempt
to force the planning system to choose which size/location pairs to use. At
the end of this solve, there may still exist some size/location pairs that have
very small exposure times t. Also note that our solution technique does not
guarantee that the shots are centered at locations within the target.

5. Fixed location model. The computed solution may have more shots used
than the user requested and furthermore may not be implementable on the
gamma knife since the coordinate locations cannot be keyed into the machine.
Our approach to refining the optimization solution in order to generate im-
plementable coordinates for the shot locations is to round the shot location
values and then fix them. Once these locations are fixed, the problem be-
comes linear in the intensity values t. We reoptimize these values and force
the user-requested number of size/location pairs precisely, using a mixed in-
teger program. Further details can be found in section 2.4.

Note that the starting point for each of the models is the solution point of the
previous model. Details on how to generate an effective starting point for the first
model are given in section 3. All the optimization models are written in the GAMS
[3] modeling language and solved using CONOPT [4] or CPLEX [10].

2.4. Fixed location model. In order to implement the solution on the gamma
knife, we round the location values from the fourth solve and fix them at x̄s, ȳs, and
z̄s, respectively. The values of Dw(x̄s, ȳs, z̄s, i, j, k) can then be calculated at each
location (i, j, k) as data. The final optimization involves the following mixed integer
linear optimization problem:

min
∑

(i,j,k)∈G
UnderDose(i, j, k),

subject to Dose(i, j, k) =
∑

(s,w)∈S×W
ts,wDw(x̄s, ȳs, z̄s, i, j, k),

θ ≤ UnderDose(i, j, k) +Dose(i, j, k),

0 ≤ UnderDose(i, j, k),

0 ≤ Dose(i, j, k) ≤ 1 ∀(i, j, k) ∈ G,
C
NG
N

∑
(s,w)∈S×W

D̄wts,w ≤
∑

(i,j,k)∈G
Dose(i, j, k),

0 ≤ ts,w ≤ ψs,w t̄,

(2.6)
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∑
(s,w)∈S×W

ψs,w ≤ n,

ψs,w ∈ {0, 1}.
This model was adapted from the work described in [6]. The key observation

is the use of the binary variable ψs,w to indicate whether a shot of size w is used
at location s. The penultimate constraint in the model ensures that no more than n
shots are used, while the upper bound on t ensures that no exposure time occurs if the
corresponding shot is not used. In previous work [5], we had used increasing values
of α coupled with the removal of small shots in a nonlinear programming approach.
The current scheme is guaranteed to outperform this.

It may, of course, be possible to extend this model to include more locations,
but this was not deemed necessary for our work. Furthermore, it could be argued
that the basic model should use integer variables to enforce the discrete size choices.
Our investigations found such approaches to be impractical and not as robust as the
scheme outlined above.

3. Starting point generation. A good starting point is very important for
nonlinear programs, especially if the problem is not convex. This section will ex-
plore some techniques for finding an initial starting solution for our solution process.
The main focus is to find a set of good shot locations and their corresponding sizes.
We propose a shot location and size determination (SLSD) process based on three-
dimensional (3D) medial axis transformation. Our results show that it takes no more
than 6 seconds to produce a good starting solution for all the 3D data considered in
our research.

Our targets are collections of 3D voxels. For the large scale problems of interest,
the data manipulation and optimization solution times are much larger than allowable
(typically 20–40 minutes is allowed for planning), and we must resort to data com-
pression. One technique used extensively in computer vision and pattern recognition
is the notion of a skeleton, a series of connected lines providing a simple representation
of the object at hand [1, 8, 11, 15, 18]. Skeletons have been used by physicians and
scientists to explore virtual human body organs with noninvasive techniques [9, 17].
The term skeleton was proposed in [1] to describe the axis of symmetry, based on
the physical analogy of grassfire propagation, namely, the locus of centers of maximal
disks (balls) contained in a two- (three-) dimensional shape.

Some applications require that the original object be reconstructed from the com-
pact representation, and hence the normal measure of goodness is the error between
the original and reconstructed object. However, in our case, we will just use the skele-
ton to quickly generate good starting shot locations for the nonlinear program. Thus
we adapt techniques from the literature to achieve these goals.

Our process occurs in three stages. First we generate the skeleton, then we place
shots and choose their sizes along the skeleton to maximize a measure of our objective.
After this, we choose the initial exposure times using a simple linear program. Finally,
we apply the five-stage optimization process outlined in section 2 to improve upon
the starting points found.

3.1. Skeleton generation. In this section, we introduce a 3D skeleton algo-
rithm that follows procedures similar to those of [17]. The first step in the skeleton
generation is to compute the contour map containing distance information from each
voxel to a nearest target boundary. The ideal distance metric is Euclidean, but this
is too time-consuming to implement in a 3D environment.
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Fig. 3.1. A contour map on a two-dimensional example.

To describe our simpler scheme, we first introduce some terminology.
Definition 3.1. Considering a voxel i as a 3D box, an adjacent voxel j is called

an F-neighbor of i if j shares a face with i, an E-neighbor of i if j shares an edge with
i, and a V-neighbor of i if j shares a vertex with i.

Our procedure is as follows:
1. Assign 0 to the nontarget area, and let v = 0.
2. Assign v+1 to any voxel that is unassigned and has an F-neighbor with value

v.
3. Increment v by 1 and repeat until all voxels in the target area are assigned.

An example of a two-dimensional (2D) contour map generated through this procedure
is shown in Figure 3.1.

Note that if the maximum height in the contour map is less than 2, we terminate
the skeleton generation process.

Extracting an initial skeleton. Based on the contour map, there are several known
skeleton extraction methods in the literature [17]: boundary peeling (also called thin-
ning) [12], distance coding (distance transformation) [13], and polygon-based Voronoi
methods [2]. Because it is simple and fast, we use the distance transformation method
to generate a skeleton. In our terminology, this means that we define a skeleton point
as a voxel whose contour map value is greater than or equal to those of its E-neighbors.

Refinement for connectivity of a thin skeleton. We say that two skeleton points
are connected if they are V-neighbors. Unfortunately, not all the skeleton points
generated will be connected, and thus we use a two-stage process to connect the
pieces of the skeleton together.

For example, Figure 3.2(a) shows a raw skeleton with several disconnected com-
ponents. We use two algorithms to join all the disconnected components. The first
algorithm is a directional search algorithm. The second is the shortest path algorithm.
After these refinements, we have a connected skeleton as seen in Figure 3.2(b).

We first use depth-first search to label each skeleton point as belonging to a
particular component of the skeleton. The first connection phase is a steepest ascent
technique. Consider the contour map as a function f . We calculate an approximate
gradient ∇f using coordinatewise central divided differences. Thus, for each voxel
(i, j, k) we use the values of f at each of its F-neighbors to generate a 3D vector

∇f(i, j, k) := (sgn(f(i+ 1, j, k)− f(i− 1, j, k)),

sgn(f(i, j + 1, k)− f(i, j − 1, k)),

sgn(f(i, j, k + 1)− f(i, j, k − 1)))
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Fig. 3.2. An example of skeleton refinement.

and store these in a divided difference table. Given the voxel (i, j, k), we evaluate f at
the V-neighbor (i, j, k) +∇f(i, j, k) and accept the move if f does not decrease. We
terminate the process if either f decreases or we move to a voxel in a different piece of
the skeleton, thus connecting (i, j, k) to this piece. Including the paths generated in
this fashion in the skeleton typically connects pieces that are close but not currently
connected.

The directional search algorithm, while joining many of the disconnected pieces
of the skeleton along ridges of the contour map, may fail in cases where the value of
the contour map decreases in the gap between two disconnected pieces. Therefore,
the second connection phase uses a shortest path algorithm to connect the skeleton
(instead of using the saddle point method discussed in [17]).

Let K be the set of all skeletal points, divided into d disconnected components. In
order to reduce the search space for the shortest path algorithm, we generate a cloud of
voxels C in the target volume, each of which are local maxima among their F-neighbors.
Note that C contains K by definition and can be thought of heuristically as a cloud
of points encircling the skeleton. We will only join the disconnected components of K
using points in C.

Let each voxel in C be a node. An arc (i, j) ∈ A ⊆ C ×C is defined if voxels i and
j are V-neighbors.

We choose an arbitrary voxel in an arbitrary component as the source node s.
A representative node is chosen arbitrarily from each of the remaining components
and joined to a dummy node t that will be the destination. The distance cij between
voxels in a connected cluster is assigned a value of 0, whereas other V-neighbors of
a given voxel are at distance 1. We attempt to send d − 1 units of flow from s to t.
We also add an arc from s to t directly with a high cost to allow for the fact that
it may not be possible to join every component through C. If this is the case, it will
be signified by flow along these final arcs. The complete formulation of our problem
follows:

min
∑

(i,j)∈A
cijxij ,

subject to
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji =




(d− 1) if i = s,

−(d− 1) if i = t,

0 otherwise,

0 ≤ xij ∀(i, j) ∈ A.



RADIOSURGERY TREATMENT PLANNING 931

Typically, this problem is solved very quickly by standard linear programming algo-
rithms, even though specialized network flow algorithms could be applied.

3.2. Shot placement. At this stage, we recall that our goal is to determine
where to place shots and how large to make them initially; the skeleton generation is
a data reduction technique to facilitate this goal. We restrict our attention to points
on the skeleton. This is reasonable, since the dose delivered (2.1) looks ellipsoidal in
nature, and hence being centrally located within the target (that is, on the skeleton)
is preferable.

Our approach moves along the skeleton evaluating whether the current point is a
good location at which to place a shot. There are two special types of skeleton points,
an end point and a cross point, that help determine the shot size and the location;
see Figure 3.3.

(a) an end point (b) an end point (c) a cross point

Fig. 3.3. Examples of end points and a cross point.

We define an end point and a cross point as follows.
Definition 3.2. A voxel is an end point if
1. it is in the skeleton,
2. it has only one V-neighbor in the skeleton.

A voxel is a cross point if
1. it is in the skeleton,
2. it has at least three V-neighbors,
3. it is a local maximum in the contour map.
These points are respectively the start (end point) and finish (cross point) points

for our heuristic.
Let K be a set of skeletal points in the target volume. The first phase of the meth-

ods determines all end points in the current skeleton. Given an end point (x, y, z) ∈ K,
we carry out the following steps to generate a stack for the end point:

1. Calculate a merit value at the current location. Save the location information,
the best shot size, and the merit value on a stack.

2. Find all V-neighbors of the current point, in the skeleton, that are not in
the stack. If there is exactly one neighbor, make the neighbor the current
location and repeat these two steps. Otherwise, the neighbor is a cross point
or an end point, and we terminate this process.

If the length of the stack is less than 3, then we discard these points from the
skeleton. Otherwise, we choose the shot location and size determined by the smallest
merit value on the stack. This shot will cover a subset of the voxels in the target;
these voxels are removed from the target at this stage.

We then move to the next end point and repeat the above process. Once all
end points have been processed, we attempt to generate a new skeleton based on the
remaining (uncovered) voxels in the target. We then repeat the whole process with
the new skeleton.
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The key to this approach is the merit function. Ideally, we would like to place
shots that cover the entire region, without overdosing within (or outside) of the target.
Overdosing occurs outside the target if we choose a shot size that is too large for the
current location, and hence the shot protrudes from the target. Overdosing also occurs
within the target if we place two shots too close together for their chosen sizes.

Thus, if we label height as the approximate Euclidean distance from the current
point to the target boundary, spread as the minimum distance between the current
location and the end point at which we started, and w as the shot size, we would
like to ensure that all three of these measures are as close as possible. Therefore, we
choose an objective function that is a weighted sum of squared differences between
these three quantities:

1. Φsh(x, y, z) := (spread(x, y, z)− height(x, y, z))2,
2. Φsw(x, y, z, w) := (spread(x, y, z)− w)2,
3. Φhw(x, y, z, w) := (height(x, y, z)− w)2.

The first function ensures that we pack the target volume as well as possible; that
is, the current spread between shots should be close to the distance to the closest
target boundary. The second function is used to choose a helmet size that fits the
skeleton best for the current location. The third function favors a location that is the
appropriate distance from the target boundary for the current shot size.

Our objective function Φ is defined as a linear combination (with weights λ) of
these penalty functions and a fourth (w̄ − w)2, which is designed to favor large shot
sizes. Note that w̄ is the maximum shot width at hand, typically 18mm. The weights
can be adjusted based on a user’s preference. In practice we use 1/3 for the first three
objective weights, and 1/2 for the fourth.

3.3. Modifying the number of shots used. Often, the application expert
knows based upon experience how many shots will be needed to treat a specific tumor.
The planning tool accepts this information as input. However, the SLSD procedure
uses only target information, and it might suggest using fewer or more shots.

If the number of shots generated by SLSD is too large, the first n + 2 shots are
used as the starting point. We allow the nonlinear program to adjust the locations
further and remove the least useful shots during the solution process.

If the number of shot locations obtained from the SLSD procedure is lower than
the requested number, we add extra shot locations using the following (SemiRand)
heuristic. The key idea is to spread out the shot center locations with appropriate
shot sizes over the target area.

We assume that we are given ρ, an estimate of the conformity that we require
from any shot. In practice, we choose this value as 0.2. We then generate k different
shot/size combinations as follows. First, a random location s is generated from the
target area that is not covered by the current set of shots. Second, a random shot
size w for the specific location is generated within the set of different shots available
W. For each shot/size combination we calculate the fraction f(s, w) of the dose that
hits the target by taking the ratio of the number of voxels that it hits in the target
to the total number of voxels in a shot of the given size.

We decide the location and size (s, w) to use as follows. If max f(s, w) ≤ ρ, then
we choose the combination that maximizes f(s, w). Otherwise, amongst all those
combinations that are acceptable (i.e., f(s, w) ≥ ρ), we choose the largest one (i.e.,
the one that maximizes w among these).

Note that the SemiRand scheme can be used in cases where the SLSD procedure
fails (when a 3D volume of the target cannot be defined) and also as an alternative
scheme for locating starting points. In practice we use k = 5.
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Fig. 4.1. Computational results on a 2D example; axes represent pixel labeling.

4. Computational results. In this section, we demonstrate how to use the
techniques outlined above on 2D testing problems as well as real patient data.

4.1. Examples on 2D problems. We start with some simple 2D examples that
show the types of skeletons that are produced and portray the resulting optimization
solutions.

Figure 4.1(a) depicts a particular target (tumor) area for our problem as white
space. This tumor is approximately 3 inches square. The shape is not convex: It has
an indentation that makes it difficult for a normal optimization model to obtain an
acceptable plan. Figure 4.1(b) shows a thin line skeleton generated from the image.
The skeleton generation process takes less than 1 second on a Pentium III 800MHz
workstation. We then apply the SLSD process to obtain the starting solution for
the nonlinear programming (NLP) model as shown in Figure 4.1(c). Eight shots of
radiation are used for this example: one 4 mm, two 8 mm, and five 14 mm width
shots. We use 0.9 as the initial exposure times in the model. The solution covers the
target area well. We solve the conformity estimation optimization model using the
CONOPT2 interface with the starting solution, finding an optimal solution of 8 shots
in 61 seconds of execution time. Figure 4.1(d) shows the resulting plot obtained using
the MATLAB image toolbox. The circles are the starting solution, and the stars
are the optimal solution from CONOPT. They are almost identical in shot center
locations. The SLSD process outperforms a random starting solution. Given 8 shots
to use, the NLP model using a random starting solution finds an optimal solution in
1122 seconds.
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Fig. 4.2. 2D examples: a rectangular target (a),(b) and a small target (c),(d).

We show two more results on other examples in Figure 4.2. Figure 4.2(a) is a
rectangular target for which three shots are used. The optimization model finds the
solution of two 4mm and one 14mm shots, depicted in Figure 4.2(b). The total time to
produce the solution is about 15 seconds. Another example is given in Figure 4.2(c)–
(d). This is a small tumor (less than 1 inch square) for which three shots are again
used. The SLSD model takes 1.5 seconds to generate the starting solution. The NLP
model finds an optimal solution of two 4mm and one 8mm shots in 6 seconds.

4.2. Application to real patient data. We have tested our techniques on ten
targets arising from real patient cases. The ten targets are radically different in size
and complexity. The tumor volumes range from 28 voxels to 36088 voxels. Since
our problems are not convex, the choice of parameters in their solution can also have
dramatic effects. In this section, we demonstrate how to choose good parameters for
the NLP models. Some further description of the medical implications of these results
is given in [14].

We generate good initial shot center locations and sizes by running SLSD. This
is a starting solution for the NLP model with an exception of shot exposure times.
These times ts,w are estimated using the following simple linear program:

min
∑

(i,j,k)∈G
UnderDose(i, j, k),

subject to Dose(i, j, k) =
∑

(s,w)∈S×W
ts,wDw(x̄s, ȳs, z̄s, i, j, k),

θ ≤ UnderDose(i, j, k) +Dose(i, j, k),

(4.1)
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0 ≤ UnderDose(i, j, k),

0 ≤ Dose(i, j, k) ≤ 1 ∀(i, j, k) ∈ G,
t ≤ ts,w ≤ t̄.

Note that we fix the locations of the shots at the points suggested by SLSD and only
update the exposure times. Furthermore, we ensure that every size shot has positive
weight in an initial solution by enforcing a lower bound (typically 0.1) on the exposure
lengths.

The procedure for varying α (controlling the enforcement of the discrete choices)
can have a dramatic effect on solution quality and times. We generated solutions for
a variety of patients under a number of different choices of α. These solutions were
analyzed by an application expert. Based on his feedback, we suggest using initial
values of α between 4 and 8.

Table 4.1
Average optimal objective value and solution times in seconds for different tumors.

Patient Objective Time

(#voxels) Random SemiRand SLSD Random SemiRand SLSD

1 2.17 0.88 NA 0.3 0.3 NA

(28) (0.86) (0.29) NA (0.05) (0.03) NA

2 14.70 8.21 6.64 32 30 26

(2144) (6.90) (4.68) (2.61) (6) (9) (9)

3 27.53 19.22 14.43 89 67 52

(3279) (19.07) (8.87) (14.99) (25) (16) (9)

4 16.55 12.89 9.85 97 94 84

(3229) (4.45) (6.70) (4.88) (18) (22) (19)

5 34.87 34.53 23.85 153 128 77

(4006) (16.36) (17.26) (13.84) (40) (30) (17)

6 33.32 28.49 15.00 556 513 355

(6940) (17.25) (13.09) (13.22) (103) (100) (52)

7 35.45 29.97 31.03 590 460 343

(10061) (12.63) (11.16) (13.65) (228) (100) (75)

8 9.31 3.22 2.78 887 240 168

(22124) (2.73) (2.80) (1.72) (157) (68) (56)

9 45.05 35.18 31.05 874 629 498

(24839) (18.10) (7.11) (10.25) (425) (166) (99)

10 18.55 11.57 8.59 3568 937 695

(36088) (11.20) (11.83) (6.71) (589) (108) (79)

Table 4.1 shows average objective values of three different starting solution gen-
eration techniques: Random, SemiRand, and SLSD. The objective value represents
the total average underdose of the target when the solution is applied. The numbers
in parentheses are the standard deviations from a batch of 50 perturbed runs. (In
each run, the set of initial solution locations (x, y, z) were perturbed voxel by voxel
by a distance of no more than two voxels.) We compare the techniques based on
the final objective values and the run times. By fixing α = 6, 50 perturbed runs
were made for each patient-method pair. In each run, we generated initial locations
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Fig. 4.3. A dose-volume histogram for patient 6.

randomly within the target for the random scheme, while location perturbation was
used for SemiRand and SLSD. The tumor was so small for Patient 1 that SLSD failed
to generate a skeleton (maximum height in the contour map was less than 2).

Using standard statistical tests, the pairwise p-value [16] between Random and
SemiRand was 0.013, between Random and SLSD was 0.0006, and between SemiRand
and SLSD was 0.078. This leads to the conclusion that these results are significantly
different at the 90% confidence level.

Table 4.1 also shows average run times of the entire model for the seven different
patients. Although a gain of speed using SLSD depends on the shape and size of the
tumor, the table shows that the model execution time can be substantially reduced
using SLSD over the other two techniques regardless of the size of tumor. Again, these
results are significantly different at the 90% confidence level. The pairwise p-value
between Random and SemiRand was 0.017, between Random and SLSD was 0.0006,
and between SemiRand and SLSD was 0.063.

To conclude this section, we show a dose-volume histogram relating various plans
that were generated for patient 6 (see Figure 4.3). The histogram depicts the fraction
of the volume that receives a particular dose for both the skull and the target volumes.
The curves on the right depict information related to the target, while on the left they
refer to the skull. On the target, the curves that extend furthest to the right receive
more dose. Since the target curves can be moved to the right by just delivering
more dose to the patient’s skull, the lines to the left show that the fraction of the
skull receiving a particular dosage is essentially unchanged. The figure compares the
three techniques outlined here, along with the actual plan used on the patient case.
Clearly, all of the automatic plans are better than the neurosurgeon’s plan, and the
SLSD approach appears preferable to the other two automatic plans in quality.

5. Conclusion and future directions. We have used a variety of optimization
techniques in this paper to develop an approach for solving a planning problem for
medical treatment. While our approach has been tailored to the specific application,
we believe the methods and approaches used here can be effectively adapted to many
other problem classes.
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The work described in this paper was motivated by feedback received from an
initial prototype use of our planning tool at the University of Maryland Medical
School. The key features that needed improvement were the speed and robustness
of the process. This paper has addressed both issues by using a variety of different
optimization models and computational techniques. In particular, the speed of solving
the sequence of nonlinear programming models has been substantially reduced by
using the skeleton-based starting point generation technique. Statistically, we have
shown that SLSD outperforms two other heuristics for generating starting points.
Furthermore, the use of an improved conformity estimation model, coupled with a
“clean-up” mixed integer programming model, ensures that the solutions generated
are clinically acceptable and conform to the input specifications of the user. The
modified tool is now in use at the hospital without intervention from any of the
authors.

Our future work involves predicting the number of shots that can be used for a
particular patient.
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1. Introduction. Let H be a real Hilbert space with inner product 〈·, ·〉, and
let T : H → 2H be a maximal monotone operator. The problem of finding an element
x ∈ H such that 0 ∈ Tx is very important in the area of optimization and related
fields. For example, if T is the subdifferential ∂f of a proper lower semicontinuous
convex function f : H → (−∞,∞], then T is a maximal monotone operator and the
equation 0 ∈ ∂f(x) is reduced to f(x) = min{f(z) : z ∈ H}. One method of solving
0 ∈ Tx is the proximal point algorithm. Let I denote the identity operator on H. The
proximal point algorithm generates, for any starting point x0 = x ∈ H, a sequence
{xn} in H by the rule

xn+1 = (I + rnT )−1xn, n = 0, 1, 2, . . . ,(1.1)

where {rn} is a sequence of positive real numbers. Note that (1.1) is equivalent to

0 ∈ Txn+1 +
1

rn
(xn+1 − xn), n = 0, 1, 2, . . . .

This algorithm was first introduced by Martinet [6] and generally studied by Rock-
afellar [10] in the framework of a Hilbert space. Later many authors studied the
convergence of (1.1) in a Hilbert space; see Brézis and Lions [1], Lions [5], Passty [7],
Güler [2], Solodov and Svaiter [11], and the references mentioned there. Rockafel-
lar [10] proved that if T−10 
= ∅ and lim infn→∞ rn > 0, then the sequence generated
by (1.1) converges weakly to an element of T−10. Further, Rockafellar [10] posed
an open question of whether the sequence generated by (1.1) converges strongly or
not. This question was solved by Güler [2], who introduced an example for which the
sequence generated by (1.1) converges weakly but not strongly. On the other hand,
Kamimura and Takahashi [3, 4] and Solodov and Svaiter [12] recently modified the

∗Received by the editors October 5, 2001; accepted for publication (in revised form) August 19,
2002; published electronically February 27, 2003.

http://www.siam.org/journals/siopt/13-3/39611.html
†Graduate School of International Corporate Strategy, Hitotsubashi University, 2-1-2 Hitotsub-

ashi, Chiyoda-ku, Tokyo 101-8439, Japan (kamimura@ics.hit-u.ac.jp).
‡Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,

Ohokayama, Meguro-ku, Tokyo 152-8552, Japan (wataru@is.titech.ac.jp).

938



STRONG CONVERGENCE OF A PROXIMAL-TYPE ALGORITHM 939

proximal point algorithm to generate a strongly convergent sequence. Solodov and
Svaiter [12] introduced the following algorithm:



x0 ∈ H,

0 = vn +
1

rn
(yn − xn), vn ∈ Tyn,

Hn = {z ∈ H : 〈z − yn, vn〉 ≤ 0},
Wn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . . .

(1.2)

Here, for each x ∈ H and each nonempty closed convex subset C of H, PC is defined
by ‖x−PCx‖ = inf{‖x−z‖ : z ∈ C}. The mapping PC is sometimes called the metric
projection of H onto C. They proved that if T−10 
= ∅ and lim infn→∞ rn > 0, then
the sequence generated by (1.2) converges strongly to PT−10x0.

It is our purpose in this paper to extend Solodov and Svaiter’s result to more
general Banach spaces like the spaces Lp (1 < p < ∞). Using this, we will then
consider the problem of finding a minimizer of a convex function. The duality mapping
and geometric properties of Banach spaces will play important roles in our study.

2. Preliminaries. Let E be a real Banach space with norm ‖ · ‖, and let E∗

denote the dual of E. We denote the value of f ∈ E∗ at x ∈ E by 〈x, f〉. When
{xn} is a sequence in E, we denote strong convergence of {xn} to x ∈ E by xn → x
and weak convergence by xn ⇀ x. A multivalued operator T : E → 2E

∗
with domain

D(T ) = {z ∈ E : Tz 
= ∅} and range R(T ) =
⋃{Tz : z ∈ D(T )} is said to be

monotone if 〈x1 − x2, y1 − y2〉 ≥ 0 for each xi ∈ D(T ) and yi ∈ Txi, i = 1, 2. A
monotone operator T is said to be maximal if its graph G(T ) = {(x, y) : y ∈ Tx} is
not properly contained in the graph of any other monotone operator.

A Banach space E is said to be strictly convex if ‖(x+ y)/2‖ < 1 for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1 and x 
= y. It is also said to be uniformly convex if limn→∞ ‖xn−
yn‖ = 0 for any two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖(xn + yn)/2‖ = 1. It is known that a uniformly convex Banach space is
reflexive and strictly convex. Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said
to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (2.1) is
attained uniformly for x, y ∈ U . It is known that the space Lp (1 < p < ∞) is
a uniformly convex and uniformly smooth Banach space. The (normalized) duality
mapping J from E into 2E

∗
is defined by

Jx = {v ∈ E∗ : 〈x, v〉 = ‖x‖2 = ‖v‖2}

for x ∈ E. Notice that, in a Hilbert space, the duality mapping is the identity
operator. The duality mapping J has the following properties:

1. ‖x‖2 − ‖y‖2 ≥ 2〈x− y, j〉 for all x, y ∈ E and j ∈ Jy;
2. if E is smooth, then J is single valued;
3. if E is smooth, then J is norm-to-weak∗ continuous;
4. if E is uniformly smooth, then J is uniformly norm-to-norm continuous on

each bounded subset of E.
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Further, we know the following result, which characterizes a uniformly convex Banach
space.

Proposition 1 (see Xu [13]). Let s > 0 and let E be a Banach space. Then E
is uniformly convex if and only if there exists a continuous, strictly increasing, and
convex function g : [0,∞)→ [0,∞), g(0) = 0, such that

‖x+ y‖2 ≥ ‖x‖2 + 2〈y, j〉+ g(‖y‖)

for all x, y ∈ {z ∈ E : ‖z‖ ≤ s} and j ∈ Jx.
Next we define a real-valued function which plays a crucial role in our discussion.

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E. It is obvious from the definition of φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y)(2.2)

for all x, y ∈ E. Further, we can show the following two propositions.
Proposition 2. Let E be a uniformly convex and smooth Banach space and

let {yn}, {zn} be two sequences of E. If φ(yn, zn) → 0 and either {yn} or {zn} is
bounded, then yn − zn → 0.

Proof. It follows from φ(yn, zn)→ 0 that {φ(yn, zn)} is bounded. Then if one of
the sequences {yn} and {zn} is bounded, so is the other because of (2.2). Therefore,
by Proposition 1, there exists a continuous, strictly increasing, and convex function
g : [0,∞)→ [0,∞), g(0) = 0, such that

g(‖yn − zn‖) ≤ ‖zn + (yn − zn)‖2 − ‖zn‖2 − 2〈yn − zn, Jzn〉
= ‖yn‖2 − ‖zn‖2 − 2〈yn, Jzn〉+ 2‖zn‖2
= φ(yn, zn).

It follows from φ(yn, zn) → 0 that g(‖yn − zn‖) → 0. Then the properties of g yield
that yn − zn → 0.

Proposition 3. Let E be a reflexive, strictly convex, and smooth Banach space,
let C be a nonempty closed convex subset of E, and let x ∈ E. Then there exists a
unique element x0 ∈ C such that

φ(x0, x) = inf{φ(z, x) : z ∈ C}.(2.3)

Proof. Since E is reflexive and ‖zn‖ → ∞ implies φ(zn, x) → ∞, there exists
x0 ∈ C such that φ(x0, x) = inf{φ(z, x) : z ∈ C}. Since E is strictly convex, ‖ · ‖2 is
a strictly convex function, that is, ‖λx1 + (1 − λ)x2‖2 < λ‖x1‖2 + (1 − λ)‖x2‖2 for
all x1, x2 ∈ E with x1 
= x2 and λ ∈ (0, 1). Then the function φ(·, y) is also strictly
convex. Therefore x0 ∈ C is unique.

For each nonempty closed convex subset C of a reflexive, strictly convex, and
smooth Banach space E and x ∈ E, we define the mapping QC of E onto C by
QCx = x0, where x0 is defined by (2.3). It is easy to see that, in a Hilbert space,
the mapping QC is coincident with the metric projection. In our discussion, instead
of the metric projection, we make use of the mapping QC . Finally, we shall prove
two results concerning Proposition 3 and the mapping QC . The first one is the usual
analogue of a characterization of the metric projection in a Hilbert space.
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Proposition 4. Let E be a smooth Banach space, let C be a convex subset of
E, let x ∈ E, and let x0 ∈ C. Then

φ(x0, x) = inf{φ(z, x) : z ∈ C}(2.4)

if and only if

〈z − x0, Jx0 − Jx〉 ≥ 0 for all z ∈ C.(2.5)

Proof. First we shall show that (2.4) ⇒ (2.5). Let z ∈ C and let λ ∈ (0, 1). It
follows from φ(x0, x) ≤ φ((1− λ)x0 + λz, x) that

0 ≤ ‖(1− λ)x0 + λz‖2 − 2〈(1− λ)x0 + λz, Jx〉+ ‖x‖2 − ‖x0‖2 + 2〈x0, Jx〉 − ‖x‖2
= ‖(1− λ)x0 + λz‖2 − ‖x0‖2 − 2λ〈z − x0, Jx〉
≤ 2λ〈z − x0, J((1− λ)x0 + λz)〉 − 2λ〈z − x0, Jx〉
= 2λ〈z − x0, J((1− λ)x0 + λz)− Jx〉,

which implies

〈z − x0, J((1− λ)x0 + λz)− Jx〉 ≥ 0.

Tending λ ↓ 0, since J is norm-to-weak∗ continuous, we obtain

〈z − x0, Jx0 − Jx〉 ≥ 0,

which shows (2.5).
Next we shall show that (2.5) ⇒ (2.4). For any z ∈ C, we have

φ(z, x)− φ(x0, x) = ‖z‖2 − 2〈z, Jx〉+ ‖x‖2 − ‖x0‖+ 2〈x0, Jx〉 − ‖x‖2
= ‖z‖2 − ‖x0‖2 − 2〈z − x0, Jx〉
≥ 2〈z − x0, Jx0〉 − 2〈z − x0, Jx〉
= 2〈z − x0, Jx0 − Jx〉
≥ 0,

which proves (2.4).
Proposition 5. Let E be a reflexive, strictly convex, and smooth Banach space,

let C be a nonempty closed convex subset of E, and let x ∈ E. Then

φ(y,QCx) + φ(QCx, x) ≤ φ(y, x)(2.6)

for all y ∈ C.
Proof. It follows from Proposition 4 that

φ(y, x)− φ(QCx, x)− φ(y,QCx)

= ‖y‖2 − 2〈y, Jx〉+ ‖x‖2 − ‖QCx‖2 + 2〈QCx, Jx〉 − ‖x‖2
− ‖y‖2 + 2〈y, JQCx〉 − ‖QCx‖2

= −2〈y, Jx〉+ 2〈QCx, Jx〉+ 2〈y, JQCx〉 − 2‖QCx‖2
= 2〈y −QCx, JQCx− Jx〉
≥ 0

for all y ∈ C. This completes the proof.
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3. Main result. Throughout this section, unless otherwise stated, we assume
that T : E → 2E

∗
is a maximal monotone operator. In this section, we study the

following algorithm in a smooth Banach space E, which is an extension of (1.2):


x0 ∈ E,

0 = vn +
1

rn
(Jyn − Jxn), vn ∈ Tyn,

Hn = {z ∈ E : 〈z − yn, vn〉 ≤ 0},
Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = QHn∩Wnx0, n = 0, 1, 2, . . . ,

(3.1)

where {rn} is a sequence of positive real numbers.
First we investigate the condition under which the algorithm (3.1) is well defined.

Rockafellar [9] proved the following theorem.
Theorem 6. Let E be a reflexive, strictly convex, and smooth Banach space,

and let T : E → 2E
∗
be a monotone operator. Then T is maximal if and only if

R(J + rT ) = E∗ for all r > 0.
Using this theorem, we can show the following result.
Proposition 7. Let E be a reflexive, strictly convex, and smooth Banach space.

If T−10 
= ∅, then the sequence generated by (3.1) is well defined.
Proof. It is obvious that both Hn and Wn are closed convex sets. Let w ∈ T−10.

From Theorem 6, there exists (y0, v0) ∈ E × E∗ such that 0 = v0 + (Jy0 − Jx0)/r0
and v0 ∈ Ty0. Since T is monotone, it follows that

〈y0 − w, v0〉 ≥ 0,

which implies w ∈ H0. On the other hand, it is clear that w ∈ W0 = E. Then
w ∈ H0 ∩ W0, and therefore x1 = QH0∩W0x0 is well defined. Suppose that w ∈
Hn−1 ∩Wn−1 and xn is well defined for some n ≥ 1. Again by Theorem 6, we obtain
(yn, vn) ∈ E × E∗ such that 0 = vn + (Jyn − Jxn)/rn and vn ∈ Tyn. Then the
monotonicity of T implies that w ∈ Hn. It follows from Proposition 4 that

〈w − xn, Jx0 − Jxn〉 = 〈w −QHn−1∩Wn−1
x0, Jx0 − JQHn−1∩Wn−1

x0〉 ≤ 0,

which implies w ∈Wn. Therefore w ∈ Hn∩Wn, and hence xn+1 = QHn∩Wnx0 is well
defined. Then, by induction, the sequence generated by (3.1) is well defined for each
nonnegative integer n.

Remark 1. From the above proof, we obtain

T−10 ⊂ Hn ∩Wn

for each nonnegative integer n.
Now we are ready to prove the main theorem.
Theorem 8. Let E be a uniformly convex and uniformly smooth Banach space.

If T−10 
= ∅ and {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0, then the sequence {xn}
generated by (3.1) converges strongly to QT−10x0.

Proof. It follows from the definition of Wn and Proposition 4 that QWnx0 = xn.
Further, from xn+1 ∈Wn and Proposition 5, we have

φ(xn+1, QWnx0) + φ(QWnx0, x0) ≤ φ(xn+1, x0)
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and hence

φ(xn+1, xn) + φ(xn, x0) ≤ φ(xn+1, x0).(3.2)

Therefore limn→∞ φ(xn, x0) exists and, in particular, {φ(xn, x0)} is bounded. Then,
by (2.2), {xn} is also bounded. This implies that there exists a subsequence {xni} of
{xn} such that xni ⇀ w for some w ∈ E. We shall show that w ∈ T−10. It follows
from (3.2) that φ(xn+1, xn)→ 0. On the other hand,

φ(QHnxn, xn)− φ(yn, xn) = ‖QHnxn‖2 − ‖yn‖2 + 2〈yn −QHnxn, Jxn〉
≥ 2〈QHnxn − yn, Jyn〉+ 2〈yn −QHnxn, Jxn〉
= 2〈yn −QHnxn, Jxn − Jyn〉.

Since QHnxn ∈ Hn and vn = (Jxn − Jyn)/rn, it follows that 〈yn − QHnxn, Jxn −
Jyn〉 ≥ 0 and therefore that φ(QHnxn, xn) ≥ φ(yn, xn). Further, from xn+1 ∈ Hn,
we have φ(xn+1, xn) ≥ φ(QHnxn, xn), which yields φ(xn+1, xn) ≥ φ(QHnxn, xn) ≥
φ(yn, xn). Then it follows from φ(xn+1, xn) → 0 that φ(yn, xn) → 0. Consequently,
by Proposition 2, we have xn − yn → 0, which implies yni ⇀ w. Moreover, since J is
uniformly norm-to-norm continuous on bounded subsets and lim infn→∞ rn > 0, we
obtain

vn =
1

rn
(Jxn − Jyn)→ 0.

It follows from vn ∈ Tyn and the monotonicity of T that

〈z − yn, z
′ − vn〉 ≥ 0

for all z ∈ D(T ) and z′ ∈ Tz. This implies that

〈z − w, z′〉 ≥ 0

for all z ∈ D(T ) and z′ ∈ Tz. Therefore, from the maximality of T , we obtain
w ∈ T−10.

Let w∗ = QT−10x0. From xn+1 = QHn∩Wnx0 and w∗ ∈ T−10 ⊂ Hn ∩Wn, we
have φ(xn+1, x0) ≤ φ(w∗, x0). Then

φ(xn, w
∗) = φ(xn, x0) + φ(x0, w

∗)− 2〈xn − x0, Jw
∗ − Jx0〉

≤ φ(w∗, x0) + φ(x0, w
∗)− 2〈xn − x0, Jw

∗ − Jx0〉,
which yields

lim sup
i→∞

φ(xni , w
∗) ≤ φ(w∗, x0) + φ(x0, w

∗)− 2〈w − x0, Jw
∗ − Jx0〉.

From Proposition 4,

φ(w∗, x0) + φ(x0, w
∗)− 2〈w − x0, Jw

∗ − Jx0〉
= 2(‖w∗‖2 − 〈w∗, Jx0〉 − 〈w, Jw∗〉+ 〈w, Jx0〉)
= 2〈w − w∗, Jx0 − Jw∗〉
≤ 0.

Then we obtain lim supi→∞ φ(xni , w
∗) ≤ 0 and hence φ(xni , w

∗)→ 0. It follows from
Proposition 2 that xni → w∗. This means that the whole sequence {xn} converges
weakly to w∗ and that each weakly convergent subsequence of {xn} converges strongly
to w∗. Therefore {xn} converges strongly to w∗ = QT−10x0.
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4. Application. Let f : E → (−∞,∞] be a proper convex lower semicontinuous
function. Then the subdifferential ∂f of f is defined by

∂f(z) = {v ∈ E∗ : f(y) ≥ f(z) + 〈y − z, v〉,∀y ∈ E} for all z ∈ E.

Using Theorem 8, we consider the problem of finding a minimizer of the function f .
Theorem 9. Let E be a uniformly convex and uniformly smooth Banach space,

and let f : E → (−∞,∞] be a proper convex lower semicontinuous function. Assume
that {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0, and let {xn} be the sequence generated
by 



x0 ∈ E,

yn = argmin
z∈E

{
f(z) +

1

2rn
‖z‖2 − 1

rn
〈z, Jxn〉

}
,

0 = vn +
1

rn
(Jyn − Jxn), vn ∈ ∂f(yn),

Hn = {z ∈ E : 〈z − yn, vn〉 ≤ 0},
Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = QHn∩Wnx0, n = 0, 1, 2, . . . .

If (∂f)−10 
= φ, then {xn} converges strongly to the minimizer of f .
Proof. Since f : E → (−∞,∞] is a proper convex lower semicontinuous function,

by Rockafellar [8], the subdifferential ∂f of f is a maximal monotone operator. We
also know that

yn = argmin
z∈E

{
f(z) +

1

2rn
‖z‖2 − 1

rn
〈z, Jxn〉

}

is equivalent to

0 ∈ ∂f(yn) +
1

rn
Jyn − 1

rn
Jxn.

Thus, we have vn ∈ ∂f(yn) such that 0 = vn + (Jyn − Jxn)/rn. Using Theorem 8,
we get the conclusion.

Acknowledgment. The authors would like to express their sincere thanks to
the anonymous referee for his careful reading of the manuscript and his corrections
and suggestions.
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Abstract. Dual characterizations of the containment of a closed convex set, defined by infi-
nite convex constraints, in an arbitrary polyhedral set, in a reverse-convex set, defined by convex
constraints, and in another convex set, defined by finite convex constraints, are given. A special
case of these dual characterizations has played a key role in generating knowledge-based support
vector machine classifiers which are powerful tools in data classification and mining. The conditions
in these dual characterizations reduce to simple nonasymptotic conditions under Slater’s constraint
qualification.

Key words. set containment, infinite convex constraints, reverse-convex set, knowledge-based
classifier, conjugate function
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1. Introduction. Dual conditions, which characterize the containment of a
closed convex set, defined by linear or convex constraints, in a closed half-space,
have played an important role in optimization and mathematical programming (see
[4, 8, 9, 16, 17, 21]). Such conditions, which appear in the generalizations of Farkas’
lemma [9, 15, 21] and in solvability theorems [17, 18], have been used to develop
Lagrange multipliers [8, 9, 10], dual optimization problems [4, 18], and minimax the-
ories in optimization [11, 17, 24]. Recently, these dual characterizations have been
employed in knowledge-based data classification [3, 22].

Data classification is one of the primary methods in data mining [1] which ad-
dresses the question of how best to use historical data to improve the process of
making decisions and to discover general regularities [23]. There has been widespread
interest in support vector machines (SVMs) [25], which are powerful tools for data
classification [2, 23]. The principal aim in data classification is to accurately discrim-
inate between two training sets of data by means of a linear separating plane. In the
case where the training data are linearly inseparable, the SVM approach attempts the
discrimination by solving a mathematical programming problem. The SVM mathe-
matical programs are usually formulated as convex quadratic programming problems.
The knowledge-based SVM formulation generates separating planes by training on
data and utilizing prior knowledge (see [3]). Using a dual characterization of the con-
tainment of a polyhedral set in a closed half-space, Fung, Mangasarian, and Shavlik
[3] have incorporated prior knowledge (represented by a polyhedral set) into a SVM
mathematical program that can be solved efficiently.

Motivated by more general nonpolyhedral knowledge-based data classification,
Mangasarian [22] has recently established elegant dual characterizations of the con-
tainment of a polyhedral set in an arbitrary polyhedral set, and of a general closed
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convex set, defined by finite convex constraints, in a reverse-convex set [21], defined
by convex constraints. Stimulated by the work of Mangasarian [22], we establish in
this paper dual characterizations of the containment of a closed convex set, defined
by infinite convex constraints, in an arbitrary polyhedral set, in a reverse-convex set,
defined by convex constraints, and in another convex set, defined by finite convex
constraints. The dual characterizations are given in terms of epigraphs of conjugate
functions.

The outline of the paper is as follows. In section 2, we present definitions and
preliminary results that will be used later in the paper. In section 3, we derive
(asymptotic) dual characterizations of the set containment of a closed convex set,
defined by infinite convex constraints, in an arbitrary polyhedral set. In section 4,
we provide general characterizations of the set containment of a closed convex set,
defined by infinite convex constraints, in a reverse-convex set, and in a not necessarily
polyhedral convex set. In the appendix, we provide technical results that ensure
nonasymptotic dual conditions characterizing the set containments.

2. Notation and preliminaries. In this section, we describe our notation and
present preliminary results. Throughout the paper, all vectors will be column vectors.
A column vector will be transposed to a raw vector by a prime ′. The inner product
of two vectors u and x in the n-dimensional real space R

n will be denoted by u(x) :=
u′x = 〈u, x〉. The null vector in R

n will be denoted by 0. For a set D ⊆ R
n we shall

denote the closure and convex hull of D by clD and coD, respectively. Similarly, we
shall denote the cone generated by the set D and the closed convex cone generated by
the set D by coneD =

⋃
α≥0 αD and cl (conecoD) = cl(

⋃
α≥0 α coD), respectively.

For the set D, the support function σD is defined by

σD(u) = sup
x∈D

u(x)

and the indicator function δD is defined by

δD(x) =

{
0, x ∈ D,
+∞, x /∈ D.

(2.1)

Unless stated otherwise, we assume throughout that f : R
n → R ∪ {+∞} is a

proper convex function. Then the conjugate function of f (in particular, the Fenchel–
Moreau conjugate), f∗ : R

n → R ∪ {+∞}, is defined by

f∗(u) = sup
x∈dom f

{u(x)− f(x)},

where the domain of f is given by dom f :={x ∈ R
n : f(x) < +∞} . The epigraph of

f , epi f , is defined by

epi f = {(x, r) ∈ R
n × R : x ∈ dom f, f(x) ≤ r}.

Recall that, for ε ≥ 0, the ε-subdifferential of f at a ∈ dom f is defined as the
nonempty closed convex set

∂εf(a) = {v ∈ R
n | f(x)− f(a) ≥ v(x− a)− ε ∀x ∈ dom f}.

Note that ⋂
ε>0

∂εf(a) = ∂f(a).
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If dom f = R
n and if f is actually sublinear (i.e., convex and positively homogeneous

of degree one), then ∂εf(0) = ∂f(0) for all ε ≥ 0, where ∂f(0) is the usual convex
subdifferential of f at 0.

The following elementary result, given recently in [14], illustrates the connection
between the ε-subdifferential of a convex function f and the epigraph of its conjugate
f∗.
Proposition 2.1. Let f : R

n → R ∪ {+∞} be a lower semicontinuous convex
function, and let a ∈ dom f . Then

epi f∗ =
⋃
ε≥0

{(v, ε+ v(a)− f(a)) : v ∈ ∂εf(a)}.

Proof. Let (u, r) ∈ epi f∗. Then f∗(u) ≤ r. From the definition of conjugate
function, for each x ∈ dom f , f∗(u) ≥ u(x) − f(x); thus, for each x ∈ dom f ,
u(x) − f(x) ≤ r. Let ε0 = r + f(a) − u(a) ≥ 0. So r = ε0 − f(a) + u(a). Now, for
each x ∈ dom f ,

f(x)− f(a) ≥ u(x)− r − f(a) = u(x− a)− ε0;

thus, u ∈ ∂ε0f(a). Hence,

epi f∗ ⊂ K :=
⋃
ε≥0

{(v, ε+ v(a)− f(a)) : v ∈ ∂εf(a)}.

Conversely, let (u, r) ∈ K. Then there exists ε0 ≥ 0 such that u ∈ ∂ε0f(a) and
r = −f(a) + u(a) + ε0. This gives us f∗(u) + f(a) − u(a) ≤ ε0, which means that
f∗(u) ≤ ε0 + u(a)− f(a); thus, f∗(u) ≤ r, and so (u, r) ∈ epi f∗.

It is easy to see from Proposition 2.1 that if dom f = R
n and if f is sublinear,

then epi f∗ = ∂f(0) × R+, where R+ is the set of all nonnegative numbers in R.
Moreover, if f̃ (x) = f(x)− k, x ∈ R

n, k ∈ R, then epi f̃∗ = ∂f(0)× [k, ∞).
It is also worth noting that if f : R

n → R ∪ {+∞} is a lower semicontinuous
convex function, then {0} × R+ ⊂ cl (cone epi f∗). Indeed, (0, 1) ∈ cl (cone epi f∗).
Otherwise, by the (Hahn–Banach) separation theorem there is an (x, α) ∈ R

n × R

such that

α < 0 and (∀(u, γ) ∈ cl (cone epi f∗)) u(x) + γα ≥ 0.

Now, for each u ∈ dom f and each ε > 0, (u, f∗(u) + ε) ∈ cl (cone epi f∗), and so
u(x) + (f∗(u) + ε)α ≥ 0; thus, 1

ε (u(x) + f∗(u)) + α ≥ 0. Letting ε→∞, we get that
α ≥ 0, which is a contradiction.

For a detailed discussion of conjugate functions and ε-subdifferentials, see [12, 13].
See also [8, 16, 18] for recent applications of these concepts in global optimization.

3. Containment of a convex set in a polyhedral set. In this section, we
present a characterization of the containment of a closed convex set, defined by infinite
convex constraints, in an arbitrary polyhedral set. We begin by deriving the following
technical result, which plays a key role in characterizing set containments later in the
paper.
Lemma 3.1. Let f : R

n → R∪{+∞} be a lower semicontinuous convex function,
and let A = {x ∈ R

n : f(x) ≤ 0}. Then the following statements hold:
(a) A �= ∅ ⇔ (0, −1) /∈ cl (cone epi f∗).
(b) A �= ∅ ⇒ epi σA = cl (cone epi f∗).
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Proof. (a) Observe first that if A is nonempty, then it follows from the definitions
of A and δA that δA(x) ≥ f(x) for each x ∈ R

n, and so δ∗A(u) ≤ f∗(u) for each u ∈ R
n.

Since δ∗A is a lower semicontinuous sublinear function and δ∗A = σA, we obtain the
inclusion that cl (cone epi f∗) ⊆ epi σA.

Now, by the definition of epi σA, (0, −1) /∈ epi σA, and so by the above inclusion
(0, −1) /∈ cl (cone epi f∗). Conversely, suppose that (0, −1) /∈ cl (cone epi f∗). Then
by the separation theorem there is an (x, α) ∈ R

n × R such that

−α < 0 and (∀(u, γ) ∈ cl (cone epi f∗)) u(x) + γα ≥ 0.

Let x̄ = x/α. Then for each (u, γ) ∈ cl (cone epi f∗), u(x̄) + γ ≥ 0. Thus, for any
u ∈ dom f∗, u(x̄)+f∗(u) ≥ 0; thus, u(−x̄)−f∗(u) ≤ 0. Hence, f(−x̄) = supu [u(−x̄)−
f∗(u)] ≤ 0, and so A �= ∅.

(b) We have already established in part (a) that cl (cone epi f∗) ⊆ epi σA. To
see the converse inclusion, let (u, α) /∈ cl (cone epi f∗). Since A �= ∅, (0,−1) /∈
cl (cone epi f∗). Then

B ∩ (cl (cone epi f∗)) = ∅,
where

B := {δ(u, α) + (1− δ)(0,−1) ∈ R
n × R | δ ∈ [0, 1]}

is the convex compact set which is the segment connecting the points (u, α) and
(0,−1). Otherwise, there is δ ∈ (0, 1) such that

δ(u, α) + (1− δ)(0,−1) ∈ cl (cone epi f∗) ;

thus, (δu, δα− (1− δ)) ∈ cl (cone epi f∗). Since {0}×R+ ⊂ cl (cone epi f∗), it follows
that

(δu, δα) = (δu, δα− (1− δ)) + (0, 1− δ) ∈ cl (cone epi f∗) ,

which implies that

(u, α) =
1

δ
(δu, δα) ∈ cl (cone epi f∗) .

This is a contradiction.
Now by the separation theorem there is (x, β) ∈ R

n×R, (x, β) �= (0, 0), such that

[δ(u, α) + (1− δ)(0,−1)](x, β) < 0 ∀δ ∈ [0, 1],

v(x) + γβ ≥ 0 ∀(v, γ) ∈ cl (cone epi f∗) .

By letting δ = 0 we get that β > 0, and by letting δ = 1 we obtain u(x) + αβ < 0;
thus, u(− x

β ) > α. Moreover, for each v ∈ dom f∗, one has

v

(
−x

β

)
− f∗(v) ≤ 0 ∀v ∈ dom f∗,

since (v, f∗(v)) ∈ cl (cone epi f∗). Hence,

f

(
−x

β

)
= f∗∗

(
−x

β

)
= sup

v

[
v

(
−x

β

)
− f∗(v)

]
≤ 0,
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Fig. 1. Containment of the convex set A = {x | gi(x) ≤ 0, i ∈ I} in the polyhedral set
B = {x | ui(x) ≤ αi, i = 1, 2, . . . ,m}, where gi : R

n → R is a convex function and ui ∈ R
n and

αi ∈ R.

which means that − x
β ∈ A. This, together with the condition that u(− x

β ) > α, gives

(u, α) /∈ epi σA, and so conclusion (b) follows.
It should be noted that the conditions required in Lemma 3.1 do not, in general,

guarantee that the set cone epi f∗ is closed. To ensure closure we require additional
regularity conditions on f . As shown in the appendix, if f : R

n → R is a convex
function with {x ∈ R

n : f(x) < 0} nonempty and f∗(0) < +∞, then cone epi f∗ is
closed.

We now apply Lemma 3.1 to obtain a dual characterization of a set containment
of a nonempty closed convex set, defined by infinite convex constraints, in an arbitrary
polyhedral set, depicted in Figure 1.
Theorem 3.2. Let I be an arbitrary index set. For each i ∈ I, let gi : R

n → R

be a convex function, and for j = 1, 2, . . . ,m, let uj ∈ R
n and αj ∈ R. Let {x ∈ R

n :
(∀i ∈ I) gi(x) ≤ 0} be nonempty. Then the following statements are equivalent:

(i) {x ∈ R
n : (∀i ∈ I) gi(x) ≤ 0} ⊆ {x ∈ R

n : uj(x) ≤ αj , j = 1, 2, . . . ,m}.
(ii) For j = 1, 2, . . . ,m,

(uj , αj) ∈ cl

(
coneco

⋃
i∈I

epi g∗i

)
.

Proof. Let f = supi∈I gi. Then f is clearly lower semicontinuous and convex.
Let A = {x ∈ R

n : f(x) ≤ 0}. Then (i) is equivalent to the condition that for
j = 1, 2, . . . ,m, (uj , αj) ∈ epi σA, which is in turn equivalent to the inclusion that,
for j = 1, 2, . . . ,m, (uj , αj) ∈ cl (cone epi f∗) by Lemma 3.1(b). The conclusion will
follow if we show that

epi f∗ = cl co
⋃
i∈I

epi g∗i .
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Now from [13, Chap. X, Thms. 2.4.4 and 1.3.5] we see that

f∗ = (supi gi)
∗ = co (inf g∗i ),

where co (inf g∗i ) is the closed convex hull of inf g∗i (i.e., the largest lower semicontin-
uous convex function minorizing inf g∗i ) and

epi f∗ = epi (co (inf g∗i )) = cl co (epi (inf g∗i )) = cl co
⋃
i∈I

epi g∗i .

We now obtain from Theorem 3.2 a useful dual characterization of the contain-
ment of a closed convex set defined by infinite linear constraints in an arbitrary poly-
hedral set. Recall that the characteristic cone M [4, 6], generated by the set of affine
functions ai(x)− bi, i ∈ I , where ai ∈ R

n and bi ∈ R, is given by

M = coneco

({(
ai
bi

)
: i ∈ I

}
∪
(

0
1

))
.

The characteristic cone is closed if, for instance, the set {x ∈ R
n : (∀i ∈ I) ai(x) < bi}

is nonempty and the set {(
ai
bi

)
: i ∈ I

}
is compact (see Cor. 2.4.2 of [20]). For general conditions which ensure closure of the
characteristic cone, see [6, 7].
Corollary 3.3. Let I be an arbitrary index set. For each i ∈ I, let ai ∈ R

n and
bi ∈ R. For j = 1, 2, . . . ,m, let uj ∈ R

n and αj ∈ R. Let {x ∈ R
n : (∀i ∈ I) ai(x) ≤ bi}

be nonempty. Then the following statements are equivalent:
(i) {x ∈ R

n : (∀i ∈ I) ai(x) ≤ bi} ⊆ {x ∈ R
n : uj(x) ≤ αj , j = 1, 2, . . . ,m }.

(ii) For j = 1, 2, . . . ,m,

(
uj

αj

)
∈ cl

(
coneco

({(
ai
bi

)
: i ∈ I

}
∪
(

0
1

)))
.

Proof. Let gi(x) = ai(x)− bi, and let f = supi∈I gi. Then the set

A := {x ∈ R
n : f(x) ≤ 0} = {x ∈ R

n : (∀i ∈ I) ai(x) ≤ bi}.
It is known (see, for instance, [5, Thm. 2.1, (iii)]) that

epi σA = cl(M).

Now Lemma 3.1(b) gives us that cl (cone epi f∗) = cl(M), and so

cl

(
coneco

⋃
i∈I

epi g∗i

)
= cl(M).(3.1)

Hence, the conclusion follows from Theorem 3.2.
It is worth noting that, in the case where gi(x) = ai(x)− bi,

cl

(
coneco

⋃
i∈I

epi g∗i

)
= cl

(
coneco

({(
ai
bi

)
: i ∈ I

}
∪
(

0
1

)))
.
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However, the preceding equality may not be valid without the closure on each side
of the equality. To see this, let I = {1} and define g1 : R→ R by g1(x) = a1(x)−b1 =
x− 1. Then epi g∗1 = {(1, α) : α ≥ 1} and(

0
1

)
/∈ conecoepi g∗1 = coneco

⋃
i∈I

epi g∗i .

In this particular case,

coneco
⋃
i∈I

epi g∗i �= coneco

({(
ai
bi

)
: i ∈ I

}
∪
(

0
1

))
.1

Now from Corollary 3.3 we deduce Mangasarian’s [22] matrix version of the char-
acterization of the containment of a nonempty polyhedral set in an arbitrary polyhe-
dral set.
Corollary 3.4. Let B ∈ R

k×n, C ∈ R
m×n, b ∈ R

k, and α ∈ R
m. Let {x ∈ R

n :
Bx ≤ b} be nonempty. Then the following statements are equivalent:

(i) {x ∈ R
n : Bx ≤ b} ⊆ {x ∈ R

n : Cx ≥ α}.
(ii) There exists a matrix Λ ∈ R

m×k such that C + ΛB = 0, α+ Λb ≤ 0, Λ ≥ 0.
Proof. Let I = {1, 2, . . . , k}, and let

B =


 a′1

..
a′k


 , C =


 c′1

..
c′m


 , b =


 b1

..
bk


 , and α =


 α1

..
αm


 ,

where, for each i ∈ I and j = 1, 2, . . . ,m, ai ∈ R
n, cj ∈ R

n, bi ∈ R, and αj ∈ R.
Then,

Bx =


 a1(x)

..
ak(x)


 , Cx =


 c1(x)

..
cm(x)


 ,

{x ∈ R
n : Bx ≤ b} = {x ∈ R

n : (∀i ∈ I) ai(x) ≤ bi},
and

{x ∈ R
n : Cx ≥ α} = {x ∈ R

n : −cj(x) ≤ −αj , j = 1, 2, . . . ,m} .
So (i) is equivalent to the inclusion

{x ∈ R
n : (∀i ∈ I) ai(x) ≤ bi} ⊆ {x ∈ R

n : −cj(x) ≤ −αj , j = 1, 2, . . . ,m }.
Since in this case, where I is finite, the characteristic cone

coneco

({(
ai
bi

)
: i ∈ I

}
∪
(

0
1

))
is closed, it follows from Corollary 3.3 that (i) is equivalent to the condition that for
j = 1, 2, . . . ,m, ( −cj

−αj
)
∈ coneco

({(
ai
bi

)
: i ∈ I

}
∪
(

0
1

))
.

1Thanks to an anonymous referee for providing the example.
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This means that for each j = 1, 2, . . . ,m, there exist µj ≥ 0, λ1
j ≥ 0, . . . , λk+1

j ≥ 0

such that
∑k+1
r=1 λ

r
j = 1 and

−cj = µjλ
1
ja1+ +µjλ

k
j ak + µjλ

k+1
j .0,

−αj = µjλ
1
jb1+ +µjλ

k
j bk + µjλ

k+1
j .1;

that is, for each j = 1, 2, . . . ,m,

cj + µjλ
1
ja1+ +µjλ

k
j ak = 0,

αj + µjλ
1
jb1+ +µjλ

k
j bk = −µjλk+1

j ≤ 0.

Defining Λ ∈ R
m×k by

Λ =




µ1λ
1
1 . . µ1λ

k
1

. . . .

. . . .
µmλ1

m . . µmλkm


 ,

we see that the preceding system is equivalent to the statement that there exists
Λ ≥ 0 such that C + ΛB = 0, α + Λb ≤ 0. Hence, the statements (i) and (ii) are
equivalent.

As illustrated in Mangasarian [22], it is easy to see from linear programming
duality that the statements (i) and (ii) are also equivalent to the condition that for
each j = 1, 2, . . . ,m, the m linear programs are solvable and satisfy

min
x
{(cj(x)− αj) : Bx ≤ b} ≥ 0.

Note that the dual conditions developed in Theorem 3.2 are in general asymptotic
conditions. In the following, by application of a Slater-type regularity condition, we
will obtain a nonasymptotic condition characterizing the set containment.
Theorem 3.5. Let I = {1, 2, . . . , n}. For each i ∈ I, let gi : R

n → R be a convex
function. For j = 1, 2, . . . ,m, let 0 �= uj ∈ R

n and αj ∈ R. Let the set

{x ∈ R
n : (∀i ∈ I) gi(x) < 0}

be nonempty. Then the following statements are equivalent:
(i) {x ∈ R

n : (∀i ∈ I) gi(x) ≤ 0} ⊆ {x ∈ R
n : uj(x) ≤ αj , j = 1, 2, . . . ,m }.

(ii) For j = 1, 2, . . . ,m, (uj , αj) ∈ coneco
⋃
i∈I epi g

∗
i .

Proof ((i) ⇔ (ii)). Let f = supi∈I gi, and let A = {x ∈ R
n : f(x) ≤ 0}. Then by

the finiteness of I, f is continuous and finite-valued. In addition,

epi f∗ = co
⋃
i∈I

epi g∗i .

Clearly, (i) is equivalent to (uj , αj) ∈ epi σA for j = 1, 2, . . . ,m. Now from Lemma
3.1 we see that epi σA = clcone epi f∗, and so (uj , αj) ∈ clcone epi f∗. Since uj �= 0,
it follows from Proposition 6.1 in the appendix that

(uj , αj) ∈ clcone epi f∗ ⇐⇒ (uj , αj) ∈ cone epi f∗.

This shows that the statement (i) is equivalent to the condition that for j = 1, 2, . . . ,m,

(uj , αj) ∈ coneco
⋃
i∈I

epi g∗i .
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Fig. 2. Containment of the convex set A = {x | gi(x) ≤ 0, i ∈ I} in the reverse-convex set
B = {x | hj(x) ≥ 0, j = 1, 2, . . . ,m}, where gi, hj : R

n → R are convex functions.

4. Containment of a convex set in a reverse-convex set. In this section, we
present dual characterizations of set containments involving not necessarily polyhedral
sets. First, we examine a characterization of the set containment of a nonempty closed
convex set, defined by convex constraints, in a reverse-convex set, defined by convex
constraints, depicted in Figure 2 as follows.
Theorem 4.1. Let I be an arbitrary index set. For each i ∈ I, let gi : R

n → R

be a convex function with {x ∈ R
n : (∀i ∈ I) gi(x) ≤ 0} nonempty. For each j =

1, 2, . . . ,m, let hj : R
n → R be a convex function. Then the following statements are

equivalent:
(i) {x ∈ R

n : (∀i ∈ I) gi(x) ≤ 0} ⊆ {x ∈ R
n : hj(x) ≥ 0, j = 1, 2, . . . ,m}.

(ii) For j = 1, 2, . . . ,m, 0 ∈ epi h∗
j + cl (coneco

⋃
i∈I epi g∗i ).

Proof ((ii)⇒(i)). Let f = supi∈I gi, and let A = {x ∈ R
n : f(x) ≤ 0}. Then A

is a closed and convex set. Since, by Lemma 3.1, epi σA = cl (cone epi f∗), for each
j, there exists (uj , aj) ∈ epiσA such that −(uj , aj) ∈ epi h∗

j . This gives us if x ∈ A,
then uj(x) ≤ σA(uj) ≤ aj and −aj ≥ −uj(x)− hj(x). So hj(x) ≥ 0.

(i)⇒(ii). Let Hj = {x ∈ R
n : hj(x) ≥ 0}. Clearly, A ⊆ Hj if and only if

hj + δA ≥ 0. Then it follows from the definition of epi (hj + δA)
∗ and the inequality,

hj + δA ≥ 0, that

0 ∈ epi (hj + δA)
∗.(4.1)

Since hj is continuous and convex on R
n and A is nonempty, it follows that

(hj + δA)
∗ = h∗

j

+∨ δ∗A,

where
+∨ denotes the inf-convolution (see Thm. 2.3.2, Chap. X of [12, 13]). Moreover,

for each x ∈ dom (h∗
j

+∨ δ∗A), there exist x1, x2 ∈ R
n and x1 + x2 = x such that

(h∗
j

+∨ δ∗A)(x) = h∗
j (x1) + δ∗A(x2).
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Now it is easy to show that

epi (h∗
j

+∨ δ∗A) = epi h∗
j + epi δ∗A,

and so

epi (hj + δA)
∗ = epi h∗

j + epi δ∗A.

As δ∗A = σA, it follows from Lemma 3.1 that

epi δ∗A = cl

(
coneco

⋃
i∈I

epi g∗i

)
.(4.2)

Hence, for each j = 1, 2, . . . ,m, if A ⊆ Hj , then

0 ∈ epih∗
j + cl

(
coneco

⋃
i∈I

epi g∗i

)
,

and so (ii) holds.
If, for instance, for each j, hj : R

n → R is a subaffine function of the form

hj(x) = sj(x)− αj ,

where sj is a sublinear function and αj ∈ R, then condition (ii) of Theorem 4.1
collapses to the following:

For j = 1, 2, . . . ,m, 0 ∈ ∂sj(0)× [αj , ∞) + cl

(
coneco

⋃
i∈I

epi g∗i

)
.

The following theorem extends the characterization of the set containment of a
convex set, defined by infinite convex constraints, in a reverse-convex set to a set
involving difference of convex functions.
Theorem 4.2. Let I be an arbitrary index set. For each i ∈ I, let gi : R

n → R

be a convex function with {x ∈ R
n : (∀i ∈ I) gi(x) ≤ 0} nonempty. For each j =

1, 2, . . . ,m, let fj , hj : R
n → R be convex functions. Then the following statements

are equivalent:
(i) {x ∈ R

n : (∀i ∈ I) gi(x) ≤ 0} ⊆ {x ∈ R
n : fj(x) − hj(x) ≤ 0, j =

1, 2, . . . ,m}.
(ii) For j = 1, 2, . . . ,m, epi f∗

j ⊆ epi h∗
j + cl

(
coneco

⋃
i∈I epi g

∗
i

)
.

Proof. Since for each x ∈ R
n, fj(x) = f∗∗

j (x), it follows from the definition of
epi f∗

j that (i) is equivalent to the implication that, for each j = 1, 2, . . . ,m, and for
each (uj , αj) ∈ epi f∗

j ,

(∀i ∈ I) gi(x) ≤ 0⇒ hj(x) + αj − uj(x) ≥ 0.

Now, for (uj , αj) ∈ epi f∗
j , define the convex function w by w(x) = hj(x)+αj−uj(x).

Thus, (i) is equivalent to the inclusion that for (uj , αj) ∈ epi f∗
j ,

{x ∈ R
n : (∀i ∈ I) gi(x) ≤ 0} ⊆ {x ∈ R

n : w(x) ≥ 0} .
Hence, Theorem 4.1 gives us that the preceding inclusion is equivalent to the following
statement: For j = 1, 2, . . . ,m,

∀(uj , αj) ∈ epi f∗
j , (uj , αj) ∈ epih∗

j + cl

(
coneco

⋃
i∈I

epi g∗i

)
,

which is equivalent to (ii).
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As a special case of Theorem 4.2, we obtain a characterization for the set con-
tainment of a convex set, defined by infinite convex constraints, in another convex
set, defined by finite convex constraints.
Corollary 4.3. Let I be an arbitrary index set. For each i ∈ I, let gi : R

n → R

be a convex function with {x ∈ R
n : (∀i ∈ I) gi(x) ≤ 0} nonempty. For j = 1, 2, . . . ,m,

let fj : R
n → R be a convex function. Then the following statements are equivalent:

(i) {x ∈ R
n : (∀i ∈ I) gi(x) ≤ 0} ⊆ {x ∈ R

n : fj(x) ≤ 0, j = 1, 2, . . . ,m}.
(ii) (

⋃m
j=1 epi f

∗
j ) ⊆ cl

(
coneco

⋃
i∈I epi g

∗
i

)
.

Proof. The equivalence of (i) and (ii) follows from the conclusion of the previous
theorem by taking hj = 0 for each j = 1, 2, . . . ,m.

5. Conclusion and further research. In this paper, we have presented geo-
metric dual conditions characterizing the set containment of a closed convex set, de-
fined by infinite convex constraints, in an arbitrary polyhedral set, in a reverse-convex
set, defined by convex constraints, and in another convex set, defined by finite convex
constraints. Our approach, which employs epigraphs of conjugate functions, provides
a unified scheme for characterizing set containment properties for polyhedral, convex,
and certain nonconvex sets. Moreover, the containment of a convex set defined by
infinite linear constraints in an arbitrary polyhedral set is characterized in terms of
the characteristic cone generated by the affine functions involved in the constraints.
The characteristic cone has played a central role in semi-infinite linear programming.
These results with the application of semi-infinite linear programming duality may
lead to more computationally tractable characterizations of the set containment by
the solution of semi-infinite linear programs and merit further research.

On the other hand, characterizations of set containment properties were motivated
by the recent work of knowledge-based SVM classifiers (see [3, 22]), which generate
separating planes [19] by training on labeled data and utilizing prior knowledge. Using
dual conditions which characterize the containment of a polyhedral set in a closed
half-space, Fung, Mangasarian, and Shavlik [3] have incorporated prior knowledge
in the form of polyhedral sets into SVM classifiers by adding the dual conditions as
constraints to the SVM mathematical program. The results of this paper may possibly
lead to SVM classifiers which incorporate more general knowledge sets represented
by infinite system of linear (or convex) constraints. The applications of our dual
characterizations to data classification will be treated elsewhere.

6. Appendix: Regularity conditions. In this section, we provide regularity
conditions that ensure nonasymptotic dual conditions characterizing the set contain-
ments. The following proposition plays a useful role in establishing such regularity
conditions.
Proposition 6.1. Let f : R

n → R be a convex function, and let A = {x ∈ R
n :

f(x) ≤ 0}. If the interior of A, int(A), is nonempty, then

clcone epi f∗\{0× R} = cone epi f∗\{0× R}.
Proof. The conclusion will follow if we show that (u, α) ∈ cl cone epi f∗ with

u �= 0 implies (u, α) ∈ cone epi f∗. To see this, let (un, αn) ∈ cone epi f∗ and
(un, αn)→ (u, α). Thus there are λn ≥ 0 and (hn, µn) in epi f∗ such that un = λnhn
and αn = λnµn. We now consider the following cases.

Case 1. 0 < inf λn ≤ sup λn < +∞. Without loss of generality, we can assume
λn → λ with 0 < λ < +∞. Clearly, there are h ∈ R

n and µ ∈ R such that

hn → h and µn → µ.
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Since f∗ is lower semicontinuous, it follows that (h, µ) ∈ epi f∗ and (u, α) = λ(h, µ) ∈
cone epi f∗.

Case 2. sup λn = +∞. Without loss of generality, we can assume that λn → +∞.
In this case, hn → 0 and by the lower semicontinuous of f∗ we have

lim inf µn ≥ lim inf f∗(hn) ≥ f∗(0).

The existence of x0 ∈ R
n with f(x0) < 0 (i.e., x0 ∈ int(A)) ensures that f∗(0) > 0.

So lim inf µn > 0. Hence we have αn = λnµn → +∞. However, αn → α < +∞, and
we have a contradiction. Thus sup λn = +∞ is impossible.

Case 3. λn → 0. Since u �= 0 and λnhn → u, it follows that ||hn|| → +∞. Now,
by the finiteness of f , we have that f∗ is 1-coercive (see [12, 13]); hence

αn = λnµn = µn
‖un‖
‖hn‖ ≥

‖un‖f∗(hn)
‖hn‖ → +∞.

However, αn → α < +∞, and once again we have a contradiction. Hence
λn �→ 0.
Proposition 6.2. If f : R

n → R is convex with {x ∈ R
n : f(x) < 0} nonempty

and if f∗(0) < +∞, then cone epi f∗ is closed.
Proof. Let (un, αn) ∈ cone epi f∗ and (un, αn) → (u, α). If u �= 0, then it

follows that (u, α) ∈ cone epi f∗ by Proposition 6.1. Hence consider the case where
u = 0. In this case, if α = 0, then (u, α) = (0, 0) ∈ cone epi f∗, so we first consider
the case in which α > 0. Since f∗(0) is finite, (0, f∗(0)) ∈ epi f∗. Moreover, since
f∗(0) is positive, (0, α) ∈ cone epi f∗ for any α > 0. Thus (u, α) ∈ cone epi f∗.
Now consider the case in which α < 0. Since (0, α) ∈ cl cone epi f∗ and this is a
cone, (0,−1) ∈ cl cone epi f∗ in this case. However, by Lemma 3.1, this condition is
equivalent to the inconsistency of f(x) ≤ 0. This is a contradiction so that α < 0 is
not possible. Hence cone epi f∗ is closed.

Note that the existence of x0 ∈ R
n with f(x0) < 0 implies that 0 < f∗(0).

Further, the assumption that f∗(0) < +∞ (i.e., 0 ∈ dom f∗) is equivalent to the
assumption that f is bounded below on R

n. Thus if f : R
n → R is a convex function

with {x ∈ R
n : f(x) < 0} nonempty and f is bounded below on R

n, then cone epi f∗

is closed. For related results on regularity conditions, see [8, 10, 12, 13].
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Abstract. For any function f from R to R, one can define a corresponding function on the
space of n × n (block-diagonal) real symmetric matrices by applying f to the eigenvalues of the
spectral decomposition. We show that this matrix-valued function inherits from f the properties of
continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continu-
ous differentiability, as well as (ρ-order) semismoothness. Our analysis uses results from nonsmooth
analysis as well as perturbation theory for the spectral decomposition of symmetric matrices. We
also apply our results to the semidefinite complementarity problem, addressing some basic issues in
the analysis of smoothing/semismooth Newton methods for solving this problem.

Key words. symmetric-matrix-valued function, nonsmooth analysis, semismooth function,
semidefinite complementarity problem
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1. Introduction. Let X denote the space of n× n block-diagonal real matrices
with m blocks of size n1, . . . , nm, respectively (the blocks are fixed). Thus, X is closed
under matrix addition x+ y, multiplication xy, transposition xT , and inversion x−1,
where x, y ∈ X . We endow X with the inner product and norm

〈x, y〉 := tr[xT y], ‖x‖ :=
√
〈x, x〉,

where x, y ∈ X and tr[·] denotes the matrix trace, i.e., tr[x] =
∑n

i=1 xii. [‖x‖ is the
Frobenius norm of x and “ := ” means “define”]. Let O denote the set of p ∈ X
that are orthogonal, i.e., pT = p−1. Let S denote the subspace comprising those
x ∈ X that are symmetric, i.e., xT = x. This is a subspace of R

n×n of dimension
n1(n1 + 1)/2 + · · ·+ nm(nm + 1)/2.

For any x ∈ S, its (repeated) eigenvalues λ1, . . . , λn are real and it admits a
spectral decomposition of the form

x = p diag[λ1, . . . , λn]p
T(1)

for some p ∈ O, where diag[λ1, . . . , λn] denotes the n×n diagonal matrix with its ith
diagonal entry λi. Then, for any function f : R → R, we can define a corresponding
function f

✷

: S → S [1], [13] by

f
✷

(x) := p diag[f(λ1), . . . , f(λn)]p
T .(2)
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It is known that f
✷

(x) is well defined (independent of the ordering of λ1, . . . , λn and
the choice of p) and belongs to S; see [1, Chap. V] and [13, sec. 6.2]. Moreover, a
result of Daleckii and Krein showed that if f is continuously differentiable, then f

✷

is
differentiable (in the Fréchet sense) and its Jacobian ∇f✷

(x) has a simple formula—
see [1, Thm. V.3.3]; also see Proposition 4.3. In fact, in this case f

✷

is continuously
differentiable—see [8, Lem. 4]; also see Proposition 4.4. Much of the studies on
f

✷

has focused on conditions for it to be operator monotone or operator convex—see
[1], [13], and the references cited in [1, pp. 150–151] for discussions. We note that [8]
swaps p and pT in (1)–(2), but this is only a difference in notation.

The above results show that f
✷

inherits smoothness properties from f . In this pa-
per, we make an analogous study for properties associated with nonsmooth functions.
In particular, we show that the properties of continuity, strict continuity, Lipschitz
continuity, directional differentiability, differentiability, continuous differentiability,
and (ρ-order) semismoothness are each inherited by f

✷

from f (see Propositions 4.1,
4.2, 4.3, 4.4, 4.6, 4.8, and 4.10). Our ρ-order semismoothness result generalizes a re-
cent result of Sun and Sun [29] which considers the case of the absolute-value function
f(ξ) = |ξ| and shows that f

✷

(x) = (x2)1/2 is strongly semismooth. In the case where
f = g′ for some function g, our differentiability and continuous differentiability results
can also be inferred from a recent work of Lewis and Sendov [19] on twice differen-
tiability of spectral functions. Our proofs use a combination of results from matrix
analysis and nonsmooth analysis—in particular, perturbation results for spectral de-
composition [17, 28] and properties of the generalized gradient ∂f (in the Clarke sense)
[9, 26], as well as a lemma from [29]. The property of semismoothness, as introduced
by Mifflin [20] for functionals and scalar-valued functions and further extended by Qi
and Sun [23] for vector-valued functions, is of particular interest due to the key role it
plays in the superlinear convergence analysis of certain generalized Newton methods
[14, 21, 23]. In section 5, we formulate the semidefinite complementarity problem
(SDCP) as a nonsmooth equation

H(x, y) = 0,

where H : S × S → S × S is a certain semismooth function. This facilitates the
development of nonsmooth Newton methods for solving the SDCP—a contrast to
existing smoothing or differentiable merit function approaches [8, 27, 30, 32]. We show
that H, together with the Chen–Mangasarian class of smoothing functions studied in
[8], satisfies the Jacobian Consistence Property introduced in [6]. This paves a way for
extending some smoothing methods for nonlinear complementarity problems (NCPs),
such as those studied by Chen, Qi, and Sun [6] and later by Kanzow and Pieper [16],
to the SDCP. Final remarks are given in section 6.

Our notations are, for the most part, consistent with those used in [8, 30]. If
F : S → S is differentiable (in the Fréchet sense) at x ∈ S, we denote by ∇F (x) the
Jacobian of F at x ∈ S, viewed as a linear mapping from S to S. Throughout, ‖ · ‖
denotes the Frobenius norm for matrices and the 2-norm for vectors. For any linear
mappingM : S → S, we denote its operator norm ‖|M‖| := max‖x‖=1 ‖Mx‖. For any
x ∈ S, we denote by xij the (i, j)th entry of x. We use ◦ to denote the Hardamard
product, i.e.,

x ◦ y = [xijyij ]
n
i,j=1.

For any x ∈ S and scalar γ > 0, we denote the γ-ball around x by B(x, γ) := {y ∈
S | ‖y− x‖ ≤ γ}. We write z = O(α) (respectively, z = o(α)), with α ∈ R and z ∈ S,
to mean ‖z‖/|α| is uniformly bounded (respectively, tends to zero) as α→ 0.
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2. Basic properties. In this section, we review some basic properties of vector-
valued functions. These properties are continuity, (local) Lipschitz continuity, direc-
tional differentiability, continuous differentiability, as well as (ρ-order) semismooth-
ness. We note that S is a vector space of dimension n1(n1+1)/2+ · · ·+nm(nm+1)/2,
so these properties apply to the symmetric-matrix-valued function f

✷

defined by (1)–
(2). In what follows, we consider a function/mapping F : R

k → R

.

We say F is continuous at x ∈ R
k if

F (y)→ F (x) as y → x;

and F is continuous if F is continuous at every x ∈ R
k. F is strictly continuous (also

called “locally Lipschitz continuous”) at x ∈ R
k [26, Chap. 9] if there exist scalars

κ > 0 and δ > 0 such that

‖F (y)− F (z)‖ ≤ κ‖y − z‖ ∀y, z ∈ R
k with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ;

and F is strictly continuous if F is strictly continuous at every x ∈ R
k. If δ can be

taken to be ∞, then F is Lipschitz continuous with Lipschitz constant κ. Define the
function lipF : R

k → [0,∞] by

lipF (x) := lim sup
y,z→x

y �=z

‖F (y)− F (z)‖
‖y − z‖ .

Then F is strictly continuous at x if and only if lipF (x) is finite.
We say F is directionally differentiable at x ∈ R

k if

F ′(x;h) := lim
t→0+

F (x+ th)− F (x)
t

exists ∀h ∈ R
k;

and F is directionally differentiable if F is directionally differentiable at every x ∈ R
k.

F is differentiable (in the Fréchet sense) at x ∈ R
k if there exists a linear mapping

∇F (x) : R
k → R


 such that

F (x+ h)− F (x)−∇F (x)h = o(‖h‖).

We say that F is continuously differentiable if F is differentiable at every x ∈ R
k and

∇F is continuous.
If F is strictly continuous, then F is almost everywhere differentiable by Rademacher’s

theorem—see [9] and [26, sec. 9J]. Then the generalized Jacobian ∂F (x) of F at x
(in the Clarke sense) can be defined as the convex hull of the generalized Jacobian
∂BF (x) (in the Bouligand sense), where

∂BF (x) :=

{
lim
xj→x

∇F (xj)∣∣F is differentiable at xj ∈ R
k

}
.

In [26, Chap. 9], the case of � = 1 is considered and the notations “∇̄” and “∂̄” are
used instead of, respectively, “∂B” and “∂.”

Assume F : R
k → R


 is strictly continuous. We say F is semismooth at x if F is
directionally differentiable at x and, for any V ∈ ∂F (x+ h), we have

F (x+ h)− F (x)− V h = o(‖h‖).
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We say F is ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at x and, for
any V ∈ ∂F (x+ h), we have

F (x+ h)− F (x)− V h = O(‖h‖1+ρ).

We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth (re-
spectively, ρ-order semismooth) at every x ∈ R

k. We say F is strongly semismooth if
it is 1-order semismooth. Convex functions and piecewise continuously differentiable
functions are examples of semismooth functions. The composition of two (respectively,
ρ-order) semismooth functions is also a (respectively, ρ-order) semismooth function.
The property of semismoothness plays an important role in nonsmooth Newton meth-
ods [23] as well as in some smoothing methods mentioned in the previous section. For
extensive discussions of semismooth functions, see [10, 20, 23].

3. Perturbation results for symmetric matrices. In this section, we review
some useful perturbation results for the spectral decomposition of real symmetric
matrices. These results will be used in the next section to analyze properties of the
symmetric-matrix-valued function f

✷

given by (1)–(2). The main sources of reference
for the results are Chapter 2 of the book by Kato [17] and the book by Stewart and
Sun [28].

Let D denote the space of n×n real diagonal matrices with nonincreasing diagonal
entries. For each x ∈ S, define the two sets of orthonormal eigenvectors of x by

Ox := {p ∈ O| pTxp ∈ D}, Õx := {p ∈ O| pTxp is diagonal }.
Clearly, Ox and Õx are nonempty for each x ∈ S. The following key lemma, proved
in [8, Lem. 3] using results from [28, pp. 92 and 250], shows that Ox is locally upper
Lipschitzian with respect to x.

Lemma 3.1. For any x ∈ S, there exist scalars η > 0 and ε > 0 such that

min
p∈Ox

‖p− q‖ ≤ η‖x− y‖ ∀ y ∈ B(x, ε), ∀q ∈ Oy.(3)

We will also need the following perturbation result of Weyl for eigenvalues of
symmetric matrices—see [1, p. 63] and [12, p. 367].

Lemma 3.2. Let λ1 ≥ · · · ≥ λn be the eigenvalues of any x ∈ S and µ1 ≥ · · · ≥ µn
be the eigenvalues of any y ∈ S. Then

|λi − µi| ≤ ‖x− y‖ ∀ i = 1, . . . , n.

Lastly, for our differential analysis, we need the following classical result [25, Thm.
1] showing that, for any x ∈ S and any h ∈ S, the orthonormal eigenvectors of x+ th
may be chosen to be analytic in t. As is remarked in [17, p. 122], the existence of
such orthonormal eigenvectors depending smoothly on t is one of the most remarkable
results in the analytic perturbation theory for symmetric operators.

Lemma 3.3. For any x ∈ S and any h ∈ S, there exist p(t) ∈ Õx+th, t ∈ R,
whose entries are power series in t, convergent in a neighborhood of t = 0.

4. Continuity and differential properties of symmetric-matrix func-
tions. In this section, we use the results from section 3 to show that if f : R → R

has the property of continuity (respectively, strict continuity, Lipschitz continuity,
directional differentiability, semismoothness, ρ-order semismoothness), then so does
the symmetric-matrix-valued function f

✷

defined by (1)–(2). We begin with the con-
tinuity result below.

Proposition 4.1. For any f : R→ R, the following results hold:
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(a) f
✷

is continuous at an x ∈ S with eigenvalues λ1, . . . , λn if and only if f is
continuous at λ1, . . . , λn.

(b) f
✷

is continuous if and only if f is continuous.
Proof. (a) Fix any x ∈ S with eigenvalues λ1, . . . , λn. Assume without loss of

generality that λ1 ≥ · · · ≥ λn.
Suppose f is continuous at λ1, . . . , λn. By Lemma 3.1, there exist η > 0 and ε > 0

such that (3) holds. Then, for any y ∈ B(x, ε) and any q ∈ Oy, there exists p ∈ Ox

satisfying

‖p− q‖ ≤ η‖x− y‖.
Moreover,

qT yq = diag[µ1, . . . , µn], pTxp = diag[λ1, . . . , λn],

where µ1 ≥ · · · ≥ µn and λ1 ≥ · · · ≥ λn are the eigenvalues of y and x, respectively.
Since f is continuous and, by Lemma 3.2, |λi − µi| ≤ ‖x − y‖ for all i, we have
f(µi)→ f(λi) and ‖p− q‖ → 0 as y → x. Then (2) yields

f
✷

(x)− f✷

(y) = p diag[f(λ1), . . . , f(λn)]p
T − q diag[f(µ1), . . . , f(µn)]q

T

= p diag[f(λ1)− f(µ1), . . . , f(λn)− f(µn)]pT
+(p− q)diag[f(µ1), . . . , f(µn)]p

T + q diag[f(µ1), . . . , f(µn)](p− q)T
→ 0 as y → x.

Thus f
✷

is continuous at x.
Suppose instead f

✷

is continuous at x. Fix any p ∈ Ox. Then for each i ∈
{1, . . . , n}, p diag[λ1, . . . , µi, . . . , λn]p

T → x as µi → λi so that f
✷

(p diag[λ1, . . . , µi, . . . ,
λn]p

T ) → f
✷

(x) or, equivalently, f(µi) → f(λi). Thus f is continuous at λi for
i = 1, . . . , n.

(b) is an immediate consequence of (a).
For any λ = (λ1, . . . , λn)

T ∈ R
n, any h ∈ S, and any function f : R → R that is

directionally differentiable at λ1, . . . , λn, we denote by f
[1](λ;h) the n× n symmetric

matrix whose (i, j)th entry is

f [1](λ;h)ij :=



f(λi)− f(λj)
λi − λj hij if λi �= λj ,

f ′(λi;hij) if λi = λj .
(4)

By using Lemma 3.3, we have the directional differentiability result below.
Proposition 4.2. For any f : R→ R, the following results hold:
(a) f

✷

is directionally differentiable at an x ∈ S with eigenvalues λ1, . . . , λn if
and only if f is directionally differentiable at λ1, . . . , λn. Moreover, for any
nonzero h ∈ S,

(f
✷

)′(x;h) = p f [1](λ; pThp) pT(5)

for some p ∈ O such that (pThp)ij = 0 whenever λi = λj and i �= j.
(b) f

✷

is directionally differentiable if and only if f is directionally differentiable.
Proof. (a) Fix any x ∈ S. By Lemma 3.3, for any nonzero h ∈ S there exist

p(t) ∈ Õx(t), t ∈ R, whose entries are power series in t, convergent in a neighborhood
I of t = 0, where x(t) := x+ th. Then the corresponding eigenvalues

λi(t) := [p(t)Tx(t)p(t)]ii, i = 1, . . . , n,
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are also power series in t, convergent for t ∈ I, and satisfy

x(t) = p(t)diag[λ1(t), . . . , λn(t)]p(t)
T .(6)

Multiplying both sides of (6) by p(t)T from the left and then differentiating both sides
with respect to t using the product rule, we obtain

p′(t)Tx(t) + p(t)Tx′(t) = Λ′(t)p(t)T + Λ(t)p′(t)T ,

where Λ(t) := diag[λ1(t), . . . , λn(t)] and Λ′(t) := diag[λ′1(t), . . . , λ
′
n(t)]. Multiplying

both sides on the right by p(t) and using x′(t) = h, we arrive at

Λ′(t)− ĥ(t) = p̂(t)Λ(t)− Λ(t)p̂(t),

where ĥ(t) := p(t)Thp(t) and p̂(t) := p′(t)T p(t). This implies

ĥ(t)ii = λ
′
i(t), i = 1, . . . , n,(7)

ĥ(t)ij = p̂(t)ij(λi(t)− λj(t)) ∀i �= j.(8)

For simplicity, let

p := p(0), p′ := p′(0), p̂ := p̂(0),
λi := λi(0), λ′i := λ

′
i(0), i = 1, . . . , n.

Assume f is directionally differentiable at λ1, . . . , λn. Then we have from λi(t) =
λi + tλ

′
i + o(t) and the positive homogeneity property of f ′(λi; ·) the expansions

p(t) = p+ tp′ + o(t) and f(λi(t)) = f(λi) + tf
′(λi;λ′i) + o(t), i = 1, . . . , n.

Also, p(·) and p′(·) are continuous at t = 0 so that limt→0 ĥ(t) = p
Thp and limt→0 p̂(t) =

p̂. Using (2) and the above expansions, we then obtain

f
✷

(x+ th) = p(t)diag[f(λ1(t)), . . . , f(λn(t))]p(t)
T

= p diag[f(λ1), . . . , f(λn)]p
T + t

(
p diag[f ′(λ1;λ

′
1), . . . , f

′(λn;λ′n)]p
T
)

+ t
(
p′diag[f(λ1), . . . , f(λn)]p

T + p diag[f(λ1), . . . , f(λn)](p
′)T
)
+ o(t)

= f
✷

(x) + tp diag[f ′(λ1;λ
′
1), . . . , f

′(λn;λ′n)]p
T

+ tp
(
p̂Tdiag[f(λ1), . . . , f(λn)] + diag[f(λ1), . . . , f(λn)]p̂

)
pT + o(t)

= f
✷

(x) + tp diag[f ′(λ1;λ
′
1), . . . , f

′(λn;λ′n)]p
T

+ tp [(f(λi)− f(λj))p̂ij ]ni,j=1 p
T + o(t)

= f
✷

(x) + tp f [1](λ; pThp) pT + o(t),(9)

where the fourth equality follows from p(t)T p(t) = I so that p′(t)T p(t)+p(t)T p′(t) = 0,

implying p̂T = −p̂; the last equality follows from (7) so that λ′i = ĥ(0)ii = (pThp)ii
for i = 1, . . . , n, and from (8) so that p̂ij = (pThp)ij/(λi − λj) whenever λi �= λj and
(pThp)ij = 0 whenever λi = λj and i �= j. It follows from (9) that

(f
✷

)′(x;h) = lim
t→0+

f
✷

(x+ th)− f✷

(x)

t
= p f [1](λ; pThp) pT .

This proves (5).
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Suppose instead f
✷

is directionally differentiable at x with eigenvalues λ1, . . . , λn.
Fix any p ∈ O satisfying x = p diag[λ1, . . . , λn]p

T . For each i ∈ {1, . . . , n} and
each di ∈ R, let h := p diag[0, . . . , di, . . . , 0]p

T . Then, it is readily verified that
diag[0, . . . , f ′(λi; di), . . . , 0] = pT (f

✷

)′(x;h)p, so f ′(λi; di) is well defined.
(b) is an immediate consequence of (a).
We note that p in the formula for (f

✷

)′(x;h) depends on h as well as x. In fact,
the proof of Proposition 4.2 shows that a necessary condition for p(t) to comprise
orthonormal eigenvectors of x+ th that are differentiable at t = 0 is that (pThp)ij = 0
whenever λi = λj and i �= j, where p := p(0). In the case of f(·) = | · |, directional
differentiability of f

✷

has been shown by Sun and Sun [29, Lem. 4.8]. In addition,
they derived a formula for the directional derivative (f

✷

)′(x;h) that also involves
p ∈ Ox but with p independent of h.

For any λ = (λ1, . . . , λn)
T ∈ R

n and any function f : R→ R that is differentiable
at λ1, . . . , λn, we denote by f

[1](λ) the n×n symmetric matrix whose (i, j)th entry is

f [1](λ)ij =



f(λi)− f(λj)
λi − λj if λi �= λj ,

f ′(λi) if λi = λj .

f [1](λ) is called the first divided difference of f at λ [1, p. 123]. The next proposition,
based on Lemmas 3.1, 3.2, and the proof idea for Proposition 4.10, characterizes when
f

✷

is differentiable (in the Fréchet sense) at an x ∈ S. This characterization will be
needed for computing the generalized Jacobian of a strictly continuous f

✷

and for
analyzing semismooth property of f

✷

. We note that the proof idea of Proposition
4.2 cannot be used here because the p(t) constructed in that proof depends on h. In
particular, it is not known if ‖p′′(t)‖ is uniformly bounded in ‖h‖.

Proposition 4.3. For any f : R→ R, the following results hold:
(a) f

✷

is differentiable at an x ∈ S with eigenvalues λ1, . . . , λn if and only if f
is differentiable at λ1, . . . , λn. Moreover, ∇f✷

(x) is given by

∇f✷

(x)h = p(f [1](λ) ◦ (pThp))pT ∀h ∈ S(10)

for any p ∈ O satisfying x = p diag[λ1, . . . , λn]p
T , where λ = (λ1, . . . , λn)

T .
(b) f

✷

is differentiable if and only if f is differentiable.
Proof. (a) Fix any x ∈ S and let λ1, . . . , λn denote the eigenvalues of x.
It is known [1] that the right-hand side of (10) is independent of the choice of

p ∈ O satisfying pTxp = diag[λ1, . . . , λn]. This can be seen by noting that any two
such p are related by a right multiplication by a block diagonal o ∈ O whose diagonal
blocks correspond to the distinct eigenvalues of x, while the entries of f [1](λ) in each
of these diagonal blocks, as well as in each of the off-diagonal blocks, are equal.

Suppose f : R → R is differentiable at λ1, . . . , λn. We can without loss of gener-
ality assume that λ1 ≥ · · · ≥ λn. By Lemma 3.1, there exist scalars η > 0 and ε > 0
such that (3) holds. We will show that, for any h ∈ S with ‖h‖ ≤ ε, there exists
p ∈ Ox such that

f
✷

(x+ h)− f✷

(x)− p(c ◦ (pThp))pT = o(‖h‖),(11)

where c := f [1](λ) and o(·), O(·) depend on f and x only. This together with the
independence of the third term on p would show that f

✷

is differentiable at x and
∇f✷

(x) is given by (10) for any p ∈ O satisfying pTxp = diag[λ1, . . . , λn]. Let
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µ1 ≥ · · · ≥ µn denote the eigenvalues of x+h, and choose any q ∈ Ox+h. Then, there
exists p ∈ Ox satisfying

‖p− q‖ ≤ η‖h‖.

For simplicity, let r denote the left-hand side of (11), i.e.,

r := f
✷

(x+ h)− f✷

(x)− p(c ◦ (pThp))pT ,

and denote r̃ = pT rp and h̃ := pThp. Then we have from (2) that

r̃ = oT bo− a− c ◦ h̃,(12)

where for simplicity we also denote a := diag[f(λ1), . . . , f(λn)], b := diag[f(µ1), . . . , f(µn)],
and o := qT p.

Since diag[λ1, . . . , λn] = p
Txp = oTdiag[µ1, . . . , µn]o− h̃, we have

n∑
k=1

okiokjµk − h̃ij =
{
λi if i = j;
0 else,

i, j = 1, . . . , n.(13)

Since o = qT p = (q − p)T p+ I and ‖p− q‖ ≤ η‖h‖, it follows that

oij = O(‖h‖) ∀i �= j.(14)

Since p, q ∈ O, we have o ∈ O so that oT o = I. This implies

1 = o2ii +
∑
k �=i

o2ki = o
2
ii +O(‖h‖2), i = 1, . . . , n,(15)

0 = oiioij + ojiojj +
∑
k �=i,j

okiokj = oiioij + ojiojj +O(‖h‖2) ∀i �= j.(16)

We now show that r̃ = o(‖h‖) which, by ‖r‖ = ‖r̃‖, would prove (11). For any
i ∈ {1, . . . , n}, we have from (12) and (13) that

r̃ii =

n∑
k=1

o2kif(µk)− f(λi)− f ′(λi)h̃ii

=

n∑
k=1

o2kif(µk)− f(λi)− f ′(λi)
(
−λi +

n∑
k=1

o2kiµk

)

= o2iif(µi)− f(λi)− f ′(λi)(−λi + o2iiµi) +O(‖h‖2)
= (1 +O(‖h‖2))f(µi)− f(λi)− f ′(λi)(−λi + (1 +O(‖h‖2))µi) +O(‖h‖2)
= f(µi)− f(λi)− f ′(λi)(µi − λi) +O(‖h‖2),

where the third and fifth equalities use (14), (15), and the local boundedness of f .
Since f is differentiable at λ1, . . . , λn and Lemma 3.2 implies |µi − λi| ≤ ‖h‖, the
right-hand side is o(‖h‖). For any i, j ∈ {1, . . . , n} with i �= j, we have from (12) and
(13) that
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r̃ij =

n∑
k=1

okiokjf(µk)− cij h̃ij

=

n∑
k=1

okiokjf(µk)− cij
n∑

k=1

okiokjµk

= oiioijf(µi) + ojiojjf(µj)− cij(oiioijµi + ojiojjµj) +O(‖h‖2)
= (oiioij + ojiojj)f(µi) + ojiojj(f(µj)− f(µi))
− cij ((oiioij + ojiojj)µi + ojiojj(µj − µi)) +O(‖h‖2)

= ojiojj (f(µj)− f(µi)− cij(µj − µi)) +O(‖h‖2),
where the third and fifth equalities use (14), (16), and the local boundedness of f .
Thus, if λi = λj , the preceding relation together with (14) and |µi − λi| ≤ ‖h‖,
|µj − λj | ≤ ‖h‖ and the continuity of f at λi yields

r̃ij = o(‖h‖).
If λi �= λj , then cij = (f(λj)− f(λi))/(λj − λi) and the preceding relation yields

r̃ij = ojiojj

(
f(µj)− f(µi)− f(λj)− f(λi)

λj − λi (µj − µi)
)
+O(‖h‖2)

= ojiojj

(
f(µj)− f(µi)− (f(λj)− f(λi))

(
1 +

µj − µi − λj + λi
λj − λi

))
+O(‖h‖2).

This together with (14) and |µi − λi| ≤ ‖h‖, |µj − λj | ≤ ‖h‖ and the continuity of f
at λi and λj yields r̃ij = o(‖h‖).

Suppose f : R → R is not differentiable at λi for some i ∈ {1, . . . , n}. Then,
either f is not directionally differentiable at λi or, if it is, the right- and left-directional
derivatives of f at λi are unequal. In either case, this means there exist two sequences
of nonzero scalars tν and τν , ν = 1, 2, . . ., converging to zero, such that the limits

lim
ν→∞

f(λi + t
ν)− f(λi)
tν

, lim
ν→∞

f(λi + τ
ν)− f(λi)
τν

exist (possibly −∞ or ∞) and either are unequal or are both equal to ∞ or are
both equal to −∞. Consider any p ∈ O satisfying x = p diag[λ1, . . . , λn]p

T . Then,
letting h = pdiag[0, . . . , 1, . . . , 0]pT with the 1 being in the ith diagonal, we obtain
that x+ th = pdiag[λ1, . . . , λi + t, . . . , λn]p

T for all t ∈ R and hence

lim
ν→∞

f
✷

(x+ tνh)− f✷

(x)

tν
= p diag

[
0, . . . , 0, lim

ν→∞
f(λi + t

ν)− f(λi)
tν

, 0, . . . , 0

]
pT ,

lim
ν→∞

f
✷

(x+ τνh)− f✷

(x)

τν
= p diag

[
0, . . . , 0, lim

ν→∞
f(λi + τ

ν)− f(λi)
τν

, 0, . . . , 0

]
pT .

It follows that these two limits either are unequal or are both nonfinite. Thus f is
not differentiable at x.

(b) is an immediate consequence of (a).
Notice that the Jacobian formula (10) is independent of the choice of p and the

ordering of λ1, . . . , λn. This formula, together with the differentiability of f
✷

, has
been shown under the assumption that f is continuously differentiable—see Theorem
V.3.3 and p. 150 of [1]. Proposition 4.3(b) improves on this result by assuming only
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that f is differentiable. After obtaining Proposition 4.3, we learned of a closely related
recent result of Lewis and Sendov [19] on twice differentiability of spectral functions.
In particular, in the case where f = g′ for some differentiable g : R → R, applying
Theorem 3.3 in [19] to the spectral function

x �→ g(λ1) + · · ·+ g(λn),

where λ1, . . . , λn are the eigenvalues of x ∈ S in nonincreasing order, yields Proposi-
tion 4.3(a). For general f , however, Proposition 4.3(a) appears to be distinct from the
results in [19]. In particular, for any λ1, . . . , λn ∈ R, there exists a function f : R→ R

that is differentiable at λ1, . . . , λn and yet there is no differentiable function g : R→ R

satisfying g′ = f . One such f is

f(ξ) :=

{
(ξ − λ1)

2 if ξ ∈ {α1, α2, . . .};
0 else,

where α1, α2, . . . is any sequence of points in R\{λ1, . . . , λn} converging to λ1. Here f
is differentiable at λ1, . . . , λn, but the range of f is not an interval, so f cannot be the
derivative of a differentiable function. Specifically, a theorem of Darboux says that, for
any open interval I containing a closed interval [α, β] and any differentiable g : I → R,
either [g′(α), g′(β)] or [g′(β), g′(α)] is a subset of {g′(ξ)|α ≤ ξ ≤ β}. (This can be seen
by defining, for each η strictly between g′(α) and g′(β), the function h(ξ) := g(ξ)−ηξ.
Then h is differentiable on [α, β] and h′(α) = g′(α) − η, h′(β) = g′(β) − η have
opposite signs. Thus, h has an extremum at some ξ∗ in (α, β), implying h′(ξ∗) = 0 or,
equivalently, g′(ξ∗) = η.) In fact, any function that coincides with f in a neighborhood
of λ1 cannot be the derivative of a differentiable function. Also, we speculate that the
proof idea for Proposition 4.3(a) may be useful for second-or-higher order analysis of
spectral functions.

We next have the following continuous differentiability result based on [8, Lem.
4], which in turn was proven using Lemmas 3.1 and 3.2.

Proposition 4.4. For any f : R → R, the matrix function f
✷

is continuously
differentiable if and only if f is continuously differentiable.

Proof. The “if” direction was proven in [8, Lem. 4]. To see the “only if” di-
rection, suppose f

✷

is continuously differentiable. Then it follows from (10)and the
definition of f [1](·) that f ′(λ1) is well defined for all λ1 ∈ R. Moreover, ∇f✷

(diag[λ1, 0,
. . . , 0]) is continuous in λ1 or, equivalently, f ′(λ1) is continuous in λ1.

Similar to Proposition 4.3, it can be seen that, in the case where f = g′ for some
differentiable g, Proposition 4.4 is a special case of Theorem 4.2 in [19]. We next have
the following result of Rockafellar and Wets [26, Thm. 9.67] which we need to analyze
strict continuity and Lipschitz continuity of f

✷

.
Lemma 4.5. Suppose f : R

k → R is strictly continuous. Then there exist contin-
uously differentiable functions fν : R

k → R, ν = 1, 2, . . ., converging uniformly to f
on any compact set C in R

k and satisfying

‖|∇fν(x)‖| ≤ sup
x∈C

lipf(x) ∀x ∈ C, ∀ν.

Lemma 4.5 is slightly different from the original version given in [26, Thm. 9.67].
In particular, the second part of Lemma 4.5 is not contained in [26, Thm. 9.67], but
it is implicit in its proof. This second part is needed to show that strict continuity
and Lipschitz continuity are inherited by f

✷

from f . We note that the proof idea
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of Proposition 4.1 cannot be used because eigenvectors do not behave in a (locally)
Lipschitzian manner.

Proposition 4.6. For any f : R→ R, the following results hold:
(a) f

✷

is strictly continuous at an x ∈ S with eigenvalues λ1, . . . , λn if and only
if f is strictly continuous at λ1, . . . , λn.

(b) f
✷

is strictly continuous if and only if f is strictly continuous.
(c) f

✷

is Lipschitz continuous with constant κ if and only if f is Lipschitz con-
tinuous with constant κ.

Proof. (a) Fix any x ∈ S with eigenvalues λ1, . . . , λn.
Suppose f is strictly continuous at λ1, . . . , λn. Then, there exist scalars κi > 0

and δi > 0, i = 1, . . . , n, such that

|f(ξ)− f(ζ)| ≤ κi|ξ − ζ| ∀ξ, ζ ∈ [λi − δi, λi + δi]

for all i. Let f̃ : R→ R be the function that coincides with f on

C :=

n⋃
i=1

[λi − δi, λi + δi]

and, on R \C, is defined by linearly extrapolating f at the boundary points of C. In
other words, if ξ < ζ are two points in C such that (ξ, ζ) ⊆ R\C, then f̃(tξ+(1−t)ζ) =
tf(ξ)+ (1− t)f(ζ) for all t ∈ (0, 1). If ξ is a point in C such that (ξ,∞) ⊆ R\C, then
f̃(ζ) = f(ξ) for all ζ > ξ. Similarly, if ζ is a point in C such that (−∞, ζ) ⊆ R \ C,
then f̃(ξ) = f(ζ) for all ξ < ζ. By definition, f̃ is Lipschitz continuous, so there exists
a scalar κ > 0 such that lipf(ξ) ≤ κ for all ξ ∈ R. Since C is compact, by Lemma 4.5,
there exist continuously differentiable functions fν : R → R, ν = 1, 2, . . ., converging
uniformly to f̃ and satisfying

|(fν)′(ξ)| ≤ κ ∀ ξ ∈ C, ∀ν.(17)

Denote δ := mini=1,...,n δi. By Lemma 3.2, C contains all the eigenvalues of y ∈
B(x, δ). Moreover, for any w ∈ B(x, δ), any q ∈ O, and any µ = (µ1, . . . , µn)

T ∈ R
n

such that w = q diag[µ1, . . . , µn]q
T , we have

‖(fν)✷

(w)− f✷

(w)‖ = ‖q diag[fν(µ1), . . . , f
ν(µn)]q

T − q diag[f(µ1), . . . , f(µn)]q
T ‖

= ‖diag[fν(µ1)− f(µ1), . . . , f
ν(µn)− f(µn)]‖,

where the second equality uses qT q = I and properties of the Frobenius norm ‖ · ‖.
Since {fν}∞1 converges uniformly to f on C, this shows that {(fν)✷}∞1 converges
uniformly to f

✷

on B(x, δ). Moreover, it follows from (10) that, for all w ∈ B(x, δ)
and all ν, we have

‖|∇(fν)✷

(w)‖| = sup
‖h‖=1

‖∇(fν)✷

(w)h‖

= sup
‖h‖=1

‖q((fν)[1](µ) ◦ (qThq))qT ‖

= sup
‖h‖=1

‖(fν)[1](µ) ◦ (qThq)‖

≤ sup
‖h‖=1

κ‖qThq‖ = κ,(18)
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where the first inequality uses (17). Fix any y, z ∈ B(x, δ) with y �= z. Since {(fν)✷}∞1
converges uniformly to f

✷

on B(x, δ), then for any ε > 0 there exists an integer ν0
such that for all ν ≥ ν0 we have

‖(fν)✷

(w)− f✷

(w)‖ ≤ ε‖y − z‖ ∀w ∈ B(x, δ).
Since fν is continuously differentiable, then Proposition 4.4 shows that (fν)

✷

is con-
tinuously differentiable for all ν. Then, by (18) and the mean-value theorem for
continuously differentiable functions, we have

‖f✷

(y)− f✷

(z)‖
= ‖f✷

(y)− (fν)
✷

(y) + (fν)
✷

(y)− (fν)
✷

(z) + (fν)
✷

(z)− f✷

(z)‖
≤ ‖f✷

(y)− (fν)
✷

(y)‖+ ‖(fν)✷

(y)− (fν)
✷

(z)‖+ ‖(fν)✷

(z)− f✷

(z)‖

≤ 2ε‖y − z‖+ ‖
∫ 1

0

∇(fν)✷

(z + τ(y − z))(y − z)dτ‖
≤ (κ+ 2ε)‖y − z‖.

Since y, z ∈ B(x, δ) and ε is arbitrary, this yields

‖f✷

(y)− f✷

(z)‖ ≤ κ‖y − z‖ ∀y, z ∈ B(x, δ).(19)

Thus f
✷

is strictly continuous at x.
Suppose instead that f

✷

is strictly continuous at x. Then, there exist scalars κ > 0
and δ > 0 such that (19) holds. Choose any p ∈ O satisfying x = p diag[λ1, . . . , λn]p

T .
For any i ∈ {1, . . . , n} and any ψ, ζ ∈ [λi − δ, λi + δ], let

y := p diag[λ1, . . . , λi−1, ψ, λi+1, . . . , λn]p
T ,

z := p diag[λ1, . . . , λi−1, ζ, λi+1, . . . , λn]p
T .

Then, ‖y − x‖ = |ψ − λi| ≤ δ and ‖z − x‖ = |ζ − λi| ≤ δ, so it follows from (2) and
(19) that

|f(ψ)− f(ζ)| = ‖f✷

(y)− f✷

(z)‖
≤ κ‖y − z‖
= κ|ψ − ζ|.

This shows that f is strictly continuous at λi for i = 1, . . . , n.
(b) is an immediate consequence of (a).
(c) Suppose f is Lipschitz continuous with constant κ. Then lipf(ξ) ≤ κ for all

ξ ∈ R. Fix any x ∈ S with eigenvalues λ1, . . . , λn. For any scalar δ > 0, define the
compact set C in R by

C :=

n⋃
i=1

[λi − δ, λi + δ].

Then, as in the proof of (a), we obtain that (19) holds. Since the choice of δ > 0 was
arbitrary and κ is independent of δ, this implies

‖f✷

(y)− f✷

(z)‖ ≤ κ‖y − z‖ ∀y, z ∈ S.
Hence f

✷

is Lipschitz continuous with constant κ.
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Suppose instead that f
✷

is Lipschitz continuous with constant κ > 0. Then, for
any ξ, ζ ∈ R we have

|f(ξ)− f(ζ)| = ‖f✷

(diag[ξ, 0, . . . , 0])− f✷

(diag[ζ, 0, . . . , 0])‖
≤ κ‖diag[ξ, 0, . . . , 0]− diag[ζ, 0, . . . , 0]‖
= κ|ξ − ζ|,

so f is Lipschitz continuous with constant κ.
Suppose f : R→ R is strictly continuous. Then, by Proposition 4.6, f

✷

is strictly
continuous. Hence ∂Bf

✷

(x) is well defined for all x ∈ S. The following lemma studies
the structure of this generalized Jacobian.

Lemma 4.7. Let f : R → R be strictly continuous. Then, for any x ∈ S,
the generalized Jacobian ∂Bf

✷

(x) is well defined and nonempty. Moreover, for any
V ∈ ∂Bf✷

(x), we have

V h = p((pThp) ◦ c)pT ∀h ∈ S(20)

for some p ∈ Ox, c ∈ S, and λ1, . . . , λn ∈ R satisfying x = p diag[λ1, . . . , λn]p
T and

cij =
f(λi)− f(λj)
λi − λj whenever λi �= λj , cij ∈ ∂f(λi) whenever λi = λj .

(21)
Proof. Fix any V ∈ ∂Bf✷

(x). According to the definition of ∂Bf
✷

(x), there
exists a sequence {xk} ⊆ S converging to x such that f is differentiable at xk for all k
and limk→∞∇f✷

(xk) = V . Let λ1 ≥ · · · ≥ λn and λk1 ≥ · · · ≥ λkn be the eigenvalues
of x and xk, k = 1, 2, . . ., respectively. Choose any pk ∈ Oxk . By Lemma 3.1, there
exist η and p̃k ∈ Ox satisfying

‖pk − p̃k‖ ≤ η‖x− xk‖
for all k sufficiently large. By passing to a subsequence if necessary, we assume that
this holds for all k and that pk converges. By Lemma 3.2, we have λki → λi for
i = 1, . . . , n. Denote λk = (λk1 , . . . , λ

k
n)

T . Then we have from Proposition 4.3 that f
is differentiable at λk1 , . . . , λ

k
n and

∇f✷

(xk)h = pk((p
T
k hpk) ◦ ck)pTk ∀h ∈ S,(22)

where we denote ck := f [1](λk). Thus,

ckij =

{
(f(λki )− f(λkj ))/(λki − λkj ) if λki �= λkj ;
f ′(λki ) if λki = λ

k
j .

(23)

Since f is strictly continuous, then {ckij} is bounded for all i, j. By passing to a

subsequence if necessary, we can assume that {ckij} converges to some cij ∈ R for all
i, j. For each i, we have

ckii = f
′(λki )→ cii ∈ ∂Bf(λi).

For each i �= j such that λi �= λj , we have λki �= λkj for all k sufficiently large and
hence

ckij =
f(λki )− f(λkj )
λki − λkj

→ cij =
f(λi)− f(λj)
λi − λj .
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For each i �= j such that λi = λj , if λ
k
i = λ

k
j for k along some subsequence, then

ckij = f
′(λki )→ cii ∈ ∂Bf(λi) ⊆ ∂f(λi);

if λki �= λkj for k along some subsequence, then a mean-value theorem of Lebourg [9,
Proposition 2.3.7], [26, Thm. 10.48] yields

ckij =
f(λki )− f(λkj )
λki − λkj

∈ ∂f(λ̂kij)

for some λ̂kij in the interval between λ
k
i and λ

k
j . Since f is strictly continuous so that ∂f

is upper semicontinuous [9, Proposition 2.1.5] or, equivalently, outer semicontinuous

[26, Proposition 8.7], this together with λ̂kij → λi = λj implies the limit of {ckij}
belongs to ∂f(λi). Thus, taking limits on both sides of (22) and using the above
results, we obtain (20) and (21) for some p ∈ Ox and c ∈ S, which are the limit of
{pk} and {f [1](λk)}, respectively. This proves the lemma.

Lemma 4.7 does not, however, provide a characterization of ∂Bf
✷

. It is an open
question whether such a (tractable) characterization can be found for any strictly
continuous f . In the special case where f is piecewise continuously differentiable
(e.g., f(·) = | · |) and, more generally, where the directional derivative of f has a
one-sided continuity property, a simple characterization of ∂Bf

✷

can be found as we
show below. In what follows we denote the right- and left-directional derivative of
f : R→ R by

f ′+(ξ) := lim
ζ→ξ+

f(ζ)− f(ξ)
ζ − ξ , f ′−(ξ) := lim

ζ→ξ−

f(ζ)− f(ξ)
ζ − ξ .

Proposition 4.8. Let f : R → R be a strictly continuous and directionally
differentiable function with the property that

lim
ζ,ν→ξσ

ζ �=ν

f(ζ)− f(ν)
ζ − ν = lim

ζ→ξσ

ζ∈Df

f ′(ζ) = f ′σ(ξ) ∀ξ ∈ R, σ ∈ {−,+},(24)

where Df := {ξ ∈ R|f is differentiable at ξ}. Then, for any x ∈ S, we have that
V ∈ ∂B f✷

(x) if and only if V has the form (20) for some p ∈ Ox and λ1, . . . , λn ∈ R

satisfying x = p diag[λ1, . . . , λn]p
T and c has the form

cij =




(f(λi)− f(λj))/(λi − λj) if λi �= λj,
f ′σi(λi) if λi = λj and i ∈ αl, j ∈ β ∪ αν for some

l < ν,
f ′σj (λj) if λi = λj and i ∈ β ∪ αl, j ∈ αν for some

l > ν,
(ωif

′
σi(λi) + ωjf

′
σj (λj))/(ωi + ωj) if λi = λj and i, j ∈ αl for some l,

f ′(λi) if λi = λj and i, j ∈ β
(25)
for some partition α1, . . . , α
, β of {1, . . . , n} (� ≥ 0) and some σi ∈ {−,+} and
ωi ∈ (0,∞) for i ∈ α1 ∪ · · · ∪ α
. (Implicit in (25) is the differentiability of f at λi,
i ∈ β.)

Proof. Consider any V ∈ ∂Bf✷

(x). By Lemma 4.7 and its proof, V has the form
(20) for some p ∈ Ox and λ1 ≥ · · · ≥ λn satisfying x = p diag[λ1, . . . , λn]p

T and with
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c being the cluster point of ck given by (23), k = 1, 2, . . . for some λk = (λk1 , . . . , λ
k
n)

T

converging to λ = (λ1, . . . , λn)
T . Moreover, f is differentiable at λk1 , . . . , λ

k
n for all k.

By passing to a subsequence if necessary, we can assume that, for each i ∈ {1, . . . , n},
either (i) λki > λi for all k or (ii) λ

k
i < λi for all k or (iii) λ

k
i = λi for all k. Denote

β := {i ∈ {1, . . . , n}|case (iii) holds for i}.

By further passing to a subsequence if necessary, we can assume that, for each i, j ∈
{1, . . . , n} \ β,

|λki − λi|
|λkj − λj |

has a limit ρij ∈ [0,∞] as k →∞.

Then, {1, . . . , n}\β may be partitioned into disjoint subsets α1, . . . , α
 for some � ≥ 0
such that

ρij ∈ (0,∞) whenever i, j ∈ αl for some l,
ρij =∞ whenever i ∈ αl, j ∈ αν for some l < ν.

Moreover, for each l ∈ {1, . . . , �} and each i ∈ αl, the quantity

ωki := |λki − λi|/

∑

j∈αl
|λkj − λj |




converges to a positive limit, which we denote by ωi. For each i ∈ {1, . . . , n} \ β, set
σi = + if case (i) holds for i and set σi = − if case (ii) holds for i. We now verify that
c has the form (25). For any i, j ∈ {1, . . . , n} with λi �= λj , this follows from (21).
For any i, j ∈ {1, . . . , n} with λi = λj , we consider the following disjoint cases.

Case 1. Suppose i ∈ αl and j ∈ αν for some l, ν ∈ {1, . . . , �} and σi = σj = +.
Then λki > λi and λ

k
j > λi for all k. If l = ν, it follows from (23) and (24) that

ckij→f ′+(λi) = (ωif
′
σi(λi) + ωjf

′
σj (λj))/(ωi + ωj) = cij ,

where the last equality uses (25). If l < ν, a similar argument shows that

ckij → f ′+(λi) = f
′
σi(λi) = cij .

The remaining subcase of l > ν can be treated analogously.
Case 2. Suppose i ∈ αl and j ∈ αν for some l, ν ∈ {1, . . . , �} and σi = +, σj = −.

Then λki > λi and λ
k
j < λi for all k. If l = ν, it follows from (23) and (24) that

ckij =
f(λki )− f(λkj )
λki − λkj

=
ωki

ωki + ω
k
j

f(λki )− f(λi)
λki − λi

+
ωkj

ωki + ω
k
j

f(λkj )− f(λi)
λkj − λi

→ ωi
ωi + ωj

f ′+(λi) +
ωj

ωi + ωj
f ′−(λj)

= (ωif
′
σi(λi) + ωjf

′
σj (λj))/(ωi + ωj)

= cij ,



NONSMOOTH SYMMETRIC-MATRIX-VALUED FUNCTIONS 975

where the last equality uses (25). If l < ν, a similar argument together with ρij =∞
shows that

ckij =
|λki − λi|

|λki − λi|+ |λkj − λj |
f(λki )− f(λi)
λki − λi

+
|λkj − λj |

|λki − λi|+ |λkj − λj |
f(λkj )− f(λi)
λkj − λi

→ f ′+(λi)
= cij .

The remaining subcase of l > ν can be treated analogously.
Case 3. Suppose i ∈ αl and j ∈ β for some l ∈ {1, . . . , �} and σi = +. Then

λki > λi and λ
k
j = λi for all k. It follows from (23) and (24) that

ckij =
f(λki )− f(λi)
λki − λi

→ f ′+(λi) = cij .

Case 4. Suppose i, j ∈ β. Then λki = λkj = λi for all k and it follows from (23)
that f is differentiable at λi, i ∈ β, and

ckij = f
′(λi) = cij .

Case 5. Suppose i ∈ αl and j ∈ αν for some l, ν ∈ {1, . . . , �} and σi = σj = −.
This case is analogous to Case 1.

Case 6. Suppose i ∈ αl and j ∈ β for some l ∈ {1, . . . , �} and σi = −. This case
is analogous to Case 3.

Conversely, suppose that V has the form (20) for some p ∈ Ox and λ1, . . . , λn ∈
R satisfying x = p diag[λ1, . . . , λn]p

T and c has the form (25) for some partition
α1, . . . , α
, β of {1, . . . , n} (� ≥ 0) and some σi ∈ {−,+} and ωi ∈ (0,∞) for i ∈
α1∪· · ·∪α
. For each i ∈ β, set dki := 0 for k = 1, 2, . . . . For each i ∈ αl, l ∈ {1, . . . , �},
let δki = ωi(1/2)

kl if σi = + and let δki = −ωi(1/2)kl if σi = −, k = 1, 2, . . . . Since f
is strictly continuous, by Rademacher’s theorem (see [26, Thm. 9.60]), Df is dense in
R. Thus, for each i ∈ α1 ∪ · · · ∪ α
 and each index k, there exists dki ∈ R satisfying

λi + d
k
i ∈ Df and |dki − δki | ≤ |δki |2.

Let λki := λi + d
k
i for all i. Then, by Proposition 4.3, f

✷

is differentiable at

xk := p diag[λk1 , . . . , λ
k
n]p

T

for all k and

∇f✷

(xk)h = p(ck ◦ (pThp))pT ∀h ∈ S,

where ck is given by (23). Also, the definition of dk1 , . . . , d
k
n yields

dki → 0 ∀i, |dki |
|dkj |

→ ωi
ωj
∀i, j ∈ αl, l = 1, . . . , �,

|dki |
|dkj |

→ ∞ ∀i ∈ αl, j ∈ αν , l < ν,

and σi = + implies dki > 0 for all k and σi = − implies dki < 0 for all k. Then, it is
straightforward to verify that xk → x and ck → c, implying

∇f✷

(xk)h→ p(c ◦ (pThp))pT = V h ∀h ∈ S.
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This shows that V ∈ ∂Bf✷

(x).

Notice that a V of the form (20) is invertible if and only all entries of c are
nonzero. Also, notice that the p in the formula (20) depends on V ; i.e., two elements
of ∂Bf

✷

(x) may have different p in their formulas. Thus ∂f
✷

(x), being the convex
hull of ∂Bf

✷

(x), has a rather complicated structure.

The following lemma, proven by Sun and Sun [29, Thm. 3.6] using the definition
of generalized Jacobian,1 enables one to study the semismooth property of f

✷

by
examining only those points x ∈ S where f

✷

is differentiable and thus work only with
the Jacobian of f

✷

, rather than the generalized Jacobian.

Lemma 4.9. Suppose F : S → S is strictly continuous and directionally differ-
entiable in a neighborhood of x ∈ S. Then, for any 0 < ρ < ∞, the following two
statements (where O(·) depends on F and x only) are equivalent:

(a) For any h ∈ S and any V ∈ ∂F (x+ h),

F (x+ h)− F (x)− V h = o(‖h‖) (respectively, O(‖h‖1+ρ)).

(b) For any h ∈ S such that F is differentiable at x+ h,

F (x+ h)− F (x)−∇F (x+ h)h = o(‖h‖) (respectively, O(‖h‖1+ρ)).

By using Lemmas 3.1, 3.2, and 4.9 and Propositions 4.2, 4.3, and 4.6, we are now
ready to state and prove the last result of this section. The proof is motivated by and
in some sense generalizes the proof of Lemma 4.12 in [29], though it is also simpler.
The proof idea was also used for proving Proposition 4.3, with the main difference
being that here x+ h is diagonalized rather than x.

Proposition 4.10. For any f : R→ R, the matrix function f
✷

is semismooth if
and only if f is semismooth. If f : R → R is ρ-order semismooth (0 < ρ <∞), then
f

✷

is min{1, ρ}-order semismooth.

Proof. Suppose f is semismooth. Then f is strictly continuous and directionally
differentiable. By Propositions 4.2 and 4.6, f

✷

is strictly continuous and directionally
differentiable. Let D := {x ∈ S|f✷

is differentiable at x}.
Fix any x ∈ S and let λ1 ≥ · · · ≥ λn denote the eigenvalues of x. By Lemma

3.1, there exist scalars η > 0 and ε > 0 such that (3) holds. By taking ε smaller if
necessary, we can assume that ε < (λi − λi+1)/2 whenever λi �= λi+1. We will show
that, for any h ∈ S with x+ h ∈ D and ‖h‖ ≤ ε, we have

f
✷

(x+ h)− f✷

(x)−∇f✷

(x+ h)h = o(‖h‖),(26)

where o(·) and O(·) depend on f and x only. Then, it follows from Lemma 4.9 that
f

✷

is semismooth at x. Since the choice of x ∈ S was arbitrary, f
✷

is semismooth.
Let µ1 ≥ · · · ≥ µn denote the eigenvalues of x+ h, and choose any q ∈ Ox+h. Then,
there exists p ∈ Ox satisfying

‖p− q‖ ≤ η‖h‖.

For simplicity, let r denote the left-hand side of (26), i.e.,

r := f
✷

(x+ h)− f✷

(x)−∇f✷

(x+ h)h,

1Sun and Sun did not consider the case of o(‖h‖), but their argument readily applies to this case.
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and denote r̃ = qT rq and h̃ := qThq. Since x + h ∈ D, Proposition 4.3 implies f is
differentiable at µ1, . . . , µn. Then we have from (2) and (10) that

r̃ = b− oTao− c ◦ h̃,(27)

where for simplicity we also denote a := diag[f(λ1), . . . , f(λn)], b := diag[f(µ1), . . . , f(µn)],
c := f [1](µ), and o := pT q.

Since diag[µ1, . . . , µn] = q
T (x+ h)q = oTdiag[λ1, . . . , λn]o+ h̃, we have

n∑
k=1

okiokjλk + h̃ij =

{
µi if i = j,
0 else,

i, j = 1, . . . , n.(28)

Since o = pT q = (p− q)T q + I and ‖p− q‖ ≤ η‖h‖, it follows that
oij = O(‖h‖) ∀i �= j.(29)

Since p, q ∈ O, we have o ∈ O so that oT o = I. This implies

1 = o2ii +
∑
k �=i

o2ki = o
2
ii +O(‖h‖2), i = 1, . . . , n,(30)

0 = oiioij + ojiojj +
∑
k �=i,j

okiokj = oiioij + ojiojj +O(‖h‖2) ∀i �= j.(31)

We now show that r̃ = o(‖h‖) which, by ‖r‖ = ‖r̃‖, would prove (26). For any
i ∈ {1, . . . , n}, we have from (27) and (28) that

r̃ii = f(µi)−
n∑

k=1

o2kif(λk)− f ′(µi)h̃ii

= f(µi)−
n∑

k=1

o2kif(λk)− f ′(µi)
(
µi −

n∑
k=1

o2kiλk

)

= f(µi)− o2iif(λi)− f ′(µi)(µi − o2iiλi) +O(‖h‖2)
= f(µi)− (1 +O(‖h‖2))f(λi)− f ′(µi)(µi − (1 +O(‖h‖2))λi) +O(‖h‖2)
= f(µi)− f(λi)− f ′(µi)(µi − λi) +O(‖h‖2),

where the third and fifth equalities use (29), (30), and the local boundedness of f and
f ′. Since f is semismooth and Lemma 3.2 implies |µi − λi| ≤ ‖h‖, then clearly the
right-hand side is of o(‖h‖). For any i, j ∈ {1, . . . , n} with i �= j, we have from (27)
and (28) that

r̃ij = −
n∑

k=1

okiokjf(λk)− cij h̃ij

= −
n∑

k=1

okiokjf(λk) + cij

n∑
k=1

okiokjλk

= −(oiioijf(λi) + ojiojjf(λj)) + cij(oiioijλi + ojiojjλj) +O(‖h‖2)
= − ((oiioij + ojiojj)f(λi) + ojiojj(f(λj)− f(λi)))
+ cij ((oiioij + ojiojj)λi + ojiojj(λj − λi)) +O(‖h‖2)

= −ojiojj (f(λj)− f(λi)− cij(λj − λi)) +O(‖h‖2),
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where the third and fifth equalities use (29), (31), and the local boundedness of f and
f ′. Thus, if λi = λj , the preceding relation yields

r̃ij = O(‖h‖2).

If λi �= λj , then Lemma 3.2 implies |µi − λi| ≤ ‖h‖ and |µj − λj | ≤ ‖h‖ so that
|µi−µj | = |λi−λj − (λi−µi)+ (λj −µj)| ≥ |λi−λj | − 2‖h‖ > 2ε− 2‖h‖ ≥ 0. Hence
µi �= µj , so cij = (f(µj)− f(µi))/(µj − µi) and the preceding relation yields

r̃ij = −ojiojj
(
f(λj)− f(λi)− f(µj)− f(µi)

µj − µi (λj − λi)
)
+O(‖h‖2)

= −ojiojj
(
f(λj)− f(λi)− (f(µj)− f(µi))

(
1 +

λj − λi − µj + µi
µj − µi

))
+O(‖h‖2)

= O(‖h‖2),

where the last equality uses (29) and the strict continuity of f at λi, λj , so that
f(µi)− f(λi) = O(|µi − λi|) = O(‖h‖) and f(µj)− f(λj) = O(|µj − λj |) = O(‖h‖).

Suppose f is ρ-order semismooth (0 < ρ < ∞). Then the preceding argument
shows that r̃ii = O(max{‖h‖1+ρ, ‖h‖2}) = O(‖h‖1+min{1,ρ}) for all i while we still
have r̃ij = O(‖h‖2) for all i �= j. This shows that f✷

is min{1, ρ}-order semismooth
at x. Since the choice of x ∈ S was arbitrary, f

✷

is min{1, ρ}-order semismooth.
Suppose f

✷

is semismooth. Then f
✷

is strictly continuous and directionally differ-
entiable. By Propositions 4.2 and 4.6, f is strictly continuous and directionally differ-
entiable. For any ξ ∈ R and any η ∈ R such that f is differentiable at ξ+η, Proposition
4.3 yields that f

✷

is differentiable at x+ h, where we denote x := diag[ξ, . . . , ξ] = ξI
and h := diag[η, . . . , η] = ηI. Since f

✷

is semismooth, it follows from Lemma 4.9 that

f
✷

(x+ h)− f✷

(x)−∇f✷

(x+ h)h = o(‖h‖),

which, by (2) and (10), is equivalent to

f(ξ + η)− f(ξ)− f ′(ξ + η)η = o(|η|).

Then Lemma 4.9 yields that f is semismooth.
We note that for each of the preceding global results there is a corresponding

local result. This can be seen from our proofs where, in order to show that a global
property of f is inherited by f

✷

, we first show that this property is locally inherited
from f by f

✷

. For example, we can show the following local analogue of Proposition
4.4: If f : R → R is continuously differentiable at each of the eigenvalues of x ∈ S,
then f

✷

is continuously differentiable at x and ∇f✷

(x) is given by (10).

5. Applications to the SDCP. In this section, we consider the semidefinite
complementarity problem (SDCP), which is to find, for a given function F : S → S,
an (x, y) ∈ S × S satisfying

x ∈ S+, y ∈ S+, 〈x, y〉 = 0, F (x)− y = 0,(32)

where S+ denotes the convex cone comprising those x ∈ S that are positive semidefi-
nite. We assume that F is continuously differentiable. The SDCP includes as a special
case the nonlinear complementarity problem (NCP), where n1 = · · · = nm = 1. It is
also connected to eigenvalue optimization [18]. There has been much interest in the
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numerical solution of the SDCP (32) using, e.g., the interior-point approach [27], the
merit function approach [30, 32], and the noninterior smoothing approach [8] (also see
references therein). We will consider a related approach of reformulating the SDCP
as a semismooth equation and then, by applying the results of section 4, study is-
sues relevant to the design and analysis of smoothing Newton methods based on this
reformulation.

It is known [30, Proposition 2.1] that (x, y) ∈ S × S solves the SDCP if and only
if it solves the equations

H(x, y) :=

(
x− [x− y]+
F (x)− y

)
= 0,(33)

where [·]+ : S → S+ denotes the nearest-point projection onto S+, i.e.,

[x]+ := argmin{‖x− y‖ | y ∈ S+}.
The functionH is nonsmooth due to the nonsmoothness of the matrix projection oper-
ator [·]+. However, it was shown by Sun and Sun [29] that [·]+ is strongly semismooth,
so that H is semismooth. We will see that this result also follows from Proposition
4.10 and, in particular, f

✷

(·) = [·]+ with f(·) = max{0, ·} (Proposition 5.2).
There have been many smoothing methods proposed for solving semismooth equa-

tion reformulation of the NCP—see [2, 3, 4, 5, 6, 7, 11, 16, 22, 24] and references
therein. These methods are based on making accurate smooth approximation of the
semismooth equations. In particular, the smoothing method studied by Chen, Qi,
and Sun [6] and later studied by Kanzow and Pieper [16] have an accuracy criterion
called the Jacobian Consistence Property. We will verify this property with respect
to a class of smoothing functions Hµ for H, as proposed by Chen and Mangasarian
[4, 5] for the case of the linear program (LP) and the NCP and recently extended
in [8] to the SDCP. This property, together with semismoothness of H, allows the
development of methods of the form

(xk+1, yk+1) = (xk, yk)− tk∇Hµk(x
k, yk)−1H(xk, yk), k = 0, 1, . . . ,

with tk > 0 and µk ↓ 0 suitably chosen, that achieve both global convergence and
local superlinear convergence, assuming nonsingularity of all V ∈ ∂H(x, y) locally; see
[6, Thm. 3.2]. Such methods have the advantage of requiring only one linear equation
solve per iteration, in contrast to the two (or more) linear equation solves required
by other smoothing methods having similar global and local convergence properties.
Thus, our study paves the way for extending methods of the above form from the
NCP to the SDCP. This, for example, would improve on the methods of [8, 15] which
require two linear equation solves per iteration.

Let CM denote the class of convex continuously differentiable functions g : R→ R

with the properties

lim
τ→−∞ g(τ) = 0, lim

τ→∞ g(τ)− τ = 0, and 0 < g′(τ) < 1 ∀τ ∈ R.

Two typical examples of g are the so-called CHKS function g(τ) = ((τ2+4)1/2+ τ)/2
and the neural network function g(τ) = ln(eτ + 1). For any g ∈ CM, consider the
following smooth approximation of x−[x−y]+, as proposed by Chen and Mangasarian
[4, 5] for the case of the LP and the NCP:

φµ(x, y) := x− µg✷((x− y)/µ), µ > 0.(34)
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It was shown in [8, Lem. 1] that the limit limµ→0 φµ(x, y) exists and is equal to
x− [x− y]+. Moreover, one has [8, Cor. 1]

‖φµ(x, y)− (x− [x− y]+)‖ ≤
√
ng(0)µ,(35)

and φµ is continuously differentiable for any µ > 0 [8, Lem. 2]. Hence a smooth
approximation of H(x, y) is

Hµ(x, y) :=

(
φµ(x, y)
F (x)− y

)
, µ > 0.(36)

We say that Hµ has the Jacobian Consistence Property relative to H if there
exists a constant κ > 0 such that, for any (x, y) ∈ S × S, we have (i)

‖Hµ(x, y)−H(x, y)‖ ≤ κµ ∀µ > 0(37)

and (ii)

lim
µ→0+

dist(∇Hµ(x, y), ∂H(x, y)) = 0;(38)

i.e., the distance between ∇Hµ(x, y) and the set ∂H(x, y) approaches zero as µ is
decreased to zero. Here, we denote dist(L,M) := infM∈M ‖|L −M‖| for any linear
mapping L : S ×S → S ×S and any nonempty collectionM of linear mappings from
S × S to S × S. Also, for any (x, y) ∈ S × S, we define ‖(x, y)‖ = √‖x‖2 + ‖y‖2.
We show below that H is semismooth and Hµ has the Jacobian Consistence Property
relative to H. These results facilitate the extension of the smoothing Newton methods
of Chen, Qi, and Sun [6] for the NCP, later studied by Kanzow and Pieper [16], to
the SDCP. Such methods are promising. For example, a smoothing method of [8],
based on (34) and (36) with g being the CHKS function, is comparable to primal-
dual interior-point methods in terms of the number of iterations to solve benchmark
semidefinite programs with relative infeasibility and duality gap below 3 · 10−9. As
with interior-point methods and barrier/penalty methods, the smoothing parameter µ
needs to be small to obtain an accurate solution and, as µ becomes smaller, ∇Hµ(x, y)
can become more ill-conditioned. Thus, such smoothing methods could have difficulty
achieving solution accuracy much greater than 10−9.

We begin with the following lemma showing that the Jacobian Consistence Prop-
erty is inherited by f

✷

and its smooth approximations from f and its smooth approx-
imations.

Lemma 5.1. Let f : R → R be a strictly continuous function. Let fµ : R → R,
µ > 0, be differentiable functions such that there exists a scalar constant κ > 0 for
which

|fµ(ζ)− f(ζ)| ≤ κµ ∀µ > 0,(39)

lim
µ→0+

dist(f ′µ(ζ), ∂f(ζ)) = 0(40)

for all ζ ∈ R. Then, for any z ∈ S, we have

‖f✷

µ (z)− f
✷

(z)‖ ≤ √nκµ ∀µ > 0,(41)

lim
µ→0+

dist(∇f✷

µ (z), ∂f
✷

(z)) = 0.(42)
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Proof. Fix any z ∈ S. Consider any λ1, . . . , λn ∈ R and any p ∈ O satisfying
z = p diag[λ1, . . . , λn]p

T .
By (1) and (2), we have

‖f✷

µ (z)− f
✷

(z)‖ = ‖pT f✷

µ (z)p− pT f
✷

(z)p‖
= ‖diag[fµ(λ1)− f(λ1), . . . , fµ(λn)− f(λn)]‖
≤ √nκµ,

where the last inequality uses (39). This proves (41).
We now prove (42). For any µ > 0, since fµ is differentiable, then Proposition

4.3 yields that f
✷

µ is differentiable and

∇f✷

µ (z)h = p(cµ ◦ (pThp))pT ∀h ∈ S,(43)

where cµ := f
[1]
µ (λ) and λ := (λ1, . . . , λn)

T . Let λ̃1, . . . , λ̃m denote the distinct eigen-

values of z and denote Ik := {i ∈ {1, . . . , n}|λi = λ̃k}, k = 1, . . . ,m. We have

(cµ)ij =

{
(fµ(λ̃k)− fµ(λ̃
))/(λ̃k − λ̃
) if i ∈ Ik, j ∈ I
 for some k �= �,
f ′µ(λ̃k) if i, j ∈ Ik for some k.

(44)

By (39) and (40), for each ε > 0 there exists δ > 0 such that for each µ ∈ (0, δ) we
have

|fµ(λ̃k)− f(λ̃k)| < ε and |f ′µ(λ̃k)− vk| < ε, k = 1, . . . ,m,(45)

for some vk ∈ ∂f(λ̃k) depending on µ. Letting c ∈ S denote the symmetric matrix
whose (i, j)th entry is

cij :=

{
(f(λ̃k)− f(λ̃
))/(λ̃k − λ̃
) if i ∈ Ik, j ∈ I
 for some k �= �,
vk if i, j ∈ Ik for some k,

(46)

we then obtain from (39), (44), (45), and (46) that

|(cµ)ij − cij | < εβ ∀i, j = 1, . . . , n,(47)

where β > 0 is a scalar independent of µ and ε. Define the linear mapping V : S → S
by

V h := p(c ◦ (pThp))pT ∀h ∈ S.(48)

Then V depends on µ and, by (43) and (47), we have

‖|∇f✷

µ (z)− V ‖| = sup
‖h‖=1

‖∇f✷

µ (z)h− V h‖ = sup
‖h‖=1

‖(cµ − c) ◦ (pThp)‖ < εβ.

Thus ‖|∇f✷

µ (z)− V ‖| → 0 as µ → 0+. We now show that V belongs to ∂f
✷

(z). For

each k ∈ {1, . . . ,m}, since vk ∈ ∂f(λ̃k), there exist integer τk ≥ 1 and υk[ν] ∈ ∂Bf(λ̃k)
and ωk[ν] ∈ (0,∞), ν = 1, . . . , τk, satisfying

τk∑
ν=1

ωk[ν] = 1,

τk∑
ν=1

ωk[ν] υk[ν] = vk.
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Then, it is straightforward to verify that

τ1∑
ν1=1

· · ·
τm∑

νm=1

(
m∏
k=1

ωk[νk]

)
= 1,

τ1∑
ν1=1

· · ·
τm∑

νm=1

(
m∏
k=1

ωk[νk]

)
c[ν1, . . . , νm] = c,

where c[ν1, . . . , νm] ∈ S denotes the symmetric matrix whose (i, j)th entry is

c[ν1, . . . , νm]ij :=

{
(f(λ̃k)− f(λ̃
))/(λ̃k − λ̃
) if i ∈ Ik, j ∈ I
 for some k �= �,
υk[νk] if i, j ∈ Ik for some k.

We now show that the linear mapping V [ν1, . . . , νm] : S → S defined by

V [ν1, . . . , νm]h := p(c[ν1, . . . , νm] ◦ (pThp))pT ∀h ∈ S

belongs to ∂Bf
✷

(z). For each k ∈ {1, . . . ,m}, since υk[νk] ∈ ∂Bf(λ̃k), there exist
λ̃kl ∈ R, l = 1, 2, . . ., such that f is differentiable at λ̃kl for all l and λ̃kl → λ̃k and
f ′(λ̃kl)→ υk[νk] as l→∞. Then, letting

zl := p diag[λ1l, . . . , λnl]p
T with λil := λ̃kl ∀i ∈ Ik, k = 1, . . . ,m,

for l = 1, 2, . . . , we have from Proposition 4.3 that f
✷

is differentiable at zl. Moreover,
as l→∞, we have zl → z and

‖|∇f✷

(zl)− V [ν1, . . . , νm]‖| = sup
‖h‖=1

‖∇f✷

(zl)h− V [ν1, . . . , νm]h‖

= sup
‖h‖=1

‖(f [1](λ1l, . . . , λnl)− c[ν1, . . . , νm]) ◦ (pThp)‖ → 0.

Hence V [ν1, . . . , νm] ∈ ∂Bf(z).
By using Lemma 5.1 together with Proposition 4.10, we can now establish the

main result of this section. Part (a) of this result was already shown in [29]. Here we
show that it also follows from Proposition 4.10.

Proposition 5.2. For the functions H and Hµ defined by (33) and (36) with
g ∈ CM, respectively, the following results hold.

(a) H is semismooth. If F is ρ-order semismooth (0 < ρ < ∞), then H is
min{1, ρ}-order semismooth.

(b) Hµ has the Jacobian Consistence Property relative to H.
Proof. Let

f(ζ) := max{0, ζ}, fµ(ζ) := µg(ζ/µ) ∀ζ ∈ R.(49)

(a) It was shown in [30, Lem. 2.1] that

f
✷

(z) = [z]+ ∀z ∈ S.

Also, it is well known that f is piecewise linear on R and hence f is strongly semis-
mooth. Then, by Proposition 4.10, f

✷

is strongly semismooth. It is known that the
composition of two ρ-order semismooth functions is also ρ-order semismooth [10, Thm.
19]. Hence the composite function (x, y) �→ f

✷

(x − y) = [x − y]+ is strongly semis-
mooth. Since F is semismooth, then H is semismooth. If F is ρ-order semismooth
(0 < ρ <∞), then H is min{1, ρ}-order semismooth.
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(b) It can be seen from (33), (35), and (36) that (37) is satisfied with κ :=
√
ng(0).

Alternatively, this can be deduced by applying Lemma 5.1 and using (49). We now
prove (38). It is readily seen from (49) and properties of g (see, e.g., [31]) that

lim
µ→0+

f ′µ(ζ) = lim
µ→0+

g′(ζ/µ) =



g′(0) if ζ = 0,
1 if ζ > 0,
0 if ζ < 0,

∂f(ζ) =



[−1, 1] if ζ = 0,
{1} if ζ > 0,
{0} if ζ < 0.

Since g′(0) ∈ (0, 1), this shows that (40) holds for all ζ ∈ R. Thus, by Lemma 5.1,
(42) holds for all z ∈ S. Fix any x, y ∈ S. It can be seen from (33) and f

✷

(·) = [·]+
that

B ∈ ∂H(x, y) if and only if B =

[
I − V V
∇F (x) −I

]
for some V ∈ ∂f✷

(x− y).

Also, we have from (34) and (36) that

∇Hµ(x, y) =

[
I −∇f✷

µ (x− y) ∇f✷

µ (x− y)
∇F (x) −I

]
.

Thus

dist(∇Hµ(x, y), ∂H(x, y)) = min
V ∈∂f✷ (x−y)

{
max

‖(u,v)‖=1
‖(∇f✷

µ (x− y)− V )(u− v)‖
}

≤
√
2 dist(∇f✷

µ (x− y), ∂f
✷

(x− y))
→ 0 as µ→ 0+,

where the last relation follows from (42) with z = x− y. This verifies (38).
We note that, for the particular choice (49) of f and fµ, we can obtain an ex-

plicit formula for c given by (46) and directly verify that V given by (48) belongs
to ∂f

✷

(z). Specifically, for any z ∈ S and any λ1, . . . , λn ∈ R and p ∈ O satisfying
z = p diag[λ1, . . . , λn]p

T , define the three index sets

α := {i| λi > 0}, β := {i| λi = 0}, γ := {i| λi < 0}.
Upon taking µ→ 0+ in (44) and using (49) and properties of g [31], we obtain in the
limit that the (i, j)th entry of c is given by

cij = lim
µ→0+

(cµ)ij =




1 if i, j ∈ α,
1 if i ∈ α, j ∈ β or i ∈ β, j ∈ α,
λi/(λi − λj) if i ∈ α, j ∈ γ,
λj/(λj − λi) if i ∈ γ, j ∈ α,
g′(0) if i, j ∈ β,
0 else.

(50)

To see that V given by (48) belongs to ∂f
✷

(z), let εl, l = 1, 2, . . ., be any sequence
of positive scalars converging to 0, and define for σ = −1, 1 and l = 1, 2, . . . the
symmetric matrix

zl[σ] := z + σεlp diag[d1, . . . , dn]p
T , with di :=

{
1 if i ∈ β,
0 else.

For each σ ∈ {−1, 1}, it can be seen that the eigenvalues of zl[σ] are λil[σ] := λi+σεldi,
i = 1, . . . , n, which are nonzero for all l sufficiently large. Thus, f is differentiable
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at λil[σ], i = 1, . . . , n, for all l sufficiently large. Hence, by Proposition 4.3, f
✷

is
differentiable at zl[σ] for all l sufficiently large and

∇f✷

(zl[σ])h = p(cl[σ] ◦ (pThp))pT ∀h ∈ S,

where cl[σ] := f
[1](λ1l[σ], . . . , λnl[σ]) ∈ S. Using (49), it can be seen that, as l →∞,

zl[σ]→ z and cl[σ] converges entrywise to c[σ] whose (i, j)th entry is

(c[σ])ij :=




1 if i, j ∈ α,
1 if i ∈ α, j ∈ β or i ∈ β, j ∈ α,
λi/(λi − λj) if i ∈ α, j ∈ γ,
λj/(λj − λi) if i ∈ γ, j ∈ α,
max{0, σ} if i, j ∈ β,
0 else.

(51)

Hence ∇f✷

(zl[σ]) converges in operator norm to V [σ] : S → S defined by

V [σ]h := p(c[σ] ◦ (pThp))pT ∀h ∈ S.

By the definition of ∂Bf
✷

(z), we see that V [σ] ∈ ∂Bf✷

(z). Moreover, (50) and (51)
show that c = g′(0)c[−1]+(1−g′(0))c[1], and hence V = g′(0)V [−1]+(1−g′(0))V [1].
This shows that V ∈ ∂f✷

(z).

6. Final remarks. In this paper, we studied various continuity and differentia-
bility properties of a class of symmetric-matrix-valued functions, which are natural
extensions of real-valued functions to matrix-valued functions. Using these properties,
we reformulated the SDCP as a semismooth equation based on the matrix projection
operator [·]+. We verified the Jacobian Consistence Property for the reformulated
semismooth equation and its smooth approximation based on a class of smoothing
functions proposed by Chen and Mangasarian [4, 5] for the LP and NCP and extended
in [8] to the SDCP. This result facilitates the extension of the smoothing method stud-
ied in [6] and [16] for the NCP to the SDCP. We stress that, apart from the Jacobian
Consistence Property, there are other important issues in extending the smoothing
method of [6] to the SDCP. One of them is the solvability of the smoothing Newton
equations. We leave this issue for future research.
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Abstract. This paper gives conditions ensuring the epiconvergence or Γ-convergence of se-
quences of convexly composite functions via the study of Painlevé–Kuratowski convergence of inverse
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1. Introduction. One of the main topics in the theory of epiconvergence or Γ-
convergence of functions is concerned with the characterization (by such convergences)
of the Painlevé–Kuratowski convergence of the graphs of subdifferentials of convex or
nonconvex functions. Such a characterization is recognized to be crucial for a good
behavior of optimization problems with respect to parameters. Generally, it essentially
holds for classes of functions satisfying some stability properties. It is known that it
is the case for the class of convex functions defined on Banach spaces (see [1]) and the
class of primal lower nice functions defined on Hilbert spaces (see [11], [10]). We also
refer to [17] for some other classes of locally Lipschitzian functions.

A prototype of primal lower nice functions is the composition of an extended
real-valued convex function f defined on a Hilbert space Y with a twice continuously
differentiable mapping g from another Hilbert space X into Y satisfying a qualifica-
tion condition (see [11], [16]). Such a qualification condition cannot be avoided in any
optimization study about convexly composite functions. Indeed, any lower semicon-
tinuous function defined on a Hilbert space (in fact, on some more general Banach
spaces) can be represented locally as the composition of a lower semicontinuous con-
vex function and a smooth mapping (see [12]). For a convexly composite function
f ◦ g, the qualification condition that appears to ensure that f ◦ g is primal lower
nice near a point x̄ such that f ◦ g(x̄) is finite is the following Robinson qualification
condition:

R+(dom f − g(x̄))− Im∇g(x̄) = Y.(1)

Here R+ denotes the set of nonnegative real numbers, ∇g(x̄) is the derivative of g at
x̄, and Im∇g(x̄) = ∇g(x̄)(X). When one deals with a sequence of convexly composite
functions (fn ◦gn)n, one naturally needs to consider a uniform qualification condition.
To state such a uniform condition, we use another condition equivalent to (1) requiring
that there exist r > 0 and s > 0 such that

sBY ⊂ ({f ≤ r + f(g(x̄))} − g(x̄))−∇g(x̄)(r BX),(2)
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where BY denotes the closed unit ball of Y centered at the origin of Y and {f ≤ ρ} :=
{y ∈ Y : f(y) ≤ ρ}. This condition (2) can be adapted to a sequence of convexly
composite functions (fn ◦ gn)n in the following form, supposing that there exist r > 0
and s > 0 such that for all n ∈ N

sBY ⊂ ({fn ≤ r + f(g(x̄))} − g(x̄))−∇g(x̄)(rBX).(3)

In this paper, we show that condition (3) (in addition to some other natural as-
sumptions) ensures that the sequence (fn ◦ gn)n epiconverges to f ◦ g whenever (fn)n
epiconverges to f and (gn)n converges to g in some sense. The epiconvergence is
established in Theorem 5.2 for general Banach spaces X and Y , and, as usual, one
can derive from it results on the behavior of optimal value functions of optimization
problems associated with convexly composite functions. In this paper, we use the
epiconvergence result to study the convergence of Kuhn–Tucker multipliers for such
problems. We must also point out that Theorem 5.2 is also used in [4] to show the
Painlevé–Kuratowski convergence of the graphs of subdifferentials when the under-
lying functions are convexly composite and defined on Banach spaces. Such results
can also be applied to evolution equations governed by subdifferentials of convexly
composite functions in the line of [8] and [9].

Our method is based on general estimation results (similar to metric regularity
inequalities) for the distance to inverse images of sequences of set-valued mappings
depending on a parameter. The necessity of dealing with a parameter in such esti-
mations appears in the proof of Theorem 5.2 and is also explained in the beginning
of section 3. The method is general enough to allow us to also obtain the Painlevé–
Kuratowski convergence of inverse images of sets and the Attouch–Wets convergence
of the sequence (fn ◦ gn)n under appropriate assumptions.

2. Preliminaries. Throughout the paper, X and Y will be two real Banach
spaces. For a sequence (fn)n of functions from X into R ∪ {+∞}, recall that the
epilimits (or Γ-limits) inferior or superior are defined (see [1], [5], and [15]) by

(Lifn)(x) := inf{lim inf fn(xn) : xn → x}
and

(Lsfn)(x) := inf{lim sup fn(xn) : xn → x}.
One says that the sequence (fn)n epiconverges (or Γ-converges) to f around a point
x̄ when there exists a neighborhood V of x̄ such that for all x ∈ V

(Lsfn)(x) = f(x) = (Lifn)(x),(4)

and one writes fn
epi−→ f over V . When V = X, one says that the sequence epicon-

verges (or Γ-converges) to f .
The term epiconvergence comes from the fact that this can be characterized by the

Painlevé–Kuratowski convergence of the epigraphs. For a sequence (Cn)n of subsets
of X, recall that the limits inferior and superior are given (see [1], [3], and [15]) by

LiCn := {x ∈ C : x = limxn with xn ∈ Cn}
and

LsCn := {x ∈ C : x = limxs(n) with xs(n) ∈ Cs(n)}.
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Here (s(n))n denotes an increasing sequence of natural numbers.
One says that (Cn)n Painlevé–Kuratowski converges to C if

LsCn = C = LiCn.

So in terms of epigraphs Epi fn := {(x, r) ∈ X ×R : fn(x) ≤ r} (see [1], [15]) one has
Ls(Epi fn) = Epi(Lifn) and Li(Epi fn) = Epi(Lsfn),

and hence (fn)n epiconverges to f if and only if (Epi fn)n Painlevé–Kuratowski con-
verges to Epi f .

Another important convergence for sets and functions is the Attouch–Wets (or
bounded-Hausdorff) convergence. A sequence (Cn)n of subsets of X Attouch–Wets
converges (see [2] and [15]) to a subset C of X, provided that for any real number
ρ > 0 and any ε > 0 there exists N ∈ N such that for all n ≥ N

Cn ∩ ρ BX ⊂ C + ε BX and C ∩ ρ BX ⊂ Cn + ε BX ;

here BX denotes the closed unit ball in X centered at the origin of X. This is
equivalent to saying that

e(Cn ∩ ρ BX , C)→ 0 and e(C ∩ ρ BX , Cn)→ 0,

where e(C,D) denotes the excess of C over D; i.e., e(C,D) = supc∈C d(c,D). We will
adopt the convention d(a, ∅) = ∞, and we will sometimes write eρ(C,D) in place of
e(C ∩ ρ BX , D).

When Epi fn Attouch–Wets converges to Epi f , one says that the sequence of

functions fn Attouch–Wets converges to the function f , and one writes fn
A.W−→ f .

Before ending this section, let us recall the following fixed point lemma of Dontchev
and Hager [6]. The lemma will be fully used in the next section.

Lemma 2.1. Let Z be a complete metric space, let T : Z⇒Z be a set-valued
mapping with closed values, and let z0 ∈ Z and r and λ be such that 0 ≤ λ < 1,
d(z0, T (z0)) < r(1−λ), and T is pseudo-λ-contracting over B(z0, r) in the sense that

e(T (z) ∩B(z0, r), T (z
′)) ≤ λd(z, z′)

for all z, z′ ∈ B(z0, r). Then T has a fixed point in B(z0, r); i.e., there exists z̄ ∈
B(z0, r) with z̄ ∈ T (z̄). Here B(z0, r) denotes the closed ball centered at z0 with radius
r.

3. Estimation results. In this section, we will establish some preparatory re-
sults that will be needed in the next sections.

Consider a sequence (gn)n of mappings from X into Y and a sequence (fn)n of
functions from Y into R ∪ {+∞}. As explained above, we are interested in the local
study of epiconvergence of the sequence (fn ◦ gn)n, i.e., the epiconvergence of the
sequence around a point x̄ ∈ X, when appropriate assumptions about convergences
of (fn) and (gn) to f and g, respectively, are made. We know that the global epicon-
vergence of (fn ◦ gn)n over all the space X is equivalent to the Painlevé–Kuratowski
convergence of the sequences of sets (Epi fn ◦ gn)n in X × R. When one works with
(4) around a point x̄, one does not know that f(x) remains near f(x̄) whenever
x is near x̄. Indeed, the function f is generally merely lower semicontinuous and
noncontinuous. So we are naturally led to investigate for some fixed β > 0 the be-
havior of the sequence (Epi fn ◦ gn)n around each ball in X × R with radius β and
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centered at (x, t) ∈ Epi f ◦ g (or centered at (x̄, t) with f ◦ g(x) ≤ t) for any point
x in some fixed appropriate neighborhood of x̄ and such that f ◦ g(x) < ∞. Thus,
we have to consider such (x, t) as a parameter u and then study the behavior of the
sequence h−1

n (Epi fn) around all balls B(q(u), β), where hn : X × R → Y × R with
hn(x, r) = (gn(x), r) and q is an appropriate mapping (see the proof of Theorem 5.2)
from the set of parameters into X × R.

Therefore, we are first concerned with establishing some estimation results related
to the inverse images of sequences of set-valued mappings also depending on a param-
eter. We begin with the following lemma dealing with such set-valued mappings.

Lemma 3.1. Let U be a nonempty set of parameters and, for each u ∈ U , let
(Mn(., u))n be a sequence of set-valued mappings with closed graphs from X into Y
for which there exist two real numbers l ≥ 0 and α > 0 (both independent of u) such
that for all x ∈ α BX , y ∈ α BY , n ∈ N, and u ∈ U

d(x,Mn(., u)
−1(y)) ≤ ld(y,Mn(x, u)).(5)

Let ε ∈]0, 1/l[ and L > l/(1− εl). Let (gn)n be any sequence of mappings from X×U
into Y such that there exist δ > 0 and N ∈ N (both independent of u) satisfying

‖gn(x, u)− gn(x
′, u)‖ ≤ ε‖x− x′‖(6)

for all x, x′ ∈ δBX , n ≥ N , and u ∈ U . Assume that gn(0, u) → 0 uniformly with
respect to u ∈ U , and consider the perturbed set-valued mappings Gn : X × U⇒Y
defined by Gn(x, u) := gn(x, u) + Mn(x, u). Then there exist an integer N ′ ∈ N

and two positive real numbers β and δ′ that depend only on α, δ, ε such that for all
x ∈ δ′ BX , y ∈ β BY , n ≥ N ′, and u ∈ U

d(x,Gn(., u)
−1(y)) ≤ L d(y,Gn(x, u) ∩ β BY ).(7)

Proof. The proof is an adaptation of techniques used in Dontchev and Hager [7];
see the proof of their Theorem 4.1.

Put

δ′ =
1

2
min(δ, α, α/3ε) and β = min(α/2, 2δ′/(5L)).

Choose an integer N ′ ≥ N such that ‖gn(0, u)‖ ≤ α/6 for all n ≥ N ′ and u ∈ U .
Then for any x ∈ 2δ′ BX , any y ∈ β BY , any n ≥ N ′, and any u ∈ U one has according
to (6)

‖y − gn(x, u)‖ ≤ ‖y‖+ ‖gn(0, u)‖+ ‖gn(x, u)− gn(0, u)‖

≤ α
2 + α

6 + ε. α3ε = α,
(8)

and hence y − gn(x, u) ∈ α BY . Fix n ≥ N ′, x ∈ δ′BX , y ∈ β BY , and u ∈ U and
consider the set-valued mapping Tn : X⇒X defined by

Tn(z) = Mn(., u)
−1(y − gn(z, u)) for all z ∈ X.

As the graph of Mn(., u) is closed in X × Y , the set Tn(z) is closed in X for each
z ∈ X. One may suppose Gn(x, u) ∩ β BY �= ∅ because (7) obviously holds for any x
such that Gn(x, u)∩ β BY = ∅. Fix any y′ ∈ Gn(x, u)∩ β BY , and put r = L‖y− y′‖.
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Let us show that the set-valued mapping Tn is pseudocontracting on the closed ball
B(x, r). Observe first that

r ≤ L(‖y‖+ ‖y′‖) ≤ 2Lβ ≤ 4δ′/5 < δ′.

Then for z′ ∈ B(x, r) one has ‖z′‖ ≤ ‖x‖ + ‖z′ − x‖ ≤ δ′ + r ≤ 2δ′, and hence it
follows from (8) that y−gn(z

′, u) ∈ α BY . So for z, z′ ∈ B(x, r) and v ∈Mn(., u)
−1(y−

gn(z, u)) ∩ B(x, r) we obtain ‖v‖ ≤ 2δ′ ≤ α, z, z′ ∈ δ BX , and y − gn(z
′, u) ∈ α BY ,

and hence according to (5) and (6) one has

d(v,Mn(., u)
−1(y − gn(z

′, u))) ≤ l d(y − gn(z
′, u),Mn(v, u))

≤ l ‖(y − gn(z
′, u))− (y − gn(z, u))‖

≤ l ε ‖z − z′‖.
Therefore for z, z′ ∈ B(x, r)

e(Tn(z) ∩B(x, r), Tn(z
′)) = e(Mn(., u)

−1(y − gn(z, u)) ∩B(x, r),
Mn(., u)

−1(y − gn(z
′, u)))

≤ l ε ‖z − z′‖
and Tn is pseudocontracting on B(x, r) because l ε < 1. Moreover, as y′ ∈ Gn(x, u)
one has y′ − gn(x, u) ∈Mn(x, u) and, according to (5),

d(x, Tn(x)) = d(x,Mn(., u)
−1(y − gn(x, u)))

≤ l d(y − gn(x, u),Mn(x, u))
≤ l ‖(y − gn(x, u))− (y′ − gn(x, u))‖
= l ‖y − y′‖
< L(1− εl)‖y′ − y‖ = r(1− ε l).

So one may apply Lemma 2.1 and get a fixed point z ∈ Tn(z) ∩ B(x, r). Therefore
y − gn(z, u) ∈ Mn(z, u) = Gn(z, u) − gn(z, u), and hence z ∈ Gn(., u)

−1(y) which
ensures that

d(x,Gn(., u)
−1(y)) ≤ ‖x− z‖ ≤ r = L ‖y − y′‖.

Since this holds for all y′ ∈ Gn(x, u) ∩ β BY , one obtains

d(x,Gn(., u)
−1(y)) ≤ Ld(y,Gn(x, u) ∩ β BY ),

and this completes the proof.
We will need the following differentiability-like concept for a sequence of para-

metrized mappings in Proposition 3.1 and also in sections 4 and 5.
Definition 3.1. Consider a set of parameters U , a mapping q : U → X, and

a sequence {gn : n ∈ N} of mappings from X × U into Y . We will say that this
sequence is strictly differentiable-like at (q(u))u∈U if there exists a family of continuous
linear mappings (Au)u∈U from X into Y such that for each real number ε > 0 there
exist δ > 0 and N ∈ N, both independent of u ∈ U , such that for all u ∈> U ,
x, x′ ∈ q(u) + δ BX , and n ≥ N

‖gn(x, u)− gn(x
′, u)−Au(x− x′)‖ ≤ ε‖x− x′‖.

When U is a singleton set, we will say that the sequence is strictly differentiable-like
at the fixed point q(u) = x̄.
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If, in addition to the strict differentiable-like property, for some u ∈ U the se-
quence {gn(., u) : n ∈ N} pointwise converges to g(., u) over some neighborhood of
q(u), then it is easily seen that the mapping g(., u) is strictly differentiable in the
usual sense at the point q(u) with ∇1g(q(u), u) = Au. Here ∇1g(x, u) denotes the
derivative of g(., u) at the point x.

The following provides two typical examples of such sequences that are strictly
differentiable-like.

First consider a point x̄ ∈ X and a sequence {gn : n ∈ N}∪{g} of mappings from
X into Y that are of class C1 on a same neighborhood of x̄. Assume that

lim
x→x̄
n→∞

∇gn(x) = ∇g(x̄).(9)

Let ε > 0. Choose β > 0 and N ∈ N such that for all n ∈ N, x ∈ B(x̄, 2β)

‖∇gn(x)−∇g(x̄)‖ ≤ ε.(10)

Then for x, x′ ∈ B(x̄, β) and n ≥ N we have

gn(x)− gn(x
′)−∇g(x̄)(x− x′) =

∫ 1

0

(∇gn(x
′ + t(x− x′))−∇g(x̄))(x− x′)dt,

and hence according to (10)

‖gn(x)− gn(x
′)−∇g(x̄)(x− x′)‖ ≤ ε‖x− x′‖.

So the sequence {gn : n ∈ N} ∪ {g} is strictly differentiable-like at the fixed point x̄.
Obviously, the assumption (9) holds whenever (∇gn)n uniformly converges to ∇g

on a neighborhood of x̄. Also note that in this first example the point q(u) = x̄ does
not depend on the parameter u.

Now consider another example that we will need later in the paper. The strict
differentiability-like concept has essentially been motivated by this example. Let {gn :
n ∈ N} be a sequence of mappings from X into Y that is strictly differentiable-like
at a fixed point x̄ ∈ X. Let Λ be a continuous linear mapping from X into a Banach
space Z, and let p be any mapping from U into Z. Define ĝn : (X ×Z)×U → Y ×Z
by putting

ĝn(x, z, u) = (gn(x),Λ(z)),

and define q : U → X × Z by setting q(u) = (x̄, p(u)). Then for Â : X × Z → Y × Z
with Â(x, z) = (A(x),Λ(z)) we have

ĝn(x, z, u)− ĝn(x
′, z′, u)− Â(x− x′, z − z′) = (gn(x)− gn(x

′)−A(x− x′), 0),

and hence the sequence {ĝn : n ∈ N} is strictly differentiable-like at (q(u))u∈U .
The following lemma is a direct consequence of the statement and the proof of

Theorem 2 in Robinson [13] (see also [14]). We will use it in the proof of Proposition
3.1 below.

Lemma 3.2. Let X and Y be two real normed vector spaces and M be a set-valued
mapping with a convex graph. Suppose that there exist two positive real numbers r
and s such that

s BY ⊂M(r BX).
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Then for all ρ > 0, t ∈ [0, s[, x ∈ ρ BX , and y ∈ t BY one has

d(x,M−1(y)) ≤ r + ρ

s− t
d(y,M(x)).

Proposition 3.1. Let {gn : n ∈ N} be a sequence of mappings from X × U into
Y , and let (Cn)n and (Dn)n be two sequences of closed convex subsets of X and Y ,
respectively. Assume that the sequence {gn : n ∈ N} is strictly differentiable-like at
(q(u))u∈U and that there exists g : X × U → Y such that the sequence (gn(q(.), .))n
uniformly converges over U to g(q(.), .). Also assume that there exist two positive
numbers s and r such that for all n ∈ N and u ∈ U

s BY ⊂ Au((Cn − q(u)) ∩ r BX)− (Dn − g(q(u), u)),

where Au is given by Definition 3.1. Then for each ρ > 0 there exist an integer N ∈ N

and two numbers δ and β that all depend only on r, ρ, and s such that

d(x,Cn ∩ gn(., u)
−1(Dn)) ≤ 3s−1(r + ρ)d(gn(x, u), Dn)

for all u ∈ U , n ≥ N , and x ∈ Cn ∩B(q(u), δ) satisfying gn(x, u) ∈ Dn + β BY .
Proof. Put Mn(x, u) = Au(x)+g(q(u), u)−Dn if x ∈ Cn−q(u) and Mn(x, u) = ∅

otherwise. Then Mn(., u) is a set-valued mapping whose graph is closed and convex.
As s BY ⊂Mn(., u)(r BX), it follows from Lemma 3.2 that for any fixed ρ > 0

d(x,M−1
n (., u)(y)) ≤ 2s−1(r + ρ)d(y,Mn(x, u))

for all y ∈ s
2BY and x ∈ ρ BX . Considering ε := s/8(r + ρ) and L := 3(r + ρ)/s and

putting

hn(x, u) := gn(q(u) + x, u)− g(q(u), u)−Au(x),

it is not difficult to see that L > l/(1 − εl) for l := 2(r + ρ)/s and that there exist
N1 ∈ N and δ′ > 0 (both depending only on r, ρ, and s) such that

‖hn(x, u)− hn(x
′, u)‖ ≤ ε‖x− x′‖

for all x, x′ ∈ δ′ BX , n ≥ N1, and u ∈ U . Further, hn(0, u)→ 0 uniformly with respect
to u ∈ U . Consider the set-valued mappings Gn := hn +M and observe that

Gn(x, u) = gn(q(u) + x, u)−Dn if x ∈ Cn − q(u),

Gn(x, u) = ∅ otherwise.

Then

Gn(., u)
−1(0) = {x ∈ X : (x+ q(u)) ∈ Cn ∩ gn(., u)

−1(Dn)}
= Cn ∩ gn(., u)

−1(Dn)− q(u)

and by Lemma 3.1 (with α = min(ρ, s/2)) there exist N ∈ N, β > 0, and δ > 0 all
depending only on r, ρ, and s such that for all z ∈ δ BX

d(z,Gn(., u)
−1(0)) ≤ Ld(0, Gn(z, u) ∩ β BY ).(11)
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Fix u ∈ U and n ≥ N , and fix any x ∈ Cn ∩B(q(u), δ) with gn(x, u) ∈ Dn + β BY (if
any). Then x− q(u) ∈ (Cn − q(u))∩ δ BX and for any y ∈ Dn ∩ (gn(x, u) + β BY ) we
have

gn(x, u)− y ∈ Gn(x− q(u), u) ∩ β BY .

So choosing z = x− q(u) in (11) we get

d(x,Cn ∩ gn(., u)
−1(Dn)) ≤ Ld(0, gn(x, u)− y),

and hence

d(x,Cn ∩ gn(., u)
−1(Dn)) ≤ Ld(gn(x, u), Dn ∩ (gn(x, u) + β BY )).

This completes the proof because one obviously has

d(y,Dn ∩ (y + γ BY )) = d(y,Dn)

when Dn ∩ (y + γ BY ) �= ∅.
4. Attouch–Wets convergence of convexly composite functions. With

the estimations of section 3 in hand, we begin by proving the following theorem
on Attouch–Wets convergence of inverse images of sets. The related convergence of
convexly composite functions will be derived from this theorem.

We first need to state the following lemma of Robinson [13] (see Lemma 2 in [13])
that will be used in the proof of the theorem.

Lemma 4.1. Let M be a set-valued mapping with closed convex graph between X
and Y . Suppose that x0 ∈ X and y0 ∈ Y are such that for some bounded convex set
S ⊂ Y and some real numbers 0 < r < s

y0 + sS ⊂M(x0 + BX) + rS.

Then

y0 + int (s− r)S ⊂ intM(x0 + BX).

(Here int denotes the topological interior.)
The convergence theorem of inverse images is then the following.
Theorem 4.1. Let g : X → Y be strictly differentiable at a fixed point x̄ ∈ X, and

let gn : X → Y be such that the sequence {gn : n ∈ N} ∪ {g} is strictly differentiable-
like at the fixed point x̄. Let {Cn : n ∈ N} ∪ {C} and {Dn : n ∈ N} ∪ {D} be two
sequences of nonempty closed convex subsets of X and Y , respectively. Assume that

(i) (gn)n uniformly converges to g on a neighborhood of x̄;
(ii) (Cn)n and (Dn)n Attouch–Wets converges to C and D, respectively;
(iii) x̄ ∈ C ∩ g−1(D) and

R+[∇g(x̄)(C − x̄)− (D − g(x̄)] = Y.

Then

Cn ∩ g−1
n (Dn)

A.W.−→ C ∩ g−1(D) around x̄;

that is, there exists β > 0 such that for any ε > 0 there is N ∈ N with

Cn ∩ g−1
n (Dn) ∩B(x̄, β) ⊂ C ∩ g−1(D) + ε BX(12)



994 CHRISTOPHE COMBARI AND LIONEL THIBAULT

and

C ∩ g−1(D) ∩B(x̄, β) ⊂ Cn ∩ g−1
n (Dn) + ε BX(13)

for all n ≥ N.
Proof. We begin by showing the inclusion (13). First observe that, according to

Theorem 1 in Robinson [13], there exist r > 0 and s > 0 such that

s BY ⊂ ∇g(x̄)((C − x̄) ∩ r BX)− (D − g(x̄)) ∩ r BY .(14)

Fix a real number ε > 0 such that ε′ := ε(1 + ‖∇g(x̄)‖) < s, and put r′ := r + ε.
By the Attouch–Wets convergence of (Cn) and (Dn) there exists an integer n0 such
that for all n ≥ n0

(C − x̄) ∩ rBX ⊂ (Cn − x̄) + εBX

and

(D − g(x̄)) ∩ rBY ⊂ (Dn − g(x̄)) + εBY ,

and hence

(C − x̄) ∩ rBX ⊂ (Cn − x̄) ∩ r′BX + εBX

and

(D − g(x̄)) ∩ rBY ⊂ (Dn − g(x̄)) ∩ r′BY + εBY .

Using (14) we obtain for all n ≥ n0

sBY ⊂ ∇g(x̄)((Cn − x̄) ∩ r′BX)− (Dn − g(x̄)) ∩ r′BY + ε′BY .

So applying Lemma 4.1 with x0 = (0, 0) and y0 = 0 and with the set-valued mapping
Mn between X × Y and Y given by

Mn(x, y) = ∇g(x̄)(r′x)− r′y if (x, y) ∈ 1

r′
(Cn − x̄)× 1

r′
(Dn − g(x̄))

and Mn(x, y) = ∅ otherwise,

and fixing a real number s′ with 0 < s′ < s− ε′ we get for all n ≥ n0

s′BY ⊂ ∇g(x̄)((Cn − x̄) ∩ r′BX)− (Dn − g(x̄)) ∩ r′BY .

According to Proposition 3.1, there exist an integer n1 ≥ n0 and positive numbers
l, δ, and β′ (independent of n) such that

d(x,Cn ∩ g−1
n (Dn)) ≤ l d(gn(x), Dn)(15)

for all n ≥ n1 and x ∈ Cn ∩B(x̄, δ) satisfying gn(x) ∈ Dn + β′
BY . Choose a positive

number β < min(β′, δ) and some ρ ≥ β+‖x̄‖ such that ‖g(x)‖ ≤ ρ for any x ∈ B(x̄, β),
(gn)n uniformly converges on B(x̄, β), and

‖gn(x)− gn(x
′)−∇g(x̄)(x− x′)‖ ≤ ‖x− x′‖
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for all x, x′ ∈ B(x̄, 2β) and n ≥ n2 with n2 ≥ n1.
Fix any real number λ > 1 and consider any x ∈ g−1(D) ∩ C ∩ B(x̄, β). Then

x ∈ C and g(x) ∈ D ∩ ρ BY . Putting

‖gn − g‖β := sup{||gn(x)− g(x)|| : x ∈ B(x, β)},
we obtain

gn(x) ∈ D ∩ ρ BY + ‖gn − g‖β BY ⊂ Dn + (λ eρ(D,Dn) + ‖gn − g‖β)BY .

In the same way, as x ∈ C∩ρ BX , we can choose x′
n ∈ Cn with ‖x−x′

n‖ ≤ λ eρ(C,Cn).
Then for n large enough

‖gn(x′
n)− gn(x)‖ ≤ (1 + ‖∇g(x̄)‖)‖x− x′

n‖ ≤ λ(1 + ‖∇g(x̄)‖)eρ(C,Cn),

and hence

gn(x
′
n) ∈ Dn + (‖gn − g‖β + λeρ(D,Dn)

+ λ(1 + ‖∇g(x̄)‖)eρ(C,Cn))BY .
(16)

As ‖x′
n − x̄‖ ≤ ‖x− x̄‖+ ‖x′

n − x‖ ≤ β + ‖x′
n − x‖ and ‖x′

n − x‖ → 0, we can choose
N ≥ n2 such that, for all n ≥ N , we have ‖x′

n − x̄‖ < δ and

‖gn − g‖β + λ eρ(D,Dn) + λ(1 + ‖∇g(x̄)‖) eρ(C,Cn) ≤ β′.

Applying (15) we obtain, for any n ≥ N , some xn ∈ Cn ∩ g−1
n (Dn) such that

‖xn − x′
n‖ ≤ λ l d (gn(x

′
n), Dn).

According to (16) and the inequality ‖x− x′
n‖ ≤ λ eρ(C,Cn) and putting

tn := λ(l‖gn − g‖β + λ l eρ(D,Dn) + (1 + λ l + λ l‖∇g(x̄)‖) eρ(C,Cn)),

we get ‖x− xn‖ ≤ tn, and hence

C ∩ g−1(D) ∩B(x̄, β) ⊂ Cn ∩ g−1
n (Dn) + tnBX .(17)

The inclusion (13) easily follows from (17).
The proof of the inclusion (12) is similar.
As mentioned before, the following result on the Attouch–Wets convergence of

convexly composite functions comes from Theorem 4.1.
Theorem 4.2. Let g : X → Y be strictly differentiable at a fixed point x̄ ∈ X, and

let gn : X → Y be such that the sequence {gn : n ∈ N} ∪ {g} is strictly differentiable-
like at the fixed point x̄. Let fn : Y → R ∪ {∞} be a sequence of proper lower
semicontinuous convex functions that converges in the sense of Attouch–Wets to f .
Assume that f(g(x̄)) is finite, (gn)n uniformly converges to g on a neighborhood of x̄,
and

R+(dom f − g(x̄))− Im∇g(x̄) = Y.

Then

fn ◦ gn
A.W.−→ f ◦ g around x̄;
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that is, there exists β > 0 such that for any ε > 0 there is N ∈ N with

(Epi fn ◦ gn) ∩B((x̄, f ◦ g(x̄)), β) ⊂ Epi f ◦ g + ε BX×R

and

(Epi f ◦ g) ∩B((x̄, f ◦ g(x̄)), β) ⊂ Epi fn ◦ gn + ε BX×R

for all n ≥ N .
Proof. Considering ĝ, ĝn : X × R → Y × R with ĝ(x, t) := (g(x), t), ĝn(x, t) :=

(gn(x), t) and putting t̄ := f ◦ g(x̄), it is not difficult to see that

R+[(Epi f − ĝ(x̄, t̄))− Im∇ĝ(x̄, t̄)] = X × Y.

Furthermore, the sequence {ĝn : n ∈ N} ∪ {ĝ} is obviously strictly differentiable-like
at (x̄, t̄) and (ĝn)n uniformly converges to ĝ on a neighborhood of (x̄, t̄). So observing
that

ĝ−1
n (Epi fn) = Epi fn ◦ gn and ĝ−1(Epi f) = Epi f ◦ g

we obtain that the result follows from Theorem 4.1 with Cn = C = X × R, Dn =
Epi fn, and D = Epi f .

According to our first example of strictly differentiable-like mappings, Theorem
4.2 admits the following corollary.

Corollary 4.1. Let {gn : n ∈ N} ∪ {g} be a sequence of mappings from X into
Y that are of class C1 on a same neighborhood of x̄ ∈ X, and let fn : Y → R∪{+∞}
be a sequence of proper lower semicontinuous convex functions that converges in the
sense of Attouch–Wets to f . Assume that f(g(x̄)) is finite and

(i) (gn)n uniformly converges to g on a neighborhood of x̄;
(ii) lim x→x̄

n→∞
∇gn(x) = ∇g(x̄);

(iii) R+(dom f − g(x̄)− Im∇g(x̄)) = Y .
Then

fn ◦ gn
A.W.−→ f ◦ g around x̄.

5. Epiconvergence of convexly composite functions. In this section, we
will establish sufficient conditions ensuring the epiconvergence or Γ-convergence of
convexly composite functions. These conditions are applied in [4] to study the Painlevé–
Kuratowski convergence of the graphs of subdifferentials of convexly composite func-
tions. First, we prove the following lemma.

Lemma 5.1. Let q be a mapping from X into Y , let {gn : n ∈ N} ∪ {g} be a se-
quence of mappings from X into Y that is strictly differentiable-like at (q(u))u∈U , and
let (Cn)n and (Dn)n be two sequences of closed convex subsets of X and Y , respec-
tively. Assume that there exists some α > 0 such that for each u ∈ U the sequence
(gn(., u))n pointwise converges to g(., u) over B(q(u), α), and assume gn(q(u), u) −
g(q(u), u) → 0 uniformly with respect to u ∈ U . Assume also that there exist r > 0
and s > 0 such that for all n ∈ N and u ∈ U

s BY ⊂ ∇1g(q(u), u)((Cn − q(u)) ∩ r BX)− (Dn − g(q(u), u)).

Then there exists β > 0 independent of u such that for each u ∈ U

[(LiCn) ∩ g(., u)−1(LiDn)] ∩B(q(u), β)
⊂ [Li(Cn ∩ gn(., u)

−1(Dn))] ∩B(q(u), β)
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and

[Ls(Cn ∩ gn(., u)
−1(Dn))] ∩B(q(u), β)

⊂ [(LsCn) ∩ g(., u)−1(LsDn)] ∩B(q(u), β).

Proof. According to Proposition 3.1, there exist N ∈ N and positive real numbers
l, δ, and β < α/2 (independent of u) such that

d(x,Cn ∩ g−1
n (., u)(Dn)) ≤ l d(gn(x, u), Dn)(18)

for all u ∈ U , n ≥ N , and x ∈ Cn ∩ B(q(u), 2β) satisfying gn(x, u) ∈ Dn + 2β BY .
Without loss of generality, we may suppose that for all u ∈ U , x, x′ ∈ B(q(u), 2β),
and n ≥ N

‖gn(x, u)− gn(x
′, u)−∇1g(q(u), u)(x− x′)‖ ≤ ‖x− x′‖.

So according to the pointwise convergence of (gn(., u))n to g(., u) over B(q(u), 2β)
we see that for each u ∈ U and each x ∈ B(q(u), 2β) we have gn(xn, u) → g(x, u)
for every xn → x. Fix u ∈ U , and consider any x ∈ B(q(u), β) with x ∈ (LiCn) ∩
g(., u)−1(LiDn). Then there exist xn ∈ Cn and yn ∈ Dn with xn → x and yn →
g(x, u).

First note that for n large enough xn ∈ Cn ∩B(q(u), 2β) because x ∈ B(q(u), β)
and xn → x. As gn(xn, u)→ g(x, u) we have gn(xn, u)− yn → 0, and hence

gn(xn, u) ∈ yn + ‖gn(xn, u)− yn‖BY ⊂ Dn + 2βBY

for n large enough. We can apply (18) to get x′
n ∈ Cn ∩ gn(., u)

−1(Dn) such that

‖xn − x′
n‖ ≤ 2ld(gn(xn, u), Dn) ≤ 2l‖gn(xn, u)− yn‖.

So ‖xn−x′
n‖ → 0, which ensures that x′

n → x, and hence x ∈ Li(Cn∩gn(., u)
−1(Dn)).

This proves that

[(LiCn) ∩ g(., u)−1(LiDn)] ∩B(q(u), β)
⊂ [Li (Cn ∩ gn(., u)

−1(Dn))] ∩B(q(u), β).

Let us consider the case of limit superior. Fix any

x ∈ [Ls(Cn ∩ gn(., u)
−1(Dn)] ∩B(q(u), β).

By definition, there exists xs(n) ∈ Cs(n) ∩ gs(n)(., u)
−1(Ds(n)) with xs(n) → x. As

‖xs(n)‖ ≤ 2β for n large enough (because ‖x‖ ≤ β), we have by what precedes that
gs(n)(xs(n), u) → g(x). Since xs(n) ∈ Cs(n) and gs(n)(xs(n), u) ∈ Ds(n), we obtain
x ∈ LsCn and g(x, u) ∈ LsDn. So

x ∈ [(LsCn) ∩ g(., u)−1(LsDn)] ∩B(q(u), β),

and hence

[Ls(Cn ∩ gn(., u)
−1(Dn))] ∩B(q(u), β)

⊂ [(LsCn) ∩ g(., u)−1(LsDn)] ∩B(q(u), β).

This completes the proof.
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We can derive two important theorems from the lemma above. The first one deals
with the case when q(u) is independent of u, and its proof follows directly from the
lemma.

Theorem 5.1. Let {gn : n ∈ N} ∪ {g} be a sequence of mappings from X into Y
that is strictly differentiable-like at a fixed point x̄ ∈ X, and let (Cn)n and (Dn)n be
two sequences of closed convex subsets of X and Y , respectively. Assume that (gn)n
pointwise converges to g on a neighborhood of x̄ and that there exist r > 0 and s > 0
such that for all n ∈ N

s BY ⊂ ∇g(x̄)((Cn − x̄) ∩ r BX)− (Dn − g(x̄)).

Then there exists β > 0 such that

[(LiCn) ∩ g−1(LiDn)] ∩B(x̄, β) ⊂ [Li(Cn ∩ g−1
n (Dn))] ∩B(x̄, β)

and

[Ls(Cn ∩ g−1
n (Dn))] ∩B(x̄, β) ⊂ [(LsCn) ∩ g−1(LsDn)] ∩B(x̄, β).

The following convergence result is a direct corollary of Theorem 5.1.
Corollary 5.1. Suppose in addition to the assumptions of Theorem 5.1 that

(Cn)n and (Dn)n Painlevé–Kuratowski converge to C and D, respectively. Then there
exists β > 0 such that (Cn∩g−1

n (Dn))n Painlevé–Kuratowski converges to C∩g−1(D)
over B(x̄, β) in the sense that

[Li(Cn ∩ g−1
n (Dn))] ∩B(x̄, β) = [C ∩ g−1(D)] ∩B(x̄, β)

= [Ls(Cn ∩ g−1
n (Dn))] ∩B(x̄, β).

The second theorem is concerned with the epiconvergence of convexly composite
functions. Its proof uses Lemma 5.1 in its parametric form.

Theorem 5.2. Let {gn : n ∈ N} ∪ {g} be a sequence of mappings from X into Y
that is strictly differentiable-like at a fixed point x̄ ∈ X, and let fn : Y → R ∪ {+∞}
be a sequence of proper lower semicontinuous convex functions that epiconvergences
to f . Assume that f(g(x̄)) is finite and that (gn)n pointwise converges to g over some
neighborhood of x̄, and assume that there exist some r > 0 and s > 0 such that for all
n ∈ N

s BY ⊂ ∇g(x̄)(r BX)− ({fn ≤ f(g(x̄)) + r} − g(x̄)).(19)

Then

fn ◦ gn
epi−→ f ◦ g around x̄,

in the sense that there exists some neighborhood V of x̄ such that for every x ∈ V

(Li fn ◦ gn)(x) = f ◦ g(x) = (Ls fn ◦ gn)(x).

Proof. Put U := X ×R, Dn := Epi fn, D := Epi f , and γ(v, t) := max(t, f ◦ g(x̄))
for all (v, t) ∈ U . Define q : U → X × R and ĝ, ĝn : (X × R)× U → Y × R by

q(u) = (x̄, γ(u)), ĝ(x, t, u) = (g(x), t), and ĝn(x, t, u) = (gn(x), t).

Then for Âu(x, t) = (A(x), t) with A := ∇g(x̄) it follows from our second example of
strictly differentiable-like sequences that the sequence {ĝn : n ∈ N} ∪ {ĝ} is strictly
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differentiable-like at (q(u))u∈U . Moreover, choosing α > 0 such that (gn)n pointwise
converges to g over B(x̄, α) we see that ((ĝn(., u))n pointwise converges to ĝ(., u) over
B(q(u), α) for each u ∈ U . Also, as ĝn(q(u), u) = (gn(x̄), γ(u)), one has ĝn(q(u), u)−
ĝ(q(u), u)→ 0 uniformly with respect to u ∈ U . Now put ρ := r+ s and consider any
u ∈ U . For any b ∈ BY and λ ∈ [−1, 1] we can choose according to (19) some b′ ∈ BX

and y ∈ {fn ≤ f(g(x̄)) + r} such that

sb = A(rb′)− (y − g(x̄)),

and hence

s(b, λ) = (A(rb′), sλ+ r)− ((y, γ(u) + r)− (g(x̄), γ(u)).

As |sλ + r| ≤ ρ and γ(u) + r ≥ f(g(x̄)) + r ≥ fn(y), we obtain

s(b, λ) ∈ Âu(ρ BX×R)− (Epi fn − ĝ(x̄, γ(u), u)),

and hence

s BY×R ⊂ Âu(ρ BX×R)− (Dn − ĝ(q(u), u)).

Therefore we can apply Lemma 5.1 with Cn = X×R to get some β′ > 0 independent
of u ∈ U such that for all u ∈ U

[Li ĝn(., u)
−1(Dn)] ∩B(q(u), β′) = ĝ(., u)−1(D) ∩B(q(u), β′)

= [Ls ĝn(., u)
−1(Dn)] ∩B(q(u), β′);

that is,

[Li(Epifn ◦ gn)] ∩B(q(u), β′) = (Epif ◦ g) ∩B(q(u), β′)
= [Ls(Epifn ◦ gn)] ∩B(q(u), β′).(20)

According to the lower semicontinuity of f ◦ g, there exists some positive number
β < β′ such that for all x ∈ B(x̄, β)

f ◦ g(x̄)− β′ ≤ f ◦ g(x).

For any x ∈ B(x̄, β) with f ◦ g(x) < +∞ we have

(x, f ◦ g(x)) ∈ (Epif ◦ g) ∩B(q(x, f ◦ g(x)), β′)

which, according to (20), ensures that

(x, f ◦ g(x)) ∈ Li(Epifn ◦ gn) = Epi(Ls fn ◦ gn),

and hence (Ls fn ◦ gn)(x) ≤ f ◦ g(x). So we have for any x ∈ B(x̄, β)

(Ls fn ◦ gn)(x) ≤ f ◦ g(x).(21)

Now consider the epilimit inferior. The study of this case can be done in a much
more direct way. By assumptions, we may fix some β′′ > 0 and N ∈ N such that
the sequence (gn)n pointwise converges to g over B(x̄, 2β′′) and for all n ≥ N and
x, x′ ∈ B(x̄, 2β′′)

‖gn(x)− gn(x
′)−A(x− x′)‖ ≤ ‖x− x′‖,
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where A is the continuous linear mapping given by Definition 3.1. (In fact, A = ∇g(x̄)
here because of the pointwise convergence near x̄ of (gn)n to g.) Fix any x ∈ B(x̄, β′′),
and consider any sequence xn → x. Then the last inequality above and the pointwise
convergence property imply gn(xn)→ g(x), and hence

f(g(x)) ≤ lim inf fn(gn(xn)) = lim inf fn ◦ gn(xn)

because (fn)n epiconverges to f . It follows that f ◦ g(x) ≤ (Lifn ◦ gn)(x), and the
proof is complete.

According to our first example of a strictly differentiable-like sequence of map-
pings, we get the following corollary.

Corollary 5.2. Let {gn : n ∈ N} ∪ {g} be a sequence of mappings from X into
Y that are of class C1 on a same neighborhood of x̄ ∈ X, and let fn be a sequence of
proper lower semicontinuous convex functions from Y into R∪{+∞} that epiconverges
to f . Assume that f(g(x̄)) is finite and

(i) (gn)n pointwise converges to g on a neighborhood of x̄;
(ii) lim x→x̄

n→∞
∇gn(x) = ∇g(x̄);

(iii) there exist some r > 0 and s > 0 such that for all n ∈ N

s BY ⊂ ({fn ≤ r + f(g(x̄))} − g(x̄))−∇g(x̄)(r BX).

Then

fn ◦ gn
epi−→ f ◦ g around x̄.

6. Convergence of multipliers. Generally, when one uses the approximation
of an optimization problem with a sequence of other problems (often simpler), one
needs to know whether the sequence of multipliers will converge to a multiplier for
the original problem. We consider, in this section, optimization problems associated
with convexly composite functions.

Let h0 : X → R ∪ {+∞} and hi = X → R for i = 1, . . . , p be convexly composite
functions with hi = fi ◦ gi. For each n ∈ N, also let h0,n : X → R ∪ {+∞} and
hi,n : X → R for i = 1, . . . , p be convexly composite functions with hi,n = fi,n ◦ gi,n
for i = 0, . . . , p. Consider the optimization problem

(P) Minimize h0(x) subject to hi(x) ≤ 0 for all i = 1, . . . , p.

Recall that for a local solution x̄ of (P), a vector (λ1, . . . , λp) ∈ R
p is a multiplier of

Kuhn–Tucker type if λi ≥ 0, λihi(x̄) = 0, and

0 ∈ ∂h0(x̄) + λ1∂h1(x̄) + · · ·+ λp∂hp(x̄).(22)

Denote by (Pn) the corresponding optimization problem associated with the functions
hi,n for i = 0, . . . , p.

Similar problems have been also considered in Zolezzi [17] with equilower semi-
differentiability assumptions for the functions defining the problems and under the
separability of X. Convergence of multipliers with convexly composite functions hi
has already been studied in [4] under the equi-Lipschitz behavior (for n ∈ N) of the
constraint functions hi,n for i = 1, . . . , p as well as the equi-Lipschitz behavior of the
objective functions. The convergence in [4] concerns multipliers of Fritz–John type
and is derived from a convergence theorem of subdifferentials. Here we deal with
multipliers of Kuhn–Tucker type, but we allow the objective functions to take the
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value +∞, and hence set constraints are implicitly incorporated, which makes a big
difference from [4]. Another difference is provided by the approach that we use here.
Instead of a convergence result of subdifferentials, we proceed in a direct way which
allows us to drop the assumption in [4] of the weak-star sequential compactness of
the closed unit ball of X∗. The theorem below will strongly use the results of the
preceding section as well as some techniques of [4].

Theorem 6.1. Let x̄ be a local solution of (P). Assume that for each i =
0, 1, . . . , p the assumptions of Corollary 5.2 are satisfied with the functions fi, fi,n, gi
and gi,n. Let (xn) be a sequence of local solutions of (Pn) converging to x̄. Then any
limit of Kuhn–Tucker multipliers of (Pn) is a Kuhn–Tucker multiplier of (P).

Proof. Fix a Kuhn–Tucker multiplier λn = (λn1 , . . . , λnp ) of (Pn) at xn that con-
verges to some λ = (λ1, . . . , λp). According to (22), there exists, for each i = 0, . . . , p,
some ζni ∈ ∂fi ◦ gi(xn) such that

0 = ζn0 + λn1 ζn1 + · · ·+ λnp ζ
n
p .(23)

The equi-Lipschitz assumption entails that the sequence (ζn1 , . . . , ζnp ) is bounded, and
hence by (23) the sequence (ζn0 ) is also bounded. By the epiconvergence of (fi,n ◦gi,n)
ensured by Corollary 5.2, we have for the positive number r (of (iii) in Corollary 5.2)
some integer N1 such that for i = 0, . . . , p

fi(gi(x̄)) ≤ fi,n(g(xn)) + r and fi,n(gi,n(xn)) < +∞ for all n ≥ N1.

Using Lemma 4.1 we obtain, as in the first part of the proof of Theorem 4.1, some
positive numbers r′ and s′ independent of n and an integer N ≥ N1 such that for all
n ≥ N and i = 0, . . . , p

s′BY ⊂ ({fi,n ≤ r′ + fi,n(gi,n(xn))} − gi,n(xn))−∇gi,n(xn)(r
′
BX),

which entails (see (1.2) in [4]) that

∂(fi,n ◦ gi,n)(xn) = {ξ ◦ ∇gi,n(xn) : ξ ∈ ∂fi,n(gi,n(xn))}.(24)

So we may choose for each n ≥ N some ξni ∈ ∂fi,n(gi,n(xn)) such that ζni = ξni ◦
∇gi,n(xn). By (24) and Proposition 1.1 in [4] one has s′‖ξni ‖ ≤ r′(1 + ‖ζni ‖), and
hence the sequence (ξn0 , . . . , ξnp ) is bounded. Let (ζ0, . . . , ζp, ζ0, . . . , ζ

n
i ), and hence the

sequence (ζn0 , . . . , ζnp ) is bounded. Let (ζ0, . . . , ζp, ξ0, . . . , ξp) be a weak-star cluster
point of the sequence (ζn0 , . . . , ζnp , ξnp , . . . , ξnp ). Fixing i ∈ {0, . . . , p} and y ∈ Y and
taking any sequence (yn) converging to y, we have

〈ξni , yn − gi,n(xn)〉+ fi,n(gi,n(xn)) ≤ fi,n(yn),

and hence, taking the epiconvergence of fi,n ◦ gi,n into account,

〈ξi, y − gi(x̄)〉+ fi(gi(x̄)) ≤ 〈ξi, y − gi(x̄)〉+ lim inf
n→∞ fi,n(gi,n(xn))

≤ lim sup
n→∞

〈ξni , yn − gi,n(xn)〉+ lim inf
n→∞ fi,n(gi,n(xn))

≤ lim sup
n→∞

[〈ξni , yn − gi,n(xn)〉+ fi,n(gi,n(xn))]

≤ lim sup
n→∞

fi,n(yn).

Taking the infimum over all sequence (yn) converging to y we get, according to the
epiconvergence of fn to f ,

〈ξi, y − gi(x̄)〉+ fi(gi(x̄)) ≤ fi(y).
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This entails that ξi ∈ ∂fi (gi(x̄), noting that the equality ζni = ξni ◦∇gi,n(xn) and the
assumption (ii) in Corollary 5.2 imply that ζi = ξi ◦∇g(x̄). So by (1.2) in [4] we have
ζi ∈ ∂(fi ◦ gi)(x̄) and by (23) we also have

0 = ζ0 + λ1ζ1 + · · ·+ λpζp,

and hence

0 ∈ ∂h0(x̄) + λ1∂h1(x̄) + · · ·+ λp∂hp(x̄).

As λi ≥ 0 (because λni ≥ 0), it remains to show that λihi(x̄) = 0 for each i = 1, . . . , p.
Fix any i ∈ {1, . . . , p}. As x̄ is an admissible point for the problem (P) we have
λihi(x̄) ≤ 0. Now choose, according to the epiconvergence of fi,n, some sequence
yni → gi(x̄) with fi,n(y

n
i )→ fi(g(x̄)). Since λni ≥ 0 and fi,n is convex we also have

0 = λni fi,n(gi,n(xn)) = λni fi,n(y
n
i )− λni 〈ξni , yni − gi,n(xn)〉.(25)

Further, for n large enough

gi,n(xn)− gi(x̄) = gi,n(x̄)− gi(x̄) +

∫ 1

0

∇gi,n(x̄+ t(xn − x̄))(xn − x̄)dt,

which entails, according to assumptions (i) and (ii) in Corollary 5.2, that gi,n(xn)→
gi(x̄). As ξi is a weak-star cluster point of the bounded sequence (ξni ), it follows from
(25) that

0 ≤ λifi(g(x̄)) = λihi(x̄), and hence λihi(x̄) = 0.

The proof is then complete.
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Abstract. For a conic optimization problem

P : minimizex cT x
s.t. Ax = b,

x ∈ C

and its dual

D : supremumy,s bT y

s.t. AT y + s = c,
s ∈ C∗,

we present a geometric relationship between the primal objective function level sets and the dual
objective function level sets, which shows that the maximum norms of the primal objective function
level sets are nearly inversely proportional to the maximum inscribed radii of the dual objective
function level sets.
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1. Introduction and motivation. This paper is concerned with the inter-
related geometry of the primal objective function level sets and the dual objective
function level sets of the following conic convex optimization primal and dual pair:

P : minimumx cTx
s.t. Ax = b,

x ∈ C
and

D : supremumy,s bT y
s.t. AT y + s = c,

s ∈ C∗,

where C is a closed convex cone in a finite-dimensional normed vector space X.
We present a geometric relationship between the primal objective function level sets
and the dual objective function level sets, namely, that the maximum norms of the
primal objective function level sets are nearly inversely proportional to the maximum
inscribed radii of the dual objective function level sets.
To provide motivation without yet becoming encumbered by details, consider the

case when C is the nonnegative orthant, i.e., C = �n+ := {x ∈ �n | x ≥ 0}, in which
case P and D are simply linear programming (LP) primal and dual problems. Below
we list and comment on two well-known properties of LP:
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Property 1. Suppose that P and D are both feasible. Then the set of optimal
solutions of P is unbounded if and only if there is no strictly feasible solution of D;
that is, AT y + s = c, s ≥ 0 implies s �> 0. This property is easily proved via LP
duality, for example, and is part of the folklore of optimization. Put another way,
Property 1 can be stated as follows:

“The set of primal optimal solutions is unbounded if and only if every
dual feasible s lies on the boundary of �n+.”

Property 2. If P and D each have feasible solutions that satisfy all inequalities
strictly, then the central trajectory exists, whereby for each µ > 0 there exists unique
feasible solutions x(µ) of P and (y(µ), s(µ)) of D for which xj(µ) · sj(µ) = µ, j =
1, . . . , n. This is an elementary consequence of the optimality conditions for the loga-
rithmic barrier functions appended to a linear program; see Wright [7], for example.
Now notice here that for a given value µ > 0, the norm ‖x(µ)‖ is large if and only if
dist(sj(µ), ∂�n+) is small. In fact, a little basic arithmetic manipulation easily shows
that

µ ≤ ‖x(µ)‖1 ·min
j
{sj(µ)} ≤ nµ,

which can then be used to assert the following:
“For a given duality gap θ > 0, there exists a primal feasible x and a
dual feasible (y, s) with duality gap at most θ and with the property
that θ/n ≤ ‖x‖1 · dist(s, ∂�n+) ≤ θ.”

This brief discussion points to an interrelationship between the norms of certain
primal feasible solutions x and the distances of certain dual feasible solutions s to
the boundary of the nonnegative orthant. In section 2 we make this interrelationship
precise for the case of linear optimization in Theorem 2.1, which shows that the max-
imum norms of primal objective level sets are almost exactly inversely proportional
to the maximum distances to the boundary of dual objective level sets. In fact, just
as linear optimization is a special case of more general conic convex optimization,
Theorem 2.1 is a special case of a more general theorem that demonstrates an in-
verse proportional relationship between the maximum norms of primal objective level
sets and the maximum distances to the boundary of dual objective level sets in conic
convex optimization. This more general result is presented in section 3 as Theorem
3.2 and is the main result of this paper. Section 4 discusses several aspects of cone
geometry that arise in our development, and section 5 contains proofs.

Notation. We denote real n-dimensional space and the nonnegative n-dimensional
orthant by �n and �n+, respectively. Let e = (1, . . . , 1)T denote the vector of 1’s in
�n.

2. Primal-dual geometry of level sets for linear optimization. Consider
the following dual pair of linear optimization problems:

LP : minimize cTx
s.t. Ax = b,

x ≥ 0

and

LD : maximize bT y
s.t. AT y + s = c,

s ≥ 0,
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whose common optimal value is z∗. For ε > 0 and δ > 0, define the ε- and δ-level sets
for the primal and dual problems as follows:

Pε :=
{
x | Ax = b, x ≥ 0, cTx ≤ z∗ + ε}

and

Dδ :=
{
s | ∃ y satisfying AT y + s = c, s ≥ 0, bT y ≥ z∗ − δ} .

Define

Rε := max ‖x‖1
s.t. Ax = b,

cTx ≤ z∗ + ε,
x ≥ 0

(2.1)

and

rδ := max minj{sj}
s.t. AT y + s = c,

bT y ≥ z∗ − δ,
s ≥ 0.

(2.2)

The quantity Rε is simply the size of the largest vector x in the primal level set Pε,
measured in the L1-norm. The quantity rδ can be interpreted as the positivity of
the most positive vector s in the dual level set Dδ or, equivalently, as the maximum
distance to the boundary of the nonnegative orthant over all points s in Dδ. The
following theorem presents a reciprocal relationship between Rε and rδ.

Theorem 2.1. Suppose that z∗ is finite. If Rε is positive and finite, then

min {ε, δ} ≤ Rε · rδ ≤ ε+ δ.

Otherwise, Rε = 0 if and only if rδ = +∞, and Rε = +∞ if and only if rδ = 0.
Theorem 2.1 bounds the size of the largest vector in Pε and the positivity of the

most positive vector in Dδ from above and below, and shows that these quantities
are almost exactly inversely proportional. In fact, taking δ = ε, the result states that
Rε · rε lies in the interval [ε, 2ε]. The proof of this theorem follows as a special case of
a more general result for convex conic optimization, namely Theorem 3.2 in section
3.

Remark 2.1. If Rε <∞, then

Rε′ ≤
(
ε
′

ε

)
Rε(2.3)

for all ε
′ ≥ ε.

Proof. If Rε = 0, the result follows trivially, since then Rε′ = 0 for all ε
′
> 0. So

suppose that 0 < Rε < +∞. Let x∗ be an optimal solution of LP , and let x′ ∈ Pε′ be
given. Then x := ε

ε′
x

′
+ ε

′−ε
ε′
x∗ satisfies x ∈ Pε, whereby ‖x‖1 ≤ Rε. Now notice that

‖x′‖1 = eTx′
= ε

′

ε e
Tx− ε

′−ε
ε e

Tx∗ ≤ ε
′

ε e
Tx = ε

′

ε ‖x‖1 ≤ ε
′

ε Rε. Therefore Rε′ ≤ ε
′

ε Rε,
proving the result.
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Remark 2.1 bounds the rate of growth of Rε′ as ε
′
increases and shows that Rε′

grows at most linearly in ε
′
and at a rate no greater than Rε

ε . There is a version of
(2.3) for rδ and rδ′ , namely

rδ′ ≥
(
δ
′

δ

)
rδ(2.4)

for all 0 ≤ δ′ ≤ δ, which is true as an elementary consequence of the convexity of the
feasible region of LD.
By exchanging the roles of the primal and dual problems, we obviously can con-

struct analogous results for the most positive vector x in Pε as well as for the size of
the largest vector s in Dδ.

3. Conic optimization with a norm on X. We now consider the generaliza-
tion of linear optimization to convex optimization in conic linear form:

P : z∗ := minimumx cTx
s.t. Ax = b,

x ∈ C
and its dual

D : v∗ := supremumy,s bT y
s.t. AT y + s = c,

s ∈ C∗,

where C ⊂ X is a closed convex cone in the (finite) n-dimensional linear vector space
X, and b lies in the (finite) m-dimensional vector space Y . This format for convex
optimization dates back at least to Duffin [2]. Strong duality results can be found in
[2] as well as in Ben-Israel, Charnes, and Kortanek [1].
For ε > 0 and δ > 0, we define the ε- and δ-level sets for the primal and dual

problems as follows:

Pε :=
{
x | Ax = b, x ∈ C, cTx ≤ z∗ + ε}

and

Dδ :=
{
s | ∃ y satisfying AT y + s = c, s ∈ C∗, bT y ≥ v∗ − δ} .

We make the following assumption.
Assumption A. z∗ is finite. The cone C satisfies C �= {0}, and C contains no line

(whereby C∗ has an interior).
Suppose that X is endowed with a norm ‖ ·‖, and so X∗ is endowed with the dual

norm ‖ · ‖∗. Let B(x, r) and B∗(s, r) denote the balls of radius r centered at x ∈ X
and s ∈ X∗, respectively, defined for the appropriate norms.
We denote the maximum norm of Pε by Rε, defined as

Rε := maxx ‖x‖
s.t. x ∈ Pε.(3.1)

We denote by rδ the inscribed size of Dδ, defined as

rδ := maxs,r r
s.t. s ∈ Dδ,

B∗(s, r) ⊂ C∗.
(3.2)
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As in the case of linear optimization, rδ measures the distance of the most interior
point of the dual level set Dδ to the boundary of the cone C

∗. Put another way, rδ
measures the “interiorness” (with respect to C∗) of the most interior point in Dδ.
Before presenting the version of Theorem 2.1 for convex conic optimization, we

first review the concept of the min-width of a cone. We use the following definition
of the min-width.

Definition 3.1. Let K ⊂ X be a closed convex cone in the normed linear vector
space X satisfying (i) K has a nonempty interior and (ii) K �= X. The min-width of
K is defined as

τK := max
x∈intK

{
dist (x, ∂K)

‖x‖
}
= max

x�=0

{
r

‖x‖

∣∣∣∣∣ B(x, r) ⊂ K
}
.

Note that τK measures the maximum ratio of the radius to the norm of the center
of an inscribed ball in K, and so larger values of τK correspond to an intuitive notion
of greater minimum width of K. The quantity τK was called the “inner measure”
of K for Euclidean norms in Goffin [5] and has been used more recently for general
norms in analyzing condition measures for conic convex optimization; see [3]. Note
that τK ∈ (0, 1], since K has a nonempty interior and K �= X, and τK is attained for
some x0 ∈ intK satisfying ‖x0‖ = 1, as well as along the ray αx0 for all α > 0. Let
τK∗ be defined similarly for the dual cone K∗.
The following is analogous to Theorem 2.1 for conic problems.

Theorem 3.2. Suppose that Assumption A holds. If Rε is positive and finite,
then z∗ = v∗ and

τC∗ ·min {ε, δ} ≤ Rε · rδ ≤ ε+ δ.(3.3)

If Rε = 0, then z
∗ = v∗ and rδ = +∞; else if Rε = +∞ and v∗ is finite, then rδ = 0.

Here we have had to introduce the min-width τC∗ into the left inequality of (3.3),
somewhat weakening the result. In the next section we show that the left inequality
can be tight. We also show how to define a family of cone-based norms for which
τC∗ = 1, and we show that for norms induced by a ϑ-normal barrier function on C
the min-width constant τC∗ satisfies τC∗ ≥ 1/√ϑ. Theorem 3.2 is proved in section
5. Here we use Theorem 3.2 to prove Theorem 2.1.

Proof of Theorem 2.1. Note that LP is a special case of P with X = �n and
C = �n+, whereby C∗ = �n+. Endow X with the L1-norm ‖ · ‖ = ‖ · ‖1, whose dual
norm on X∗ is the L∞-norm ‖ · ‖∗ = ‖ · ‖∞. To prove the theorem it suffices to show
that τC∗ = 1, which we do now. Let s0 = e, and note that ‖s0‖∞ = 1, and that
B∗(s0, 1) = {s | ‖s − e‖∞ ≤ 1} ⊂ �n+ = C∗, whereby τC∗ ≥ 1. However, τC∗ ≤ 1
because C∗ is a pointed cone, and so τC∗ = 1, completing the proof.

The following remark, analogous to Remark 2.1, is proved in section 5.

Remark 3.1. If Rε <∞, then

Rε′ ≤
(
ε
′

ε

)(
1

τC∗

)
Rε

for all ε
′ ≥ ε.

4. On the min-width constant.
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4.1. The min-width constant can be tight. Here we show by example that
the left inequality in (3.3) can be tight, and so the constant τC∗ cannot be replaced
by a larger quantity. Let X = �n and C = �n+ (whereby C∗ = �n+), and let X be
endowed with the Lp-norm ‖x‖p := (

∑n
j=1 |xj |p)

1
p for 1 ≤ p ≤ +∞, whose dual norm

is ‖s‖∗ = ‖s‖q, where 1
p +

1
q = 1 with appropriate limits for p, q = 1 and/or ∞. Then

it is straightforward to show that τC = n
− 1
p and τC∗ = n−

1
q . Consider the following

LP primal and dual instance:

P̃ : minx 0Tx D̃ : maxy,s eT y
s.t. Ix = e, s.t. Iy + s = 0,

x ∈ �n+, s ∈ �n+,

whose common optimal value is z∗ = 0. Then Rε = ‖e‖p = n 1
p , and rδ =

δ
n for all

ε, δ > 0. Let ε := δ, whereby Rε · rδ = n 1
p · δn = δ · n(

1
p−1) = δ · n− 1

q = δ · τC∗ =
min{ε, δ}τC∗ , which shows that the left inequality of (3.3) can indeed be tight.

4.2. Min-widths for the family of norms induced by a ϑ-normal barrier.
In this subsection we assume that C is a regular cone; i.e., C is pointed and has an
interior. Suppose that F (·) : intC → � is a ϑ-normal barrier for C; see [6]. Then
F ∗(·) : intC∗ → �, the conjugate function of F (·), is also a ϑ-normal barrier for C∗;
see [6] as well.
Let s0 ∈ intC∗ be given. The norm induced by the ϑ-normal barrier F (·) at s0 is

defined as follows:

‖s‖∗,s0 :=
√
sTH∗(s0)s,

where H∗(s0) is the Hessian of F ∗(·) evaluated at s0. It then follows from Theorem
2.1.1 of [6] that B∗(s0, 1) ⊂ C∗ and from Proposition 2.3.4 of [6] that ‖s0‖∗,s0 =

√
ϑ.

Therefore under the dual norm ‖s‖∗ := ‖s‖∗,s0 we have τC∗ ≥ 1/√ϑ.
4.3. A family of norms on X for which τC∗ = 1. In this subsection we also

assume that C is a regular cone. For every s0 ∈ intC∗, there is a norm analogous
to the L∞-norm for the nonnegative orthant for which the associated min-width is
τC∗ = 1. To see this, consider a given interior point s0 ∈ intC∗, and define the
following norm:

‖s‖∗ := minα α
s.t. s+ αs0 ∈ C∗,

−s+ αs0 ∈ C∗.

It is a straightforward exercise to verify that ‖·‖∗ is indeed a norm, and its dual norm
turns out to be

‖x‖ := minx1,x2 (s0)T (x1 + x2)
s.t. x1 − x2 = x,

x1 ∈ C,
x2 ∈ C.

Under ‖ · ‖∗, it is easily shown that ‖s0‖∗ = 1 and τC∗ = 1.
In the case when X = �n, C = C∗ = �n+, and s0 = e, we recover the L∞-norm

as ‖s‖∗ for s ∈ X∗ = �n and the L1-norm as ‖x‖ for x ∈ X = �n.
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5. Proofs of main results. We start by pointing out a fact about strong duality
in general conic convex optimization that we will use in our proof of Theorem 3.2.
Suppose we have a primal and dual pair of conic convex optimization problems

P̂ : ẑ∗ := infx fTx D̂ : v̂∗ := supy,s gT y
s.t. Mx = g, s.t. MT y + s = f,

x ∈ K, s ∈ K∗,

where K ⊂ X is a closed convex cone in the (finite) n-dimensional linear vector space
X, and g lies in the (finite) m-dimensional vector space Y . The following lemma
presents a sufficient condition for this pair to exhibit strong duality.

Lemma 5.1. Assume that ẑ∗ is finite and for some ε > 0 the level set P̂ε :=
{x | Mx = g, x ∈ K, fTx ≤ ẑ∗ + ε} is bounded. Then P̂ attains its optimum and
ẑ∗ = v̂∗.

Proof. Note that P̂ attains its optimum, since P̂ε is bounded. The boundedness
of P̂ε also implies that

{0} = {x ∈ X | Mx = 0, x ∈ K, fTx ≤ 0}.(5.1)

It is elementary to show that ẑ∗ ≥ v̂∗. Suppose that ẑ∗ > v̂∗, let ε̄ be such that
0 < ε̄ < ẑ∗ − v̂∗, and let
S = {(w,α)| ∃y ∈ Y ∗, s ∈ K∗ satisfying w =MT y + s− f, gT y ≥ v̂∗ + ε̄− α}.

Then S is a nonempty convex set in X∗ × �, and (0, 0) /∈ S, whereby there exists
(x, θ) �= 0 satisfying xTw + θα ≥ 0 for all (w,α) ∈ S. Therefore

xT
(
MT y + s− f)+ θ (−gT y + v̂∗ + ε̄+ η) ≥ 0 ∀y ∈ Y ∗,∀s ∈ K∗,∀η ≥ 0.(5.2)

This implies that Mx = gθ, θ ≥ 0, and x ∈ K. We now have two cases.
Case 1. θ > 0. Without loss of generality we can assume that θ = 1. Therefore

x is feasible for P̂ , and (5.2) also implies that ẑ∗ ≤ fTx ≤ v̂∗ + ε̄ < ẑ∗, which is a
contradiction.

Case 2. θ = 0. In this case x �= 0, x ∈ K, Mx = 0, and (5.2) implies that
fTx ≤ 0, contradicting (5.1).
In both cases we have a contradiction, and so ẑ∗ = v̂∗.
We next state some properties of norms and the min-width. The following is a

special case of the Hahn–Banach theorem; for a short proof of this proposition based
on the subdifferential operator, see Proposition 2 of [4].

Proposition 5.2. For every x ∈ X, there exists x̄ ∈ X∗ with the property that
‖x̄‖∗ = 1 and ‖x‖ = x̄Tx.
The following exhibits some useful properties of the min-width of a cone.
Proposition 5.3. Suppose K∗ is a convex cone whose min-width τK∗ is attained

at some point s0 ∈ intK∗ satisfying ‖s0‖∗ = 1. Then
(i) τK∗‖x‖ ≤ (s0)Tx ≤ ‖x‖ for all x ∈ K, and
(ii) if s− λs0 ∈ K∗, then B∗(s, λτK∗) ⊂ K∗.
Proof. For a given x ∈ K ⊂ X, there exists x̄ ∈ X∗ for which ‖x̄‖∗ = 1 and

‖x‖ = x̄Tx from Proposition 5.2. By construction of s0 we have B∗(s0, τK∗) ⊂ K∗,
and so s0 − τK∗ x̄ ∈ K∗. Therefore ‖x‖ = ‖x‖‖s0‖∗ ≥ (s0)Tx = (s0 − τK∗ x̄ +
τK∗ x̄)Tx ≥ τK∗ x̄Tx = τK∗‖x‖, proving (i). To prove (ii), let u := s − λs0. Then
s = u+λs0, where u ∈ K∗ and B∗(s0, τK∗) ⊂ K∗, whereby it follows that B∗(s, λτK∗)
⊂ K∗.
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We are now ready to prove Theorem 3.2, which we do by proving the following
four statements:

(i) If Rε is positive and finite, then z
∗ = v∗ and Rε · rδ ≤ ε+ δ.

(ii) If Rε is positive and finite, then Rε · rδ ≥ τC∗ min{ε, δ}.
(iii) If Rε = 0, then z

∗ = v∗ and rδ = +∞.
(iv) If Rε = +∞ and v∗ is finite, then rδ = 0.
Proof of (i). Since Rε is finite, it follows that Pε is bounded, and so z

∗ = v∗ from
Lemma 5.1. Let x ∈ Pε be given, and let x̄ satisfy ‖x̄‖∗ = 1 and ‖x‖ = x̄Tx; see
Proposition 5.2. Now suppose that s ∈ Dδ satisfies B∗(s, r) ⊂ C∗ for some r ≥ 0. It
follows that ε + δ ≥ cTx − z∗ − bT y + v∗ = cTx − bT y = xT s = xT (s − rx̄ + rx̄) ≥
rxT x̄ = r‖x‖. As this is true for all x ∈ Pε and all s ∈ Dδ satisfying B∗(s, r) ⊂ C∗,
it follows that ε+ δ ≥ Rε · rδ.

Proof of (ii). Let s0 satisfy ‖s0‖∗ = 1 and B∗(s0, τC∗) ⊂ C∗, and consider the
following conic convex dual programs:

P̄ : R̄ε := maxx (s0)Tx D̄ : Q̄ := infy,s,θ −bT y + (z∗ + ε)θ
s.t. Ax = b, s.t. AT y + s = θc,

cTx ≤ z∗ + ε, s− s0 ∈ C∗,
x ∈ C, θ ≥ 0.

From Proposition 5.3 it follows that τC∗‖x‖ ≤ (s0)Tx ≤ ‖x‖ for any x ∈ C, whereby
τC∗Rε ≤ R̄ε ≤ Rε, and, in particular, the level sets of P̄ are bounded. Then we
can invoke Lemma 5.1 on the pair P̄ , D̄ and assert that P̄ attains its optimum and
R̄ε = Q̄.
For α ∈ (0,min{ε, δ}) we show below that

rδ ≥ τC∗

R̄ε + α
(min{ε, δ − α})(5.3)

and letting α→ 0 will complete the proof since (5.3) and α→ 0 imply that Rε · rδ ≥
R̄ε · rδ ≥ τC∗ min{ε, δ}. For α ∈ (0,min{ε, δ}) let (y, s, θ) be a feasible solution of D̄
satisfying

−bT y + (z∗ + ε)θ ≤ Q̄+ α = R̄ε + α,(5.4)

and define w := s− s0 ∈ C∗. We prove (5.3) by considering three cases.
Case 1. θ = 0. In this case AT y + s = 0 and −bT y ≤ R̄ε + α. Let (ȳ, s̄) be any

feasible solution of D satisfying bT ȳ ≥ z∗ − α, and define

(ŷ, ŝ) := (ȳ, s̄) +
δ − α
R̄ε + α

(y, s).

Then (ŷ, ŝ) is feasible for D, and

bT ŷ = bT ȳ +
δ − α
R̄ε + α

bT y ≥ z∗ − α− δ + α = z∗ − δ.

Also, ŝ− δ−α
R̄ε+α

s0 = δ−α
R̄ε+α

w+ s̄ ∈ C∗, whereby ŝ ∈ Dδ and B∗(ŝ, δ−α
R̄ε+α

τC∗) ⊂ C∗ from
Proposition 5.3. This then implies that rδ ≥ δ−α

R̄ε+α
τC∗ , which implies (5.3).

Case 2. θ > 0 and R̄ε+α
θ − ε ≤ δ. Define

(ŷ, ŝ) =
1

θ
(y, s),
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whereby (ŷ, ŝ) satisfies ŝ ∈ C∗, AT ŷ + ŝ = c, and

bT ŷ =
1

θ
bT y ≥ − R̄ε + α

θ
+ z∗ + ε ≥ z∗ − δ,

which shows that ŝ ∈ Dδ. Furthermore, ŝ = s0

θ +
w
θ , w ∈ C∗, and so ŝ − 1

θ s
0 ∈ C∗.

Now it follows from Proposition 5.3 that B∗ (ŝ, τC∗
θ

) ⊂ C∗, and so rδ ≥ τC∗
θ . However,

z∗ ≥ bT ŷ ≥ − R̄ε + α
θ

+ z∗ + ε,

and so 1
θ ≥ ε

R̄ε+α
, whereby rδ ≥ τC∗

θ ≥ ε
R̄ε+α

τC∗ , which then implies (5.3).

Case 3. θ > 0 and R̄ε+α
θ −ε ≥ δ. Let (ȳ, s̄) be any feasible solution of D satisfying

bT ȳ ≥ z∗ − α,(5.5)

and define

(ŷ, ŝ) = λ

(
(y, s)

θ

)
+ (1− λ)(ȳ, s̄),

where

λ =
δ − α

R̄ε+α
θ − ε− α

.

Then λ ∈ [0, 1] for α ∈ (0, δ), and so (ŷ, ŝ) is a convex combination of (y,s)
θ and

(ȳ, s̄) and so satisfies AT ŷ + ŝ = c, ŝ ∈ C∗. It also follows from (5.4) and (5.5) that
bT ŷ ≥ z∗− δ, whereby ŝ ∈ Dδ. Finally, ŝ− λ

θ s
0 ∈ C∗, and so from Proposition 5.3 we

have B∗(ŝ, λτC∗
θ ) ⊂ C∗. Therefore

rδ ≥ λτC
∗

θ
=

δ − α
R̄ε + α− αθ − εθ τC

∗ ≥ δ − α
R̄ε + α

τC∗ ,

from which (5.3) follows.
Therefore (5.3) is true in all cases, and the proof is complete.
Proof of (iii). Since Rε = 0 it follows that Pε = {0} is bounded, and so z∗ = v∗

from Lemma 5.1. It then follows that b = 0, and so z∗ = v∗ = 0. To prove that
rδ = +∞ it suffices to prove that there exists (ỹ, s̃) satisfying

AT ỹ + s̃ = 0 and s̃ ∈ intC∗.(5.6)

Let s0, P̄ , and D̄ be exactly as in the proof of (ii), and the same logic as in the proof
of (ii) yields R̄ε = Q̄ = 0; notice that because b = 0 and z

∗ = 0 it follows that the
objective function of D̄ is simply εθ. If D̄ attains its optimal value Q̄ = 0, then any
optimal solution (y∗, s∗, θ∗) of D̄ will satisfy θ∗ = 0, and so (5.6) will be satisfied
by setting (ỹ, s̃) = (y∗, s∗). Alternatively, if c = 0, then the (y, s) variables of any
feasible solution (y, s, θ) of D̄ will satisfy (5.6). It remains to consider the case when
D̄ does not attain its optimum and c �= 0. Let α := ε·τC∗

2‖c‖∗
, and let (y, s, θ) be a

feasible solution of D̄ satisfying εθ = −bT y + (z∗ + ε)θ ≤ R̄ε + α = ε·τC∗
2‖c‖∗

; then, in

particular, θ ≤ τC∗
2‖c‖∗

. Define w := s − s0 ∈ C∗. Let (ỹ, s̃) = (y, s0 + w − θc). Then
AT ỹ + s̃ = AT y + s − θc = 0, and s̃ = s0 + w − θc = w + 1

2s
0 + 1

2 (s
0 − 2θc). Notice
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that ‖2θc‖∗ ≤ τC∗ , and so s0 − 2θc ∈ C∗, and also w ∈ C∗ and s0 ∈ intC∗, whereby
it follows that s̃ ∈ intC∗, validating (5.6).

Proof of (iv). Because Rε = +∞ it follows that there exists x �= 0 satisfying
x ∈ C,Ax = 0, and cTx = 0. From Proposition 5.2 there also exists x̄ ∈ X∗ for
which ‖x̄‖∗ = 1 and ‖x‖ = x̄Tx. Now suppose that v∗ is finite, and let ŝ ∈ Dδ
satisfy B∗(ŝ, r) ⊂ C∗ for some r ≥ 0. Then there exists ŷ for which AT ŷ + ŝ = c,
and so xT ŝ = xT (c − AT ŷ) = 0 − 0 = 0. Also, ŝ − rx̄ ∈ C∗, and x ∈ C implies
that 0 ≤ xT (ŝ − rx̄) = −rxT x̄ = −r‖x‖, whereby r = 0. This then implies that rδ
= 0.

Proof of Remark 3.1. If Rε = 0, the result follows trivially, since then Rε′ = 0

for all ε
′
> 0. So suppose that 0 < Rε < +∞. Let x∗ be an optimal solution

of P (P attains its optimum; see Lemma 5.1), and let x
′ ∈ Pε′ be given. Then

x := ε
ε′
x

′
+ ε

′−ε
ε′
x∗ satisfies x ∈ Pε, whereby ‖x‖ ≤ Rε. Let s0 satisfy ‖s0‖∗ = 1

and B∗(s0, τC∗) ⊂ C∗. Then from Proposition 5.3 we have τC∗‖x′‖ ≤ (s0)Tx′
=

ε
′

ε (s
0)Tx − ε

′−ε
ε (s

0)Tx∗ ≤ ε
′

ε (s
0)Tx ≤ ε

′

ε ‖x‖ ≤ ε
′

ε Rε. Therefore ‖x
′‖ ≤ ε

′

ε
1
τC∗Rε for

all x
′ ∈ P ′

ε , and so Rε′ ≤ ε
′

ε
1
τC∗Rε, proving the result.
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Abstract. We investigate relaxations for the maximum stable set problem based on the Lovász
number ϑ(G) as an initial upper bound. We strengthen this relaxation by adding two classes of
cutting planes, odd circuit and triangle inequalities. We present computational results using this
tighter model on many classes of graphs.
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1. The stable set problem. LetG = (V (G), E(G)) denote an undirected graph
with |V (G)| = n and |E(G)| = m. An edge joining nodes i and j is represented by (ij).
A stable set S (also called an independent set) in G is by definition a subset of V (G)
such that no two vertices in S are joined by an edge in E(G). The maximum stable
set problem is the problem of finding a stable set of maximum cardinality. We will
denote the size of a largest stable set in G by α(G).

Some notation. We will denote by S(n) the space of n× n symmetric matrices
and write diag(X) to denote the vector formed from the diagonal elements of a square
matrix X. Let trace(X) =

∑
i xii. The symbol � denotes the Löwner partial order,

i.e., A � B if A−B is positive semidefinite. A � 0 means A is positive definite. Let
e denote the vector of all ones, J the matrix of all ones, and let Eij = eie

T
j + eje

T
i ,

where ei stands for the ith column of the identity matrix of appropriate size.
The stable set problem can be formulated in several ways as an integer opti-

mization problem. Let us introduce the binary variables xi with xi = 1 if i is to be
contained in some stable set. Then we get the following integer linear program for
the stable set problem:

α(G) = max

{
n∑
i=1

xi : xi + xj ≤ 1 ∀(ij) ∈ E(G), xi ∈ {0, 1} ∀i ∈ V (G)

}
.(STAB)

The linear formulation (STAB) is the starting point for the polyhedral approach to
the stable set problem, going back to the 1970s. We will review some of the main
results of this approach in subsection 2.1.
The condition that for (ij) ∈ E(G) at most one of the nodes i and j can be taken

into a stable set can be modeled not only as xi + xj ≤ 1, xi, xj ∈ {0, 1}, but also as
xixj = 0, xi, xj ∈ {0, 1}. This leads to the following integer quadratic optimization
formulation of the stable set problem:

(STAB) α(G) = max{xTx : xixj = 0 ∀(ij) ∈ E(G), x2
i = xi ∀i ∈ V (G)}.(1.1)
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This formulation will give rise to the well-known semidefinite relaxation introduced
by Lovász in 1979; see [17]. We summarize the main results of this approach in
subsection 2.2. Section 2 reviews linear and semidefinite relaxations of the stable set
problem. We recall the interconnection between (2.9) and (2.7) below. In section 2.4
we review the lift-and-project idea. In section 3 we discuss a computationally feasible
way to approximate N+(FRAC (G)), and conclude with computational results on
many classes of graphs, both taken from the literature and randomly generated.

Our contributions. We first investigate the computational effort required to
compute the ϑ function introduced by Lovász. We will show that computing the
ϑ function using (2.9) is far more efficient than using (2.7). Unfortunately, it is not
clear how the model (2.9) can be combined with purely linear relaxations of the stable
set problem, while this is straightforward for the model (2.7). As another contribution,
we show how the optimal solution to (2.9) can be used to generate an optimal solution
to (2.7), which can be further strengthened by introducing additional cutting planes.
Finally, we propose an iterative procedure that leads to a computationally efficient
way to approximate a theoretically very strong relaxation of the stable set problem,
namely, optimizing over N+(FRAC (G)). Our computational results indicate that this
relaxation often gives very tight approximations to α(G).

2. Tractable relaxations.

2.1. Linear relaxations. Linear programming-based relaxations of a combina-
torial optimization problem are based on the study of the convex hull of its integer
solutions. Let us denote by STAB(G) the convex hull of incidence vectors of stable
sets in G, i.e.,

STAB(G) = conv{x ∈ {0, 1}n : xi + xj ≤ 1 ∀(ij) ∈ E(G)}.(2.1)

The following inequalities are all valid for STAB(G):

xi ≤ 1 for isolated nodes,

(nonnegativity constraints) xi ≥ 0, i ∈ V (G),(2.2)

(edge constraints) xi + xj ≤ 1, (ij) ∈ E(G),(2.3)

(odd-cycle constraints)
∑

i∈V (C)

xi ≤ 1
2
(|V (C)| − 1), C odd cycle in G,(2.4)

(clique constraints)
∑
i∈Q

xi ≤ 1, Q clique in G.(2.5)

There are many more classes of inequalities which are valid for STAB(G), such as
the odd-antihole constraints, the wheel constraints, and so on. We refer to Chapter 9
of [8] for a thorough treatment of linear relaxations of the stable set problem.

Several subsets of the constraint classes above were given names. The fractional
stable set polytope is given by

FRAC (G) = {x : x satisfies (2.2) and (2.3)}.

The odd-cycle polytope is given by

CSTAB(G) = {x : x satisfies (2.2), (2.3), and (2.4)}.



1016 GERALD GRUBER AND FRANZ RENDL

The clique-constraints are collected in the clique-polytope

QSTAB(G) = {x : x satisfies (2.2) and (2.5)}.

Here we recall a few of the most fundamental facts which are relevant for our
approach. The simplest constraints (2.2) and (2.3) suffice for only the trivial case of
bipartite graphs.

Fact 2.1 (see [8]). STAB(G) = FRAC (G) if and only if G is bipartite and has
no isolated nodes.

While the separation problem for CSTAB(G) can be done in polynomial time via
shortest path computations in graphs with nonnegative edge weights, it is likely to be
difficult to optimize over QSTAB(G).

Fact 2.2 (see [7]). Any linear function can be optimized over CSTAB(G) in
polynomial time.

Fact 2.3 (see [6]). It is NP-complete to optimize a linear objective function over
QSTAB(G).

STAB(G) is in general a proper subset of QSTAB(G). The question of charac-
terizing graphs G, where QSTAB(G) = STAB(G), leads to one of the most intriguing
topics of graph theory related to the stable set problem, the study of perfect graphs.
For a formal definition of perfect graphs, we refer to [6]. In the 1970s Fulkerson [5]
and Chvátal [4] characterized the graphs for which QSTAB(G) = STAB(G). They
showed the following.

Fact 2.4. STAB(G) = QSTAB(G) if and only if G is perfect.

2.2. Theta function. In this section we recall the stable set relaxation intro-
duced by Lovász; see [17]. There are many different ways to derive this relaxation.
Most of them were already analyzed in the original paper [17].

A quick way to obtain this relaxation was proposed by Lovász and Schrijver [19],
and goes as follows. Suppose that x ∈ {0, 1}n is the characteristic vector of a stable
set in a graph G with n := |V (G)|. Consider the rank-one matrix Y =

(
x
1

)(
x
1

)T ∈
S(n + 1). If we partition this matrix as Y =

(
X
xT

x
1

)
, then the main diagonal of

X = (xij) is contained in the following set TH (G):

TH (G) =

{
x ∈ R

n : ∃Y =
(

X x
xT 1

)
, Y � 0, diag(X) = x, xij = 0 ∀(ij) ∈ E(G)

}
.

(2.6)
Therefore optimizing over TH (G) gives a relaxation of α(G), which we denote by ϑ(G):

ϑ(G) = max

{∑
i

xi : x ∈ TH (G)
}
≥ α(G).(2.7)

Remark 2.5. It is well known that
(
X
xT

x
1

) � 0 if and only if X − xxT � 0.
ϑ(G) is obtained as the solution of a semidefinite programming (SDP) problem.

It can be computed in polynomial time to some fixed prescribed precision; see [7, 22].
It is pointed out in [23] that the relaxation leading to ϑ(G) can alternatively be
derived by taking the Lagrangian dual of the stable set formulation as a quadratically
constrained quadratic problem in binary variables (1.1). This is also observed more
recently in [16]. The derivation through the Lagrangian dual is quite general, and this
approach applies to many other discrete optimization problems; see, e.g., [23]. The
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set TH (G) can be viewed as the projection of the set of (n + 1) × (n + 1) matrices
Y ∈ S(n+ 1) satisfying

yij = 0 for all (ij) ∈ E(G), yii = yi,n+1 for all i ∈ V (G), yn+1,n+1 = 1, Y � 0(2.8)

onto its main diagonal entries 1 to n. Note also that there are positive definite
matrices Y ∈ S(n + 1) satisfying (2.8), so that the SDP defining ϑ(G) satisfies the
Slater constraint qualification.
Even though the derivation of the relaxation (2.7) is quite natural, there are

several seemingly different relaxations of α(G), which all give the same value ϑ(G).
We review some basic results which are useful for our purposes.
Let x = 0 again be the characteristic vector of some stable set in G. Then

eTx = xTx and the matrix X := 1
xT x

xxT has the following properties:

X � 0, xij = 0 for all (ij) ∈ E(G), trace(X) = 1.

Moreover, trace(JX) = eTx. Thus

z(G) = max{trace(JX) : trace(X) = 1, xij = 0 ∀(ij) ∈ E(G), X � 0} ≥ α(G).
(2.9)
The relaxation z(G) is among the formulations of ϑ(G) investigated in [17]. It

is shown, e.g., in [19] that indeed z(G) = ϑ(G). Since this result is important for
our computational approach, we include the following proof, which differs from the
argument in [19]. We start out with some simple observations.

Lemma 2.6. Let X ∈ S(n), X � 0, and assume that trace(JX) =: z > 0. Then
there exists a matrix B = (b1, . . .) such that X = BBT and Xe =

√
zb1.

Proof. If X � 0, then there exists C such that X = CCT . We set x = 1√
z
CT e

and note that xTx = 1
z e
TCCT e = 1

z trace(JX) = 1. Thus there exists an orthogonal
matrixQ = (x, . . .) with x as the first column. The matrix CQ = B = (b1, . . .) satisfies
BBT = CQQTCT = X and Xe = BQTCT e =

√
zBQTx =

√
zBe1 =

√
zb1.

Lemma 2.7. Let X be optimal for (2.9) with value z(G) = trace(JX). Then
Xe = z(G) diag(X) ∈ TH (G).

Proof. The dual of (2.9) is the following SDP (see, e.g., [12]):

minλ such that S = λI − J +
∑

(ij)∈E(G)

yijEij � 0.

Let X be optimal for (2.9), and λ, {yij : (ij) ∈ E(G)} be optimal for the dual
problem. Strong duality holds for these problems, because both problems satisfy the
Slater constraint qualification. Therefore z(G) = λ and SX = 0. Note that z(G) ≥ 1
since 1

nI is feasible in (2.9) with objective value 1. Thus

0 = (SX)ii = siixii +
∑

(ij)∈E(G)

sijxij +
∑

i �=j, (ij)/∈E(G)

sijxij

= (z(G)− 1)xii −
∑

i �=j, (ij)/∈E(G)

xij ,

because sii = z(G)− 1, xij = 0 for (ij) ∈ E(G), and sij = −1 for (ij) /∈ E(G). This
shows that z(G)xii = (Xe)i.
From Lemma 2.6 we get X = BBT and d := z(G) diag(X) = Xe =

√
z(G)b1.

Therefore z(G)X − ddT = z(G)(BBT − b1b
T
1 ) = z(G)

∑
i>1 bib

T
i � 0. Moreover,

xij = 0 for (ij) ∈ E(G), showing that d ∈ TH (G).
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Lemma 2.8. Let x ∈ TH (G), i.e., ∃X = (xij), x = diag(X), xij = 0 if (ij) ∈
E(G), X−xxT � 0. Suppose that ∑i xi = γ > 0. Then Y = 1

γX is feasible for (2.9)

and trace(JY ) ≥ γ.
Proof. Feasibility of Y for (2.9) is obvious. Since X − xxT � 0, we get eTXe ≥

(eTx)2 = γ2. Therefore eTY e ≥ γ.
Using these results, we show now how optimal solutions of (2.9) and (2.7) relate

to each other.
Theorem 2.9. Let x ∈ TH (G) be optimal for (2.7), i.e., ∃X ∈ S(n), X = (xij)

with x = diag(X), xij = 0 if (ij) ∈ E(G), X − xxT � 0, and objective value
ϑ(G) =

∑
i xi. Further, let Y be optimal for (2.9) with z(G) = trace(JY ). Then

z(G) diag(Y ) is optimal for (2.7),

1

ϑ(G)
X is optimal for (2.9) and z(G) = ϑ(G).

Proof. Let x,X, Y satisfy the hypotheses of the theorem. Lemma 2.7 shows that
z̄ = z(G) diag(Y ) is feasible for (2.7) and z(G) =

∑
i z̄i ≤

∑
i xi = ϑ(G). Lemma 2.8

shows that 1
ϑX is feasible for (2.9) and ϑ(G) ≤ eT ( 1

ϑ(G)X)e ≤ z(G).

There is some asymmetry between the two transformations. While it is straight-
forward to transform feasible solutions from (2.7) into feasible solutions of (2.9) with
the same objective value or higher (see Lemma 2.8) it is not clear how arbitrary fea-
sible solutions of (2.9) can be transformed into feasible solutions of (2.7). Lemma 2.7
makes essential use of X being optimal.
We close this section with some basic facts about the set TH (G).
Fact 2.10 (see [6, 7]).
1. STAB(G) ⊆ TH (G) ⊆ QSTAB(G).
2. TH (G) is polyhedral if and only if G is perfect.
3. STAB(G) = TH (G) = QSTAB(G) if and only if G is perfect.
4. We can optimize linear functions over TH (G) in polynomial time.

Remark 2.11. It is easy to see that adding the rank-one constraint to matrices
satisfying (2.8) produces precisely the characteristic vectors of stable sets.

{Y : Y satisfies (2.8), rank(Y ) = 1}

=

{(
x

1

)(
x

1

)T
: x characteristic vector of a stable set in G

}
.

We leave it to the reader to verify that adding the rank-one constraint to the
relaxation (2.9) again gives α(G).

α(G) = max{trace(JX) : trace(X) = 1, xij = 0 ∀(ij) ∈ E(G), X � 0, rank(X) = 1}.
It should be noted, however, that not all feasible rank-one matrices of (2.9) lead

to multiples of characteristic vectors of stable sets.

2.3. Optimizing over TH (G) and CSTAB(G) in practice. In view of
Theorem 2.9, we have two SDP models available to compute ϑ(G). Theoretically,
they are equivalent, but the practical computational effort is much smaller for (2.9).
This should not be too surprising as there are, aside from the constraints xij = 0,
(ij) ∈ E(G), which appear in both models, n+1 additional equations fixing the main
diagonal of Y to its last column in (2.8), while there is only one additional equation
trace(X) = 1 in (2.9).



STABLE SET RELAXATIONS 1019

Table 2.1
Comparison of running times for computing ϑ(G).

CPU time [sec]

File n m ϑ(G) (2.9) (2.7) CSDP 3.2

g100 100 497 32.8792 7 68 -

g150 150 1105 42.1660 43 645 70

g200 200 1948 50.3212 176 4172 311

g250 250 3027 57.2323 589 no attempt 956

g300 300 4374 63.4471 1524 no attempt 2929

Table 2.2
Numerical results on triangulated planar graphs.

optimizing over

n m α(G) TH (G) CPU time [sec] CSTAB(G) CPU time [sec]

100 294 44 44 2.3 44.6667 0.9

200 594 87 87 16.6 87.3333 4.5

300 894 126 126 53.7 127.0000 13.0

400 1194 174 174 155.8 174.6667 29.7

500 1494 220 220 335.4 220.3333 64.3

600 1794 270 270 606.9 270.0000 59.0

In Table 2.1 we include computation times for both models and also compare
our results with those from the software package CSDP 3.2 from Brian Borchers1

written in C, which also contains a module to compute (2.9). The test problems are
taken from this software package. The column labeled n gives the number of vertices,
column m the number of edges, in the graph G. Both relaxations are computed with
Matlab using some interfaces in C; CSDP 3.2 is written in C. The computations for
(2.9) and (2.7) are done on a Pentium II 400 MHz computer, the results for CSDP 3.2
are taken from Mittelmann’s web page,2 where he reports computation times using a
Pentium II 450 MHz computer.

Since both CSDP 3.2 and our code for (2.9) solve the same problem, the difference
in computation times is attributed to the highly efficient implementation of matrix
operations in Matlab. To allow a comparison, our Matlab routine is available on the
web.3

We also report results from optimizing over the linear relaxation CSTAB(G) of the
stable set polytope. ILOG CPLEX 6.5 is used to solve the linear programs. Note that
x = 1

3e, x ∈ R
n, is contained in CSTAB(G). Therefore the optimal objective value

is at least n3 . In our extensive experiments it has been observed that optimizing over
CSTAB(G) often yields x = 1

3e if α(G) <
n
3 . Therefore optimizing over CSTAB(G)

is only meaningful if α(G) > n
3 . In Table 2.2 we compare the computational effort

to optimize over TH (G), which involves solving an SDP, with the effort to solve the
linear relaxation given by CSTAB(G). We use triangulated planar graphs, which are
known to be perfect, hence α(G) = ϑ(G). It is interesting to see that the relaxation

1http://www.nmt.edu/˜borchers/csdp.html
2ftp://plato.la.asu.edu/pub/sdplib.txt
3http://www-sci.uni-klu.ac.at/math-or/home/publications/theta-ml.tar.gz
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given by CSTAB is also rather strong for this class of problems.

2.4. Matrix relaxations: Lift-and-project. The derivation of ϑ(G) can be
viewed as going from R

n into the space of symmetric n× n matrices, and then back
to R

n again, by projecting onto the main diagonal. This idea is further elaborated
in [19] and was independently used by many other researchers; see, e.g., [1, 18, 26]. For
recent developments on lift-and-project, see Laurent [14]. We now recall the approach
investigated in [19]. Given a polytope P = {x : Ax− b ≥ 0}, let PI denote the convex
hull of its 0-1 integral points. Multiplying each inequality defining P by xk and 1−xk
results in a system of quadratic inequalities. This system is linearized by substituting
yij for xixj . 0-1 solutions also satisfy x

2
i = xi; hence x

2
i is replaced by yii. Imposing

further that yij = yji leads to inequalities which are now linear in yij . We denote
by M(P ) the set of all symmetric matrices Y satisfying these linearized constraints.
Projection onto the main diagonal gives the set N(P ),

N(P ) = {x : ∃Y ∈M(P ) such that x = diag(Y )}.
It is clear from the definition that PI ⊆ N(P ) ⊆ P . We now recall the results of [19]
in the case P = FRAC (G). Multiplying xi ≥ 0 by xk ≥ 0 and 1 − xk ≥ 0 and
linearizing gives

0 ≤ yik ≤ yii.

Similarly we multiply 1− xi − xj ≥ 0 with xk and 1− xk and get for all (ij) ∈ E(G)
and for all k

ykk − yik − yjk ≥ 0 and 1− yii − yjj − ykk + yik + yjk ≥ 0.
It should be noted that yik ≤ ykk is implied by the second set of inequalities. Moreover,
it is easy to see that yij = 0 for (ij) ∈ E(G). We conclude (see [19])

M(FRAC (G)) =
{
Y = (yij) : Y ≥ 0, yii + yjj + ykk − 1 ≤ yik + yjk ≤ ykk

∀(ij) ∈ E(G), ∀k
}
.

Since M(FRAC (G)) is given by an explicit system of inequalities (of polynomial
size), we can optimize in polynomial time over N(FRAC (G)).
We close this section with yet another view of lift-and-project. It is well known

that the quadric Boolean polytope conv{xxT : x ∈ {0, 1}n} is contained in the metric
polytope MET (n); see, e.g., [2, 27]. By definition, a matrix X satisfies

X ∈ MET (n) :⇔



0 ≤ xij ≤ xii,
xii + xjj − xij ≤ 1,
−xkk − xij + xik + xjk ≤ 0,
xkk + xii + xjj − xij − xik − xjk ≤ 1, 1 ≤ i, j, k ≤ n.

(2.10)

Let us define MET (G) to consist of those matrices in MET (n) where xij = 0 for
(ij) ∈ E(G),

MET (G) = {X ∈ MET (n) : xij = 0 if (ij) ∈ E(G)}.
We observe that MET (G) ⊆ M(FRAC (G)), because M(FRAC (G)) contains all the
inequalities ofMET (G) for which (ij) ∈ E(G). On the other hand, MET (G) contains
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the additional inequalities−xkk−xij+xik+xjk ≤ 0 and xkk+xii+xjj−xij−xik−xjk ≤
1 for stable sets i, j, k, which clearly are not contained inM(FRAC (G)). It turns out,
however, that these constraints do not further tighten the relaxation.

Theorem 2.12.

N(FRAC (G)) = CSTAB(G) = N(MET (G)).

We omit a formal proof, as the result follows from Theorem 2.3 in [19] and Propo-
sition 6 from [15]. We note, however, that the inclusions

N(MET (G)) ⊆ N(FRAC (G)) ⊆ CSTAB(G)

can be easily verified: the first one follows from the fact thatMET (G) ⊆M(FRAC (G)),
and the second one is verified in [19]. Proposition 6 from [15] shows that a vec-
tor d belongs to CSTAB(G) if and only if there exists a matrix X ∈ MET (G)
such that di = xii for all i ∈ V . This implies that CSTAB(G) is contained in
N(MET (G)) and, therefore, equality holds throughout in the above chain of inclu-
sions. It is worth mentioning this since this gives an alternative proof for the inclusion
CSTAB(G) ⊆ N(MET (G)), which is the hardest part of the result from [19].
Lovász and Schrijver propose a further refinement of M(P ) and N(P ) by observ-

ing that matrices Y in M(P ) satisfy the following semidefiniteness condition:

Y − diag(Y ) diag(Y )T � 0.(2.11)

Hence they define M+(P ) := {Y ∈ M(P ) : Y satisfies (2.11)}, and similarly N+(P )
to be the projection of M+(P ) onto the main diagonal.
In case of P = FRAC (G) we get

M+(FRAC (G)) = {Y : Y ∈M(FRAC (G)), Y satisfies (2.11)}.(2.12)

Optimizing over N+(FRAC (G)) can still be done in polynomial time [19], but
practical implementations are currently not available. Optimizing overN+(FRAC (G))
amounts to solving an SDP with m = |E(G)| equality constraints (xij = 0 (ij) ∈
E(G)) and O(mn) inequalities, given by M(FRAC (G)). Solving this SDP directly
with current algorithms is therefore out of reach for graphs of interesting sizes, say
n ≥ 30, m ≥ 100.
In view of Theorem 2.12 it is clear that when optimizing over N+(FRAC (G)),

we can ignore the odd cycle constraints, as they are automatically satisfied. We will
show below that these constraints are nonetheless quite useful in the case where we
approximate the optimization over N+(FRAC (G)) by an iterative procedure, where
only some of the linear inequalities defining N+(FRAC (G)) are considered.

3. Towards approximating N+(FRAC (G)). In Table 2.1 we gave some idea
about the problem sizes for which it is feasible to optimize over TH (G) yielding
ϑ(G). Now we are interested in investigating by how much we can improve ϑ(G),
when (at least approximately) optimizing over N+(FRAC (G)). Directly including all
O(nm) inequalities from (2.12) in the SDP is intractable for graphs of reasonable size.
Therefore we use the approach from [12, 11], where an iterative scheme is proposed
in which only a small subset of (2.10) is selected carefully to be added to

F (G) := {X ∈ S(n) : diag(X) ∈ TH (G)}.
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Table 3.1
Average running times on randomly generated sparse graphs.

CPU time [sec] from optimizing over

n density[%]−m F (G) F (G) ∩ C(G) F (G) ∩ C(G) ∩MET (G)

50 10 - 125 0.7 4.3 (10) 8.8 (8/47)

100 10 - 500 5.1 41.4 (9) 141.8 (2/180)

150 5 - 559 10.1 150.7 (42) 354.3 (22/266)

200 3 - 597 16.1 309.6 (94) 958.8 (63/383)

250 2 - 623 25.5 424.7 (95) 1458.3 (98/297)

Since we are interested in tightening the relaxation TH (G) by adding further linear
inequalities, we need a model in which those constraints can conveniently be included.
In the case of (2.7) this is straightforward. It is not clear how the odd circuit con-
straints, for instance, or the inhomogeneous triangle inequalities from (2.10) could
be included in (2.9). We therefore use the fast model (2.9) to generate the optimal
solution X which we transform with Theorem 2.9 into an optimal solution of (2.7).
Starting from this point, we include further violated cutting planes, if there are any.
In [11] some preliminary computational experience is reported for optimizing over

F (G) ∩ MET (G). The main message seems to be that it is computationally very
demanding to optimize over this set, as the number of inequalities defining MET (G)
grows cubically with n.
It should be mentioned that Schrijver [25] proposed a strengthening of the Lovász

bound ϑ(G) by adding the nonnegativity constraints. These are only a subclass of the
constraints of MET (G), and there does not seem to be any reason to prefer them over
the general constraints defining MET (G). Optimizing over F (G) ∩MET (G) clearly
dominates the Schrijver model.
In our approach one refinement of TH (G) with problem-specific cutting planes

consists of intersecting F (G) with

C(G) := {X ∈ S(n) : diag(X) ∈ CSTAB(G)}.

We recall that the separation problem for CSTAB(G) reduces to shortest path com-
putations and hence is easy.
Ultimately we want to get improved bounds on α(G) as quickly as possible. Prac-

tical experience has shown that, at the beginning of our iterative process, the inclusion
of a moderate number of triangles and odd circuits induces a significant improvement
of the bound on α(G), contrary to adding the most violated triangles only. The cy-
cle inequalities get redundant as more and more triangle inequalities are included.
Further computational details on this effect can be found in [9].
To get a feeling for the computational effort to solve these relaxations (at least

approximately), we include in Table 3.1 some computation times on several randomly
generated problems of various size. This table compares computation times from
optimizing over the different relaxations. Column n gives the respective order of
the graphs. Each line lists the average CPU time to solve 10 problems of given size
and density. The values in the parenthesis indicate the (average number of) active
constraints at termination. We also provide the average number m of edges and the
density. It should be noted that optimizing over MET (G) is not done exactly. The
iterations are stopped once the maximum violation of MET (G) has fallen below a
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threshold of 50% of the maximum initial violation. Optimizing over F (G) ∩ C(G) is
computationally feasible and so is done exactly.

4. Interior-point implementation. In this section we discuss some implemen-
tation details of our cutting plane technique. Our algorithm involves solving a number
of semidefinite problems. These programs are solved using primal-dual path-following
interior-point methods. The search direction used in our implementation was pro-
posed independently by Helmberg et al. [12] and Kojima, Shindoh, and Hara [13]; see
also [21]. All our codes are implemented in Matlab with interfaces in C.

4.1. Iteratively adding cuts. As already indicated in subsection 2.2, we first
compute the optimal solution of (2.9) to generate an optimal solution of (2.7), which
can be used to add violated triangle and odd cycle constraints. Thus our initial upper
bound on α(G) is always ϑ(G).

The initial semidefinite bound ϑ(G) (in general the upper bound of the current
model) can be improved now by identifying and including violated odd circuit con-
straints and/or triangle inequalities. In general there are a lot more violated cutting
planes than we are willing to add to the current relaxation. The computational effort
to reoptimize grows drastically with the number of constraints. Therefore we add
only the most violated constraints.

Since interior-point techniques are used for solving the relaxations, we have to
assure that the initial starting point for the subsequent iteration is an interior point.
It does not have to be feasible, though.

Hence the current point has to be modified for restarting. A detailed description
of this modification is given in section 4.2.

After having added new violated constraints, the interior-point code is restarted.
We stop it after it has reached both primal and dual feasibility. At this point we look
again for violated constraints, add them, and iterate as before.

After several such rounds of collecting inequalities, we solve the present model to
optimality. This allows us to remove constraints that have become inactive.

After having purged the model from inactive constraints, we proceed to the next
phase of adding cutting planes, until some stopping condition is satisfied. We refer
the reader to [9, Chapter 5] for extensive implementation details.

4.2. Restarting. Let the linear operator B(·) be defined such that all added
cutting planes with complying right-hand side b may be written as B(X) ≤ b. The
current optimal X is no longer an interior point, because it violates the most recently
added cuts. Since the interior-point machinery requires an initial X � 0 that strictly
satisfies these inequalities, we use a simple trick in formulating the current semidefinite
model. We introduce a primal slack variable s = b − B(X) ≥ 0. We then introduce
an artificial dual slack variable t ≥ 0 for the dual variable r corresponding to s. This
way we get the additional dual constraint t = r. This restatement of the semidefinite
model simplifies the update of the variables used in the interior-point code. To get
the initial variables (X◦, y◦, Z◦) we implemented a simple backtracking strategy from
the current (X, y, Z) in the direction to a well centered point in the interior of the
feasible set of (2.7). This is a standard technique, and therefore we do not restate
it here precisely. The initial variables r◦, s◦, and t◦ are constructed as follows. We
set (ri, si, ti) = (0, 0.1, 0.1) for every component i corresponding to a newly added
inequality. We take the current variables r, s, and t for updating the remaining
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components. We set

r◦i =
{

ri if ri ≥ 0.1,
0 otherwise,

s◦i =
{

si if si ≥ 0.1,
0.1 otherwise,

t◦i =
{

ti if ti ≥ 0.1,
0.1 otherwise.

The point constructed in this way is strictly interior but not feasible for the current
semidefinite model.

4.3. Rounding. Finally, we use the main diagonal of our primal matrix X to
generate a stable set. A large entry xii indicates that vertex i is likely to be contained
in a large stable set. Hence we run through all the vertices of G in the order given by
the main diagonal of X sorted nonincreasingly. We select the vertices to be contained
in a stable set with probability proportional to xii. If vertex j is accepted to be in a
stable set, we exclude all the neighbors of j. The final stable set is locally improved
in a second phase of the rounding heuristic; the complete process is repeated several
times. We include the size of the largest stable set found this way in the tables of
section 5 under the heading “lower bound on α(G).”

5. Computational results. In this section we report computational experience
on different classes of test problems. It is the primary objective of this section to
compare the quality of the different relaxations described above. We have already
discussed the computational effort in section 3. Therefore running times are omitted.
All our computational tests were performed on a DEC Alpha workstation.

5.1. Test problems. Our numerical experiments were carried out on the fol-
lowing sets of graphs:

(i) random graphs with given density,
(ii) Sanchis graphs (see [24, 10]),
(iii) Mannino graphs (see [20]),
(iv) Johnson graphs (see [10]),
(v) triangulated planar graphs,
(vi) graphs with high girth,
(vii) geometric graphs.
Sanchis graphs are hard instances for the minimum vertex cover problem (and

hence for the equivalent maximum clique problem). Originally they were designed to
test algorithms for these problems. These graphs are constructed in such a way that
α(G) is known; see [24]. The independence number is also known for the Mannino
graphs and the Johnson graphs. The Mannino graphs are obtained from the set
covering formulation of the Steiner triple problem [20], and the Johnson graphs emerge
in coding problems [10]. For our tests on Sanchis, Mannino, and Johnson graphs we
take the complement graphs and indicate this by the suffix the c in the tables. These
graphs are part of the DIMACS benchmark instances and can be downloaded from
the web.
Triangulated planar graphs are perfect, and thus ϑ(G) = α(G); see [8]. To gen-

erate graphs with high girth, we start with a random graph G and randomly replace
edges of G by odd paths of prescribed maximum length.
Geometric graphs are constructed as follows. First we randomly generate points in

the unit square. If the Euclidean distance between two points is less than a prescribed
distance δ, then there is an edge connecting these two points.

5.2. Computations. The computational results on these problem sets are re-
ported in Tables 5.1–5.4. Column n gives the number of vertices, column m the
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Table 5.1
Numerical results on randomly generated sparse graphs. The relative error in % with respect to

the values given in column lbd on α(G) is separated from the upper bound by a dash. The numbers
given in parenthesis represent the number of active inequality constraints of the final relaxation.
Two numbers separated by a slash within one parenthesis show remaining odd circuit and triangle
inequalities separately.

lbd on optimizing over

n m α(G) F (G) F (G) ∩ C(G) F (G) ∩ C(G) ∩MET (G)

50 251 14∗ 15.0016 - 7.15 14.9990 - 7.14 (1) 14.6960 - 4.97 (1/130)

80 320 27∗ 28.1924 - 4.42 28.1053 - 4.09 (20) 27.5501 - 2.04 (8/315)

100 393 35 37.0451 - 5.84 36.8770 - 5.36 (21) 36.2010 - 3.43 (7/320)

100 434 33 35.1823 - 6.61 35.0532 - 6.22 (21) 34.3682 - 4.15 (3/361)

150 451 59 62.2523 - 5.51 61.4944 - 4.23 (77) 60.6595 - 2.81 (37/694)

150 552 55 58.0287 - 5.51 57.6335 - 4.79 (49) 56.5200 - 2.76 (21/710)

170 383 77∗ 79.3290 - 3.02 77.6756 - 0.88 (60) 77.5463 - 0.71 (44/318)

170 423 75∗ 76.7735 - 2.36 75.6992 - 0.93 (56) 75.4973 - 0.66 (40/305)

200 418 93∗ 94.5638 - 1.68 93.2256 - 0.24 (65) 93.0111 - 0.01 (52/401)

200 563 81 85.5002 - 5.56 84.3313 - 4.11 (99) 83.1449 - 2.65 (39/1059)

300 894 121 129.3327 - 6.89 127.7402 - 5.57 (153) 126.4218 - 4.48 (55/1195)

350 994 146 152.5927 - 4.52 150.3067 - 2.95 (183) 150.1405 - 2.84 (122/213)

400 835 191∗ 193.4866 - 1.30 191.0000 - 0.00 (132) 191.1058 - 0.06 (72/5)

Table 5.2
Numerical results on Sanchis graphs, Mannino graphs, and Johnson graphs.

optimizing over

File n m α(G) BPG lbd on α(G) F (G)

san200 0.9 1.clq c 200 1990 70 46 70 70.0000

san200 0.9 2.clq c 200 1990 60 36 60 60.0000

san200 0.9 3.clq c 200 1990 44 33 44 44.0000

sanr200 0.9.clq c 200 2037 - 41 42 49.2735

MANN a9.clq c 45 72 16 16 16 17.4750

MANN a27.clq c 378 702 126 121 126 132.7629

MANN a45.clq c 1035 1980 345 336 343 356.0488

johnson8-2-4.clq c 28 168 4 - 4 4.0

johnson8-4-4.clq c 70 560 14 - 14 14.0

johnson8-16-2-4.clq c 120 1680 8 - 8 8.0

number of edges in the graph G. The column labeled lbd on α(G) stands for “lower
bound on α(G).” This column gives the size of the largest stable set which we have
found using our heuristic method sketched in the previous section. The remaining
columns contain the upper bounds found by our code. In addition to the value of the
upper bound, we also provide the gap in % with respect to the values given in column
lbd on α(G).

We first note that for triangulated planar graphs, which are perfect, the compu-
tation of α is easy; see Table 2.2. The running times to obtain ϑ(G) are reasonably
moderate for these graphs but still much larger than the time needed to optimize over
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Table 5.3
Numerical results on graphs with long odd circuits.The relative error in % with respect to the

values given in column lbd on α(G) is separated from the upper bound by a dash. The numbers
given in parenthesis represent the number of active inequality constraints of the final relaxation.
Two numbers separated by a slash within one parenthesis show remaining odd circuit and triangle
inequalities separately.

lbd on optimizing over

n m α(G) F (G) F (G) ∩ C(G) F (G) ∩ C(G) ∩MET (G)

118 152 57∗ 58.6107 - 2.83 57.4000 - 0.70 (18) 57.3252 - 0.57 (14/83)

292 365 141∗ 144.2935 - 2.34 142.6667 - 1.18 (86) 141.9742 - 0.69 (10/181)

280 394 134∗ 137.1680 - 2.36 136.6476 - 1.98 (94) 134.4599 - 0.34 (3/215)

282 339 136 139.5288 - 2.59 137.6923 - 1.24 (19) 137.7490 - 1.29 (16/120)

372 534 179∗ 181.2776 - 1.27 179.0000 - 0.00 (96) 179.0000 - 0.00 (104/370)

448 465 220 223.8245 - 1.74 222.3333 - 1.06 (20) 222.3333 - 1.06 (19/1)

520 947 245∗ 250.1892 - 2.12 250.1473 - 2.10 (7) 245.9738 - 0.40 (0/354)

544 688 264 269.0532 - 1.91 267.0000 - 1.14 (104) 266.1425 - 0.81 (24/254)

Table 5.4
Numerical results on geometric graphs.

lbd on optimizing over

n m δ α(G) F (G)

50 128 0.2 16 16.0000

50 476 0.4 7 7.0000

50 698 0.6 4 4.0000

100 185 0.1 39 39.0000

100 561 0.2 21 21.0000

100 1065 0.3 13 13.0000

150 327 0.1 53 53.0000

150 1137 0.2 22 22.0000

150 2358 0.3 13 13.3710

CSTAB(G). We note that already the linear bound on α(G) is often tight.
The results in Tables 5.1 and 5.3 illustrate that optimizing over F (G) ∩ C(G)

leads to substantial improvements of ϑ(G). This optimization is carried out exactly;
i.e., no cycle inequalities are violated at the final solution. The inclusion of additional
inequalities from MET (G) leads to further improvements, as can be seen from the
last columns in these tables; however, these are associated with an enormous increase
of computational cost (see Table 3.1). We did not iterate until all triangle inequalities
were satisfied, because this is computationally too involved. The results in the column
labeled F (G) ∩ C(G) ∩MET (G) are obtained by the following stopping conditions.
First, all cycle inequalities are satisfied. Second, the maximum violation of triangle
inequalities has fallen below a threshold of .03 (in the test sets of dimension 50 to 300
in Table 5.1). We also provide the number of active odd cycle and triangle constraints
at termination. It should be noted that only a few odd cycle constraints are active in
the final solution. We have found the optimal solution for many of the test problems
with this approach. This is denoted by an asterisk in column lbd on α(G).
In Table 5.2 we look at some of the DIMACS test graphs. It is interesting to see
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that the class of Sanchis graphs seems to be easy to approximate through ϑ(G). This
is in contrast to several heuristic approaches, which have difficulties in finding large
stable sets in these graphs; see [3]. Table 5.2 also shows our experiments on the class
of Mannino graphs. We observed that no odd circuits get violated by the optimal X̄
to (2.7). Hence the relaxation TH (G) cannot be further strengthened by considering
the odd circuits. The violation of the triangle inequalities is so small that a substantial
improvement of the upper bound on α(G) through including the violated ones may not
be expected. Therefore our experiments on the class of Mannino graphs are restricted
to optimizing over TH (G). Anyhow, in the leading two cases our rounding heuristic
applied to the optimal X̄ to (2.7) yields a stable set with cardinality α(G). The size
of the largest stable set in the remaining instance is also very close to α(G). This
is again an improvement compared to the heuristic approaches proposed in [3]. In
Table 5.2 the column headed with BPG contains the size of the largest clique obtained
by Bomze, Pelillo, and Giacomini [3]. Finally, Table 5.2 also shows that optimizing
over TH (G) gives tight bounds on α(G) for the Johnson graphs.

We ran extensive tests on geometric graphs of different sizes and density. It
turned out that ϑ(G) was tight in all instances. We present a choice of test results
for this class of graphs in Table 5.4. The column headed by δ in this table contains
the distances needed for the construction of these graphs; see section 5.1.

6. Concluding comments. In this paper, we have presented a semidefinite
interior-point cutting plane approach for approximating the maximum stable set prob-
lem. In section 2.2 we have investigated two different semidefinite relaxations for the
maximum stable set problem. We have provided a simple argument for the well known
fact that these two models are equivalent. In particular, we have shown how optimal
solutions from one formulation can be transformed into optimal solutions of the other
formulation.

Our computational tests give rise to the following conclusions. The essential mes-
sage is that the process of adding and dropping cutting planes works robustly and
can significantly improve the quality of the final solution. This was demonstrated on
many different categories of test instances. Optimizing over F (G)∩C(G)∩MET (G)
produces the widest progress. The computational effort, however, increases dramati-
cally with the number of cutting planes. Moreover, no practically efficient method is
known to optimize exactly over this set, even though in principle this can be done in
polynomial time. In contrast, optimizing over F (G) ∩C(G) can be done exactly and
fast. Optimizing over this set is not much harder than computing ϑ(G), which can
be done routinely for graphs with up to several thousand edges.

A disadvantage of our approach is the large memory requirement for large scale
problems. This comes from the Cholesky factorization used in our implementation.
A promising direction for future research would be to examine the relaxations in the
context of branch-and-bound methods or bundle methods.
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Abstract. We analyze an analytic center cutting plane algorithm for convex feasibility problems
with semidefinite cuts. The problem of interest seeks a feasible point in a bounded convex set, which
contains a full-dimensional ball with ε (< 1) radius and is contained in a compact convex set described
by matrix inequalities, known as the set of localization. At each iteration, an approximate analytic
center of the set of localization is computed. If this point is not in the solution set, an oracle is called
to return a p-dimensional semidefinite cut. The set of localization is then updated by adding the
semidefinite cut through the center. We prove that the analytic center is recovered after adding a pk-
dimensional semidefinite cut in O(pk log(pk +1)) damped Newton’s iteration and that the algorithm
stops with a point in the solution set when the dimension of the accumulated block diagonal cut

matrix reaches the bound of O∗( p
2m3

µ2ε2
), where p is the maximum dimension of the cut matrices and

µ > 0 is a condition number of the field of cuts.
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1. Introduction. Semidefinite relaxations arising from combinatorial applica-
tions can often be too large to be handled by classical interior point methods. On
the other hand, many such problems are well structured and have sparse matrix co-
efficients. Some algorithms that exploit the sparsity of problems of these types have
been developed in the past few years. Benson, Ye, and Zhang [3] propose a dual
scaling algorithm for the problems with rank one matrix coefficients. Helmberg and
Rendl [11] transform the dual semidefinite problem into an eigenvalue optimization
problem and apply a spectral bundle method to solve it as a convex nondifferentiable
optimization problem in the cone of semidefinite matrices. The idea of the latter
paper is of interest to us.

An alternative technique for nonsmooth optimization is the analytic center cutting
plane method (ACCPM). This method was introduced by Sonnevend [21], Ye [28],
and Goffin, Haurie, and Vial [6].

For the purpose of proving complexity results, the ACCPM is more clearly de-
scribed in the context of a convex feasibility problem: find a point in a bounded
convex set Ω∗ with a nonempty interior. The solution set Ω∗ is assumed to contain
a ball Nε with radius ε < 1 and is contained in a compact convex set described by
matrix inequalities. At each iteration the analytic center of the set of localization is
computed and a separation oracle is called: the oracle determines if either the center
is in Ω∗, thus solving the problem, or it returns a cut which cuts off the current point
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and contains the solution set. A special updating step is then needed to get as close
as possible to the next analytic center, as first suggested by Mitchell and Todd [15].

The ACCPM has been successfully implemented in a wide variety of applications,
as for instance in [5] and [9].

The complexity of the method has been analyzed in the case of single cuts by
Atkinson and Vaidya [2], Nesterov [16], and Goffin, Luo, and Ye [7], in the case of
multiple cuts by Ye [29] and Goffin and Vial [8], and in the case of quadratic cuts by
Luo and Sun [12], Lüthi and Büeler [13], and Sharifi Mokhtarian and Goffin [20].

In this paper we propose an analytic center cutting plane algorithm for convex
feasibility problem with semidefinite cuts. A semidefinite cut contains as special cases
single and multiple linear cuts, as well as quadratic cuts. At each step of the algorithm,
an oracle returns a p-dimensional semidefinite cut. We add the cut at the center and
derive an updating direction to compute the next analytic center by maximizing the
“log det” of the new slack matrix. This is an extension of the direction obtained by
Goffin and Vial [8] for the multiple linear cuts to the semidefinite cuts. For alternative
approaches to solving determinant maximization problems, see [24, 27].

The restoration procedure is discussed in detail. We prove that the number of
Newton steps needed to recover the analytic center from the interior point obtained
by the updating direction is of the order of p log(p + 1). Moreover, we show that
the analytic center cutting plane algorithm stops with a point in the solution set
when the dimension of the accumulated block diagonal cut matrix reaches the bound

of O∗(p
2m3

µ2ε2
), where p is the maximum dimension of the cut matrices and µ > 0 is a

condition number of the field of cuts. Furthermore, we prove that the Newton method

finds the optimal updating direction in at most O(
p log 1

ε∗ +log 1
µ

β−log(1+β) ) iterations, where β

is the Newton decrement and ε∗ = (1−θ)ε
(1+θ)(1+n) and θ is a positive constant less than 1.

Independent of our work, recently there have been a few papers dealing with the
semidefinite feasibility problem [22, 25, 4]. They differ in that they work with the
semidefinite cone directly.

The paper is organized as follows. In section 2 we review the most important
properties of the analytic center of a convex set of linear matrix inequalities. This
includes the primal, dual, and primal-dual potential functions, the optimality condi-
tions, and a dual algorithm for the computation of the analytic center. We introduce
the semidefinite cuts in section 3 and derive the optimal updating direction to restore
the analytic center after adding a semidefinite cut. Section 4 deals with the com-
plexity of the restoration algorithm. In section 5 we present the ACCPM algorithm
for the convex feasibility problem with semidefinite cuts. In section 6 we derive the
complexity of the algorithm and finally in section 7 an upper bound on the number
of damped Newton steps to compute the optimal updating direction is established.

Notation. We use the following notation: Lowercase letters are used to show
vectors and uppercase letters are used for matrices. I and In are identity matrices of
appropriate size or of size n. The ith column of I is shown by ei, and Diag(ei) is a
diagonal matrix with ei on its main diagonal.

We refer to the space of n × n symmetric matrices by Sn, positive semidefinite
matrices by Sn+, and positive definite matrices by Sn++. We denote the jth eigenvalue
of a symmetric matrix A by λj(A) in decreasing order.

For a square matrix A, tr(A) is the trace of A, diag(A) is a column vector made
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up of the diagonal elements of A, the Frobenius-norm of A is defined via

‖A‖2 = trATA =

n∑
j=1

(λj(A
TA)),

and if A is symmetric, then the ∞-norm of A is defined by

‖A‖∞ = max |λj(A)|, j = 1, . . . , n.

The operator “•” indicates the inner product of two matrices:

A •B = trATB =
∑
i,j

aijbij .

For symmetric matrices Ai, i = 1, . . . ,m, we define the m-vector alq by

alq = ((A1)lq, (A2)lq, . . . , (Am)lq) .(1.1)

This vector is denoted by blq when we deal with symmetric matrices Bi.
The Löwner partial order on the symmetric matrices is defined by A � B (A 	 B)

if A−B ∈ Sn+ (A−B ∈ Sn++).

2. Analytic center and its properties. We start with an important lemma
which plays a key role in the interior point algorithms [1].

Lemma 2.1. Let X ∈ Sn; then

log detX ≤ I • (X − I)

with equality iff X = I. Moreover, if ‖X − I‖∞ < 1, then

log detX ≥ I • (X − I)− ‖X − I‖2
2(1− ‖X − I‖∞) .

Consider the following set:

ΩD = {y ∈ Rm : AT y � C},

where A is a linear operator from Sn to m-vector Rm defined by (AX)i = Ai • X,
for Ai ∈ Sn, i = 1, . . . ,m, and AT : Rm → Sn is its adjoint operator defined by
AT y =∑i yiAi. Note that

〈AX, y〉 = 〈AT y,X〉.

We assume that ΩD is a convex compact set and therefore Ai are linearly inde-
pendent. We also assume that ΩD has a strictly feasible point. That is,

Ω◦
D = {y ∈ Rm : AT y ≺ C}

is nonempty. Given a point y in Ω◦
D, the dual potential function is defined via

φD(y) = log det(C −AT y)−1

= log detS−1,
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where S(y) = C − AT y is the slack matrix. We denote S(y) by S when there is no
ambiguity. The minimizer of the dual potential function is called the analytic center:

ya = argminφD(y).(2.1)

Since φD(y) is strictly convex on Ω
◦
D, the analytic center is well defined and unique.

By the KKT optimality conditions, a point ya is the analytic center of ΩD iff there
exist matrices Sa 	 0 and Xa 	 0 such that

AXa = 0,
AT ya + Sa = C,

XaSa = I.
(2.2)

Abusing notation somewhat, we also denote the dual potential function by φD(S)
and the analytic center by (Xa, ya, Sa).

The analytic center can also be derived by primal characterization. Let

ΩP = {X ∈ Sn : AX = 0, X � 0},
and let there exist X ∈ ΩP with X 	 0. One can verify that the minimizer of the
primal potential function

φP (X) = C •X − log detX

over the primal feasible region satisfies the optimality conditions (2.2).
The analytic center can alternatively be characterized as the minimizer of the

primal-dual potential function

φPD(X,S) = φP (X) + φD(S)

= C •X − log detXS

= X • S − log detXS

over ΩPD = ΩD × ΩP . Let us show that (2.2) is the optimality condition for this
minimization. First observe that

φPD(X
a, Sa) = Xa • Sa − log detXaSa

= trI − log det I

= n.

On the other hand, from Lemma 2.1

φPD(X,S) ≥ X • S − tr(XS − I) = n

for all (X,S) ∈ ΩPD, with equality iff XS = I. Thus (Xa, ya, Sa) is the (unique)
minimizer of φPD(X,S). Approximate analytic centers are defined for computational
reasons. A θ-approximate analytic center is denoted by (X̄, ȳ, S̄) and defined via

AX̄ = 0,
AT ȳ + S̄ = C,
‖X̄S̄ − I‖ ≤ θ < 1.

(2.3)

Let ỹ ∈ Ω◦
D, and let S̃ be its slack matrix. An ellipsoid centered at ỹ, and

contained in the interior of ΩD, i.e., the set

{y : ‖S̃−.5AT (y − ỹ)S̃−.5‖ ≤ 1},



ACCPM WITH SEMIDEFINITE CUTS 1033

is called the dual Dikin ellipsoid. Similarly, we can define the Dikin ellipsoid for the
primal feasible set. Let X̃ 	 0 be in ΩP . Then the primal Dikin ellipsoid centered
at X̃ is

{X : ‖X̃−.5(X − X̃)X̃−.5‖ ≤ 1}.
The next lemma gives lower and upper bounds on the primal potential function

at a θ-approximate center. Similar bounds can be established for the dual and primal-
dual potentials.

Lemma 2.2. Let (X̄, ȳ, S̄) be a θ-approximate center. Then

φP (X
a) ≤ φP (X̄) ≤ φP (X

a) +
θ2

2(1− θ) .

Proof. The left-hand side inequality is trivial. We prove the upper bound. From
Lemma 2.1

φPD(X̄, S̄) ≤ X̄ • S̄ − I • (X̄S̄ − I) + ‖X̄S̄ − I‖2
2(1− ‖X̄S̄ − I‖)

≤ n+
θ2

2(1− θ) ,

and therefore

φPD(X̄, S̄)− φPD(Xa, Sa) ≤ θ2

2(1− θ)
or

(φP (X̄)− φP (Xa)) + (φD(ȳ)− φD(ya)) ≤ θ2

2(1− θ) .

Since ya is the minimizer of φD over ΩD, we have

φD(ȳ)− φD(ya) ≥ 0.

Thus,

φP (X̄)− φP (Xa) ≤ θ2

2(1− θ) .

The lemma follows.
Computational algorithms for the analytic center of a polytope have been devised

in primal, dual, and primal-dual settings based on the Newton method. These algo-
rithms can be extended to compute the analytic center of a convex body described
by matrix inequalities [26, 18]. In the rest of this section we discuss the extension of
the dual algorithm to compute an approximate analytic center. We refer the reader
to [30, Chap. 3] for a comprehensive analysis of the computational algorithms for the
analytic center in the linear case.

The Newton method is used to solve (2.1). Let y ∈ Ω◦
D and dy be the dual

direction. Consider the following quadratic approximation of φD(y):

φD(y + dy) ≈ φD(y) + (AS−1)T dy +
1

2
dyT (ADATD)dy,
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where AD : Sn → �m is a linear operator and ATD : �m → Sn is its adjoint operator,
defined via

ADX =


 S−.5A1S

−.5 •X
...

S−.5AmS−.5 •X


 and ATDy =

m∑
i=1

yiS
−.5AiS−.5.

Note that (ADATD) ∈ Sm with (ADATD)ij = trAiS
−1AjS

−1. Since Ai are linearly
independent, then ADATD 	 0.

By minimizing the quadratic approximation of φD(y),

min
dy∈Rm

(AS−1)T dy + 1
2dy

T (ADATD)dy,

we have

dy = −(ADATD)−1AS−1.

Let y+ = y + dy be the updated dual point. y+ should be a feasible point for ΩD.
That is, AT y+ + S+ = C with S+ = S + dS and thus dS = −AT dy.

Now let

X(S) = S−1
(AT dy + S

)
S−1.

The following lemma shows that X(S) is the solution of a least squares problem.
Lemma 2.3. Let y ∈ Ω◦

D, and let S be the slack matrix. Then the primal solution
X(S) is the minimizer of the least squares problem

min
∣∣∣∣S.5XS.5 − I∣∣∣∣

s.t.
AX = 0.

Proof. The KKT condition for this problem is

2SXS − 2S −AT v = 0,(2.4)

where v ∈ Rm. By multiplying (2.4) from the right side and from the left side by S−1

and then applying the operator A and noting that AX = 0, we have

−2AS−1 − (ADADT )v = 0

or

v = −2(ADATD)−1AS−1

= 2dy.

The proof follows from (2.4).
Now let

P (S) = S.5X(S)S.5 − I.
The following lemma shows that if ‖P (S)‖ < 1, then the updated slack matrix S+ is
strictly feasible and the dual algorithm converges to an approximate analytic center
quadratically.
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Lemma 2.4. If ‖P (S)‖ < 1 for some interior point y ∈ Ω◦
D and its slack matrix

S, then

S+ 	 0 and ‖P (S+)‖ ≤ ‖P (S)‖2 < 1.

Proof. Note that S+ = S.5(I−P (S))S.5 and since ‖P (S)‖ < 1, then λj(P (S)) < 1
for j = 1, . . . , n, which implies that S+ 	 0.

To prove the second part of the lemma, first observe that from Lemma 2.3

‖P (S+)‖ = ‖(S+).5X(S+)(S+).5 − I‖
≤ ‖(S+).5X(S)(S+).5 − I‖.(2.5)

On the other hand,

S+ = S −AT dy = 2S − (AT dy + S
)
= 2S − SX(S)S.(2.6)

Now from (2.5) and (2.6) (in what follows we denote X(S) by X)

‖P (S+)‖2 ≤ ‖X .5S+X .5 − I‖2
= ‖X .5(2S − SXS)X .5 − I‖2
= ‖(X .5SX .5 − I)2‖2
= tr(X .5SX .5 − I)4
=
∑

(λj(X
.5SX .5)− 1)4

≤
(∑

(λj(X
.5SX .5)− 1)2

)2

=
(‖X .5SX .5 − I‖2)2

= ‖P (S)‖4.
The lemma now follows.

When a strict interior point (y, S) with ‖P (S)‖ ≥ 1 is available, the direction dy
with a step size α/‖P (S)‖, 0 < α < 1, is taken. One can prove that, in this case, the
potential function is reduced by a constant amount δ > 0 at each iteration, i.e.,

φD(y
+) ≤ φD(y)− δ,

and that after a finite number of iterations ‖P (S)‖ satisfies the desired condition
(< 1). The general complexity of the algorithm can be obtained from the fact that
the potential function at the analytic center is a lower bound for φD(y). This im-
plies that after at most O(φD(y

0) − φD(y
a)) iterations the algorithm stops with an

approximation of the analytic center.
Primal and primal-dual algorithms also give the same result, and the analysis

is more or less similar to the dual case. The complexity result, however, for the
primal-dual case is more specific since the potential function at the center is known
in advance. That is, the primal-dual algorithm stops after O(φPD(X

0, y0, S0) − n)
iterations of the Newton method.

3. Semidefinite cut. In this section we discuss the recentering process. Let us
formally define a semidefinite cut.

Definition 3.1. A p-dimensional semidefinite cut is a cut of the form

BT y � D,
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where D ∈ Sp and B : Sp → �m is a linear operator defined by (BX)i = Bi •X with
Bi ∈ Sp, and BT y =

∑m
i=1 yiBi is its adjoint operator. The matrices Bi are called

the cut matrices, and if D = BT ȳ, where ȳ is an approximate center of ΩD, then the
cut is called a central semidefinite cut.

Notice that the semidefinite cut BT y � D is a generalization of linear, multiple,
and quadratic cuts. If Bi and D are scalar, then BT y � D is reduced to a single
cut bT y ≤ b0, and if they are diagonal matrices, then the cut is reduced to a set of
multiple linear cuts BT y ≤ diag(D), where the columns of matrix B are diag(Bi).
Furthermore, if the cut matrices Bi and the constant matrix D are of the form

Bi =

(
0 −bi
−bTi qi

)
, D =

(
I 0
0 d

)
,

then BT y � D is reduced to a quadratic cut yT (BTB)y+ qT y ≤ d, where the vectors
bi form the columns of matrix B.

In our analysis, from now on, we assume that the cuts are central. The updated
set of localization Ω+

D ⊂ ΩD after adding the cut is

Ω+
D = {y ∈ Rm : AT y � C, BT y � BT ȳ}.

To compute an approximate center of the updated set of localization, we need a strict
interior point of Ω+

D. We start from ȳ and choose the direction dy = y − ȳ towards
the interior of the set of localization as the maximizer of the determinant of the new
slack matrix to the boundary of the dual Dikin ellipsoid centered at ȳ:

min − log detΛ
s.t.

‖S̄−.5AT dyS̄−.5‖ ≤ 1,
BT dy + Λ = 0,
Λ � 0.

(3.1)

We call the optimal solution of problem (3.1) the optimal updating direction.
The new point will then be used as an initial point to restore the analytic center.
Problem (3.1) can be reformulated as follows:

min − log det(−BT dy)
s.t.

dyT (ADATD)dy ≤ 1.

By the KKT optimality conditions and since the interior of the feasible region is
nonempty, d̃y and Λ̃ are optimal iff there exists unique multiplier σ > 0 such that

BΛ̃−1 + σ(ADATD)d̃y = 0,(3.2)

BT d̃y + Λ̃ = 0.(3.3)

From (3.2)

d̃y = − 1
σ
(ADATD)−1BΛ̃−1(3.4)

and from (3.3)

Λ̃ =
1

σ
BT (ADATD)−1BΛ̃−1.
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Define the operator V : Sp → Sp by V = BT (ADATD)−1B; then

Λ̃ =
1

σ
VΛ̃−1.(3.5)

If V is nonsingular, then the dual direction Λ̃ can be uniquely computed by solving
the following optimization problem:

min
Λ�0

σ
2 trΛV−1Λ− log detΛ.

The correct value of the Lagrange multiplier σ ≥ 0 is known in advance:

‖S−.5AT d̃yS−.5‖2 = d̃y
T
(ADATD)d̃y

=
1

σ2
(BΛ̃−1)T (ADATD)−1BΛ̃−1 (from (3.4))

=
1

σ2
trΛ̃−1BT (ADATD)−1BΛ̃−1

=
1

σ2
trΛ̃−1VΛ̃−1

=
1

σ
trΛ̃−1Λ̃ (from (3.5))

=
p

σ
.

On the other hand, ‖S̄−.5AT d̃yS̄−.5‖ = 1 and thus σ = p. Consequently,

d̃y = −1
p
(ADATD)−1BΛ̃−1 and d̃S = −AT d̃y,

where

Λ̃ = argmin
Λ�0

{p
2
trΛV−1Λ− log detΛ

}
.

To update the primal direction, observe that the updated primal feasible region Ω+
P is

Ω+
P =

{(
X

T

)
� 0 : AX + BT = 0

}
,

and the primal direction ˜dX is obtained by maximizing log detT while respecting
primal feasibility and remaining in the primal Dikin ellipsoid centered at X̄:

min − log detT
s.t.

AdX + BT = 0,
‖S̄dX‖ ≤ 1,
T � 0.

(3.6)

The optimality conditions of problem (3.6) are

−T̃−1 + BT v = 0,(3.7)

AT v + σ′S̄( ˜dX)S̄ = 0,(3.8)

σ′(1− ‖S̄ ˜dX‖) = 0,(3.9)

A( ˜dX) + BT̃ = 0,(3.10)
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where σ′ ≥ 0 is the Lagrange multiplier associated with the norm constraint. By
multiplying (3.8) from the left and from the right by S̄−1 and then applying the
operator A we have

(ADATD)v + σ′A( ˜dX) = 0,

using (3.10)

v = σ′(ADATD)−1BT̃ ,
and again from (3.8)

˜dX = − 1

σ′ S̄
−1(AT v)S̄−1

= −S̄−1AT (ADATD)−1BT̃ S̄−1.

Since AT (ADATD)−1BT̃ is symmetric, then ˜dX is symmetric. Finally, from (3.7)

T̃−1 = BT v
= σ′BT (ADATD)−1BT̃
= σ′VT̃ ,(3.11)

and T̃ is the unique solution of the following optimization problem:

T̃ = argmin
T�0

{
σ′

2
trTVT − log detT

}
.(3.12)

Let us find the Lagrange multiplier σ′:

‖S̄( ˜dX)‖2 = trS̄.5( ˜dX)S̄( ˜dX)S̄.5

= trS̄−1AT (ADATD)−1BT̃︸ ︷︷ ︸
u

S̄−1AT (ADATD)−1BT̃︸ ︷︷ ︸
u

= uT (ADATD)u
= (BT̃ )T (ADATD)−1BT̃
= trT̃VT̃
=

p

σ′ .

Hence σ′ = p.
Now for α < 1− θ, let y+ = ȳ + αd̃y, and let

X+ =

(
X̄ + α ˜dX 0

0 αT̃

)
, S+ =

(
S̄ + αd̃S 0

0 αΛ̃

)

be the updated iteration. Since T̃ is uniquely defined, from (3.5) and (3.11) one can
easily prove that T̃ Λ̃ = 1

pI and therefore computing T̃ suffices to update the iteration.

We postpone the complexity analysis of the recentering direction (problem (3.12)) to
section 7.

Notice that the nonsingularity of operator V establishes a symmetry between the
primal and the dual updating directions. In other words, if V is invertible, then the
primal direction can be computed from the dual direction and vice versa. On the
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other hand, if V is singular, then Λ 	 0 does not guarantee the existence of T 	 0
with Λ = VT . In such a case, the dual direction is obtained as a by-product of the
primal direction via Λ = VT and (3.11).

The following lemma guarantees the strict feasibility of the iteration.
Lemma 3.2. The updated points X+ and (y+, S+) are strictly feasible for Ω+

P

and Ω+
D, respectively, and therefore they can be used as the starting point to recover

the analytic center.
Proof. First observe that

‖X̄−1 ˜dX‖2 = ‖(S̄−.5X̄−1S̄−.5)(S̄.5 ˜dXS̄.5)‖2
= tr(S̄−.5X̄−1S̄−.5)2(S̄.5 ˜dXS̄.5)2

≤
n∑
j=1

λ2
j (S̄

−.5X̄−1S̄−.5)λ2
j (S̄

.5 ˜dXS̄.5)(3.13)

≤ λ2
1(S̄

−.5X̄−1S̄−.5)
n∑
j=1

λ2
j (S̄

.5 ˜dXS̄.5)

= ‖S̄−1X̄−1‖2∞‖S̄ ˜dX‖2,(3.14)

where inequality (3.13) is due to Theobald [23] (see also Marshall and Olkin [14]).
From (3.14) and noting that ˜dX is optimal for problem (3.6), and X̄ and S̄ are
approximate centers, one has

‖X̄−1 ˜dX‖ ≤ 1

1− θ .

On the other hand, α < 1− θ, and
X̄ + α ˜dX = X̄ .5(I + αX̄−.5 ˜dXX̄−.5)X̄ .5.

Thus X̄ + α ˜dX 	 0. Moreover, T̃ is positive definite by construction, and hence
X+ 	 0. Since X̄ is primal feasible, then A(X̄ + α ˜dX) + B(αT̃ ) = 0. That is, X+ is
strictly feasible for the updated primal set Ω+

P .
To prove the strict feasibility of the dual iteration, we have

S̄ + αd̃S = S̄.5(I − αS̄−.5AT d̃yS̄−.5)S̄.5,

and since d̃y is optimal for problem (3.1), then ‖S̄−.5AT d̃yS̄−.5‖ = 1. Thus S̄+αd̃S 	
0.

4. Analysis of restoration. Before getting started, we state a lemma similar
to Lemma 2.1.

Lemma 4.1. Let S ∈ Sn be such that ‖S‖ < 1. Then

log det(I + S) ≥ I • S + ‖S‖+ log(1− ‖S‖).
Proof. The following inequality is well known (for a proof, see Roos, Terlaky, and

Vial [19, p. 439]):

n∑
j=1

log(1 + sj) ≥ eT s+ ‖s‖+ log(1− ‖s‖).

The lemma follows by letting λj(S) = sj .
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The following lemma bounds the potential functions at the new point.
Lemma 4.2. Let (X̄, ȳ, S̄) be a θ-approximate analytic center. Then

φD(S
+) ≤ φD(S̄)− α(1− θ)− log(1− α)− log detαΛ̃,(4.1)

φP (X
+) ≤ φP (X̄)− α(1− θ)− log(1− α)− log detαT̃ ,(4.2)

and

φPD(X
+, S+) ≤ φPD(X̄, S̄)− 2α(1− θ)− 2 log(1− α)− 2p logα+ p log p.(4.3)

Proof.

φD(S
+) = − log det S̄(I + αS̄−1d̃S)− log detαΛ̃

= φD(S̄)− log det(I + αS̄−1d̃S)− log detαΛ̃.

By Lemma 4.1

φD(S
+) ≤ φD(S̄)

+ (−I • αS̄−1d̃S)− ‖αS̄−1d̃S‖ − log(1− ‖αS̄−1d̃S‖)− log detαΛ̃.(4.4)

Since X̄ • d̃S = −(AX̄)T d̃y = 0,∣∣∣I • αS̄−1d̃S
∣∣∣ = α

∣∣∣(S̄−1 − X̄) • d̃S
∣∣∣

= α
∣∣∣(I − S̄.5X̄S̄.5) • S̄−.5(d̃S)S̄−.5

∣∣∣
≤ α‖S̄.5X̄S̄.5 − I‖‖S̄−.5(d̃S)S̄−.5‖
≤ αθ.

The first inequality thus follows from the inequality (4.4), the above fact, and noting
that f(t) = −t− log(1− t) is an increasing function over its domain.

To prove the second inequality note that

φP (X
+) = φP (X̄) + αC • ˜dX + αȳTBT̃ − log det(I + αX̄−1 ˜dX)− log detαT̃ ;

again by Lemma 4.1

φP (X
+) ≤ φP (X̄) + αC • ˜dX + αȳTBT̃ − I • αX̄−1 ˜dX

−‖αX̄−1 ˜dX‖ − log(1− ‖αX̄−1 ˜dX‖)− log detαT̃ .
(4.5)

On the other hand, from A ˜dX + BT̃ = 0∣∣∣αC • ˜dX + αȳTBT̃ − αX̄−1 • ˜dX
∣∣∣ = ∣∣∣αS̄ • ˜dX − αX̄−1 • ˜dX

∣∣∣
= α

∣∣∣(X̄ .5S̄ X̄ .5 − I) • X̄−.5 ˜dXX̄−.5
∣∣∣

≤ α‖X̄ .5S̄ X̄ .5 − I‖‖X̄−.5 ˜dXX̄−.5‖
≤ αθ.

The primal inequality therefore follows from the inequality (4.5), the above fact, and
the property of increasing function f(t). Finally, the last inequality is obtained by
adding (4.1) and (4.2).
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The following theorem gives the complexity of updating the analytic center after
adding a p-dimensional semidefinite cut.

Theorem 4.3. Starting from the strict interior point (X+, S+), the number of
iterations to update an approximate analytic center is bounded by O(p log(p + 1)),
where p is the dimension of the central semidefinite cut BT y � BT ȳ.

Proof. Since (X̄, S̄) is a θ-approximate center of the current set of localization,
from Lemma 2.1 we have

φPD(X̄, S̄) ≤ X̄ • S̄ − I • (X̄S̄ − I) + ‖X̄S̄ − I‖2
2(1− ‖X̄S̄ − I‖)

≤ n+
θ2

2(1− θ) .

Now let the analytic center of the new convex body be ((Xa)+, (Sa)+). Since
φPD((X

a)+, (Sa)+) = n+ p, from (4.3)

φPD(X
+, S+)− φPD

(
(Xa)+, (Sa)+

) ≤ κ(α, θ, p) + p log p,

where

κ(α, θ, p) =
θ2

2(1− θ) − 2α(1− θ)− 2 log(1− α)− 2p logα− p.

At each iteration of the Newton method the potential function is reduced by a constant
amount δ. Therefore after at most⌈

κ(α, θ, p) + p log p

δ

⌉
∼ O(p log(p+ 1))

iterations the algorithm stops with an updated analytic center.
In the next section we present an ACCPM algorithm for the convex feasibility

problem with semidefinite cuts.

5. The ACCPM algorithm. The ACCPM algorithm attempts to find a fea-
sible point in Ω∗ ⊂ ΩD, where Ω

∗ is the solution set and contains a full-dimensional
ball Nε with radius ε. We make the following assumptions.

Assumption 1. ΩD ⊂ [0, 1]m.
Assumption 2. ΩD is described by an oracle. That is, the oracle determines

if either the center is in Ω∗, thus solving the problem, or it returns a p-dimensional
semidefinite cut which contains Ω∗.

Assumption 3. For the semidefinite cut BT , we assume that

max
i,l,q

(
trBi, ‖blq‖

)
= 1,(5.1)

where blq is the m-vector defined in (1.1).
Assumptions 1 and 3 are made for simplicity and they can be satisfied by scaling.

Assumption 2 guarantees the existence of an oracle to return semidefinite cuts at each
iteration. In practice, when the ACCPM is applied to optimize a nonsmooth function,
such an oracle returns the subgradients of the function at the current point if it is not
the optimal solution.

For the next assumption we need to define a condition number on the semidefi-
nite cut.
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Definition 5.1. At any point z /∈ Ω∗, let BTz y � BTz z be the cut generated by
the oracle. The condition number of the cut BTz is defined via

µz = max{detBTz u : BTz u � 0, ‖u‖ ≤ 1}(5.2)

and the condition number of the field of cuts {BTz for all z /∈ Ω∗} is defined by
µ = inf

z/∈Ω∗
µz.(5.3)

Assumption 4.

µ > 0.

Now let Sz(y) = BTz (z − y) � 0 be the slack matrix corresponding to one of the
cuts, let yc be the center of Nε, and let u be a vector such that ‖u‖ ≤ 1. Then

Sz(y
c + εu) = Sz(y

c)− εBTz u,
and as yc + εu ∈ Nε ⊂ Ω∗,

Sz(y
c + εu) � 0,

and thus

Sz(y
c) � εBTz u.

In view of Assumption 4 now the following lemma is clear.
Lemma 5.2. For any z /∈ Ω∗,

detSz(y
c) ≥ εpµ,

where p is the dimension of the cut.
Now we present the ACCPM algorithm.
Algorithm 1. Given Ω0

D = {y ∈ Rm : (A0)T y � C0}, where (A0)T y =
∑
i yiA

0
i ,

with

A0
i =

(
Diag(ei) 0

0 −Diag(ei)

)
and C0 =

(
Im 0
0 0m

)
.

Let k = 0
1. Compute an approximate center ȳk for ΩkD.
2. If ȳk ∈ Ω∗, stop.
3. Otherwise, call the oracle for the pk-dimensional cut (Bk)T y � (Bk)T ȳk.
4. Update the set of localization: Ωk+1

D = {y ∈ Rm : (Ak+1)T y � Ck+1}, where
(Ak+1)T y =

∑
i yiA

k+1
i , with

Ak+1
i =

(
Aki 0
0 Bki

)
and Ck+1 =

(
Ck 0
0 (Bk)T ȳk

)
.(5.4)

Set k = k + 1 and go to step 1.
It is worth mentioning that at each iteration k we enlarge the dimension of the

cut matrices Ai by pk when adding the semidefinite cut as a block diagonal. That is,
for all k

dim(Aki ) = 2m+ nk = 2m+

k−1∑
i=0

pi

and n0 = 0.
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6. Convergence of the algorithm. Let us bound the potential function at the
new center. We first define the min-potential functions.

Let ΩP and ΩD be the current primal and dual feasible sets, respectively. The
primal (dual) min-potential function denoted by P(ΩP ) (D(ΩD)) is the value of the
primal (dual) potential function at the analytic center of ΩP (ΩD). We have the
following theorem.

Theorem 6.1. Let D(ΩD) be the dual min-potential function at the current
set of localization ΩD, and let Ω

+
D be the updated set after adding the p-dimensional

semidefinite cut BT y � BT ȳ at a θ-approximate center ȳ. Then

D(Ω+
D) ≥ D(ΩD)−

p∑
i=1

log ti − C(p, θ, α),(6.1)

where

C(p, θ, α) = θ2

2(1− θ) − α(1− θ)− log(1− α)− p(1 + logα) + p log p,

and

ti =
√
(bii)

T (ADATD)−1bii,(6.2)

where bii is the m-vector defined in (1.1).
Proof. Let P(ΩP ) be the primal min-potential function at ΩP , and let Ω+

P be
the updated primal feasible set after adding the cut. From the properties of the
primal-dual potential function and (4.2)

D(Ω+
D) = n+ p− P(Ω+

P )

≥ n+ p− φP (X̄) + α(1− θ) + log(1− α) + log detαT̃ .

In view of Lemma 2.2 and the above inequality

D(Ω+
D) ≥ D(ΩD) + p− θ2

2(1− θ) + α(1− θ) + log(1− α) + log detαT̃ .(6.3)

Recall that

T̃ = argmin
{p
2
trTVT − log detT

}
and trT̃VT̃ = 1.

Thus log det T̃ ≥ log detT ′ for any positive semidefinite matrix T ′ with trT ′VT ′ = 1.
Let

T ′ =
T−1

√
trT−1VT−1

,

where T is a diagonal matrix made up of tk > 0, defined in (6.2). First we prove that
trT−1VT−1 ≤ p2:

trT−1VT−1 = trT−1BT (ADATD)−1BT−1

= (BT−1)T (ADATD)−1BT−1

=

m∑
i,j=1

(trBiT
−1)(trBjT

−1)
(
(ADATD)−1

)
ij
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=

m∑
i,j=1

(
p∑
k=1

(Bi)kk
tk

)(
p∑
k=1

(Bj)kk
tk

)(
(ADATD)−1

)
ij

=

p∑
l,q=1

1

tltq

m∑
i,j=1

(Bi)ll(Bj)qq
(
(ADATD)−1

)
ij

=
∑
l,q

1

tltq
(bll)

T (ADATD)−1bqq;

clearly (bll)
T (ADATD)−1bqq ≤ tltq. Thus

trT−1VT−1 ≤ p2.(6.4)

Now

log det T̃ ≥ −p log
√
trT−1VT−1 − log detT

≥ −p log p−
p∑
i=1

log ti.

From (6.3), the inequality (6.1) is immediate now.
Theorem 6.1 establishes a bound on the potential function at the new center in

terms of p as well as θ and α. Since the values of θ and α are arbitrary within their
limit, we can simplify the bound by choosing fixed values for them. Let θ = 0.01 and
α = 0.9. One can check that

C(p, θ, α) ≤ p log(p+ 1),

and therefore the inequality (6.1) is reduced to

D(Ω+
D) ≥ D(ΩD)− p log(p+ 1)−

p∑
i=1

log ti.(6.5)

We note that (6.1) is valid for moderate values of θ and α; i.e., for θ close to zero,
one should not choose α very close to 1 (e.g., α < 0.9 does the job).

At iteration k, let p = max{pi, i = 1, . . . , k} and D(ΩkD) be the dual min-potential
function at ΩkD; using (6.5), we have

D(Ωk+1
D ) ≥ D(ΩkD)− pk log(pk + 1)−

pk∑
i=1

log ti

≥ D(ΩkD)− pk log(p+ 1)−
pk∑
i=1

log ti

...

≥ D(Ω0
D)− nk+1 log(p+ 1)−

nk+1∑
i=1

log ti.(6.6)

Now we state a series of technical lemmas to construct a bound on the summation
term in (6.6).
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Lemma 6.2. Let AAT ∈ Sm, with (AAT )ij = Ai •Aj, where Ai ∈ Sn. Then

AAT =

n∑
l,q=1

alq(a
l
q)
T ,

where alq is the m-vector defined in (1.1).
Proof. First observe that

Ai •Aj =
n∑
q=1

(āiq)
T ājq,

where Ai = (āi1, ā
i
2, . . . , ā

i
n), ā

i
q ∈ Rn, i = 1, . . . ,m. Now consider n Gram matrices

Gq, q = 1, . . . , n, defined by Gqij = (āiq)
T ājq. Thus

AAT =

n∑
q=1

Gq

=

n∑
q=1

ĀTq Āq,

where Āq =
(
ā1
q, ā

2
q, . . . , ā

m
q

)
. ĀTq Āq can alternatively be expressed by the summation

of a number of rank one matrices:

Gq =

n∑
l=1

alq(a
l
q)
T ,

where alq is the row l of Āq, i.e., a
l
q = ((A1)lq, (A2)lq, . . . , (Am)lq).

Lemma 6.3.

ADATD �
1

(trS)2
AAT .

Proof. Consider the quadratic form associated with ADATD − 1
(trS)2

AAT .
For y ∈ Rm

f(y) = yT
(
ADATD −

1

(trS)2
AAT

)
y.

Let ATDy =W ; then AT y = S.5WS.5 and we have

f(y) =W •W − 1

(trS)2
(S.5WS.5) • (S.5WS.5)

= ‖W‖2 − 1

(trS)2
‖S.5WS.5‖2

≥ ‖W‖2 − 1

(trS)2
‖S.5‖4‖W‖2

= 0.

Therefore the quadratic form is nonnegative for any y ∈ Rm.
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Lemma 6.4. At the kth iteration of the ACCPM algorithm

AkD(AkD)T � 8I +
1

m2

nk∑
l,q=1

blq(b
l
q)
T ,(6.7)

where blq = ((B1)lq, (B2)lq, . . . , (Bm)lq) and matrices Bi are block diagonal matrices
composed of cut matrices Bri for r = 0, 1, . . . , k − 1.

Proof. From Algorithm 1 since Ω0
D = [0, 1]m

A0
D(A0

D)
T � 8I,

and after adding k + 1 semidefinite cuts (Br)T y � (Br)T yr, r = 0, 1, . . . , k, we have

Ak+1
D (Ak+1

D )T = AkD(AkD)T + BkD(BkD)T

� 8I +

k∑
r=0

BrD(BrD)T ,(6.8)

where (BrD(BrD)T )ij = tr(Sr)−1Bri (S
r)−1Brj and S

r = (Br)T (yr − y).
On one hand, from Lemma 6.3

BrD(BrD)T �
1

(trSr)2
Br(Br)T ,

where (Br(Br)T )ij = trBriB
r
j .

From (5.1), we have trSr =
∑m
i=1(y

r − y)itrBri ≤ m and therefore

BrD(BrD)T �
1

m2
Br(Br)T .(6.9)

On the other hand, by Lemma 6.2

Br(Br)T =

pr∑
l,q=1

blq(b
l
q)
T .(6.10)

The lemma follows now from (6.8)–(6.10).
The next lemma is essential to bound (6.6). This lemma is due to Ye [29] with

some changes to suit our case.
Lemma 6.5. If p ≤ m, then

nk+1∑
i=1

t2i ≤ 2m3 log

(
8 +

n2
k+1

m3

)
(6.11)

for ti defined in (6.2).
Proof. Define

Hk+1 = Hk + 1

m2

pk∑
i,j=1

bij(b
i
j)
T ,

where bij is the m-vector defined in (1.1), and let H0 = 8I.

detHk+1 = det


Hk + 1

m2

∑
i,j∈I1

bij(b
i
j)
T


(1 + r2

m2

)
,(6.12)
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where I1 = {i, j = 1, . . . , pk\(i, j) = (1, 1)} and

r2 = (b11)
T


Hk + 1

m2

∑
i,j∈I1

bij(b
i
j)
T


−1

b11.

Now we establish a lower bound on r. To this end we study the eigenvalues of

G = I +
1

m2

∑
i,j∈I1

(Hk)−.5bij(bij)T (Hk)−.5.

Let x ∈ Rm with ‖x‖ = 1; then

xTGx = ‖x‖2 + 1

m2

∑
i,j∈I1

(xT (Hk)−.5bij)2

≤ ‖x‖2 + 1

m2

∑
i,j∈I1

‖x‖2‖(Hk)−.5bij‖2

= 1 +
1

m2

∑
i,j∈I1

(bij)
T (Hk)−1bij .

Since Hk � 8I

xTGx ≤ 1 +
1

m2

∑
i,j∈I1

1

8
‖bij‖2.

From assumption (5.1)

xTGx ≤ 1 +
p2
k − 1

8m2
,

and since pk ≤ p ≤ m, then

xTGx ≤ 9

8
.

That is, G−1 � (8/9)I and therefore

r2 = (b11)
T (Hk)−.5G−1(Hk)−.5b11

≥ (8/9)r211,

where r211 = (b11)
T (Hk)−1b11. Now from (6.12)

detHk+1 ≥
(
1 +

8r211
9m2

)
det


Hk + 1

m2

∑
i,j∈I1

bij(b
i
j)
T


 .

By repeating this procedure for each i and j one has

detHk+1 ≥
pk∏
i,j=1

(
1 +

8r2ij
9m2

)
detHk,



1048 MOHAMMAD R. OSKOOROUCHI AND JEAN-LOUIS GOFFIN

where r2ij = (bij)
T (Hk)−1bij .

By taking logarithm from both sides of the above inequality we have

log detHk+1 ≥
pk∑
i,j=1

log

(
1 +

8r2ij
9m2

)
+ log detHk

≥
pk∑
i=1

log

(
1 +

8r2ii
9m2

)
+ log detHk.

Since r2ii ≤ 1/8, then
8r2ii
9m2 ≤ 1

9 and

log

(
1 +

8r2ii
9m2

)
≥ 8r2ii
9m2

−
(

8r2ii
9m2

)2

2
(
1− 8r2

ii

9m2

) ≥ r2ii
2m2

and therefore

log detHk+1 ≥
pk∑
i=1

r2ii
2m2

+ log detHk

≥
nk+1∑
i=1

r2ii
2m2

+ log detH0.(6.13)

On the other hand, using the arithmetic-geometric inequality

log detHk+1 = log

m∏
j=1

λj(Hk+1) ≤ m log
trHk+1

m

and from the definition of Hk and assumption (5.1)

trHk+1 = tr


8I + 1

m2

nk+1∑
i,j=1

bij(b
i
j)
T


 ≤ 8m+

n2
k+1

m2
;

thus

log detHk+1 ≤ m log

(
8 +

n2
k+1

m3

)
.

This inequality together with (6.13) gives

nk+1∑
l=1

r2ii ≤ 2m3 log

(
8 +

n2
k+1

m3

)
.(6.14)

In view of Lemma 6.4, AkD(AkD)T � Hk and thus

(bii)
T
(AkD(AkD)T )−1

bii ≤ (bii)
T (Hk)−1bii

or t2i ≤ r2ii. The proof follows from (6.14) now.
In the next theorem we prove the main result of this paper; i.e., we derive a bound

on nk, the dimension of the accumulated block diagonal cut matrix.
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Theorem 6.6. The ACCPM algorithm stops with a solution in Ω∗ when

nk ∼ O∗
(
p2m3

µ2ε2

)
,

where in O∗ the lower-order terms are ignored.
Proof. Consider the kth iteration of the algorithm. Since the analytic center is

the minimizer of the dual potential function and since ȳj /∈ Ω∗ for j = 0, 1, . . . , k− 1,
in view of Lemma 5.2 and (5.2) we have

D(ΩkD) ≤ − log det(Ck − (Ak)T yc)

= − log det(C0 − (A0)T yc)−
k−1∑
j=0

log det((Bj)T (ȳj − yc))

≤ −(2m+ nk) log ε− k logµ.
Notice that if µ ≥ 1, this parameter can simply be eliminated from the above in-
equality. We therefore consider the worst-case complexity where µ < 1. Now from
inequality (6.6)

(2m+ nk+1) logµε ≤ 2m log
1

2
+ nk+1 log(p+ 1) +

1

2

nk+1∑
i=1

log t2i

or

logµε− log(p+ 1) ≤ 1

2(2m+ nk+1)

(
2m log

1

4
+

nk+1∑
i=1

log t2i

)

≤ 1

2
log

m
2 +

∑nk+1

i=1 t2i
2m+ nk+1

.

Note that the second inequality is due to the arithmetic-geometric mean. Finally, by
Lemma 6.5

(
µε

p+ 1

)2

≤
m
2 + 2m3 log

(
8 +

n2
k+1

m3

)
2m+ nk+1

.

The algorithm stops with a solution in Ω∗ when this inequality is violated. In other
words, it stops when nk ∼ O∗(p2m3/µ2ε2).

We complete our analysis by bounding the number of damped Newton steps
needed to solve problem (3.12).

7. Complexity of the recentering direction. Let ȳ be an approximate center
of ΩD and consider a p-dimensional semidefinite cut at ȳ. Let

F (T ) =
p

2
trTVT − log detT.

Recall that the optimal restoration direction is obtained by minimizing this function
over the positive semidefinite cone. In this section we analyze the behavior of the
Newton method as applied to F .

We first prove that the (dual) feasible region is contained in an enlarged Dikin
ellipsoid. This result is used to construct an upper bound on the functional gap of F
at its optimal and initial points.
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Lemma 7.1. Let (X̄, ȳ, S̄) be a θ-approximate analytic center of ΩD. Then

‖S̄−.5AT (y − ȳ)S̄−.5‖ ≤ 1 + θ

1− θ (n+ 1)

for any y ∈ ΩD. In other words, the current set of localization is contained in a Dikin
ellipsoid centered at ȳ and enlarged by a factor of (1+θ)(n+1)

1−θ .

Proof. Let y ∈ ΩD be dual feasible, and let S = C − AT y. From the properties
of matrix norm one can prove that (see the proof of (3.14))

‖S̄−1(S − S̄)‖ ≤ ‖S̄−1X̄−1‖∞‖X̄(S − S̄)‖.(7.1)

Since X̄ • (S − S̄) = 0,

‖X̄(S − S̄) + I‖2 = ‖X̄(S − S̄)‖2 + n,

and therefore

‖X̄(S − S̄)‖ ≤ ‖X̄S‖+ ‖X̄S̄ − I‖.(7.2)

However,

‖X̄S‖2 = tr(X̄ .5SX̄ .5)2

=
∑
i

λ2
i (X̄

.5SX̄ .5)

≤
(∑

λi(X̄
.5SX̄ .5)

)2

= (X̄ • S)2,
and since AX̄ = 0, then ‖X̄S‖ = X̄ • S̄.

Now from ‖X̄S̄ − I‖ ≤ θ and

‖X̄S̄ − I‖2 = ‖S̄.5X̄S̄.5 − I‖2
=
∑
i

λ2
i (S̄

.5X̄S̄.5 − I),

one has

1− θ ≤ λi(X̄S̄) ≤ 1 + θ,

and thus

X̄ • S̄ ≤ (1 + θ)n and ‖S̄−1X̄−1‖∞ ≤ 1

1− θ .

The above inequalities along with (7.1) and (7.2) prove the lemma.
In the next theorem we derive a bound on the number of iterations of the Newton

method as applied to F (T ).

Theorem 7.2. Let T 0 = T−1√
trT−1VT−1

, where T is the diagonal matrix defined in

Theorem 6.1. Then starting from T 0 the Newton method finds the optimal updating
direction in at most

O

(
p log 1

ε∗ + log 1
µ

β − log(1 + β)

)
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iterations, where

ε∗ =
(1− θ)ε

(1 + θ)(1 + n)
,

β is the Newton decrement, and µ > 0 is the condition number for the field of cuts
defined by (5.3).

Proof. Let T̃ and Λ̃ be the optimal solutions of problems (3.12) and (3.1), re-
spectively. We first derive an upper bound on the functional gap of F at T 0 and T̃ .
Observe that

F (T 0) =
p

2
trT 0VT 0 − log detT 0

=
p

2
+ p log

√
trT−1VT−1 − log detT−1,

and from (6.4) and the definition of T

F (T 0) ≤ p

2
+ p log p+

p∑
i=1

log ti.

Since ADATD � 8I, then
∑

log ti ≤ (p/2) log(1/8) ≤ 0. Thus

F (T 0) ≤ p

2
+ p log p.(7.3)

On the other hand, recall that pT̃ Λ̃ = I; thus

F (T̃ )− log det Λ̃ =
p

2
+ p log p.(7.4)

Let us construct an upper bound on − log det Λ̃. From Lemma 7.1, the updated set

of localization Ω+
D is contained in a Dikin ellipsoid enlarged by a factor of (1+θ)(n+1)

1−θ .

By shrinking the Dikin ellipsoid with a factor of 1−θ
(1+θ)(n+1) at ȳ and noting that Ω

+
D

contains a ball with radius ε, one can prove that

Ω+
D ∩ {y ∈ Rm : ‖S̄−.5AT (y − ȳ)S̄−.5‖ ≤ 1}

contains a ball Nε∗ with radius ε∗ = (1−θ)ε
(1+θ)(n+1) . This set is the feasible region of

problem (3.1). Let y∗ be the center of Nε∗ . Then y∗ + ε∗u ∈ Nε∗ for any u such
that ‖u‖ ≤ 1. In view of Assumption 4, following the same line of argument as in
Lemma 5.2, we have

− log det Λ̃ ≤ p log
1

ε∗
+ log

1

µ
.

Now from (7.3), (7.4), and the above inequality, one has

F (T 0)− F (T̃ ) ≤ p log
1

ε∗
+ log

1

µ
.(7.5)

Now observe that F (T ) is composed of a self-concordant barrier and a convex
quadratic function and due to the stability of the self-concordant functions under
summation [17, Prop. 2.1.1], F (T ) is a self-concordant function on Sp+. Using Theorem
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2.2.3 in [17] one can prove that the Newton algorithm with step size 1
1+β reduces the

value of F (T ) by a constant amount (β − log(1 + β)) at each iteration, where β ≥ 1
is the Newton decrement; and the convergence rate becomes quadratic when the
iteration is close to the optimal solution.

Thus, we have

F (T+) ≤ F (T )− (β − log(1 + β)),(7.6)

where T+ = T + 1
1+βdT , and β ≥ 1.

The theorem now follows from (7.5) and (7.6).

8. Conclusion. In this paper we introduced a nonpolyhedral model to the AC-
CPM by means of semidefinite cuts. The ingredients of the ACCPM, such as comput-
ing the analytic center, recentering procedure, and restoration direction, were modified
accordingly.

For the purpose of the complexity result, we analyzed the ACCPM in the context
of convex feasibility problem with p-dimensional semidefinite cuts. We derived the
optimal updating direction dy after adding cuts by maximizing the log det of the
new slack matrix. The current center along with dy generate an interior point of the
updated set of localization. Starting from this point, we proved that O(p log(p+ 1))
Newton iterations suffice to recover the analytic center.

A semidefinite cut contains as special cases linear and quadratic cuts. However,
the complexity of recentering is recovered by this generalization only in case of linear
cuts. More precisely, this complexity when p = 1 (single linear cut) is O(1), and when
the cut matrices are diagonal (p linear cuts) it is O(p log(p+1)). On the other hand,
the reduction of a p-dimensional semidefinite cut to a single quadratic cut does not
give the best complexity of recentering [20].

The implementation of the algorithm to an optimization problem and the case of
the deep cuts are yet to be tested.

Acknowledgments. The authors gratefully acknowledge discussion with Zhi-
Quan Luo on Assumption 4 and Lemma 5.2. We would also like to thank an anony-
mous reviewer for pointing out the error in the upper bound of the dual min-potential
function in the earlier version of this paper.

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] D. S. Atkinson and P. M. Vaidya, A cutting plane algorithm that uses analytic centers, Math.
Programming, 69 (1995), pp. 1–43.

[3] S. J. Benson, Y. Ye, and X. Zhang, Solving large-scale sparse semidefinite programs for
combinatorial optimization, SIAM J. Optim., 10 (2000), pp. 443–461.

[4] S. K. Chua, K. C. Toh, and G. Y. Zhao, An Analytic Center Cutting Plane Method with Deep
Cuts for Semidefinite Feasibility Problems, Technical report, Department of Mathematics,
National University of Singapore, Republic of Singapore, 2002.

[5] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial, Solving nonlinear multicommodity
flow problems by the analytic center cutting plane method, Math. Programming, 76 (1997),
pp. 131–154.

[6] J.-L. Goffin, A. Haurie, and J.-P. Vial, Decomposition and nondifferentiable optimization
with the projective algorithm, Management Science, 38 (1992), pp. 284–302.

[7] J.-L. Goffin, Z.-Q. Luo, and Y. Ye, Complexity analysis of an interior cutting plane method
for convex feasibility problems, SIAM J. Optim., 6 (1996), pp. 638–652.

[8] J.-L. Goffin and J.-P. Vial, Multiple cuts in the analytic center cutting plane method, SIAM
J. Optim., 11 (2000), pp. 266–288.



ACCPM WITH SEMIDEFINITE CUTS 1053

[9] J. Gondzio,Warm start of the primal–dual method applied in the cutting plane scheme, Math.
Programming, 83 (1998), pp. 125–143.

[10] C. Helmberg, Semidefinite Programming for Combinatorial Optimization, Konrad-Zuse-
Zentrum für Informationstechnik, Berlin, 2000.

[11] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM
J. Optim., 10 (2000) pp. 673–696.

[12] Z.-Q. Luo and J. Sun, An analytic center based column generation algorithm for convex
quadratic feasibility problems, SIAM J. Optim., 9 (1998) pp. 217–235.
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Abstract. In this paper we present a variant of Vavasis and Ye’s layered-step path-following
primal-dual interior-point algorithm for linear programming. Our algorithm is a predictor–corrector-
type algorithm which uses from time to time the layered least squares (LLS) direction in place of
the affine scaling (AS) direction. It has the same iteration-complexity bound of Vavasis and Ye’s
algorithm, namely O(n3.5 log(χ̄A + n)), where n is the number of nonnegative variables and χ̄A is
a certain condition number associated with the constraint matrix A. Vavasis and Ye’s algorithm
requires explicit knowledge of χ̄A (which is very hard to compute or even estimate) in order to
compute the layers for the LLS direction. In contrast, our algorithm uses the AS direction at
the current iterate to determine the layers for the LLS direction, and hence does not require the
knowledge of χ̄A. A variant with similar properties and with the same complexity has been developed
by Megiddo, Mizuno, and Tsuchiya [Math. Programming, 82 (1998), pp. 339–355]. However, their
algorithm needs to compute n LLS directions on every iteration, while ours computes at most one
LLS direction on any given iteration.

Key words. interior-point algorithms, primal-dual algorithms, path-following, central path,
layered steps, condition number, polynomial complexity, predictor-corrector, affine scaling, strongly
polynomial, linear programming
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1. Introduction. We consider the linear programming (LP) problem

minimize x cTx

subject to Ax = b, x ≥ 0,
(1)

and its associated dual problem

maximize (y,s) bT y

subject to AT y + s = c, s ≥ 0,
(2)

where A ∈ �m×n, c ∈ �n, and b ∈ �m are given, and the vectors x, s ∈ �n, and
y ∈ �m are the unknown variables. This paper proposes a primal-dual layered-
step predictor-corrector interior-point algorithm that is a variant of the Vavasis–Ye
layered-step interior-point algorithm proposed in [26, 27].

Karmarkar in his seminal paper [5] proposed the first polynomially convergent
interior-point method with an O(nL) iteration-complexity bound, where L is the size
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of the LP instance (1). The first path-following interior-point algorithm was pro-
posed by Renegar in his breakthrough paper [16]. Renegar’s method closely follows
the primal central path and exhibits anO(

√
nL) iteration-complexity bound. The first

path-following algorithm which simultaneously generates iterates in both the primal
and dual spaces has been proposed by Kojima, Mizuno, and Yoshise [6] and Tanabe
[18], based on ideas suggested by Megiddo [9]. In contrast to Renegar’s algorithm,
Kojima, Mizuno, and Yoshise’s algorithm has an O(nL) iteration-complexity bound.
A primal-dual path-following with an O(

√
nL) iteration-complexity bound was subse-

quently obtained by Kojima, Mizuno, and Yoshise [7] and Monteiro and Adler [13, 14]
independently. Following these developments, many other primal-dual interior-point
algorithms for linear programming have been proposed.

An outstanding open problem in optimization is whether there exists a strongly
polynomial algorithm for linear programming, that is, one whose complexity is bounded
by a polynomial of m and n only. A major effort in this direction is due to Tardos
[19], who developed a polynomial-time algorithm whose complexity is bounded by a
polynomial of m, n, and LA, where LA denotes the size of A. Such an algorithm
gives a strongly polynomial method for the important class of LP problems where the
entries of A are either 1, −1, or 0, e.g., LP formulations of network flow problems.
Tardos’s algorithm consists of solving a sequence of “low-sized” LP problems by a
standard polynomially convergent LP method and using their solutions to obtain the
solution of the original LP problem.

The development of a method which works entirely in the context of the original
LP problem and whose complexity is also bounded by a polynomial of m, n, and LA is
due to Vavasis and Ye [26]. Their method is a primal-dual path-following interior-point
algorithm similar to the ones mentioned above except that it uses from time to time
a crucial step, namely the layered least squares (LLS) direction. They showed that
their method has an O(n3.5(log χ̄A + log n)) iteration-complexity bound, where χ̄A is
a condition number associated with A having the property that log χ̄A = O(LA). The
number χ̄A was first introduced implicitly by Dikin and Zorkalcev [1] in the study of
primal affine scaling algorithms and was later studied by several researchers including
Vanderbei and Lagarias [25], Todd [20], and Stewart [17]. Properties of χ̄A are studied
in [3, 23, 24].

The complexity analysis of Vavasis and Ye’s algorithm is based on the notion of
a crossover event, a combinatorial event concerning the central path. Intuitively, a
crossover event occurs between two variables when one of them is larger than the other
at a point in the central path and then becomes smaller asymptotically as the optimal
solution set is approached. Vavasis and Ye showed that there can be at most n(n−1)/2
crossover events and that a distinct crossover event occurs everyO(n1.5(log χ̄A+log n))
iterations, from which they deduced the overall O(n3.5(log χ̄A + log n)) iteration-
complexity bound. In [12], an LP instance is given where the number of crossover
events is Θ(n2).

One disadvantage of Vavasis and Ye’s method is that it requires the explicit
knowledge of χ̄A in order to determine a partition of the variables into layers used in
the computation of the LLS step. This difficulty was remedied in a variant proposed by
Megiddo, Mizuno, and Tsuchiya [10] which does not require the explicit knowledge
of the number χ̄A. They observed that at most n types of partitions arise as χ̄A
varies from 1 to ∞ and that one of these can be used to compute the LLS step.
Based on this idea, they developed a variant which computes the LLS steps for all
these partitions and picks the one that yields the greatest duality gap reduction at
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the current iteration. Moreover, using the argument that once the first LLS step is
computed the other ones can be cheaply computed by performing rank-one updates,
they show that the overall complexity of their algorithm is exactly the same as Vavasis
and Ye’s algorithm.

In this paper, we propose another variant of Vavasis and Ye’s algorithm which has
the same complexity as theirs and computes only one LLS step per iteration without
any explicit knowledge of χ̄A. Our algorithm is a predictor–corrector-type algorithm
like the one described in [11] except that at the predictor stage it takes a step along
either the primal-dual affine scaling (AS) step or the LLS step. More specifically,
first the AS direction is computed and a test involving this direction is performed
to determine whether the LLS step is needed. If the LLS direction is not needed, a
step along the AS direction is taken as usual. Otherwise, the AS direction is used
to determine a partition of the variables into layers, and the LLS step with respect
to this partition is computed. The algorithm then takes a step along the direction
(either the AS or the LLS) which yields the largest duality gap reduction.

It is worth noting that our algorithm computes the LLS step only when a step
along the AS direction has the potential to yield a significant duality gap decrease. In
such a case, the LLS direction seems to be even better suited and it is used whenever
the current iteration permits it. Another advantage of the LLS step is that it possesses
the ability to determine an exact primal-dual optimal solution, and hence imply finite
termination of the algorithm.

The organization of the paper is as follows. Section 2 consists of five subsections.
In subsection 2.1, we review the notion of the primal-dual central path and its associ-
ated two-norm neighborhoods. Subsection 2.2 introduces the notion of the condition
number χ̄A of a matrix A and describes the properties of χ̄A that will be useful in
our analysis. Subsection 2.3 reviews the AS step and the corrector (or centrality)
step which are the basic ingredients of several well-known interior-point algorithms.
Subsection 2.4 describes the LLS step. Subsection 2.5 describes our algorithm in de-
tail and states the main convergence result of this paper. Section 3, which consists
of three subsections, introduces some basic tools which are used in our convergence
analysis. Subsection 3.1 discusses the notion of crossover events. Subsection 3.2 states
an approximation result that provides an estimation of the closeness between the AS
direction and the LLS direction. Subsection 3.3 reviews from a different perspective
an important result from Vavasis and Ye [26], which basically provides sufficient con-
ditions for the occurrence of crossover events. Section 4 is dedicated to the proof of
the main result stated in subsection 2.5. Section 5 gives some concluding remarks.
Finally, the appendix gives the proof of the approximation result between the AS and
the LLS directions stated in subsection 3.2.

The following notation is used throughout our paper. We denote the vector of all
ones by e. Its dimension is always clear from the context. The symbols �n, �n+, and
�n++ denote the n-dimensional Euclidean space, the nonnegative orthant of �n, and
the positive orthant of �n, respectively. The set of all m×n matrices with real entries
is denoted by �m×n. If J is a finite index set, then |J | denotes its cardinality, that is,
the number of elements of J . For J ⊆ {1, . . . , n} and w ∈ �n, we let wJ denote the
subvector [wi]i∈J ; moreover, if E is an m × n matrix, then EJ denotes the m × |J |
submatrix of E corresponding to J . For a vector w ∈ �n, we let max(w) and min(w)
denote the largest and the smallest component of w, respectively, Diag(w) denote the
diagonal matrix whose ith diagonal element is wi for i = 1, . . . , n, and w−1 denote
the vector [Diag(w)]−1e whenever it is well-defined. For two vectors u, v ∈ �n, uv
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denotes their Hadamard product, i.e., the vector in �n whose ith component is uivi.
The Euclidean norm, the 1-norm, and the ∞-norm are denoted by ‖ · ‖, ‖ · ‖1, and
‖ · ‖∞, respectively. For a matrix E, Im(E) denotes the subspace generated by the
columns of E and Ker(E) denotes the subspace orthogonal to the rows of E. The
superscript T denotes transpose.

2. Problem and primal-dual predictor-corrector interior-point algo-
rithms. In this section we describe the proposed feasible interior-point primal-dual
predictor-corrector algorithm for solving the pair of LP problems (1) and (2). We
also present the main convergence result which establishes a polynomial iteration-
complexity bound for the algorithm that depends only on the constraint matrix A.

This section is divided into five subsections. In subsection 2.1, we describe the
primal-dual central path and its associated two-norm neighborhoods. In subsection
2.2, we describe the notion of the condition number of a matrix and describe the
properties of the condition number that will be useful in our analysis. In subsection
2.3, we review the AS step and the corrector (or centrality) step which are the basic
ingredients of several well-known interior-point algorithms. We also derive a lower
bound on the stepsize along the AS step. In subsection 2.4, we describe an alternative
step, namely the LLS step, which is sometimes used in place of the AS direction by
our algorithm. In subsection 2.5, we describe our algorithm in detail and state the
main convergence result of this paper.

2.1. The problem, the central path, and its associated neighborhoods.
In this subsection we introduce the pair of dual linear programs and the assumptions
used in our development. We also describe the associated primal-dual central path
and its corresponding two-norm neighborhoods.

Given A ∈ �m×n, c ∈ �n, and b ∈ �m, consider the pairs of linear programs (1)
and (2), where x ∈ �n and (y, s) ∈ �m × �n are their respective variables. The set
of strictly feasible solutions for these problems are

P++ ≡ {x ∈ �n : Ax = b, x > 0},
D++ ≡ {(y, s) ∈ �m×n : AT y + s = c, s > 0},

respectively. Throughout the paper we make the following assumptions on the pair
of problems (1) and (2).

A.1 P++ and D++ are nonempty.
A.2 The rows of A are linearly independent.

Under the above assumptions, it is well known that for any ν > 0 the system

xs = νe,(3)

Ax = b, x > 0,(4)

AT y + s = c, s > 0,(5)

has a unique solution (x, y, s), which we denote by (x(ν), y(ν), s(ν)). The central path
is the set consisting of all these solutions as ν varies in (0,∞). As ν converges to zero,
the path (x(ν), y(ν), s(ν)) converges to a primal-dual optimal solution (x∗, y∗, s∗) for
problems (1) and (2). Given a point w = (x, y, s) ∈ P++×D++, its duality gap and its
normalized duality gap are defined as xT s and µ = µ(x, s) ≡ xT s/n, respectively, and
the point (x(µ), y(µ), s(µ)) is said to be the central point associated with w. Note
that (x(µ), y(µ), s(µ)) also has normalized duality gap µ. We define the proximity
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measure of a point w = (x, y, s) ∈ P++ ×D++ with respect to the central path by

η(w) ≡ ‖xs/µ− e‖.
Clearly, η(w) = 0 if and only if w = (x(µ), y(µ), s(µ)) or, equivalently, w coincides
with its associated central point. The two-norm neighborhood of the central path
with opening β > 0 is defined as

N (β) ≡ {w = (x, y, s) ∈ P++ ×D++ : η(w) ≤ β}.
Finally, for any point w = (x, y, s) ∈ P++ ×D++ we define

δ(w) ≡ s1/2x−1/2 ∈ �n.(6)

The following proposition provides important estimates which are used through-
out our analysis.

Proposition 2.1. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) be given and
define δ ≡ δ(w). Let w(µ) = (x(µ), y(µ), s(µ)) be the central point associated with w.
Then

1− β

1 + β
s ≤ s(µ) ≤ 1

1− β
s,

1− β

1 + β
x ≤ x(µ) ≤ 1

1− β
x,(7)

1− β

(1 + β)1/2
δ ≤ s(µ)√

µ
≤ (1 + β)1/2

1− β
δ,(8)

(1− β)2

(1 + β)

δi
δj
≤ si(µ)

sj(µ)
≤ (1 + β)

(1− β)2
δi
δj

∀i, j ∈ {1, . . . , n}.(9)

Proof. The second and fourth inequalities in (7) follow from Lemma 2.4(ii) of
Gonzaga [2]. Using these two inequalities together with xs ≤ (1+β)µe and x(µ)s(µ) =
µe, we obtain the other two inequalities in (7). Using the definition of δ = δ(w) in
(6) together with the relations xs ≤ (1 + β)µe and x(µ)s(µ) = µe, we easily see that
the first and second inequalities of (8) follow from the fourth and second inequalities
of (7), respectively. Finally, (9) immediately follows from (8).

2.2. Condition number. In this subsection we define a certain condition num-
ber associated with the constraint matrix A and state the properties of χ̄A which will
play an important role in our analysis.

Let D denote the set of all positive definite n× n diagonal matrices and define

χ̄A ≡ sup{‖AT (AD̃AT )−1AD̃‖ : D̃ ∈ D}
= sup

{
‖AT y‖
‖c‖ : y = argmin

ỹ∈�n
‖D̃1/2(AT ỹ − c)‖ for some 0 �= c ∈ �n and D̃ ∈ D

}
.

(10)
The parameter χ̄A plays a fundamental role in the complexity analysis of algorithms
for linear programming and least squares problems (see [26] and references therein).
Its finiteness has been established first by Dikin and Zorkalcev [1]. Other authors have
also given alternative derivations of the finiteness of χ̄A (see, for example, Stewart
[17], Todd [20], and Vanderbei and Lagarias [25]).

We summarize in the next proposition a few important facts about the parame-
ter χ̄A.

Proposition 2.2. Let A ∈ �m×n with full row rank be given. Then the following
statements hold:
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(a) χ̄GA = χ̄A for any nonsingular matrix G ∈ �m×m.
(b) χ̄A = max{‖G−1A‖ : G ∈ G}, where G denote the set of all m×m nonsingular

submatrices of A.
(c) If the entries of A are all integers, then χ̄A is bounded by 2O(LA), where LA

is the input bit length of A.
(d) χ̄A = χ̄F for any F ∈ �(n−m)×n such that Ker(A) = Im(FT ).
(e) If the m×m identity matrix is a submatrix of A and Ã is an r×n submatrix

of A, then ‖G̃−1Ã‖ ≤ χ̄A for every r × r nonsingular submatrix G̃ of Ã.
Proof. Statement (a) readily follows from the definition (10). The inequality

χ̄A ≥ max{‖G−1A‖ : G ∈ G} is established in Lemma 3 of [26], while the proof of the
reverse inequality is given in [20] (see also Theorem 1 of [21]). Hence, (b) holds. The
proof of (c) can be found in Lemma 24 of [26]. A proof of (d) can be found in [3].

We now consider (e). Using the assumption that the m×m identity matrix is a
submatrix of A, we easily see that A has an m×m nonsingular submatrix G which,
after some symmetric permutation of its rows and columns, can be put into the form[

G̃ 0

Ẽ I

]
for some matrix Ẽ ∈ �(n−r)×r. Since the inverse of the above matrix is[

G̃−1 0

−ẼG̃−1 I

]
,

we easily see that G̃−1Ã is a submatrix of G−1A. Hence, ‖G̃−1Ã‖ ≤ ‖G−1A‖ ≤ χ̄A,
where the last inequality is due to (b).

We now state a Hoffman-type result for a system of linear equalities that will be
used in the proof of an approximation result given in the appendix.

Lemma 2.3. Let A ∈ �m×n with full row rank be given, and let (K,L) be an
arbitrary bipartition of the index set {1, . . . , n}. Assume that w̄ ∈ �|L| is an arbitrary
vector such that the system AKu = ALw̄ is feasible. Then this system has a feasible
solution ū such that ‖ū‖ ≤ χ̄A‖w̄‖.

Proof. Due to Proposition 2.2(a), it is sufficient to establish the lemma for a
matrix of the form GA, where G is an m ×m nonsingular matrix. Hence, we may
assume that A contains the m×m identity matrix. Eliminating some redundant rows
from AKu = ALw̄ and some variables from u, we obtain a nonsingular system

G̃ũ = H̃w̄,

where G̃ is a square submatrix of AK such that rank(G̃) = rank(AK), H̃ is the
corresponding submatrix of AL, and ũ is a subvector of u. Clearly, the solution ũ of
this system satisfies ‖ũ‖ ≤ ‖G̃−1H̃‖ ‖w̄‖ ≤ χ̄A‖w̄‖, where the last inequality follows
from Proposition 2.2(e). We can augment ũ to a solution ū of AKu = ALw̄ by setting
the components of u not in ũ to zero.

2.3. Predictor-corrector step and its properties. In this subsection we de-
scribe the well-known predictor-corrector (P-C) iteration which is used by several
interior-point algorithms (see, for example, Mizuno, Todd, and Ye [11]). We also
describe the properties of this iteration which will be used in our analysis.

The P-C iteration consists of two steps, namely the predictor (or AS) step and
the corrector (or centrality) step. The search direction used by either step from a
current point in (x, y, s) ∈ P++ ×D++ is the solution of the following linear system
of equations:
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S∆x + X∆s = σµe− xs,

A∆x = 0,(11)

AT∆y + ∆s = 0,

where µ = µ(x, s) and σ ∈ � is a prespecified parameter, commonly referred to as the
centrality parameter. When σ = 0, we denote the solution of (11) by (∆xa,∆ya,∆sa)
and refer to it as the primal-dual AS direction at w; it is the direction used in the
predictor step of the P-C iteration. When σ = 1, we denote the solution of (11) by
(∆xc,∆yc,∆sc) and refer to it as the corrector direction at w; it is the direction used
in the corrector step of the P-C iteration.

We are now ready to describe the entire P-C iteration. Suppose that a constant
β ∈ (0, 1/4] and a point w = (x, y, s) ∈ N (β) is given. The P-C iteration generates
another point (x+, y+, s+) ∈ N (β) as follows. It first moves along the direction
(∆xa,∆ya,∆sa) until it hits the boundary of the enlarged neighborhoodN (2β). More
specifically, it computes the point wa = (xa, ya, sa) ≡ (x, y, s) + αa(∆xa,∆ya,∆sa),
where

αa ≡ sup {α ∈ [0, 1] : (x, y, s) + α(∆xa,∆ya,∆sa) ∈ N (2β)}.(12)

Next, the P-C iteration generates a point inside the smaller neighborhood N (β) by
taking a unit step along the corrector direction (∆xc,∆yc,∆sc) at the point wa; that
is, it computes the point (x+, y+, s+) ≡ (xa, ya, sa) + (∆xc,∆yc,∆sc) ∈ N (β). The
successive repetition of this iteration leads to the so-called Mizuno–Todd–Ye (MTY)
P-C algorithm (see [11]).

Our method is very similar to the algorithm of [11] except that it sometimes
replaces the AS step by the LLS step described in the next subsection. The inser-
tion of the LLS step in the above MTY P-C algorithm guarantees that the modified
method has the finite termination property. Hence, the LLS step can be viewed as
a termination procedure which is performed only when some “not-so-likely-to-occur”
conditions are met. Moreover, the LLS step is taken only when it yields a point with
a smaller duality gap than the one obtained from the AS step as described above.

In the remainder of this subsection, we discuss some properties of the P-C iteration
and the primal-dual AS direction. For a proof of the next two propositions, we refer
the reader to [11].

Proposition 2.4 (predictor step). Suppose that w = (x, y, s) ∈ N (β) for some
constant β ∈ (0, 1/2]. Let ∆wa = (∆xa,∆ya,∆sa) denote the AS direction at wa and
let αa be the stepsize computed according to (12). Then the following statements hold:

(a) the point w+α∆wa has normalized duality gap µ(α) = (1−α)µ for all α ∈ �;
(b) αa ≥

√
β/n, and hence µ(αa)/µ ≤ 1−√β/n.

Proposition 2.5 (corrector step). Suppose that w = (x, y, s) ∈ N (2β) for some
constant β ∈ (0, 1/4], and let (∆xc,∆yc,∆sc) denote the corrector step at w. Then
w + ∆wc ∈ N (β). Moreover, the (normalized) duality gap of w + ∆wc is the same as
that of w.

For the purpose of future comparison with the LLS step, we mention the follow-
ing alternative characterization of the primal-dual AS direction whose verification is
straightforward:

∆xa ≡ argmin
p∈�n

{‖δ(x + p)‖2 : Ap = 0
}
,(13)

(∆ya,∆sa) ≡ argmin
(r,q)∈�m×�n

{‖δ−1(s + q)‖2 : AT r + q = 0
}
,(14)
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where δ ≡ δ(w). For a search direction (∆x,∆y,∆s) at a point (x, y, s), the quantity

(Rx,Rs) ≡
(
δ(x + ∆x)√

µ
,
δ−1(s + ∆s)√

µ

)
=

(
x1/2s1/2 + δ∆x√

µ
,
x1/2s1/2 + δ−1∆s√

µ

)
(15)

appears quite often in our analysis. We refer to it as the residual of (∆x,∆y,∆s).
Note that if (Rxa, Rsa) is the residual of (∆xa,∆ya,∆sa), then

Rxa = − 1√
µ
δ−1∆sa, Rsa = − 1√

µ
δ∆xa,(16)

and

Rxa + Rsa =
x1/2s1/2

√
µ

,(17)

due to the fact that (∆xa,∆ya,∆sa) satisfies the first equation in (11) with σ = 0.
The following quantity is used in the test to determine when the LLS step should be
used in place of the AS step:

εa
∞ ≡ max

i
{min {|Rxa

i | , |Rsa
i |}} .(18)

We end this section by providing some estimates involving the residual of the AS
direction.

Lemma 2.6. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4]. Then, for
all i = 1, . . . , n, we have

max {|Rxa
i |, |Rsa

i |} ≥
√

1− β

2
≥ 1

4
.

Proof . Assume for contradiction that for some i ∈ {1, . . . , n}, max {|Rxa
i |, |Rsa

i |} <√
1− β/2. Then, using (17), we obtain the following contradiction:

x
1/2
i s

1/2
i√
µ

= Rxa
i + Rsa

i ≤ |Rxa
i |+ |Rsa

i | <
√

1− β ≤ x
1/2
i s

1/2
i√
µ

.

2.4. The LLS step. In this subsection we describe the other type of step used
in our algorithm, namely the LLS step. This step was first introduced by Vavasis and
Ye in [26].

Let w = (x, y, s) ∈ P++ ×D++ and a partition (J1, . . . , Jp) of the index set

{1, . . . , n} be given and define δ ≡ δ(w). The primal LLS direction ∆xll = (∆xll
J1

, . . . ,

∆xll
Jp) at w with the respect to J is defined recursively according to the order

∆xll
Jp , . . . ,∆xll

J1
as follows. Assume that the components ∆xll

Jp , . . . ,∆xll
Jk+1

have been

determined. Let ΠJk : �n → �Jk denote the projection map defined as ΠJk(u) = uJk
for all u ∈ �n. Then ∆xll

Jk
≡ ΠJk(Lxk), where Lxk is given by

Lxk ≡ Argmin
p∈�n

{‖δJk(xJk + pJk)‖2 : p ∈ Lxk−1}
= Argmin

p∈�n
{‖δJk(xJk + pJk)‖2 : p ∈ Ker(A), pJi = ∆xll

Ji ∀i = k + 1, . . . , p},(19)

with the convention that Lx0 = Ker(A). The slack component ∆sll = (∆sll
J1

, . . . ,∆sll
Jp)

of the dual LLS direction (∆yll,∆sll) at w with the respect to J is defined recursively
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as follows. Assume that the components ∆sll
J1

, . . . ,∆sll
Jk−1

have been determined.

Then ∆sll
Jk
≡ ΠJk(Lsk), where Lsk is given by

Lsk ≡ Argmin
q∈�n

{‖δ−1
Jk

(sJk + qJk)‖2 : q ∈ Lsk−1}
= Argmin

q∈�n
{‖δ−1

Jk
(sJk + qJk)‖2 : q ∈ Im(AT ), qJi = ∆sll

Ji ∀i = 1, . . . , k − 1},(20)

with the convention that Ls0 = Im(AT ). Finally, once ∆sll has been determined, the
component ∆yll is determined from the relation AT∆yll + ∆sll = 0.

Note that (13) and (14) imply that the AS direction is a special LLS direction,
namely the one with respect to the only partition in which p = 1. Clearly, the LLS
direction at a given w ∈ P++ ×D++ depends on the partition J = (J1, . . . , Jp) used.

A partition J = (J1, . . . , Jp) is said to be ordered at a point w = (x, y, s) ∈
P++ ×D++ if max(δJi) ≤ min(δJi+1) for all i = 1, . . . , p− 1. In this case, the gap of
J , denoted by gap(J), is defined as

gap(J) = min
1≤i≤p−1

{
min(δJi+1

)

max(δJi)

}
=

1

max1≤i≤p−1

(
‖δJi‖∞‖δ−1

Ji+1
‖∞
) ≥ 1,

with the convention that gap(J) = ∞ if p = 1.
The LLS step used by our algorithm is computed with respect to a specific par-

tition which is ordered at the current iterate w ∈ P++ ×D++. We now describe the
construction of this ordered partition. First, with the aid of the AS direction at w,
we compute the bipartition (B,N) of {1, . . . , n} according to

B ≡ {i : |Rsa
i | ≤ |Rxa

i | }, N ≡ {i : |Rsa
i | > |Rxa

i | }.(21)

Note that this definition and (18) imply that

εa
∞ = max {‖Rxa

N‖∞, ‖Rsa
B‖∞} .(22)

Next, an order (i1, . . . , in) of the index variables is chosen such that δi1 ≤ · · · ≤
δin . Then the first block of consecutive indices in the n-tuple (i1, . . . , in) lying in
the same set B or N are placed in the first layer J1, the next block of consecutive
indices lying in the other set is placed in J2, and so on. As an example, assume that
(i1, i2, i3, i4, i5, i6, i7) ∈ B×B×N×B×B×N×N . In this case, we have J1 = {i1, i2},
J2 = {i3}, J3 = {i4, i5}, and J4 = {i6, i7}. A partition obtained according to the
above construction is clearly ordered at w. We refer to it as an ordered (B,N)-
partition and denote it by J = J (w). The LLS step with respect to an ordered
(B,N)-partition is sometimes used as a replacement for the primal-dual AS direction
in the predictor step of our algorithm.

Note that an ordered (B,N)-partition is not uniquely determined since there
can be more than one n-tuple (i1, . . . , in) satisfying δi1 ≤ · · · ≤ δin . This situation
happens exactly when there are two or more indices i with the same value for δi. If
these tying indices do not all belong to the same set B or N , then there will be more
than one way to generate an ordered (B,N)-partition J .

We say that the bipartition (B,N) is regular if there do not exist i ∈ B and
j ∈ N such that δi = δj . Observe that there exists a unique ordered (B,N)-partition
if and only if (B,N) is regular. When (B,N) is not regular, our algorithm avoids
the computation of an ordered (B,N)-partition and hence of any LLS direction with
respect to such a partition. Thus, there is no ambiguity in our algorithm.
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2.5. Algorithm and the main convergence result. In this subsection, we
describe our algorithm and state the main result of this paper which guarantees
the convergence of the method in a strong sense. More specifically, we establish
an iteration-complexity bound for our method which depends only on the constraint
matrix A. This bound is exactly the same as the one obtained in Vavasis and Ye [26].

P-C Layered Algorithm.
Let 0 < β ≤ 1/4, ε0 > 0, and w0 ∈ N (β) be given. Set k = 0.

1. Set w = wk and compute the AS direction (∆xa,∆ya,∆sa) at w;
2. Compute the quantities εa

∞ and αa as in (18) and (12), and the biparti-
tion (B,N) according to (21);

3. If εa
∞ > ε0 or (B,N) is not regular, then set w ← w +αa∆wa and go to

step 7;
4. Otherwise, determine the ordered (B,N)-partition J = (J1, . . . ,Jr)

and compute the LLS step ∆wl = (∆xl,∆yl,∆sl) at w with respect
to J ;

5. Let wl = w + αl ∆wl, where αl ≡ sup {α ∈ [0, 1] : w + α∆wl ∈ N (2β)};
6. If µ(wl) < (1− αa)µ, then set w ← wl, else set w ← w + αa∆wa;
7. If µ(w) = 0, then stop; in this case w is an optimal solution;
8. Compute the corrector step ∆wc at w and set w ← w + ∆wc;
9. Set wk+1 = w, increment k by 1 and go to step 1.

End
We now make a few comments about the above algorithm. Step 2 followed by step

8 is a standard P-C iteration of the type described in subsection 2.3. This iteration
is always performed in those iterations for which εa

∞ > ε0 or (B,N) is not regular.
In the other iterations, the algorithm performs either a standard P-C iteration or a
layered-corrector iteration, depending on which of the two iterations gives the lowest
reduction of the duality gap. This test is performed in step 6 since the term (1−αa)µ
is the normalized duality gap obtained when the AS step is taken (see Proposition
2.4(a)).

The following convergence theorem is the main result of the paper.
Theorem 2.7. The P-C layered algorithm described above finds a primal-dual

optimal solution (x∞, s∞, y∞) of problems (1) and (2) satisfying strict complementar-
ity (i.e., x∞ + s∞ > 0) in at most O(n3.5 log(χ̄A+n+ ε−1

0 )) iterations. In particular,
if ε0 = Ω(1/nτ ) for some constant τ, then the iteration-complexity bound reduces to
O(n3.5 log(χ̄A + n)).

3. Basic tools. In this section we introduce the basic tools that will be used
in the proof of Theorem 2.7. The analysis heavily relies on the notion of crossover
events due to Vavasis and Ye [26]. Subsection 3.1 below gives the definition of a
crossover event which is slightly different than the one used in [26] and discusses some
of its properties. In subsection 3.2, we state an approximation result that provides an
estimation of the closeness between the LLS direction with respect to a partition J of
{1, . . . , n} and the AS direction. Subsection 3.3 reviews from a different perspective
an important result from [26], namely Lemma 17 of [26], that essentially guarantees
the occurrence of crossover events. Since this result is stated in terms of the residual
of an LLS step, the use of the approximation result of subsection 3.2 between the AS
and LLS steps allows us to obtain a similar result stated in terms of the residual of
the AS direction.

3.1. Crossover events. In this subsection we discuss the notion of crossover
event which plays a fundamental role in our convergence analysis.
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Definition. For two indices i, j ∈ {1, . . . , n} and a constant C ≥ 1, a C-crossover
event for the pair (i, j) is said to occur on the interval (ν′, ν] if

there exists ν0 ∈ (ν′, ν] such that
sj(ν0)

si(ν0)
≤ C

and
sj(ν̃)

si(ν̃)
> C ∀ν̃ ≤ ν′.

(23)

Moreover, the interval (ν′, ν] is said to contain a C-crossover event if (23) holds for
some pair (i, j).

Hence, the notion of a crossover event is independent of any algorithm and is a
property of the central path only. Note that in view of (3), condition (23) can be
reformulated into an equivalent condition involving only the primal variable. For our
purposes, we will use only (23).

We have the following simple but crucial result about crossover events.
Proposition 3.1. Let C > 0 be a given constant. There can be at most n(n−1)/2

disjoint intervals of the form (ν′, ν] containing C-crossover events.
The notion of C-crossover events can be used to define the notion of C-crossover

events between two iterates of the P-C layered algorithm as follows. We say that a
C-crossover event occurs between two iterates wk and wl, k < l, generated by the P-C
layered algorithm if the interval (µ(wl), µ(wk)] contains a C-crossover event. Note
that in view of Proposition 3.1, there can be at most n(n − 1)/2 intervals of this
type. We will show in the remainder of this paper that there exists a constant C > 0
with the following property: for any index k, there exists an index l > k such that
l− k = O(n1.5 log(χ̄A +n+ ε−1

0 )) and a C-crossover event occurs between the iterates
wk and wl of the P-C layered algorithm. Proposition 3.1 and a simple argument then
show that the P-C layered algorithm must terminate within O(n3.5 log(χ̄A+n+ε−1

0 ))
iterations.

3.2. Relation between the LLS and AS directions. In this subsection, we
describe how the LLS step provides a good approximation of the AS direction, a result
that will be important in our convergence analysis. Another result along this direction
has also been obtained by Vavasis and Ye [28]. However, our result is more general
and better suited for the development of this paper.

The approximation result below can be proved using the projection decomposition
techniques developed in [22]. However, we give a simpler proof using instead the
techniques developed in [15]. The result essentially states that the larger the gap of
J is, the closer the AS direction and the LLS direction with respect to J will be to
one another.

Theorem 3.2. Let w = (x, y, s) ∈ P++ ×D++ and an ordered partition J =
(J1, . . . , Jp) at w be given. Define δ ≡ δ(w), and let ∆wa = (∆xa,∆ya,∆sa) and
∆wll = (∆xll,∆yll,∆sll) denote the AS direction at w and the LLS direction at w
with respect to J , respectively. If the gap of J satisfies gap(J) ≥ 4 p χ̄A, then

max
{ ∥∥δ(∆xa −∆xll)

∥∥
∞ ,

∥∥δ−1(∆sa −∆sll)
∥∥
∞
} ≤ 12

√
nµ χ̄A

gap(J)
.

In particular, if (Rxll, Rsll) denote the residual for the LLS direction ∆wll, then

max
{ ∥∥∥Rxa −Rxll

∥∥∥
∞

,
∥∥∥Rsa −Rsll

∥∥∥
∞

}
≤ 12

√
n χ̄A

gap(J)
.
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Proof. Using the characterization (13) of ∆xa and the definition (19) of ∆xll, we
see that the vectors d0 = (d0

1, . . . , d
0
p) ≡ (δJp∆xa

Jp
, . . . , δJ1∆xa

J1
) and d̃0 = (d̃0

1, . . . , d̃
0
p)

≡ (δJp∆xll
Jp

, . . . , δJ1∆xll
J1

) satisfy the assumptions of Theorem 6.1 with g = 0, Fp+1−i
= AJi , hp+1−i = (δx)Ji = (x1/2s1/2)Ji , and zp+1−i = δ−1

Ji
for all i = 1, . . . , p. Hence,

by the conclusion of Theorem 6.1, we conclude that

∥∥δ(∆xa −∆xll)
∥∥
∞ ≤ 12 χ̄F

∥∥x1/2s1/2
∥∥

gap(J)
=

12 χ̄A
√
nµ

gap(J)
.

Now let G be an (n − m) × n full row rank matrix such that AGT = 0. Clearly,
we have Ker(A) = Im(GT ), and hence χ̄A = χ̄G in view of Proposition 2.2(d). Us-
ing the characterization (14) of ∆sa and the definition (20) of ∆sll, we see that
the vectors d0 = (d0

1, . . . , d
0
p) ≡ (δ−1

J1
∆sa

J1
, . . . , δ−1

Jp
∆sa

Jp
) and d̃0 = (d̃0

1, . . . , d̃
0
p) ≡

(δ−1
J1

∆sll
J1

, . . . , δ−1
Jp

∆sll
Jp

) satisfy the assumptions of Theorem 6.1 with g = 0, Gi = FJi ,

hi = (δ−1s)Ji = (x1/2s1/2)Ji , and zi = δJi for all i = 1, . . . , p. Hence, by the conclu-
sion of Theorem 6.1, we conclude that

∥∥δ−1(∆sa −∆sll)
∥∥
∞ ≤ 12 χ̄F

∥∥x1/2s1/2
∥∥

gap(J)
=

12 χ̄A
√
nµ

gap(J)
.

Hence, the first inequality of the theorem follows. The second inequality follows
immediately from the first one and the definition of residual of a direction
(∆x,∆y,∆s).

In view of the above result, the AS direction can be well approximated by LLS
directions with respect to ordered partitions J which have large gaps. The LLS
direction with p = 1, which is the AS direction, provides the perfect approximation
to the AS direction itself. However, this kind of trivial approximation is not useful for
us due to the need of keeping the “spread” of some layers Jk under control. For an
ordered partition J at w, the spread of the layer Jk, denoted by spr(Jk), is defined as

spr(Jk) ≡ max(δJk)

min(δJk)
∀k = 1, . . . , p.

We now describe a special ordered partition introduced by Vavasis and Ye [26]
which plays a crucial role in our analysis. Given a point w ∈ P++ ×D++ and a
parameter ḡ ≥ 1, this partition, which we refer to as the VY ḡ-partition at w, is defined
as follows. Let (i1, . . . , in) be an ordering of {1, . . . , n} such that δi1 ≤ · · · ≤ δin , where
δ = δ(w). For k = 2, . . . , n, let rk ≡ δik/δik−1

and define r1 ≡ ∞. Let k1 < · · · < kp
be all the indices k such that rk > ḡ for all j = 1, . . . , p. The VY ḡ-partition J is then
defined as J = (J1, . . . , Jp), where Jq ≡ {ikq , ikq+1, . . . , ikq+1−1} for all q = 1, . . . , p.
More generally, given a subset I ⊂ {1, . . . , n}, we can similarly define the VY ḡ-
partition of I at w by taking an ordering (i1, . . . , im) of I satisfying δi1 ≤ · · · ≤ δim ,
where m = |I|, defining the ratios r1, . . . , rm as above, and proceeding exactly as in
the construction above to obtain the partition J = (J1, . . . , Jp) of I.

It is easy to see that the following result holds for the partition J described in
the previous paragraph.

Proposition 3.3. Given a subset I ⊆ {1, . . . , n}, a point w ∈ P++ ×D++, and
a constant ḡ ≥ 1, the VY ḡ-partition J = (J1, . . . , Jp) of I at w satisfies gap(J) > ḡ
and spr(Jq) ≤ ḡ|Jq| ≤ ḡn for all q = 1, . . . , p.
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3.3. Relation between crossover events and search directions. Using
Lemma 17 of [26], we derive in this section an upper bound on the number of it-
erations needed to guarantee the occurrence of a crossover event which depends on
the size of the residual of the LLS step and the stepsize at the initial iterate. Under
suitable conditions, we derive with the aid of Theorem 3.2 another upper bound on the
number of iterations needed to guarantee the occurrence of a crossover event which
depends only on the size of the residual of the AS direction at the initial iterate.

Even though Lemma 17 of Vavasis and Ye [26] is stated and proved in a very
advanced stage of their paper, one does not need to go through the whole material
preceding it. In order to fully understand this result, it is recommended that one read
only the material of section 4 of [26], followed by Lemma 16 and finally Lemma 17.

Lemma 3.4. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) and an ordered
partition J = (J1, . . . , Jp) at w be given. Let δ ≡ δ(w), µ = µ(w), and (Rxll, Rsll)

denote the residual of the LLS direction (∆xll,∆yll,∆sll) at w with respect to J . Then
the following statements hold for every q = 1, . . . , p:

(a) There exists i ∈ J1 ∪ · · · ∪ Jq such that

si(ν) ≥
√
µ ‖Rsll

Jq‖∞ min(δJq )

n1.5χ̄A
∀ν ∈ (0, µ].

(b) There exists j ∈ Jq ∪ · · · ∪ Jp such that

xj(ν) ≥
√
µ ‖Rxll

Jq‖∞
n1.5χ̄A max(δJq )

∀ν ∈ (0, µ].

(c) For any Cq ≥ (1 + β) spr(Jq)/(1− β)2 and for any µ′ ∈ (0, µ) such that

µ′

µ
≤ ‖Rxll

Jq‖∞‖Rsll
Jq‖∞

n3C2
q χ̄

2
A

,

the interval (µ′, µ] contains a Cq-crossover event.
Proof. Noting that our definition of δ is the one used in [26] divided by

√
µ, we

easily see that statements (a) and (b) follow directly from Lemma 17 of [26]. We now
prove (c). Let i and j be as in statements (a) and (b). First note that by Proposition
2.1 we have

si(µ)

sj(µ)
≤ 1 + β

(1− β)2
δi
δj
≤ 1 + β

(1− β)2
max(δJq )

min(δJq )
=

1 + β

(1− β)2
spr(Jq) ≤ Cq.

Now, by (b) and (3), we have

1

sj(ν)
≥

√
µ ‖Rxll

Jq‖∞
νn1.5χ̄A max(δJq )

∀ν ∈ (0, µ].

Using the last relation, the relation in (a), the fact that J is an ordered partition for
w, and the conditions on Cq and µ′, we obtain for every ν ∈ (0, µ′] that

si(ν)

sj(ν)
≥ µ ‖Rxll

Jq‖∞‖Rsll
Jq‖∞

ν n3χ̄2
A spr(Jq)

>
µ ‖Rxll

Jq‖∞‖Rsll
Jq‖∞

µ′ n3χ̄2
A Cq

≥ Cq.

We have thus shown that a crossover event for the pair (i, j) occurs in the interval
(ν′, ν].
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An immediate consequence of Lemma 3.4(c) which has implications in the analysis
of the P-C layered algorithm is as follows.

Lemma 3.5. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4] and an ordered
partition J = (J1, . . . , Jp) at w be given. Define δ ≡ δ(w) and µ = µ(w), and

let (Rxll, Rsll) denote the residual of the LLS direction (∆xll,∆yll,∆sll) at w with
respect to J . Then, for every q ∈ {1, . . . , p} and every Cq ≥ (1 + β)spr(Jq)/(1− β)2,
the following statements hold:

(a) The P-C layered algorithm started from the point w will either generate an
iterate ŵ with a Cq-crossover event occurring between w and ŵ or terminate in

O
(
√
n

(
log(χ̄A + n) + log Cq + log

(
µ+/µ

‖Rxll
Jq‖∞‖Rsll

Jq‖∞

)))
(24)

iterations, where µ+ is the normalized duality gap attained immediately after
the first iteration.

(b) If, in addition,

gap(J) ≥ max

{
4nχ̄A ,

24
√
nχ̄A

εa
Jq

}
,(25)

where εa
Jq
≡ min{‖Rxa

Jq‖∞ , ‖Rsa
Jq‖∞}, then (24) is bounded above by

O
(√

n
(

log(χ̄A + n) + log Cq + log(εa
Jq )

−1
))

.(26)

Proof. To prove (a), it is sufficient to show that a Cq-crossover event will occur if
the algorithm does not terminate in a number of iterations bounded above by (24).
Lemma 3.4(c) guarantees that a Cq-crossover event occurs between w and another
iterate ŵ whenever

µ(ŵ)

µ(w)
≤ ‖Rxll

Jq‖∞‖Rsll
Jq‖∞

n3C2
q χ̄

2
A

.(27)

Observe that the duality gap is reduced by a factor of µ+/µ in the first iteration and
by a factor of at least 1 −√β/n in subsequent iterations due to Proposition 2.4(b).
Thus, an iterate ŵ satisfying (27) will be generated in at most N0+1 iterations, where
N0 is the smallest integer satisfying

log

(
µ+

µ

)
+ N0 log

(
1−

√
β

n

)
≤ log

[
‖Rxll

Jq‖∞‖Rsll
Jq‖∞

n3C2
q χ̄

2
A

]
.

The first part of the lemma now immediately follows by rearranging this inequality
and using the fact that log (1 + x) < x for any x > −1.

We now prove (b). We will show that (24) is bounded above by (26) when (25)
holds. By Theorem 3.2 and (25), it follows that

max
{ ∥∥∥Rxa −Rxll

∥∥∥
∞

,
∥∥∥Rsa −Rsll

∥∥∥
∞

}
≤ 12

√
n χ̄A

gap(J)
≤ εa

Jq

2
.

Hence, we have
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min
{
‖Rxll

Jq‖∞, ‖Rsll
Jq‖∞

}
≥ min

{ ∥∥∥Rxa
Jq

∥∥∥
∞
−
∥∥∥Rxa −Rxll

∥∥∥
∞

,
∥∥∥Rsa

Jq

∥∥∥
∞
−
∥∥∥Rsa −Rsll

∥∥∥
∞

}
≥ min

{∥∥∥Rxa
Jq

∥∥∥
∞

,
∥∥∥Rsa

Jq

∥∥∥
∞

}
− εa

Jq

2
= εa

Jq −
εa
Jq

2
=

εa
Jq

2
.

Using this estimate in (24) together with the fact that µ+/µ ≤ 1, we conclude that
(24) is bounded above by (26).

4. Convergence analysis of the P-C layered algorithm. In this section, we
give the proof of Theorem 2.7.

Lemma 3.5 gives a good idea of the effort which will be undertaken in this
section, namely, to show that for each w ∈ N (β) there exist an ordered partition
J = (J1, . . . , Jp) and an index q = 1, . . . , p such that the sum of two last logarithms
in (24) can be bounded above by O(n log(χ̄A +n+ ε0

−1)). The analysis of this claim
will be broken into two cases, namely (i) εa

∞ ≥ ε0 and (ii) εa
∞ ≤ ε0, where εa

∞ is
given by (18). The first result below considers the case εa

∞ ≥ ε0 for which the VY
ḡ-partition at w is quite suitable. We introduce the following global constants which
will be used in the remainder of this paper:

C ≡ (1 + β)

(1− β)2
ḡn, ḡ ≡ 24 χ̄A

√
n max

{
ε−1
0 ,

4(1 + 2β)
√
n

β − 2β2

}
.(28)

Lemma 4.1. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4] and that
εa
∞ ≥ ε0 for some constant ε0 > 0. Then the P-C layered algorithm started from the
point w will either generate an iterate ŵ with a C-crossover event occurring between
w and ŵ or terminate in O(n1.5 log(χ̄A + n + ε−1

0 )) iterations.
Proof. The assumption that εa

∞ ≥ ε0 and definition (18) imply the existence of
an index i = 1, . . . , n such that min{|Rxa

i |, |Rsa
i |} ≥ ε0. Now let J = (J1, . . . , Jp) be

a VY ḡ-partition at w, and let Jq be the layer containing the index i above. Clearly,
we have

εa
Jq ≡ min{‖Rxa

Jq‖∞, ‖Rsa
Jq‖∞} ≥ ε0.(29)

Using the above inequality, the fact that gap(J) ≥ ḡ, and (28), we easily see that
(25) holds. Since by Proposition 3.3 the spread of every layer of a VY ḡ-partition
at w is bounded above by ḡn, we conclude that spr(Jq) ≤ ḡn. Hence, we may set
Cq = C ≡ (1 + β)ḡn/(1− β)2 in Lemma 3.5, from which it follows that

log(Cq) = O(n log ḡ) = O(n log(χ̄A + n + ε−1
0 )),(30)

where the last equality is due to (28). The result now follows from Lemma 3.5(b) by
noting that (26) is O(n1.5 log(χ̄A + n + ε−1

0 )) in view of (29) and (30).
We now consider the case in which εa

∞ ≤ ε0 and show that a C-crossover also
happens within O(n1.5 log(χ̄A + n + ε−1

0 )) iterations of the P-C layered algorithm
(if it does not terminate). From now on, we let J = (J1, . . . ,Jr) denote an ordered
(B,N)-partition at w. We will split the analysis of this case into two subcases, namely
(i) gap(J ) ≤ ḡ and (ii) gap(J ) ≥ ḡ. The next result takes care of the case in which
gap(J ) ≤ ḡ, without assuming anything about εa

∞.
Lemma 4.2. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4]. Let ḡ and C

be the constants defined in (28). Let J = (J1, . . . ,Jr) be an ordered (B,N)-partition
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at w, where (B,N) is the bipartition defined in (21), and assume that gap(J ) <
ḡ. Then the P-C layered algorithm started from the point w will either generate
an iterate ŵ with a C-crossover event occurring between w and ŵ or terminate in
O (n1.5 log(χ̄A + n + ε−1

0 )
)
iterations.

Proof. Assume that gap(J ) < ḡ. Let J = (J1, . . . , Jp) be a VY ḡ-partition at w.
Using the assumption that gap(J ) < ḡ, it is easy to see that there exist two indices
i, j of different types, say i ∈ B and j ∈ N , both lying in some layer Jq of J . By
Lemma 2.6 and the definition of (B,N) given in (21), it follows that |Rxa

i | ≥ 1/4 and
|Rsa

j | ≥ 1/4, and hence that

εa
Jq ≡ min{‖Rxa

Jq‖∞ , ‖Rsa
Jq‖∞} ≥

1

4
.(31)

Using this inequality and the fact that gap(J) ≥ ḡ ≥ 96χ̄An, where the last inequality
is due to (28), we easily see that (25) holds. Since by Proposition 3.3 the spread of
every layer of a VY ḡ-partition at w is bounded above by ḡn, we conclude that
spr(Jq) ≤ ḡn. Hence, we may set Cq = C ≡ (1 + β)ḡn/(1 − β)2 in Lemma 3.5, from
which it follows that (30) holds. The result now follows from Lemma 3.5(b) by noting
that (26) is O(n1.5 log(χ̄A + n + ε−1

0 )) in view of (30) and (31).
The next result considers the case in which gap(J ) ≥ ḡ and derives an upper

bound on the number of iterations for a C-crossover event to occur. As in Lemma 3.5,
nothing is assumed about εa

∞.
Lemma 4.3. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4]. Let ḡ and

C be the constants defined in (28). Let J = (J1, . . . ,Jr) be the (B,N)-partition at
w, where (B,N) is the bipartition defined in (21), and assume that gap(J ) ≥ ḡ. Let
(Rxl, Rsl) denote the residual of the LLS direction at w with respect to J . Then the
P-C layered algorithm started from the point w will either generate an iterate ŵ with
a C-crossover event occurring between w and ŵ or terminate in

O
(
n1.5 log

(
χ̄A + n + ε0

−1
)

+
√
n log

(
µ+/µ

εl∞

))
(32)

iterations, where µ+ is the normalized duality gap attained immediately after the first
iteration, and

εl
∞ ≡ max

{∥∥∥Rxl
N

∥∥∥
∞

,
∥∥∥Rsl

B

∥∥∥
∞

}
.

Proof. Assume without loss of generality that εl
∞ = ‖Rxl

N‖∞; the case in which
εl
∞ = ‖Rsl

B‖∞ can be proved similarly. Then εl
∞ = |Rxl

i| for some i ∈ N . Let Jt be
the layer of J containing the index i and note that

εl
∞ = |Rxl

i| = ‖Rxl
Jt‖∞ ≤ ‖Rxl

Jt‖.(33)

Now let I = (I1, . . . , Ip) be the VY ḡ-partition of Jt at w and consider the ordered
partition J ′ defined as

J ′ ≡ (J1, . . . ,Jt−1, I1, . . . , Ip,Jt+1, . . . ,Jr).

Let (Rxll, Rsll) denote the residual of the LLS direction at w with respect to J ′.
Using the definition of the LLS step, it is easy to see that Rxl

Jj = Rxll
Jj for all

j = t + 1, . . . , r. Moreover, we have ‖Rxl
Jt‖ ≤ ‖Rxll

Jt‖ since ‖Rxl
Jt‖ is the optimal
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value of the least squares problem which determines the ∆xl
Jt-component of the LLS

step with respect to J , whereas ‖Rxll
Jt‖ is the objective value at a certain feasible

solution for the same least squares problem. Hence, for some q ∈ {1, . . . , p} we have

‖Rxll
Iq‖∞ = ‖Rxll

Jt‖∞ ≥ 1√|Jt| ‖Rxll
Jt‖ ≥

1√
n
‖Rxll

Jt‖ ≥
1√
n
‖Rxl

Jt‖.(34)

Combining (33) and (34), we then obtain

‖Rxll
Iq‖∞ ≥ 1√

n
εl
∞.(35)

Let us now bound the quantity ‖Rsll
Iq‖∞ from below. Using triangle inequality for

norms, Lemma 2.6, Theorem 3.2, and the fact that gap(J ′) ≥ ḡ ≥ 96χ̄An, where the
second inequality is due to (28), we obtain

‖Rsll
Iq‖∞ ≥ ‖Rsa

Iq‖∞ − ‖Rsll
Iq −Rsa

Iq‖∞ ≥ 1

4
− 12

√
n χ̄A

gap(J ′)
≥ 1

4
− 1

8
≥ 1

8
.(36)

Also note that by (28) and Proposition 3.3 we have

C =
1 + β

(1− β)2
ḡn ≥ 1 + β

(1− β)2
spr(Iq)(37)

and

log C = O (n log
(
χ̄A + n + ε−1

0

))
.(38)

Hence, from Lemma 3.5(a) with J = J ′ and Cq = C and the estimates (35)–(38), it
follows that the P-C layered algorithm started from w will find an iterate ŵ with a
C-crossover event occurring between w and ŵ in

O
(
n1.5 log

(
χ̄A + n + ε−1

0

)
+
√
n log

(
µ+/µ

‖Rxl
Iq‖∞‖Rsl

Iq‖∞

))

= O
(
n1.5 log

(
χ̄A + n + ε−1

0

)
+
√
n log

(
µ+/µ

εl∞

))

iterations.
Our goal now will be to estimate the second logarithm that appears in the

iteration-complexity bound (32). It is exactly in this estimation process that we
will need to assume that εa

∞ ≤ ε0. Under this condition, we know that the duality
gap reduction µ+/µ obtained in the first iteration from w is the smaller between the
two duality gap reductions obtained by taking an AS step and an LLS step. Hence,
µ+/µ is majorized by the duality gap reduction obtained from an LLS step from w.
Lemma 4.6 below provides an estimation of the duality gap reduction obtained from
an LLS step. The two lemmas that precede it, namely Lemmas 4.4 and 4.5, are just
technical results which are used in its proof.

Lemma 4.4. Let w = (x, y, s) ∈ P++ ×D++ be given and assume that ‖xs −
νe‖ ≤ τν for some constants τ ∈ (0, 1) and ν > 0. Then (1 − τ/

√
n)ν ≤ µ(w) ≤

(1 + τ/
√
n)ν and w ∈ N (τ/(1− τ)).
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Proof. We have

|µ(w)− ν| =

∣∣∣∣xT s− nν

n

∣∣∣∣ =

∣∣∣∣eT (xs− νe)

n

∣∣∣∣ ≤ ‖e‖ ‖xs− νe‖
n

≤ τ√
n
ν,

from which the two inequalities of the lemma follow. Since ν̃ = µ(w) is the constant
which minimizes ‖xs− ν̃e‖, we have

‖xs− µ(w)e‖ ≤ ‖xs− νe‖ ≤ τν ≤ τ

1− τ/
√
n

µ(w) ≤ τ

1− τ
µ(w),

showing that w ∈ N (τ/(1− τ)).
The following lemma is well known (see [4] or [8], for example).
Lemma 4.5. Let {wk} = {(xk, yk, sk)} be a sequence of points in P++ ×D++

such that limk→∞ µk = 0 and, for some γ > 0, xksk ≥ γµke for all k, where µk ≡
µ(wk). Then every accumulation point w∞ = (x∞, y∞, s∞) of the sequence {wk} is
a primal-dual optimal solution of (1) and (2) satisfying the strict complementarity
condition, namely (x∞)T s∞ = 0 and x∞ + s∞ > 0.

The following lemma gives an estimate of the duality gap reduction obtained by
taking an LLS step.

Lemma 4.6. Suppose that w ∈ N (β) for some β ∈ (0, 1/2). Let J = (J1, . . . , Jp)
be an ordered partition at w, and let ∆wll = (∆xll,∆yll,∆sll) denote the LLS direction
at w with respect to J . Define

εll
∞ ≡ max

{∥∥∥Rxll
N

∥∥∥
∞

,
∥∥∥Rsll

B

∥∥∥
∞

}
,(39)

αll ≡ sup {α ∈ [0, 1] : w + α∆wll ∈ N (2β)},

where (Rxll, Rsll) is the residual of ∆wll. Then the following statements hold:
(a) If gap(J) > max{4pχ̄A , 24

√
nχ̄A}, then xT∆sll + sT∆xll < 0, and hence

µ(w + α∆wll) is a strictly decreasing affine function of α.
(b) If gap(J) ≥ 96nχ̄A/η, where η ≡ (β − 2β2)/(1 + 2β), then

µ(w + αll∆wll)

µ(w)
≤ 4

√
n εll

∞(εll
∞ + 4)

η
.

Proof. We first show (a). From the first equation in (11), we easily see that
sT∆xa+xT∆sa = −nµ, where µ ≡ µ(w). Using this fact, the definition of the residual
of a direction, Theorem 3.2, and the assumption that gap(J) > max{4 p χ̄A , 24

√
nχ̄A},

we obtain

sT∆xll + xT∆sll = sT∆xa + xT∆sa + sT
(
∆xll −∆xa

)
+ xT

(
∆sll −∆sa

)
= −nµ + µ

(
x1/2s1/2

√
µ

)T [(
Rxll −Rxa

)
+
(
Rsll −Rsa

)]
≤ −nµ + µ

√
n

∥∥∥∥x1/2s1/2

√
µ

∥∥∥∥ (∥∥Rxll −Rxa
∥∥
∞ +

∥∥Rsll −Rsa
∥∥
∞
)

≤ −nµ + µn
24
√
nχ̄A

gap(J)
= −nµ

(
1− 24

√
nχ̄A

gap(J)

)
< 0,

from which (a) follows.
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To prove (b), assume that gap(J) ≥ 96nχ̄A/η. Define v(α) ≡ (x + α∆xll)(s +
α∆sll) for all α ∈ �. We claim that

‖v(α)−(1−α)µe‖ ≤ 2β

1 + 2β
(1−α)µ for every 0 ≤ α ≤ 1− 2

√
nεll

∞(εll
∞ + 4)

η
.(40)

Using this claim, (b) can be proved as follows. By Lemma 4.4 with w = w + α∆wll,
ν = (1− α)µ, and τ = 2β/(1 + 2β) we conclude from the claim that for any 0 ≤ α ≤
1− 2

√
n εll

∞(εll
∞ + 4)/η, we have w + α∆wll ∈ N (2β) and

µ(w + α∆wll) ≤
(

1 +
2β√

n(1 + 2β)

)
(1− α)µ ≤ 2(1− α)µ.(41)

By the definition of αll, we then conclude that αll ≥ α∗ ≡ 1 − 2
√
n εll

∞(εll
∞ + 4)/η.

Setting α = α∗ in (41) and using the fact that αll ≥ α∗ and µ(w + α∆wll) is a
decreasing function of α, we obtain

µ(w + αll∆wll) ≤ µ(w + α∗∆wll) ≤ 2(1− α∗)µ =
4
√
n εll

∞(εll
∞ + 4)

η
µ;

that is, (b) holds. In the remainder of the proof, we show that (40) holds. It is easy
to see that

v(α)− (1− α)µe = (x + α∆xll)(s + α∆sll)− (1− α)µe

= (1− α)(xs− µe) + αh1 + α(1− α)h2 + α2h3,(42)

where h1, h2, and h3 are vectors in �n defined as(
h1
B

h1
N

)
≡
(

xB(sB + ∆sll
B)

sN (xN + ∆xll
N )

)
= µ

(
wBpB
wNpN

)
,(43) (

h2
B

h2
N

)
≡
(

sB∆xll
B

xN∆sll
N

)
= µ

(
wBqB
wNqN

)
,(44) (

h3
B

h3
N

)
≡
(

∆xll
B(sB + ∆sll

B)

∆sll
N (xN + ∆xll

N )

)
= µ

(
pBqB
pNqN

)
.(45)

Here the vectors p, q, and w appearing in the second alternative expressions for h1,
h2, and h3 are defined as(

pB
pN

)
≡
(

Rsll
B

Rxll
N

)
,

(
qB
qN

)
≡
(

δB∆xll
B/
√
µ

δ−1
N ∆sll

N/
√
µ

)
, w ≡ x1/2s1/2

√
µ

.

Clearly, we have

‖p‖∞ = εll
∞, ‖w‖∞ ≤

√
1 + β ≤ 2, ‖w‖ =

√
n.(46)

We will now derive an upper bound for ‖q‖. Using the definition of (Rxll, Rsll) and
(17), we obtain

δB∆xll
B√

µ
= Rxll

B − wB = −Rsll
B + (Rxll

B −Rxa
B) + (Rsll

B −Rsa
B)
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and

δ−1
N ∆sll

N√
µ

= Rsll
N − wN = −Rxll

N + (Rsll
N −Rsa

N ) + (Rxll
N −Rxa

N ),

from which it follows that

q = −p + (Rxll −Rxa) + (Rsll −Rsa).

Hence, using the triangle inequality for norms, Theorem 3.2, and the assumption that
gap(J) ≥ 96nχ̄A/η ≥ 4 p χ̄A, we obtain

‖q‖ ≤ ‖p‖+ ‖Rxll −Rxa‖+ ‖Rsll −Rsa‖ ≤ √n εll
∞ +

24nχ̄A
gap(J)

≤ √n εll
∞ +

η

4
.(47)

Using (43), (44), (45), (46), and (47), we obtain

‖h1‖ ≤ µ‖w‖ ‖p‖∞ ≤ µ
√
n εll

∞,

‖h2‖ ≤ µ‖w‖∞ ‖q‖ ≤ 2µ
(√

n εll
∞ +

η

4

)
,

‖h3‖ ≤ µ‖p‖∞ ‖q‖ ≤ µεll
∞
(√

n εll
∞ +

η

4

)
≤ µ

√
n εll

∞
(
εll
∞ + 1

)
.

Using (42), the triangle inequality for norms, and the three estimates above, we then
obtain

‖v(α)− (1− α)µe‖ ≤ (1− α)‖xs− µe‖+ α‖h1‖+ α(1− α)‖h2‖+ α2‖h3‖
≤ (1− α)

(‖xs− µe‖+ ‖h2‖)+ ‖h1‖+ ‖h3‖
≤
[
(1− α)

(
β + 2

√
n εll

∞ +
η

2

)
+
√
n εll

∞ +
√
n εll

∞
(
εll
∞ + 1

)]
µ

≤
[(

β +
η

2

)
(1− α) +

√
n εll

∞
(
εll
∞ + 4

)]
µ

≤ (β + η)(1− α)µ =
2β

1 + 2β
(1− α)µ

for all 0 ≤ α ≤ 1− 2
√
n εll

∞(εll
∞ + 4)/η. Hence, the validity of the claim follows.

We are now ready to prove the main result of this paper, namely Theorem 2.7.
Proof of Theorem 2.7. Let C and ḡ be the constant defined in (28). We claim

that the P-C layered algorithm started from any w ∈ N (β) either terminates (at step
7) or generates an iterate ŵ with a C-crossover event occurring between w and ŵ in
O(n1.5 log(χ̄A + n + ε−1

0 )) iterations. Since by Proposition 3.1 there can be at most
n(n + 1)/2 C-crossover events of the above type, we conclude that the P-C layered
algorithm must ultimately terminate in O(n3.5 log(χ̄A+n+ε−1

0 )) iterations. To show
the above claim, let J = (J1, . . . ,Jr) denote an ordered (B,N)-partition at w, where
(B,N) is the bipartition defined in (21). We split the proof into three possible cases:
(1) εa

∞ > ε0, (2) gap(J ) ≤ ḡ, and (3) εa
∞ ≤ ε0 and gap(J ) > ḡ. The claim clearly

holds for the first two cases due to Lemmas 4.1 and 4.2. Moreover, Lemma 4.3 implies
that the claim also holds in the third case as long as we can show that the quantity
(µ+/µ)/εl

∞ appearing in (32) is O(
√
n). Indeed, let αl be defined as in step 5 of the

P-C layered algorithm. Since in case (3) the LLS step is computed and step 6 of
the P-C layered algorithm is performed, we must have µ+ ≤ µ(w + αl∆wl). Hence,
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the second statement of Lemma 4.6 applied to the partition J and the fact that
gap(J ) > ḡ ≥ 96nχ̄A/η, where the second inequality is due to (28), imply

µ+

µ
≤ µ(w + αl∆wl)

µ
≤ 4

√
n εl

∞(εl
∞ + 4)

η
.

Hence, we conclude that (µ+/µ)/εl
∞ = O(

√
n) whenever εl

∞ ≤ 1. If, on the other
hand, εl

∞ > 1, then we have (µ+/µ)/εl
∞ ≤ 1 since µ+/µ ≤ 1.

It remains to show that when the method terminates at step 7 of the P-C layered
algorithm it always finds a strictly complementary optimal solution. Indeed, let ŵ
be the iterate satisfying the stopping criterion of step 7. Clearly, µ(ŵ) = 0 and
ŵ = w + ᾱ∆w for some w ∈ N (β), primal-dual feasible direction ∆w, and stepsize
ᾱ > 0 satisfying the property that w + α∆w ∈ N (β) for all α ∈ [0, ᾱ). Using Lemma
4.5, we conclude that w̄ is a strictly complementary optimal solution.

5. Concluding remarks. We consider our algorithm from the point of view of
scaling-invariance. If one considers the change of variables x = Dx̃, where D is a
positive diagonal matrix, then the LP problem (1) is equivalent to

min{(Dc)T x̃ : ADx̃ = b, x̃ ≥ 0}.

It turns out that the sequence of points generated by the P-C layered algorithm when
applied to (1) does not necessarily correspond (under the transformation x = Dx̃)
to the one obtained by applying it to the above LP problem. Algorithms with this
desirable property are called scaling-invariant. The lack of scaling-invariance of the
P-C layered algorithm, as well as the algorithms of Megiddo, Mizuno, and Tsuchiya
[10] and Vavasis and Ye [26], is due to the fact that the choice of the layered partition
used in the LLS step is not scaling-invariant. The construction of this partition is
based on comparing the magnitudes of different components of δ, which per se is not
a scaling-invariant quantity.

An interesting open problem is whether there exists a scaling-invariant algorithm
whose complexity depends only on m, n, and χ̄A. Note that if such an algorithm exists,
its complexity will in fact depend only on m, n, and the quantity inf{χ̄AD : D ∈ D}.

As in [26] and [10], we developed our algorithm for LP problems in which a
well-centered interior feasible solution is given in advance. General LP problems can
also be solved by the same algorithm applied to a suitably constructed artificial LP
problem, and the resulting computational complexity can be shown to be the same as
the one obtained in this paper. We refer the reader to section 10 of [26] and section
5 of [10] for more details.

6. Appendix. In this section we give the proof of Theorem 3.2. We start by
stating the following result which yields Theorem 3.2 almost as an immediate conse-
quence.

Theorem 6.1. Let g ∈ �m, Fi ∈ �m×ni , hi ∈ �ni , zi ∈ �ni++, i = 1, . . . , l, be
given and assume that g ∈ Im([F1, . . . , Fl]). Define d0 = (d0

1, . . . , d
0
l ) ∈ �n1 × · · · ×

�nl as

(d0
1, . . . , d

0
l ) ≡ argmin

(d1,...,dl)∈�n1×...×�nl

{
l∑
i=1

‖di − hi‖2 :

l∑
i=1

FiZidi = g

}
,(48)
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and define d̃0 = (d̃0
1, . . . , d̃

0
l ) ∈ �n1 × · · · × �nl recursively starting from k = 1 up-

wards as

d̃0
k ≡ argmin

d̃k∈�nk

{
‖d̃k − hk‖2 : FkZkd̃k = g −

k−1∑
i=1

FiZid̃
0
i + Im(F̃k+1)

}

for every k = 1, . . . , l−1, where Zk ≡ Diag(zk) and F̃k ≡ [Fk, . . . , Fl] ∈ �m×(nk+···+nl).
If the quantity ∆ ≡ max{∆i : i = 1, . . . , l − 1}, where ∆i ≡ ‖zi‖∞‖z−1

i+1‖∞ for all

i = 1, . . . , l − 1, satisfies χ̄F∆ ≤ 1/
√

2, then

‖d0 − d̃0‖∞ ≤ 4χ̄F∆(1 + 4χ̄F∆)l−2‖d0 − h‖,(49)

where h ≡ (h1, . . . , hl) and F = F̃1. In particular, if g = 0 and 4χ̄F∆ ≤ 1/l, then

‖d0 − d̃0‖∞ ≤ 12χ̄F∆‖h‖.(50)

The proof of Theorem 6.1 will be given at the end of this section after some
preliminary results are derived. Note that when g = 0 in Theorem 6.1 the point d0 is
the projection of h onto the null space of the matrix [F1Z1, . . . , FlZl] ∈ �m×(n1+···+nl)

and the point d̃0 is the layered projection of h onto the null space of [F1Z1, . . . , FlZl]
according to the partition of variables (z1, . . . , zl).

The proof of Theorem 6.1 will be done by induction on the number l. A crucial
step in this induction proof is the validity of certain proximity bounds for the case in
which l = 2. Hence, as a preliminary step we will derive a special result for the case
in which l = 2.

Proposition 6.2. Let g ∈ �m, Fi ∈ �m×ni , hi ∈ �ni , zi ∈ �ni++, i = 1, 2,
be given and assume that g ∈ Im([F1, F2]). Consider the points d0 = (d0

1, d
0
2) and

d̃0 = (d̃0
1, d̃

0
2) determined as

(d0
1, d

0
2) ≡ argmin

d
{ ‖d1 − h1‖2 + ‖d2 − h2‖2 : F1Z1d1 + F2Z2d2 = g },(51)

d̃0
1 ≡ argmin

d1

{ ‖d1 − h1‖2 : F1Z1d1 ∈ g + Im(F2) },(52)

d̃0
2 ≡ argmin

d2

{ ‖d2 − h2‖2 : F2Z2d2 = g − F1Z1d̃
0
1 },(53)

where Z1 ≡ Diag(z1) and Z2 ≡ Diag(z2). Let ∆ ≡ ‖z1‖∞‖(z2)−1‖∞ and assume that
χ̄F∆ ≤ 1/

√
2, where F ≡ [F1, F2]. Then the following estimates of the proximity

between d0 and d̃0 hold:

‖d0
1 − d̃0

1‖ ≤ 4χ̄F∆‖d0
2 − h2‖, ‖d0

2 − d̃0
2‖ ≤ 4χ̄2

F∆2‖d0
2 − h2‖.

Before giving the proof of the above proposition, we first state and prove the
following result which characterizes the displacements δ0

1 ≡ d0
1 − d̃0

1 and δ0
2 ≡ d0

2 − d̃0
2

as optimal solutions of certain optimization problems.
Lemma 6.3. Let g, Fi, Zi, i = 1, 2, be as defined in Proposition 6.2. Then the

following statements hold:
(a) The vector δ0

2 ≡ d0
2 − d̃0

2 is the unique optimal solution of the problem

minimizeδ2
1
2‖δ2‖2

subject to F2Z2δ2 = −F1Z1δ
0
1 .

(54)
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(b) The pair (δ0
1 , d

0
2), where δ0

1 ≡ d0
1 − d̃0

1, is the unique optimal solution of the
problem

minimize(δ1,d2)
1
2‖δ1‖2 + 1

2‖d2 − h2‖2
subject to F1Z1δ1 + F2Z2d2 = g − F1Z1d̃

0
1.

(55)

Proof. We first show (a). Since d0 and d̃0
2 are optimal solutions of (51) and (53),

respectively, we have(
d0
1 − h1

d0
2 − h2

)
∈ Im

(
Z1F

T
1

Z2F
T
2

)
, F1Z1d

0
1 + F2Z2d

0
2 = g,(56)

d̃0
2 − h2 ∈ Im(Z2F

T
2 ), F1Z1d̃

0
1 + F2Z2d̃

0
2 = g,(57)

and hence

d0
2 − d̃0

2 ∈ Im(Z2F
T
2 ), F2Z2δ

0
2 = −F1Z1δ

0
1 .(58)

This shows that δ0
2 = d0

2 − d̃0
2 satisfies the optimality conditions for problem (54).

Since (54) is a strictly convex quadratic program, its optimal solution is unique and
hence (a) follows. We next show (b). Since d̃0

1 is the optimal solution of (52), we have(
d̃0
1 − h1

0

)
∈ Im(ZFT ),

which, together with (56) and the definition of δ0
1 , yields(

δ0
1

d0
2 − h2

)
∈ Im(ZFT ), F1Z1δ

0
1 + F2Z2d

0
2 = g − F1Z1d̃

0
1.(59)

This shows that (δ0
1 , d

0
2) satisfies the optimality conditions for (55). Since (55) is

a strictly convex quadratic program, its optimal solution is unique and hence (b)
holds.

Using the above lemma, we now give a proof of Proposition 6.2.
Proof of Proposition 6.2. By (58), we have that F1Z1δ

0
1 ∈ Range(F2). Hence, by

Lemma 2.3, there exists a vector v0
2 such that

F2v
0
2 = F1Z1δ

0
1 , ‖v0

2‖ ≤ χ̄F ‖Z1δ
0
1‖ ≤ χ̄F ‖z1‖∞ ‖δ0

1‖.(60)

Relation (59) and (60) imply that F2[Z2d
0
2 +v0

2 ] = g−F1Z1d̃
0
1, and hence that the pair

(d0
2 + Z−1

2 v0
2 , 0) is feasible for (55). This together with Lemma 6.3(b) implies that

‖d0
2 − h2‖2 + ‖δ0

1‖2 ≤ ‖d0
2 + Z−1

2 v0
2 − h2‖2.

Rearranging this expression and using relation (60) and the inequality ‖r‖2−‖u‖2 ≤
‖r − u‖ ‖r + u‖ for any r, u ∈ �p, we obtain

‖δ0
1‖2 ≤

{‖d0
2 + Z−1

2 v0
2 − h2‖2 − ‖d0

2 − h2‖2
}

≤ ‖Z−1
2 v0

2‖ ‖ 2 (d0
2 − h2) + Z−1

2 v0
2 ‖

≤ ‖z−1
2 ‖∞ ‖v0

2‖
{

2 ‖d0
2 − h2‖+ ‖z−1

2 ‖∞ ‖v0
2‖
}

≤ χ̄F ∆ ‖δ0
1‖
{

2 ‖d0
2 − h2‖+ χ̄F ∆ ‖δ0

1‖
}
,
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from which it follows that

‖δ0
1‖ ≤

2 χ̄F ∆ ‖d0
2 − h2‖

1− χ̄2
F ∆2

≤ 4χ̄F ∆ ‖d0
2 − h2‖,(61)

where the last inequality is due to the assumption that χ̄F∆ ≤ 1/
√

2. The first
relation in (60) implies that −Z−1

2 v0
2 is a feasible solution of problem (54). Hence, by

Lemma 6.3(a), the second relation in (60), and relation (61), it follows that

‖δ0
2‖ ≤ ‖Z−1

2 v0
2‖ ≤ ‖z−1

2 ‖∞‖v0
2‖ ≤ χ̄F∆‖δ0

1‖ ≤ 4χ̄2
F ∆2 ‖d0

2 − h2‖.
We are now ready to give the proof of Theorem 6.1.
Proof of Theorem 6.1. During the proof, we refer to d̃0 as the l-layer point

associated with problem (48). We prove the inequality (49) by induction on l. Using
Proposition 6.2 and noting that χ̄F∆ ≤ 1/

√
2 by assumption, we obtain

‖d0 − d̃0‖∞ ≤ max{‖d0
1 − d̃0

1‖ , ‖d0
2 − d̃0

2‖} ≤ 4χ̄F∆‖d0
2 − h2‖ ≤ 4χ̄F∆‖d0 − h‖,

from which we conclude that (49) holds for l = 2. Assume now that l ≥ 3 and
inequality (49) holds for l − 1. Consider the solution (p0

2, . . . , p
0
l ) of the problem

(p0
2, . . . , p

0
l ) ≡ argmin

(p2,...,pl)

{
l∑
i=2

‖pi − hi‖2 :

l∑
i=2

FiZipi = g − F1Z1d̃
0
1

}
(62)

and note that d̃0
1 and (p0

2, . . . , p
0
l ) are the optimal solutions of problems (52) and (53)

in which F1, F2, z1, and z2 in Proposition 6.2 are identified with F1, F̃2, z1, and
(z2, . . . , zl), respectively. Hence, it follows from Proposition 6.2 that

‖d0
1 − d̃0

1‖ ≤ 4χ̄F∆‖d0 − h‖,(63)

‖(d0
2 − p0

2, . . . , d
0
l − p0

l )‖ ≤ 4χ̄2
F∆2‖d0 − h‖.(64)

Note also that (d̃0
2, . . . , d̃

0
l ) is the (l− 1)-layer point associated with the problem (62).

Hence, it follows from the induction hypothesis, i.e., that inequality (49) holds for
l − 1, that

‖(p0
2 − d̃0

2, . . . , p
0
l − d̃0

l )‖∞ ≤ 4χ̄F∆(1 + 4χ̄F∆)l−3‖(p0
2 − h2, . . . , p

0
l − hl)‖.

Using the triangle inequality for norms and (64), we obtain

‖(p0
2 − h2, . . . , p

0
l − hl)‖ ≤ ‖(d0

2 − p0
2, . . . , d

0
l − p0

l )‖+ ‖(d0
2 − h2, . . . , d

0
l − hl)‖

≤ 4χ̄2
F∆2‖d0 − h‖+ ‖d0 − h‖ = (4χ̄2

F∆2 + 1)‖d0 − h‖.
Combining the two last inequalities yields

‖(p0
2 − d̃0

2, . . . , p
0
l − d̃0

l )‖∞ ≤ 4χ̄F∆(1 + 4χ̄F∆)l−3(4χ̄2
F∆2 + 1)‖d0 − h‖.

Using the triangle inequality for norms again, the last inequality, and (64), we obtain

‖(d0
2 − d̃0

2, . . . , d
0
l − d̃0

l )‖∞ ≤ ‖(d0
2 − p0

2, . . . , d
0
l − p0

l )‖∞ + ‖(p0
2 − d̃0

2, . . . , p
0
l − d̃0

l )‖∞
≤ [4χ̄2

F∆2 + 4χ̄F∆(1 + 4χ̄F∆)l−3(4χ̄2
F∆2 + 1)

] ‖d0 − h‖
≤ 4χ̄F∆(1 + 4χ̄F∆)l−3(χ̄F∆ + 4χ̄2

F∆2 + 1) ‖d0 − h‖
≤ 4χ̄F∆(1 + 4χ̄F∆)l−3(1 + (1 + 2

√
2)χ̄F∆)‖d0 − h‖

≤ 4χ̄F∆(1 + 4χ̄F∆)l−2 ‖d0 − h‖.
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The last inequality together with (63) implies that inequality (49) holds for l. It then
follows by an induction argument that inequality (49) holds for any l.

We now prove that (50) holds when g = 0 and 4χ̄F∆ ≤ 1/l. Indeed, when g = 0,
(48) implies that the vector d0 is the orthogonal projection of h onto a subspace.
Hence, ‖d0 − h‖ ≤ ‖h‖. Also, 4χ̄F∆ ≤ 1/l implies that (1 + 4χ̄F∆)l−2 ≤ (1 + 1/l)l ≤
e ≈ 2.718. Substituting these two bounds into (49), we obtain (50).

Acknowledgments. We are grateful to two anonymous referees for their valu-
able comments and suggestions which have helped us to improve the presentation of
the paper.
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Abstract. This paper studies convergence properties of inexact variants of the proximal point
algorithm when applied to a certain class of nonmonotone mappings. The presented algorithms
allow for constant relative errors, in the line of the recently proposed hybrid proximal-extragradient
algorithm. The main convergence result extends a recent work of the second author, where exact
solutions for the proximal subproblems were required. We also show that the linear convergence
property is preserved in the case when the inverse of the operator is locally Lipschitz continuous near
the origin. As an application, we give a convergence analysis for an inexact version of the proximal
method of multipliers for a rather general family of problems which includes variational inequalities
and constrained optimization problems.

Key words. proximal point algorithms, inexact iterates, hybrid proximal-extragradient algo-
rithms, hypomonotone operators, multiplier methods
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1. Introduction. We deal in this paper with methods for finding zeroes of point-
to-set operators in Hilbert spaces; i.e., given a Hilbert space H and an operator
T : H → P(H), we intend to find some x∗ ∈ H such that 0 ∈ T (x∗).

The proximal point algorithm, whose origins can be traced back to [9], was born
in the 1960s (see, e.g., [12], [10]) and attained its current formulation in the works of
Rockafellar [14], [15], where its connection with the augmented Lagrangian method
for constrained nonlinear optimization was established. Basically, given a sequence
{γn} of positive real numbers bounded away from zero, the algorithm generates a
sequence {xn} ⊂ H, starting from some x0 ∈ H, through the iteration

xn+1 ∈ (I + γnT )
−1(xn).(1)

When T is monotone, i.e.,

〈x− y, u− v〉 ≥ 0(2)

for all x, y ∈ H, all u ∈ T (x), and all v ∈ T (y), and furthermore maximal monotone,
i.e., T = T ′ whenever T ′ : H → P(H) is monotone and T (x) ⊂ T ′(x) for all x ∈ H,
it follows from Minty’s theorem (see [11]) that I + γT is onto and (I + γT )−1 is
single-valued for all positive γ ∈ R so that the sequence defined by (1) is well defined.
It has been proved in [14] that maximal monotonicity of T also ensures the weak
convergence of the sequence {xn} defined by (1) to a zero of T when T has zeroes,
and its unboundedness otherwise. Such weak convergence is global; i.e., the result
just announced holds in fact for any x0 ∈ H.
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The situation becomes considerably more complicated when T fails to be mono-
tone. Augmented Lagrangian methods for minimization of nonconvex functions, a
particular instance of the proximal point method for finding zeroes of nonmonotone
operators, have been studied in [1], [6], and [20]. A survey of results on convergence of
the proximal algorithm without monotonicity up to 1997 can be found in [8]. A new
approach to the subject was taken in [13], which deals with a class of nonmonotone
operators that, when restricted to a neighborhood of the solution set, are not far from
being monotone. More precisely, it was assumed that, for some ρ > 0, the mapping
T−1 + ρI is monotone when restricted to a neighborhood of Ŝ∗ × {0}, where Ŝ∗ is a
nonempty connected component of the solution set S∗ = T−1(0). When this happens,
the main convergence result of [13] states that a “localized” version of (1) generates
a sequence that converges to a point in Ŝ∗, provided x0 is close enough to Ŝ∗ and
inf γn > 2ρ.

The issue of convergence of the algorithm under inexact computation of the iter-
ates; i.e., when (1), or equivalently the inclusion

xn − xn+1 ∈ γnT (xn+1),(3)

is solved only approximately, comes up immediately when dealing with the proximal
algorithm for at least two reasons. First, it is generally imposible to find an exact
value for xn+1 given by (1), or (3), particularly when T is nonlinear; second, it is
clearly inefficient to spend too much effort in the computation of a given iterate xn

when only the limit of the sequence has the desired properties. Thus, the issue was
dealt with even in the early treatment of the subject, e.g., in [14], but always, as far
as we know, for the case of a monotone T . For instance, it has been proved in [14]
that convergence is preserved when an error en is committed when performing the
iteration given by (3), i.e., when (3) is replaced by

en + xn − xn+1 ∈ γnT (xn+1),(4)

as long as

∞∑
n=0

‖en‖ <∞.(5)

Other related conditions, but always including the summability of some measure of
the error, can be found, e.g., in [14], [5]. These criteria are somewhat undesirable,
because they impose increasing precision along the iterative process.

Recently, new related procedures have been presented in [17] and [18] which allow
for constant relative error in the sense, e.g., that the norm of the error en in (4)
must be smaller than a given fraction of the distance from the current iterate to the
previous one. The price to be paid for this less stringent error criterion is that the
resulting point (i.e., xn+1 in (4)) is not the next iterate, but rather an intermediate
point which determines a hyperplane separating xn from the solution set, and thus a
direction pointing from xn to this set; the actual next iterate is obtained by taking a
certain step from xn in this direction. More precisely, taking yn as the intermediate
point, and defining

γnv
n = en + xn − yn,(6)

inclusion (4) becomes

vn ∈ T (yn)(7)
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and the error criterion is

‖en‖ ≤ σmax{γn ‖vn‖ , ‖yn − xn‖},(8)

with σ ∈ [0, 1). Indeed, the vector vn gives the desired direction so that

xn+1 = xn − ηnvn(9)

for some appropriate ηn > 0 (e.g., ηn = 〈vn, xn − yn〉/[‖vn‖2]). It is important to
emphasize that the additional cost of computing xn+1 once vn and yn have been
determined (i.e., the cost of (9)) is negligible as compared to the solution, even in
an inexact way, of the inclusion (4) (or the pair (6)–(7)). Algorithms of this kind
have been called “hybrid” due to the presence of the additional step (9), in addition
to the proximal step given by (6)–(7). We also remark that (8) can be seen as a
sort of stopping criterion in an internal iterative procedure for the solution of (3):
given candidate points (yn, vn) computed by such a procedure, if en as given by (6)
satisfies (8), then vn is accepted and xn+1 is computed according to (9); otherwise the
procedure must continue, generating a new pair. In this sense, we can say that error
criteria like (8) are particularly appropriate for computer implementation. In [17] it
has been proved that the sequence generated by (6)–(9) is globally convergent to a
zero of T in the weak topology, under the only assumptions of the existence of zeroes
and the monotonicity of T (besides boundedness away from 0 of {γn}). Other related
error criteria for the proximal point algorithm, allowing also for constant relative
error, can be found in [19], [3], and [4].

In this paper we will consider the following inexact procedure for finding zeroes
of an operator T : H → P(H) whose inverse is maximal ρ-hypomonotone on a set
U × V ⊂ H ×H (see Definition 1 below). Given xn ∈ H, find (yn, vn) ∈ U × V such
that

vn ∈ T (yn),(10)

γnv
n + yn − xn = en,(11)

where the error term en satisfies either

‖en‖ ≤ σ
(
γ̂

2
− ρ
)
‖vn‖(12)

or

‖en‖ ≤ ν ‖yn − xn‖ ,(13)

with

ν =

√
σ + (1− σ) (2ρ/γ̂)2 − 2ρ/γ̂

1 + 2ρ/γ̂
,(14)

where σ ∈ [0, 1), γ̂ = inf{γn}, and ρ is the hypomonotonicity constant of T−1. Then,
under any of our two error criteria, the next iterate xn+1 is given by

xn+1 = xn − γnvn.(15)
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From now on, Algorithm 1 refers to the algorithm given by (10)–(12) and (15), and
Algorithm 2 refers to the one given by (10), (11), and (13)–(15). We will prove that,
when ρ-hypomonotonicity of T−1 holds on the whole space (i.e., U = V = H), both
Algorithm 1 and Algorithm 2 generate sequences which are weakly convergent to a
zero of T , starting from any x0 ∈ H, under the assumptions of existence of zeroes
of T and 2ρ < γ̂ = inf{γn}. For the case in which the set U × V where T−1 is
ρ-hypomonotone is an appropriate neighborhood of Ŝ∗ × {0} ⊂ H ×H, where Ŝ∗ is
a connected component of the set S∗ of zeroes of T , we still get a local convergence
result, meaning weak convergence of {xn} to a zero of T , but requiring additionally
that x0 be sufficiently close to Ŝ∗ ∩ U , in a sense which is presented in a precise way
in section 4.

We remark that when the tolerance σ vanishes, we get en = 0 from either (12) or
(13)–(14), and then xn − yn = γnv

n from (11), so that xn+1 = yn from (15). Thus,
with σ = 0 our algorithm reduces to the exact algorithm in [13]. When comparing
our analysis for this exact case with those in [13] it is worthwhile to point out the
following difference: in [13] the proposed algorithm is studied by assuming first that T
is locally monotone, and convergence is proved by showing that the resulting sequence
coincides with the one generated by the algorithm applied to some maximal mono-
tone operator. Then, the algorithm applied to a mapping whose inverse is locally
ρ-hypomonotone is shown to be equivalent to an overrelaxed version of the proximal
algorithm applied to the locally monotone operator (T−1 +ρI)−1, with a different se-
quence of regularization parameters, and convergence is finally obtained by invoking
results in [5] on the convergence of such an overrelaxed variant of the proximal point
algorithm. Our approach is less convoluted: we prove directly the Fejér monotonicity
properties of {xn}, which have as a consequence the weak convergence of {xn} to a
zero of T . The issue of overrelaxation of the proximal point applied to the Yosida
regularization (T−1 + ρI)−1 of T is confined to a lemma, also proved from scratch
(up to an invocation of Minty’s theorem), on the issue of existence of the iterates.
Thus, our proof is (almost) self-contained and, in the exact case, it can be seen as a
streamlined version of the analysis in [13].

2. Hypomonotone operators. From now on we will identify, in a set theoretic
fashion, a point-to-set operator T : H → P(H) with its graph, i.e., with {(x, v) ∈
H × H : v ∈ T (x)}. Thus, (x, v) ∈ T has the same meaning as v ∈ T (x). We
emphasize that (x, v) is seen here as an ordered pair, i.e., (x, v) ∈ T (or equivalently
(v, x) ∈ T−1) is not the same as (v, x) ∈ T .

Definition 1. Given a positive ρ ∈ R and a subset W of H × H, an operator
T : H → P(H) is said to be

(a) ρ-hypomonotone if and only if 〈x−y, u−v〉 ≥ −ρ ‖x− y‖2 for all (x, u), (y, v) ∈
T ;

(b) maximal ρ-hypomonotone if and only if T is ρ-hypomonotone and additionally
T = T ′ whenever T ′ ⊂ H ×H is ρ-hypomonotone and T ⊂ T ′;

(c) ρ-hypomonotone in W if and only if T ∩W is ρ-hypomonotone;
(d) maximal ρ-hypomonotone in W if and only if T is ρ-hypomonotone in W and

additionally T ∩W = T ′ ∩W whenever T ′ ∈ H ×H is ρ-hypomonotone and
T ∩W ⊂ T ′ ∩W .

It follows from 13.33 and 13.36 of [16] that if a function f : H → R ∪ {∞} can
be written as g− h in a neighborhood of a point x ∈ H, where g is finite and h is C2,
then the subdifferential ∂f of f is ρ-hypomonotone for some ρ > 0 in a neighborhood
of any point (x, v) ∈ H × H with v ∈ ∂f(x). It is also easy to check that a locally
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Lipschitz continuous mapping is hypomonotone for every ρ greater than the Lipschitz
constant. In particular, if H is finite dimensional and T : H → P(H) is such that
T−1 is point-to-point and differentiable in a neighborhood of some v ∈ H, then T is
ρ-hypomonotone in a neighborhood of (x, v) for any x such that v ∈ T (x), and for
any ρ larger than the absolute value of the most negative eigenvalue of J + J t, where
J is the Jacobian matrix of T−1 at v. In other words, local ρ-hypomonotonicity for
some ρ > 0 is to be expected of any T which is not too badly behaved.

Note that a mapping T is ρ-hypomonotone if and only if T +ρI is monotone. We
also have the following.

Proposition 1. If T : H → P(H) is ρ-hypomonotone, then there exists a
maximal ρ-hypomonotone T̂ : H → P(H) such that T ⊂ T̂ .

Proof. The proof is a routine application of Zorn’s lemma, with exactly the same
argument as the one used to prove that any monotone operator is contained in a
maximal monotone one.

Next we introduce in a slightly different way the Yosida regularization of an
operator. For ρ ≥ 0, define Yρ : H ×H → H ×H (Y for Yosida) as

Yρ(x, v) = (x+ ρv, v).(16)

Observe that Yρ is a bijection, and (Yρ)
−1(y, u) = (y − ρu, u). Note also that

Yρ(T ) = (T−1 + ρI)−1.(17)

Proposition 2. Take ρ ≥ 0, T : H → P(H), and Yρ as in (16). Then
(i) T−1 is ρ-hypomonotone if and only if Yρ(T ) is monotone;
(ii) T−1 is maximal ρ-hypomonotone if and only if Yρ(T ) is maximal monotone.
Proof.
(i) Monotonicity of the Yosida regularization means that (T−1 + ρI)−1 is mono-

tone, which is equivalent to the monotonicity of T−1 + ρI.
(ii) Assume that T−1 is maximal ρ-hypomonotone. We prove the maximal mono-

tonicity of Yρ(T ). The monotonicity follows from item (a). Assume that
Yρ(T ) ⊂ Q for some monotone Q ⊂ H ×H. Note that Q = Yρ(TQ) for some
TQ because Yρ is a bijection. It follows, in view of (i) and the monotonicity of
Q, that T−1

Q is ρ-hypomonotone, and therefore, using again the bijectivity of

Yρ, we have T
−1 ⊂ T−1

Q . Since T−1 is maximal ρ-hypomonotone, we conclude

that T−1 = T−1
Q , i.e., T = TQ, so that Q = Yρ(T

′) = Yρ(T ), proving that
Yρ(T ) is maximal monotone. The converse statement is proved with a similar
argument.

We continue with an elementary result on the Yosida regularization Yρ(T ).
Proposition 3. For all T : H → P(H) and all ρ ≥ 0, 0 ∈ T (x) if and only if

0 ∈ [Yρ(T )] (x).
Proof. The result follows immediately from (17).
Remark 1. It is well known that the set of zeroes of a monotone operator is

closed and convex. In view of Propositions 2 and 3, the same holds for mappings
whose inverses are ρ-hypomonotone. Thus, though reasonably well-behaved operators
can be expected to be locally ρ-hypomonotone for some ρ > 0, as discussed above,
global ρ-hypomonotonicity is not at all generic; looking for instance at point-to-point
operators in R, we observe that polynomials with more than one real root, or analytic
functions like T (x) = sin x, are not ρ-hypomonotone for any ρ > 0.
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Next we establish local demiclosedness of maximal locally ρ-hypomonotone op-
erators, with a proof which mirrors the one on demiclosedness of maximal monotone
operators.

Proposition 4. Assume that T−1 : H → P(H) is maximal ρ-hypomonotone in
W−1 for some W ⊂ H × H, and consider a sequence {(xn, vn)} ⊂ T ∩W . If {vn}
is strongly convergent to v̄, {xn} is weakly convergent to x̄, and (x̄, v̄) ∈ W , then
v̄ ∈ T (x̄).

Proof. Define T ′ : H → P(H) as T ′ = T ∪ {(x̄, v̄)}. We claim that (T ′)−1 is
ρ-hypomonotone in W−1. Since T−1 is ρ-hypomonotone in W−1, clearly it suffices to
prove that

−ρ ‖v̄ − v‖2 ≤ 〈x̄− x, v̄ − v〉(18)

for all (x, v) ∈ T ∩W . Observe that, for all (x, v) ∈ T ∩W ,

−ρ ‖vn − v‖2 ≤ 〈xn − x, vn − v〉.(19)

Since {vn} is strongly convergent to v̄ and {xn} is weakly convergent to x̄, taking
limits in (19) as n → ∞ we obtain (18), and the claim is established. Since T ⊂ T ′,
(T ′)−1 is ρ-hypomonotone in W−1, and T−1 is maximal ρ-hypomonotone in W−1, we
have that T ∩W = T ′ ∩W by Definition 1(d). Since v̄ ∈ T ′(x̄) and (x̄, v̄) ∈ W , we
conclude that v̄ ∈ T (x̄).

We close this section with a result on convexity and weak closedness of some sets
related to the set of zeroes of operators whose inverses are ρ-hypomonotone. We use
the usual notation for sums of sets; i.e., for A,B ⊂ H, A + B ⊂ H is defined as
A + B = {x + y : x ∈ A, y ∈ B}. Also, for x ∈ H and δ > 0, B(x, δ) will denote the
closed ball of radius δ centered at x.

Proposition 5. Assume that T−1 : H → P(H) is maximal ρ-hypomonotone in
a subset V × U ⊂ H ×H, where U is convex and 0 ∈ V . Let S∗ ⊂ H be the set of
zeroes of T . Then

(i) S∗ ∩ U is convex;
(ii) if S∗ ∩ U is closed, then (S∗ ∩ U) +B(0, δ) is weakly closed for all δ ≥ 0.
Proof.
(i) By Proposition 1, T ∩ (U × V ) ⊂ T̂ for some T̂ : H → P(H) such that

T̂−1 is maximal ρ-hypomonotone. Let Ŝ∗ be the set of zeroes of T̂ . By
Proposition 3, Ŝ∗ is also the set of zeroes of Yρ(T̂ ), which is maximal monotone
by Proposition 2(ii). Since the set of zeroes of a maximal monotone operator
is convex (e.g., 12.8(a) and (c) in [16]), we conclude that Ŝ∗ is convex, and
therefore Ŝ∗ ∩ U is convex, because U is convex. Since T−1 is maximal ρ-
hypomonotone in V × U , T̂−1 is ρ-hypomonotone, and T ⊂ T̂ , we have that
T̂ ∩ (U × V ) = T ∩ (U × V ), and then, since 0 ∈ V , it follows easily that
Ŝ∗ ∩ U = S∗ ∩ U . The result follows.

(ii) Since H is a Hilbert space, B(0, δ) is weakly compact (e.g., Theorem III.8
in [2]), and S∗ ∩ U , being closed by assumption and convex by item (i), is
weakly closed. Thus (S∗ ∩ U) + B(0, δ) is weakly closed, being the sum of a
closed and a compact set, both with respect to the weak topology.

3. Existence results. The issue of existence of iterates for proximal algorithms
applied to nonmonotone operators is delicate. The main tool used for establishing
existence in the monotone case, namely Minty’s theorem, does not work without
monotonicity. Overcoming this obstacle requires some technicalities, where the notion
of ρ-hypomonotonicity becomes crucial.
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Note that if a pair (yn, vn) satisfies (10)–(12), or (10)–(11) together with (13)–
(14), with σ = 0 (which in the second case implies ν = 0), then such a pair satisfies
those conditions with any σ > 0. Since σ = 0 also implies that the error term
en vanishes, existence of exact iterates is enough to settle the existence issue for
our inexact schemes. Now, we already mentioned that our scheme reduces, in the
absence of errors, to the algorithm studied in [13], and therefore we could refer to the
existence results in this reference without further discussion. But since we dressed
our setting somewhat differently from the one in [13] (e.g., the definition of local ρ-
hypomonotonicity), we prefer to offer a full proof, which also contributes to making
this paper more self-contained. The technicalities will be encapsulated in the following
lemma, where, for x ∈ H and A ⊂ H, d(x,A) will denote the distance from x to A,
i.e., d(x,A) = infy∈A ‖x− y‖.

Lemma 1. Let T : H → P(H) be an operator such that T−1 is maximal ρ-
hypomonotone in a subset V × U of H × H. Assume that T has a nonempty set of
zeroes S∗, that U is convex, and that

(i) S∗ ∩ U is nonempty and closed;
(ii) there exists β > 0 such that B(0, β) ⊂ V ;
(iii) there exists δ > 0 such that (S∗ ∩ U) +B(0, δ) ⊂ U .

Take any γ > 2ρ and define ε = min{δ, βγ/2}. If x ∈ H is such that d(x, S∗∩U) ≤ ε,
then there exists y ∈ H such that γ−1(x− y) ∈ T (y) and d(y, S∗ ∩ U) ≤ ε.

Proof. By Definition 1(c) and (d), T−1 ∩ (V ×U) is ρ-hypomonotone. By Propo-
sition 1, there exists a maximal ρ-hypomonotone T̂−1 ⊂ H ×H such that

[T−1 ∩ (V × U)] ⊂ T̂−1.(20)

By Proposition 2(ii), Yρ(T̂ ) is maximal monotone, with Yρ as defined in (16). Let
γ̂ = γ− ρ. Since γ̂ > 0 by assumption, it follows from Minty’s theorem (see [11]) that
the operator [I + γ̂Yρ(T̂ )]

−1 is onto (and also one-to-one, but this does not concern

us) so that there exists z ∈ H such that x ∈ [I + γ̂Yρ(T̂ )]
−1(z), or equivalently

γ̂−1(x− z) ∈
[
Yρ(T̂ )

]
(z).(21)

Letting

v := γ̂−1(x− z),(22)

we can rewrite (21) as (z, v) ∈ Yρ(T̂ ), which is equivalent, in view of (16), to

(z − ρv, v) ∈ T̂ .(23)

Let now y = z− ρv. In view of (22) and the definition of γ̂, (23) is in turn equivalent
to

(y, γ̂−1(x− z)) ∈ T̂ .(24)

It follows easily from (22) and the definitions of y and γ̂ that

γ̂−1(x− z) = (γ − ρ)−1(x− z) = γ−1(x− y) = ρ−1(z − y).(25)

We conclude from (24) and (25) that

γ−1(x− y) ∈ T̂ (y).(26)
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Note that (26) looks pretty much like the statement of the lemma, except that
we have T̂ instead of T . The operators T and T̂ do coincide on U ×V , as we will see,
but in order to use this fact we must first establish that (y, γ−1(x−y)) belongs indeed
to U × V , which will result from the assumption on d(x, S∗ ∩U). The analysis in the
following paragraph is tantamount to establishing Fejér monotonicity of the iterates
of an overrelaxed proximal algorithm applied to a maximal monotone operator, which
can be found in [5].

Take any x̄ ∈ S∗ ∩ U , nonempty by condition (i), and z as in (21). Note that x̄
is a zero of T ∩ (U × V ), because it belongs to S∗ ∩ U and 0 ∈ V by condition (ii).
Thus x̄ is a zero of T̂ , which contains T ∩ (U × V ). By Proposition 3, x̄ is a zero of
Yρ(T ). Then

‖x− x̄‖2 = ‖x− z‖2 + ‖z − x̄‖2 + 2〈x− z, z − x̄〉

= ‖x− z‖2 + ‖z − x̄‖2 + 2γ̂〈γ̂−1(x− z)− 0, z − x̄〉 ≥ ‖x− z‖2 + ‖z − x̄‖2 ,(27)

using (21), the monotonicity of Yρ(T̂ ), the nonnegativity of γ̂, and the fact that x̄ is

a zero of Yρ(T̂ ) in the inequality. Take now y as defined after (23). Then

‖y − x̄‖2 = ‖y − z‖2 + ‖z − x̄‖2 − 2〈y − z, x̄− z〉

=

(
ρ

γ − ρ
)2

‖z − x‖2 + ‖z − x̄‖2 − 2ρ

γ − ρ 〈z − x, x̄− z〉

≤ ‖x− x̄‖2 −
[
1−

(
ρ

γ − ρ
)2
]
‖z − x‖2 − 2ρ〈0− (γ − ρ)−1(x− z), x̄− z〉

≤ ‖x− x̄‖2−
[
1−

(
ρ

γ − ρ
)2
]
‖z − x‖2 = ‖x− x̄‖2− γ(γ − 2ρ)

(γ − ρ)2 ‖z − x‖
2 ≤ ‖x− x̄‖2 ,

(28)

using (25) in the first equality, (27) in the first inequality, (21) and the monotonicity of
Yρ(T̂ ) in the second inequality, and the assumption that γ > 2ρ in the third inequality.
It follows from (28) that ‖y − x̄‖ ≤ ‖x− x̄‖ for all x̄ ∈ S∗ ∩ U , in particular when x̄
is the orthogonal projection of x onto S∗ ∩ U , which exists because S∗ ∩ U is closed
by condition (i) and convex by Proposition 5(i). For this choice of x̄ we have that

‖y − x̄‖ ≤ ‖x− x̄‖ = d(x, S∗ ∩ U) ≤ ε = min{δ, βγ/2} ≤ δ,(29)

where the second inequality holds by the assumption on x. Since x̄ belongs to S∗∩U ,
we get from (29) that

y ∈ (S∗ ∩ U) +B(0, δ) ⊂ U,(30)

using condition (iii) in the inclusion.
Observe now that, with the same choice of x̄,

γ−1 ‖x− y‖ ≤ γ−1(‖x− x̄‖+ ‖y − x̄‖) ≤ 2εγ−1 ≤ β,(31)

using (29) and the assumption on x in the second inequality, and the fact that ε =
min{δ, βγ/2} in the third inequality. It follows from (30), (31), and condition (ii) that

(y, γ−1(x− y)) ∈ U × V.(32)
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Since T is maximal ρ-hypomonotone in U×V and T̂ is ρ-hypomonotone, it follows
from (20) and Definition 1(d) that T ∩ (U × V ) = T̂ ∩ (U × V ). In view of (26), we
conclude from (32) that γ−1(x − y) ∈ T (y). Finally, using (29), d(y, S∗ ∩ U) ≤
‖y − x̄‖ ≤ ε, completing the proof.

Remark 2. As we mentioned along the proof of Lemma 1, the vector z satisfying
(21) is unique by Minty’s theorem, and thus it is easy to check that the vector y in
the statement of the lemma is also unique. This is not too relevant for our inexact
algorithms: the iterates are unique for σ = 0 (i.e., in the exact case) but hopefully not
so for other values of σ. We emphasize that uniqueness of the iterates is no blessing
for inexact algorithms; it is rather catastrophic.

Corollary 1. Consider either Algorithm 1 or Algorithm 2 applied to an operator
T : H → P(H) which is ρ-hypomonotone on a subset U × V of H × H satisfying
conditions (i)–(iii) of Lemma 1. If d(xn, S∗ ∩ U) ≤ ε, with ε as in the statement of
Lemma 1, and γn > 2ρ, then there exists a pair (yn, vn) ∈ U × V satisfying (10) and
(11), and consequently a vector xn+1 satisfying (15).

Proof. Apply Lemma 1 with x = xn, γ = γn. Take yn as the vector y whose
existence is ensured by the lemma and vn = γ−1

n (xn − yn). Then yn and vn satisfy
(10) and (11) with en = 0 so that (12) or (13)–(14) hold for any σ ≥ 0. Once a pair
(yn, vn) exists, the conclusion about xn+1 is obvious, since (15) raises no existence
issues.

In order to ensure existence of the iterates, we still have to prove, in view of
Corollary 1, that the whole sequence {xn} is contained in B(x̄, ε), where x̄ is the
orthogonal projection of x0 onto S∗ ∩ U and ε is as in Lemma 1. This will be a
consequence of the Fejér monotonicity properties of {xn}, which we will establish in
the following section.

4. Convergence analysis. The next lemma establishes the Fejér monotonicity
property of sequences generated by our inexact algorithm. We have not yet proved
the existence of such sequences, but the lemma is phrased so as to circumvent the
existential issue for the time being.

Lemma 2. Let {xn} ⊂ H be a sequence generated by either Algorithm 1 or
Algorithm 2 applied to an operator T : H → P(H) such that T−1 is ρ-hypomonotone
in a subsetW−1 of H×H, and take x∗ in the set S∗ of zeroes of T . If 2ρ < γ̂ = inf{γn}
and both (x∗, 0) and (yn, vn) belong to W , then

(i) ∥∥xn+1 − x∗∥∥2 ≤ ‖xn − x∗‖2 − (1− σ)γn(γ̂ − 2ρ) ‖vn‖2

for Algorithm 1 and
(ii)

∥∥x∗ − xn+1
∥∥2 ≤ ‖x∗ − xn‖2 − (1− σ)

(
1− 2ρ

γ̂

)
‖yn − xn‖2

for Algorithm 2.
Proof. We start with the following elementary algebraic equality:

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 − ‖yn − xn‖2 + ∥∥yn − xn+1

∥∥2
= 2〈x∗ − yn, xn+1 − xn〉.

(33)

Using first (15) in the right-hand side of (33), and then ρ-hypomonotonicity of T−1

in W−1, together with the fact that both (x∗, 0) and (yn, vn) belong to T ∩W , by
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(10) and the assumptions of the lemma we get

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 − ‖yn − xn‖2 + ∥∥yn − xn+1

∥∥2

= 2γn〈x∗ − yn, 0− vn〉 ≥ −2ργn ‖vn‖2 .(34)

From this point the computations differ according to the error criterion. We start
with the one given by (12). It follows from (11) and (15) that yn − xn = en − γnvn
and yn − xn+1 = en. Substituting these two equalities in (34) we get

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 ≥ γ2

n ‖vn‖2 − 2γn〈vn, en〉 − 2ργn ‖vn‖2

≥ γ2
n ‖vn‖2 − 2γn ‖vn‖ ‖en‖ − 2ργn ‖vn‖2 = γn ‖vn‖ [(γn − 2ρ) ‖vn‖ − 2 ‖en‖]

≥ γn ‖vn‖ [(γn − 2ρ) ‖vn‖ − σ(γ̂ − 2ρ) ‖vn‖] ≥ γn ‖vn‖ [(1− σ)(γ̂ − 2ρ) ‖vn‖]

= (1− σ)γn(γ̂ − 2ρ) ‖vn‖2 ,(35)

using (12) in the third inequality and the definition of γ̂ in the last inequality. The
results follows immediately from (35).

Now we look at the error criterion given by (13)–(14). Using again (11) and (15),
we can replace yn − xn+1 by en and −vn by γ−1

n (yn − xn − en) in (34), obtaining

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 ≥ ‖yn − xn‖2 −

(
‖en‖2 + 2ργ−1

n ‖yn − xn − en‖2
)

≥ ‖yn − xn‖2 −
[
‖en‖2 + 2ργ−1

n (‖yn − xn‖+ ‖en‖)2
]
.(36)

Using now (13) in (36) we get

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 ≥

[
1− ν2 − 2ρ

γn
(1 + ν)2

]
‖yn − xn‖2

≥
[
1− ν2 − 2ρ

γ̂
(1 + ν)2

]
‖yn − xn‖2 .(37)

It follows from (14), after some elementary algebra, that[
1− ν2 − 2ρ

γ̂
(1 + ν)2

]
= (1− σ)

(
1− 2ρ

γ̂

)
.(38)

Replacing (38) in (37), we obtain

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 ≥ (1− σ)

(
1− 2ρ

γ̂

)
‖yn − xn‖2 ,(39)

and the results follows immediately from (39).
Next we combine the results of Lemmas 1 and 2 in order to obtain our convergence

theorem.
Theorem 1. Let T : H → P(H) so that T−1 is maximal ρ-hypomonotone in a

subset V × U of H ×H satisfying
(i) S∗ ∩ U is nonempty and closed;
(ii) there exists β > 0 such that B(0, β) ⊂ V ;
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(iii) there exists δ > 0 such that (S∗ ∩ U) +B(0, δ) ⊂ U ;
(iv) U is convex,

where S∗ is the set of zeroes of T . Take a sequence {γn} of positive real numbers such
that 2ρ < γ̂ = inf{γn}. Define ε = min{δ, βγ̂/2}. If d(x0, S∗ ∩ U) ≤ ε, then, for both
Algorithm 1 and Algorithm 2,

(a) for all n there exist yn, vn, en, xn+1 ∈ H satisfying (10)–(12) and (15), in the
case of Algorithm 1, and (10)–(11) and (13)–(15), in the case of Algorithm
2, and such that (yn, vn) ∈ U × V , d(xn+1, S∗ ∩ U) ≤ ε;

(b) for any sequence as in (a), we have that (xn) converges weakly to a point in
S∗ ∩ U .

Proof.
(a) We proceed by induction. Take any n ≥ 0. We have that

d(xn, S∗ ∩ U) ≤ ε,(40)

by inductive hypothesis, if n ≥ 1, and by assumption if n = 0. We are within
the hypotheses of Corollary 1, which indicates that the desired vectors exist
and that (yn, vn) ∈ U × V . It remains to establish that d(xn+1, S∗ ∩ U) ≤ ε.
Let x̄ be the orthogonal projection of xn onto S∗∩U , which exists by condition
(i) and (iv) and Proposition 5. Note that both (x̄, 0) and (yn, vn) belong to
U × V . Thus we are within the hypotheses of Lemma 2, with W = U × V ,
and both for Algorithm 1 and Algorithm 2 we get from either Lemma 2(i) or
Lemma 2(ii) that ∥∥x∗ − xn+1

∥∥ ≤ ‖x∗ − xn‖(41)

for all x∗ ∈ S∗ ∩ U . By (41) with x̄ instead of x∗,

d(xn+1, S∗ ∩ U) ≤ ∥∥x̄− xn+1
∥∥ ≤ ‖x̄− xn‖ = d(xn, S∗ ∩ U) ≤ ε,

using (40) in the last inequality.
(b) We follow here with minor variations the standard convergence proof for the

proximal point algorithm; see, e.g., [14]. In view of (41), for all x∗ ∈ S∗ ∩ U
the sequence {‖xn − x∗‖} is nonincreasing, and certainly nonnegative, and
hence convergent. Also, since ‖xn − x∗‖ ≤ ∥∥x0 − x∗∥∥ for all n, we get that
{xn} is bounded.
Now we consider separately both algorithms. In the case of Algorithm 1, we
get from Lemma 2(i)

(1− σ)(γ̂ − 2ρ)γn ‖vn‖2 ≤ ‖xn − x∗‖2 −
∥∥xn+1 − x∗∥∥2

.(42)

Since the right-hand side of (42) converges to 0, we conclude that limn→∞ γn ‖vn‖
= 0, and therefore, since γn ≥ γ̂ > 0 for all n,

lim
n→∞ v

n = 0,(43)

which implies, in view of (12), that limn→∞ en = 0, and therefore, by (11),

lim
n→∞(yn − xn) = 0.(44)

In the case of Algorithm 2, we get from Lemma 2(ii)

(1− σ)
(
1− 2ρ

γ̂

)
‖yn − xn‖2 ≤ ‖x∗ − xn‖2 − ∥∥x∗ − xn+1

∥∥2
.(45)
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Again, the right-hand side of (45) converges to 0, and thus (44) also holds in
this case, so that, in view of (13), limn→∞ en = 0, which gives, in view of (44)
and (11), limn→∞ γnvn = 0, so that in this case we also have (43). We have
proved that (43) and (44) hold both for Algorithm 1 and Algorithm 2, and
we proceed from now on with an argument which holds for both algorithms.
Since {xn} is bounded, it has weak cluster points. Let x̃ be any weak cluster
point of {xn}; i.e., x̃ is the weak limit of a subsequence {xkn} of {xn}. By
(44), x̃ is also the weak limit of {ykn}. We claim that (x̃, 0) belongs to
U × V . In view of condition (ii), it suffices to check that x̃ ∈ U . Note
that {xn} ⊂ (S∗ ∩ U) + B(0, ε) by item (a). Since U is convex by condition
(iv) and S∗ ∩ U is closed by condition (i), we can apply Proposition 5(ii)
to conclude that (S∗ ∩ U) + B(0, ε) is weakly closed. Thus, the weak limit
x̃ of {xnk} belongs to (S∗ ∩ U) + B(0, ε), and henceforth to U , in view of
condition (ii) and the fact that ε ≤ δ. The claim holds, and we are within
the hypotheses of Proposition 4: {vkn} is strongly convergent to 0 by (43),
{xkn} is weakly convergent to x̃, and (0, x̃) belongs to V × U , where T−1 is
maximal ρ-hypomonotone. Then 0 ∈ T (x̃), i.e., x̃ ∈ S∗ ∩ U .
Finally we establish uniqueness of the weak cluster point of {xn}, with the
standard argument (e.g., [14]) which we include just in order to keep our self-
containment policy. Let x̃, x̂ be two weak cluster points of {xn}, say the weak
limits of {xkn}, {xjn}, respectively. We have just proved that both x̃ and x̂
belong to S∗ × U , and thus, by (41), both {‖x̂− xn‖} and {‖x̃− xn‖} are
nonincreasing, and hence convergent, say, to α̂ ≥ 0 and to α̃ ≥ 0, respectively.
Now,

‖x̂− xn‖2 = ‖x̂− x̃‖2 + ‖x̃− xn‖2 + 2〈x̂− x̃, x̃− xn〉.(46)

Taking limits in (46) as n→∞ along the subsequence {xkn}, we get

‖x̂− x̃‖2 = α̂2 − α̃2.(47)

Reversing now the roles of x̃, x̂ in (46), and taking limits along the subse-
quence {xjn}, we get

‖x̂− x̃‖2 = α̃2 − α̂2.(48)

It follows from (47) and (48) that x̃ = x̂, and thus the whole sequence {xn}
has a weak limit which is a zero of T and belongs to U .

The next corollary states the global result for the case in which T−1 is
ρ-hypomonotone in the whole H ×H.

Corollary 2. Assume that T : H → P(H) has a nonempty set of zeroes S∗ and
that T−1 is maximal ρ-hypomonotone. Take a sequence {γn} of positive real numbers
such that 2ρ < γ̂ = inf{γn}. Then, for both Algorithm 1 and Algorithm 2, given any
x0 ∈ H,

(a) for all n there exist yn, vn, en, xn+1 ∈ H satisfying (10)–(12) and (15), in the
case of Algorithm 1, and (10)–(11) and (13)–(15), in the case of Algorithm
2;

(b) any sequence generated by either Algorithm 1 or Algorithm 2 is weakly con-
vergent to a point in S∗.

Proof. This is just Theorem 1 for the case of U = V = H. In this case all
the assumptions above hold trivially. Regarding condition (i), note that S∗ is closed
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because, by Proposition 3, it is also the set of zeroes of the maximal monotone operator
Yρ(T ), which is closed (see, e.g., 12.8(a) and (c) in [16]). Conditions (ii) and (iii)
hold for any β, δ > 0 so that the result will hold for any ε > 0, in particular for
ε > d(x0, S∗).

We close this section with a restatement of Theorem 1, which is needed in our
section on multiplier methods.

Corollary 3. Let Z ⊂ H be a linear subspace, and consider Algorithms 1 and
2, with the additional requirement that en, besides satisfying (12) or (13)–(14), belong
to Z. Then, the results of Theorem 1 still hold.

Proof. The inductive step in the proof of Theorem 1(a), based on Lemma 1,
essentially consists of establishing, for all n, the existence of exact iterates, i.e., with
en = 0, which certainly belongs to Z, so that item (a) does hold with the additional
requirement. The proof of item (b), depending on the results of Lemma 2, is valid
for all sequences {xn} as in item (a), and hence in particular for those sequences such
that en ∈ Z.

5. Convergence rate results. We prove in this section that our inexact algo-
rithm still enjoys the convergence rate results which are already classical for proximal
point algorithms, namely, at least a linear convergence rate when T−1 is locally Lip-
schitz at 0 (see [14] for the monotone case and [13] for the nonmonotone one with
exact iterates). We will say that Q : H → P(H) is Lipschitz continuous at W ⊂ H
if there exists a constant λ ≥ 0 such that ‖v − v′‖ ≤ λ ‖x− x′‖ for all, x, x′ ∈ W , all
v ∈ Q(x), and all v′ ∈ Q(x′). Our convergence rate result is the following.

Theorem 2. Under all the assumptions of Theorem 1, suppose furthermore that
T−1 is Lipschitz continuous, with constant λ, in a neighborhood W ⊂ H of 0. Let
x∗ be the weak limit point of the sequence {xn}. Then there exists n0 such that the
following inequalities hold for all n ≥ n0:

(i)

∥∥xn+1 − x∗∥∥ ≤ λ+ µ√
(λ+ µ)2 + θn

‖xn − x∗‖(49)

for Algorithm 1, where

µ = σ

(
γ̂

2
− ρ
)
, θn = (1− σ)γn(γ̂ − 2ρ);(50)

(ii) ∥∥xn+1 − x∗∥∥ ≤ ωn√
ω2
n + ξ

‖xn − x∗‖(51)

for Algorithm 2, where

ξ = (1− σ)
(
1− 2ρ

γ̂

)
, ωn = ν + (1 + ν)

λ

γn
,(52)

with ν as in (13).
Proof. By (10), yn ∈ T−1(vn). By Theorem 1(b), x∗ ∈ T−1(0). By (43),

limn→∞ vn = 0, and so there exists n0 such that vn ∈ W for n ≥ n0. By Lipschitz
continuity of T−1 in W , for n ≥ n0,

‖yn − x∗‖ ≤ λ ‖vn‖ .(53)
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By (11) and (15), xn+1 = yn − en. Thus,∥∥xn+1 − x∗∥∥ = ‖yn − x∗ − en‖ ≤ ‖yn − x∗‖+ ‖en‖ ≤ λ ‖vn‖+ ‖en‖ ,(54)

using (53) in the second inequality.
Now we consider separately both algorithms.
(i) Combining Lemma 2(i), (50), (54), and (12) we get

∥∥xn+1 − x∗∥∥2 ≤ ‖xn − x∗‖2 − θn ‖vn‖2 ≤ ‖xn − x∗‖2 − θn
(λ+ µ)2

∥∥xn+1 − x∗∥∥2
,

(55)

and the conclusion of item (i) follows directly from (55).
(ii) By (11), vn = γ−1

n (xn − yn + en). Thus

λ ‖vn‖ ≤ λγ−1
n ‖xn − yn + en‖ ≤ λγ−1

n (‖xn − yn‖+ ‖en‖) .(56)

Combining (54) and (56)∥∥xn+1 − x∗∥∥ ≤ λγ−1
n (‖xn − yn‖+ ‖en‖) + ‖en‖

≤
[
ν + (1 + ν)

λ

γn

]
‖xn − yn‖ = ωn ‖xn − yn‖ ,(57)

using (13) in the last inequality and (52) in the equality. By Lemma 2(ii),
(52), and (57),

∥∥xn+1 − x∗∥∥2 ≤ ‖xn − x∗‖2 − ξ ‖xn − yn‖2 ≤ ‖xn − x∗‖2 − ξ

ω2
n

∥∥xn+1 − x∗∥∥2
,

(58)

and the conclusion of item (ii) follows immediately from (58).
Corollary 4. Under the assumptions of Theorem 2, the sequences generated by

Algorithms 1 and 2 converge at least linearly, with asymptotic error constants given
by λ+µ√

(λ+µ)2+θ̄
, ω̄√

ω̄2+ξ
, respectively, where θ̄ = (1 − σ)γ̂(γ̂ − 2ρ), ω̄ = ν + (1 + ν)λγ̂ ,

and superlinearly, when limn→∞ γn =∞.
Proof. Note that ωn ≤ ω̄, θn ≥ θ̄ for all n. Thus (55), and consequently (49),

hold with θ̄ instead of θn. By the same token, (58), and consequently (51), hold
with ω̄ instead of ωn, establishing the asymptotic error constants. The statement on
superlinear convergence follows directly from Theorem 2, observing that limn→∞ γn =
∞ implies that limn→∞ θn =∞ and limn→∞ ωn = 0.

Of course, a caveat is in order in connection with the result on superlinear con-
vergence in Corollary 4, as is the case with similar results for other variants of the
proximal point algorithm (e.g., [7]). Proximal procedures, in general, replace the in-
version of T for a sequence of subproblems, each one of which demands inversion of
I + γnT , or equivalently of γ−1

n I + T . On one hand, when γn becomes very large,
γ−1
n I + T gets very close to T , and thus an arbitrarily high convergence rate can

be achieved by making γn go fast enough to ∞ (in the limit, for γn = ∞ the al-
gorithm would find a zero of T in one iteration). But this high convergence rate is
deceiving in the following sense. Replacement of the inversion of T by a sequence
of subproblems is recommended basically when the inversion of T is hard, i.e., when
T is somewhat ill-conditioned. The properties of T imply that γ−1

n I + T is instead
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theoretically well-conditioned (for all γn > 0 when T is monotone, for γn > 2ρ when
T is ρ-hypomonotone), but, for very large γn, γ

−1
n I + T becomes numerically almost

as ill-conditioned as T , in which case the regularization properties of the algorithm
are lost (think, e.g., of the case of linear and singular T ). In fact, one of the main ad-
vantages of the proximal point algorithm with respect to other regularization schemes
is that it works without requiring that the regularization coefficients go to ∞, i.e.,
for constant γn, for instance. In other words, when γn increases, a tradeoff takes
place between the improvement in the convergence rate and the deterioration of the
numerical stability.

6. Inexact proximal method of multipliers. Let X and Y be Hilbert spaces.
For an arbitrary S : X → P(X), a maximal monotone T : Y → P(Y ), and a C2
function F : X → Y , we consider the problem of finding a solution to the inclusion

(P) S(x) +∇F (x)∗T (F (x)) � 0,

where ∇F (x)∗ is the adjoint of the Jacobian of F at a point x ∈ X. This provides
a flexible model for various applications, and it has an associated duality theory that
can be seen as a generalization of the traditional convex programming duality theory.
Combining dualization with the proximal point algorithm leads to multiplier methods
for a wide class of problems much like in Rockafellar [15], where convex programs
were treated. In [13], this approach was extended to problems of the form (P), and
multiplier methods for variational inequalities and nonlinear convex programs were
obtained as special cases. The purpose of this section is to derive an inexact version
of the proximal method of multipliers for (P).

We reproduce here those parts of the duality theory which are needed in what
follows (see [13] for a full exposition). Denote

F0(x) = S(x) +∇F (x)∗T (F (x))

so that (P) can be written as F0(x) � 0. Define the Lagrangian L : X×Y → P(X×Y )
by

L(x, y) = (∇F (x)∗y,−F (x)) + S(x)× T−1(y),

and consider the primal-dual problem

(PD) L(x, y) � (0, 0).

The mapping F0 is related to L by

F0(x) = {S(x) +∇F (x)∗y | ∃y ∈ Y : y ∈ T (F (x))}
=
{
S(x) +∇F (x)∗y ∣∣ ∃y ∈ Y : 0 ∈ −F (x) + T−1(y)

}
= {v ∈ X | ∃y ∈ Y : (v, 0) ∈ L(x, y)} .(59)

The following is immediate.
Lemma 3. We have F0(x) � e if and only if there exists a y such that L(x, y) �

(e, 0).
We will also need to reformulate Algorithm 2. Eliminating vn, and denoting yn

by z̃n and xn by zn, we can write it as follows.
Method 1.
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1. Given zn, find a z̃n such that

γnT (z̃
n) + z̃n − zn � en

for some en ∈ Z satisfying

‖en‖ ≤ ν‖z̃n − zn‖.
2. Set

zn+1 = z̃n − en,
n = n+ 1, and go to 1.

In step 1, Z denotes a subspace of H. Corollary 3 can now be stated in the
following equivalent form.

Theorem 3. Under the assumptions of Theorem 1,
(a) there exists an infinite sequence {zn} ⊂ H, conforming to Method 1, and

satisfying

z̃n ∈ U,
en − z̃n + zn ∈ γnV,

d(xn+1, S∗ ∩ U) ≤ ε;
(b) any sequence as in (a) converges weakly to a point in S∗ ∩ U .
If we apply Method 1 with Z = X × {0} to (PD), we get the following.
Method 2.
1. Given (xn, yn) ∈ X × Y , find a (x̃n, ỹn) ∈ X × Y such that

γnL(x̃
n, ỹn) + [(x̃n, ỹn)− (xn, yn)] � (en, 0)

for some en satisfying

‖en‖ ≤ ν‖(x̃n, ỹn)− (xn, yn)‖.
2. Set

xn+1 = x̃n − en,
yn+1 = ỹn,

n = n+ 1, and go to 1.
The inclusion in step 1 can be written as

Ln(x̃
n, ỹn) � γ−1

n (en, 0),(60)

where

Ln(x, y) = L(x, y) + γ
−1
n (x− xn, y − yn)

= (∇F (x)∗y,−F (x)) + [S(x) + γ−1
n (x− xn)]× [T−1(y) + γ−1

n (y − yn)]
= (∇F (x)∗y,−F (x)) + Sn(x)× T−1

n (y),

with Sn(x) = S(x) + γ−1
n (x − xn), and Tn(u) = (I + γnT

−1)−1(yn + γnu). We thus
get from (60) that ỹn ∈ Tn(F (x̃n)). But since Tn is single-valued by the maximal
monotonicity of T , we see that the value of x̃n determines the value of ỹn uniquely by

ỹn = Tn(F (x̃
n)).



1096 A. N. IUSEM, T. PENNANEN, AND B. F. SVAITER

Since Ln is in the format of the general duality framework, we have by Lemma 3 that
(x̃n, ỹn) satisfies (60) if and only if

S(x̃n) + γ−1
n (x̃n − xn) +∇F (x̃n)∗Tn(F (x̃n)) � γ−1

n en

ỹn = Tn(F (x̃
n)).

Method 2 can thus be written as follows.
Method 3 (proximal method of multipliers).
1. Given (xn, yn) ∈ X × Y , find an x̃n ∈ X such that

S(x̃n) + γ−1
n (x̃n − xn) +∇F (x̃n)∗Tn(F (x̃n)) � γ−1

n en

for some en satisfying

‖en‖ ≤ ν‖(x̃n, Tn(F (x̃n)))− (xn, yn)‖.

2. Set

xn+1 = x̃n − en,
yn+1 = Tn(F (x̃

n)),

n = n+ 1, and go to 1.
Theorem 3 can be herefore restated in the following form.
Theorem 4. Assume that L−1 is maximal ρ-hypomonotone in a subset V × U ,

where U ⊂ X × Y and V ⊂ X × Y satisfy
(i) S∗ ∩ U is nonempty and closed;
(ii) there exists β > 0 such that B(0, β) ⊂ V ;
(iii) there exists δ > 0 such that (S∗ ∩ U) +B(0, δ) ⊂ U ;
(iv) U is convex,

where S∗ is the set of zeroes of L. Take a sequence {γn} of positive real numbers such
that 2ρ < γ̂ = inf{γn}. Define ε = min{δ, βγ/2}. If d(x0, y0, S∗ ∩ U) ≤ ε, then

(a) there exists an infinite sequence {(xn, yn)} ⊂ X×Y , conforming to Method 3,
such that for all n

(x̃n, Tn(F (x̃
n))) ∈ U,

(en, 0)− (x̃n, Tn(F (x̃
n))) + (xn, yn) ∈ γnV,

d((xn+1, yn+1), S∗ ∩ U) ≤ ε;

(b) any sequence as in (a) converges to a point in S∗ ∩ U .
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Abstract. This paper presents a sequential quadratically constrained quadratic programming
(SQCQP) method for solving smooth convex programs. The SQCQP method solves at each itera-
tion a subproblem that involves convex quadratic inequality constraints as well as a convex quadratic
objective function. Such a quadratically constrained quadratic programming problem can be formu-
lated as a second-order cone program, which can be solved efficiently by using interior point methods.
We consider the following three fundamental issues on the SQCQP method: the feasibility of sub-
problems, the global convergence, and the quadratic rate of convergence. In particular, we show that
the Maratos effect is avoided without any modification to the search direction, even though we use
an ordinary �1 exact penalty function as the line search merit function.

Key words. convex programming, quadratically constrained quadratic programming, Maratos
effect, quadratic convergence, global convergence
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1. Introduction. This paper presents a sequential quadratically constrained
quadratic programming (SQCQP) method for solving smooth convex programs. Un-
like sequential quadratic programming (SQP) methods [3, 4, 8, 14], the SQCQP
method solves at each iteration a subproblem that involves convex quadratic in-
equality constraints and a convex quadratic objective function. Such a quadrati-
cally constrained quadratic programming problem can be formulated as a second-
order cone program [12, 16] and be solved efficiently by using interior point methods
[1, 12, 15, 16, 17, 26].

In this paper, we consider the following three fundamental issues concerning the
SQCQP method: the feasibility of subproblems, the global convergence, and the
quadratic rate of convergence. First, we note that a straightforward quadratic ap-
proximation of the constraints may yield an infeasible subproblem even though we
are dealing with a convex program. This is in contrast with SQP methods, in which
linearized constraints in a subproblem always admit a feasible solution as long as
the original convex program is feasible. To maintain feasibility of the subproblem,
we propose a strategy of switching between the linear and the quadratic approxima-
tion for each constraint, taking into account the constraint violation and curvature
at the current iterate. It is shown that the proposed strategy always yields a feasible
subproblem and that the quadratic approximation will eventually be used for every
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constraint. To ensure global convergence, we adopt a standard line search technique
using the �1 penalty function. A major difference between the SQCQP method and
the classical SQP method lies in that the former uses information up to second-order
for both the constraints and the objective function in generating a search direction.
As a result, the SQCQP method not only enjoys local quadratic convergence, but it
is also free of the usual Maratos effect known to cause difficulty in an SQP method
employing a nondifferentiable exact penalty function as the line search merit function
[22]. More importantly, the elimination of the Maratos effect is achieved without
performing any additional correction step in the SQCQP method as required in the
SQP-type methods [8, 14]. Interestingly, Fukushima [8] had already noted earlier
that the Maratos effect can be avoided by using quadratically constrained quadratic
programming subproblems. However, due to the lack of efficient tools to solve such
subproblems at the time, an auxiliary quadratic programming subproblem (thus the
name SQP) was introduced in [8] to circumvent the Maratos effect. Earlier, Cole-
man and Conn [5] had considered similar quadratically constrained subproblems in
motivating an exact penalty function method, rather than an SQP method, with
global and local superlinear convergence properties. As with [8], the quadratically
constrained subproblems are used to motivate the method but are not used in the
method itself.

Related SQCQP-type methods have been considered by several authors. Panin
[19] studied an SQCQP method and proved its global and superlinear convergence un-
der the somewhat restrictive assumptions that the objective and constraint functions
are strongly convex functions with uniformly bounded Hessians and that the sequence
of Lagrange multiplier estimates generated by the method is uniformly bounded (see
also [20] for a related work). Kruk and Wolkowicz [10, 11] cite two unpublished re-
ports from 1984 and 1985, by Dixon, Hersom, and Maany and Maany, respectively,
in which an SQCQP method was developed for some highly nonlinear orbital trajec-
tory problems. Polak, Mayne, and Higgins [21] proposed, for semi-infinite minimax
problems, an iterative method that solves at each iteration a minimax subproblem
constructed from quadratic approximations of component functions. Global conver-
gence and local superlinear convergence of order 1.5 for this method were shown
under the assumption that the component functions are strongly convex with uni-
formly bounded Hessians. Wiest and Polak [27] proposed a phase I-phase II SQCQP
method in which the quadratic objective and constraint functions involved in the
subproblem have the identical Hessian which is a positive multiple of the identity
matrix. Global convergence and local linear convergence for this method were shown
under the Mangasarian–Fromovitz constraint qualification (MFCQ) plus the assump-
tions of second-order sufficiency and strict complementarity. More recently, Kruk and
Wolkowicz [10, 11] proposed a trust-region SQCQP method for convex and nonconvex
problems, with each subproblem solved (approximately) by semidefinite programming
relaxation. Feasibility of subproblem is ensured by relaxing a homogenization con-
straint. The reference [11, section 7] gives some discussion of the Maratos effect,
as well as global and local quadratic convergence. However, the use of semidefinite
programming relaxation may restrict the applicability of the approach to small and
medium size problems. As this paper was being written, we learned of a recent work
of Anitescu [2] proposing a trust-region SQCQP method for solving (nonconvex) non-
linear minimization problems. Local superlinear convergence of order 1.5 for this
method is shown under the MFCQ plus a mild quadratic growth condition.

We remark that our SQCQP method is applicable to general smooth convex
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programs. For the special class of convex conic programs admitting an efficiently
computable self-concordant barrier function, one can use the well-developed primal-
dual interior point methods [16] which have attractive polynomial complexity. Such
convex conic programs include linear programs, second-order cone programs, and
semidefinite programs. In the absence of an easily computable self-concordant barrier
function, interior point methods for smooth convex programming can still be de-
veloped by applying Newton’s method to a perturbed Karush–Kuhn–Tucker (KKT)
system [6, 23], although polynomial complexity is no longer assured. Global con-
vergence and local superlinear convergence of such interior point methods have been
established under Slater condition, strict complementarity, constant Hessian rank as-
sumption, and second-order sufficiency [23, Assumptions 1–7]. In [6, Assumptions
(A1)–(A5)], Slater condition and constant Hessian rank assumption are replaced by
the linear independence constraint qualification (LICQ), which is a more stringent
assumption for convex programs. In contrast, global and local quadratic convergence
for our SQCQP method assume a Slater condition and uniform positive definiteness
of the Lagrangian Hessian (Assumptions 1 and 2) but not strict complementarity.
The practical performance of our SQCQP method, as compared with SQP methods
and interior point methods for smooth convex programming, is a topic for further
study. Our SQCQP method seems well suited for problems whose constraints are
quadratic or admit good quadratic approximation. For a motivation of this, consider
the special case of a quadratically constrained quadratic program. In this case, we
can choose the subproblem to coincide with the original problem so that a single it-
eration suffices to solve the original problem. Moreover, a polynomial-time interior
point method [1, 12, 15, 16, 17, 26] can be used to find a solution of relative accuracy
ε > 0 in time that is polynomial in n,m, and log(1/ε). In contrast, SQP methods
would successively linearize the quadratic constraints, possibly leading to inefficiency.
The same is true with interior point methods for smooth convex programming [6, 23].
In particular, none of these methods would solve the problem in polynomial time.

Throughout this paper, �n denotes the set of n-dimensional column vectors, Sn
denotes the set of n×n symmetric real matrices, and T denotes transpose. For x ∈ �n,
‖x‖ =

√
xTx. For A and B in Sn, A � B if and only if A−B � O (the zero matrix);

i.e., A−B is positive semidefinite. Also, “:=” means “define.”

2. Algorithm description. We are interested in solving the following convex
minimization problem:

minimize f(x)
subject to ci(x) ≤ 0, i = 1, . . . ,m,

(2.1)

where f : �n → � and ci : �n → �, i = 1, . . . ,m, are twice continuously differentiable
convex functions. For simplicity, we will confine ourselves to the inequality constrained
problem, although the subsequent argument can be extended naturally to problems
involving additional linear equality constraints. Throughout we make the following
assumptions on problem (2.1).

Assumption 1.
(a) Problem (2.1) has a nonempty optimal solution set.
(b) There exists a x̄ ∈ �n satisfying the Slater condition ci(x̄) < 0, i = 1, . . . ,m.
Notice that, for the convex problem (2.1), the Slater condition is equivalent to



SQCQP METHOD FOR CONVEX MINIMIZATION 1101

the MFCQ. Define the �1 exact penalty function Fr : �n → � for problem (2.1) as

Fr(x) := f(x) + r

m∑
i=1

[ci(x)]+,

where r > 0 is a penalty parameter and [·]+ denotes the projection onto the set of
nonnegative real numbers, i.e., [·]+ = max{0, ·}. Under Assumption 1, for any r > 0
sufficiently large, the set of unconstrained minimizers of Fr coincides with the solution
set of problem (2.1) [3, section 5.5].

At each iteration of the SQCQP method, given a current iterate x ∈ �n, we solve
the following subproblem in d:

minimize g(x)T d+
1

2
dTBd

subject to ci(x) + gi(x)
T d+

αi
2
dTGi(x)d ≤ 0, i = 1, . . . ,m,

(2.2)

where αi ∈ [0, 1], g(x) := ∇f(x) ∈ �n, gi(x) := ∇ci(x) ∈ �n, Gi(x) := ∇2ci(x) ∈ Sn,
i = 1, . . . ,m, and B ∈ Sn is positive semidefinite. Subproblem (2.2) is a convex
quadratically constrained quadratic program and, as such, can be formulated as a
second-order cone program [12, 16]1 and be solved efficiently by using interior point
methods [1, 12, 15, 16, 26].

The nonnegative parameters (αi)
m
i=1 are introduced to ensure the feasibility of

the subproblem (2.2). Intuitively, if αi = 1, then the local quadratic approximation
ci(x) + gi(x)

T d+ 1
2d
TGi(x)d of ci(x+ d) may be too “aggressive” to admit a feasible

solution for (2.2). As an example, for m = n = 1 and c1(x) = x4 − 1
4 , it is readily

checked that (2.2) with x = 1 and α1 = 1 has no feasible solution. The less-than-1
weighting factor αi relaxes the local quadratic cut in order to preserve feasibility. The
lemma below quantifies those αi that ensure the feasibility of (2.2). In particular, at
every x, the linearized constraints admit a solution; and if x is nearly feasible or
the constraint functions have small curvature at x, then quadratic constraints can be
used. Here, each weight αi is set to be either 0 or 1. We can alternatively set αi to
be the largest value in [0, 1] for which (2.7) below holds (with t chosen as in (a) or (b)
or (c) in Lemma 2.1). This makes the subproblems harder to solve (more quadratic
constraints), but the number of subproblems solved may be fewer.

Lemma 2.1. Let x̄ be the Slater point of Assumption 1(b). Fix any θ ∈ [0, 1) and
ϑ ∈ (θ, 1). For each x ∈ �n, define κi := (x̄− x)TGi(x)(x̄− x) for all i and

J := {i | θci(x̄) ≤ ci(x)},(2.3)

s1 := max
i:ci(x)>0

ci(x)

ci(x)− ϑci(x̄)
,(2.4)

s2 := min

{
min
i∈J

ci(x)− ϑci(x̄)

κi
, 1

}
,(2.5)

s3 := min

{
s2,min

i �∈J
−2(ϑ− θ)ci(x̄)

κi

}
,(2.6)

where s1 is understood to be −∞ if there is no i such that ci(x) > 0, i.e., if x is a
feasible solution of problem (2.1), and the fractions in (2.5) and (2.6) are understood

1In particular, as noted in [16, p. 221], the quadratic inequality ‖y‖2 ≤ z can be rewritten as
(‖2y‖2 + (1 − z)2)1/2 ≤ 1 + z or, equivalently, (1 + z, 1 − z, 2y) belongs to the second-order cone
{(t, w) | ‖w‖ ≤ t}.
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to be +∞ if κi = 0. Then the vector d := t(x̄− x) satisfies

ci(x) + gi(x)
T d+

αi
2
dTGi(x)d ≤ t(1− ϑ)ci(x̄), i = 1, . . . ,m,(2.7)

under any of the following choices of t and α1, . . . , αm:
(a) Set t = 1 and αi = 0 for all i = 1, . . . ,m.
(b) If 2s1 < s2, set t = s2 and αi = 1 for i ∈ J and αi = 0 for i �∈ J .
(c) If 2s1 < s3, set t = s3 and αi = 1 for all i = 1, . . . ,m.
Proof. From (2.5) and (2.6), we see that 0 < s3 ≤ s2 ≤ 1 so that 0 < t ≤ 1 for

any choice of t in (a) or (b) or (c). The convexity of functions ci, i = 1, . . . ,m, then
yields

ci(x) + gi(x)
T d+

αi
2
dTGi(x)d = (1− t)ci(x) + t(ci(x) + gi(x)

T (x̄− x)) + t2
αiκi
2

≤ (1− t)ηi + tη̄i + t2
αiκi
2

,

where for simplicity we denote ηi := ci(x) and η̄i := ci(x̄). Let Ri(t, αi) denote
the right-hand side quadratic polynomial in the above inequality. We will show that
Ri(t, αi) ≤ t(1 − ϑ)η̄i for any of the choices of t and αi’s in (a)–(c). Clearly, this,
together with the above inequality, immediately proves the lemma.

We need to first develop two inequalities. Fix some i ∈ J . It follows from (2.3)
that ηi − ϑη̄i > ηi − θη̄i > 0. Moreover, we have

Ri(t, αi)− t(1− ϑ)η̄i = (1− t)ηi + tη̄i + t2
αiκi
2
− t(1− ϑ)η̄i

= ηi − t(ηi − ϑη̄i) + t2
αiκi
2

= (ηi − ϑη̄i)

[
ηi

ηi − ϑη̄i
− t+ t2

αiκi
2(ηi − ϑη̄i)

]

≤ (ηi − ϑη̄i)

[
s1 − t+ t2

αi
2s2

]
∀i ∈ J ,(2.8)

where the last step follows from (2.4) and (2.5). Next we consider any i �∈ J . By
(2.3) we have ηi < θη̄i. Then, for t ∈ (0, 1], we have

Ri(t, αi)− t(1− ϑ)η̄i = (1− t)ηi + tη̄i + t2
αiκi
2
− t(1− ϑ)η̄i

≤ (1− t)θη̄i + tη̄i + t2
αiκi
2
− t(1− ϑ)η̄i

≤ −tθη̄i + tη̄i + t2
αiκi
2
− t(1− ϑ)η̄i

= t(ϑ− θ)η̄i + t2
αiκi
2

≤ −(ϑ− θ)η̄i

[
−t+ t2

αi
s3

]
∀i �∈ J ,(2.9)

where the last step is due to (2.6). We now consider the three choices of t and αi’s in
(a)–(c).

(a) By (2.3) and (2.4), we have s1 < 1. Setting t = 1 and αi = 0 in both (2.8)
and (2.9), we see that Ri(1, 0)− (1− ϑ)η̄i < 0 for all i.

(b) Suppose 2s1 < s2, and let t = s2 ∈ (0, 1] and αi = 1 for i ∈ J and αi = 0
for i �∈ J . Then we substitute these choices of t and αi’s into the inequality (2.8) to
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obtain

Ri(s2, 1)−s2(1−ϑ)η̄i ≤ (ηi−ϑη̄i)
[
s1 − s2 + s2

2

1

2s2

]
= (ηi−ϑη̄i)

[
s1 − s2

2

]
< 0 ∀i ∈ J ,

where we used 2s1 < s2, and into the inequality (2.9) to obtain

Ri(s2, 0)− s2(1− ϑ)η̄i ≤ −(ϑ− θ)η̄i [−s2] < 0 ∀i �∈ J .

(c) Suppose 2s1 < s3, and let t = s3 ∈ (0, 1] and αi = 1 for all i. Then we
substitute these choices of t and αi’s into the inequality (2.8) to obtain

Ri(s3, 1)−s3(1−ϑ)η̄i ≤ (ηi−ϑη̄i)
[
s1 − s3 + s2

3

1

2s2

]
≤ (ηi−ϑη̄i)

[
s1 − s3

2

]
< 0 ∀i ∈ J ,

where we used s3 ≤ s2 and 2s1 < s3, and into the inequality (2.9) to obtain

Ri(s3, 1)− s3(1− ϑ)η̄i ≤ −(ϑ− θ)η̄i [−s3 + s3] = 0 ∀i �∈ J .

This completes the proof of the lemma.
We remark that Lemma 2.1 offers a specific way of picking the parameters αi

to ensure the feasibility of subproblem (2.2). In particular, given an iterate x, we
compute the values of s1, s2 and s3 by (2.4)–(2.6) and determine αi as follows:

s2 ≤ 2s1 =⇒ αi = 0, i = 1, . . . ,m,

s3 ≤ 2s1 < s2 =⇒ αi =

{
1, i ∈ J ,
0, i �∈ J ,

s3 > 2s1 =⇒ αi = 1, i = 1, . . . ,m.

(2.10)

Then, by Lemma 2.1, subproblem (2.2) is feasible at every iteration with αi chosen
according to the rule (2.10). In general, linear constraints with αi = 0 may have
to be used (case (a)) in the early stage of the SQCQP method in order to maintain
subproblem feasibility. However, as we will argue later (see Lemma 4.1), quadratic
constraints with αi = 1 (case (c)) can eventually be adopted when the iterates get
close to the optimal solution. The intermediate case of mixed linear and quadratic
constraints (case (b)) provides a mechanism for quadratic constraints to be gracefully
phased into the SQCQP method, thus potentially improving the convergence of this
method in practice. However, we can alternatively set αi = 0 for all i in this inter-
mediate case without affecting the subsequent theoretical convergence analysis of the
SQCQP method.

Given its feasibility, subproblem (2.2) has an optimal solution if the objective
function is bounded from below over the feasible region; see [13]. This condition is
obviously satisfied if either B or at least one of Gi(x), i = 1, . . . ,m, is positive definite.
In our global convergence analysis (Theorem 4.7), we will essentially assume that B
is positive definite.

Let d be an optimal solution of subproblem (2.2). Then the next iterate xnew is
generated by

xnew := x+ βd,

where β ∈ � is the step size. To ensure global convergence, we choose β > 0 small
enough to satisfy

Fr(x+ βd)− Fr(x) ≤ σβ
(
F̄r(x, d, α)− Fr(x)

)
,(2.11)
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where σ ∈ (0, 1) is a user chosen constant, α = (αi)
m
i=1, and

F̄r(x, d, α) := f(x) + g(x)T d+
1

2
dTG(x)d

+ r
m∑
i=1

[
ci(x) + gi(x)

T d+
αi
2
dTGi(x)d

]
+
,(2.12)

with G(x) := ∇2f(x). Notice that the weights α1, . . . , αm given by (2.10) depend
on the current iterate x as well as the Slater point x̄. Since ci(x) + gi(x)

T d +
1
2αid

TGi(x)d ≤ 0, we have

F̄r(x, d, α)− Fr(x) = g(x)T d+
1

2
dTG(x)d− r

m∑
i=1

[ci(x)]+.(2.13)

By (2.7), subproblem (2.2) has a feasible solution satisfying the Slater condition.
Then it is known [25, Theorem 28.2] that there exists a vector of Lagrange multipliers
v = (v1, . . . , vm)

T satisfying the KKT conditions for subproblem (2.2), namely,

Bd+ g(x) +

m∑
i=1

vi(αiGi(x)d+ gi(x)) = 0,

ci(x) + gi(x)
T d+

αi
2
dTGi(x)d ≤ 0, vi ≥ 0,

vi

(
ci(x) + gi(x)

T d+
αi
2
dTGi(x)d

)
= 0, i = 1, . . . ,m.

(2.14)

We call (d, v) a KKT pair of subproblem (2.2).
We state our method formally below.
SQCQP Method.

Step 0. Choose an initial point x1 ∈ �n, an initial penalty parameter r0 ∈ (0,+∞),
constants γ ∈ (0, 1), δ ∈ (0,+∞), θ ∈ [0, 1), ϑ ∈ (θ, 1) and σ ∈ (0, 1), and a
point x̄ ∈ �n such that ci(x̄) < 0, i = 1, . . . ,m. Initialize k = 1.

Step 1. Choose a positive semidefinite matrix Bk ∈ Sn. Determine αk = (αki )
m
i=1

according to the rule (2.10) with x = xk and solve subproblem (2.2) associ-
ated with xk, Bk, αk to obtain a KKT pair (dk, vk) ∈ �n × �m. If dk = 0,
terminate.

Step 2. Update the penalty parameter as

rk :=

{
rk−1 if rk−1 ≥ maxi v

k
i + δ;

maxi v
k
i + 2δ otherwise.

(2.15)

Let βk be the largest β ∈ {1, γ, (γ)2, (γ)3, . . .} satisfying
Frk(x

k + βdk)− Frk(x
k) ≤ σβ

(
F̄rk(x

k, dk, αk)− Frk(x
k)
)
.(2.16)

Update xk+1 := xk + βkdk, increment k by 1, and go to Step 1.
The updating rule (2.15) maintains the penalty parameter rk large enough to guaran-
tee dk to be a descent direction for the function Frk , while allowing for r

k to eventually
stay constant as the iterates xk converge to a solution; see Lemma 3.1 below.

The termination criterion in Step 1 is justified by the following lemma.
Lemma 2.2. For any x ∈ �n and αi ≥ 0, i = 1, . . . ,m, suppose that subproblem

(2.2) has a KKT pair (d, v). If d = 0, then (x, v) is a KKT pair for problem (2.1),
and hence x is an optimal solution of problem (2.1).
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Proof. This can easily be verified by substituting d = 0 in (2.14).
To execute our SQCQP method, it is necessary to find a point x̄ satisfying the

Slater condition. This can be accomplished in various ways. For example, we can use
the following simple iterative procedure:
Step 0. Choose an initial point x1 ∈ �n and a sequence {εk} of positive numbers. Set

k := 1.
Step 1. If ci(x

k) < 0, i = 1, . . . ,m, then exit. Otherwise, solve the convex quadratic
program

min{‖p‖2 | ci(xk) + gi(x
k)T p+ εk ≤ 0, i = 1, . . . ,m},(2.17)

and let pk be the optimal solution, if it exists.
Step 2. If (2.17) is infeasible, then put xk+1 := xk. Otherwise, put xk+1 := xk + pk.

Set k := k + 1 and go to Step 1.
We note that the subproblem (2.17) has a unique optimal solution as long as it is
feasible. Assuming the existence of a Slater point, it can be shown [7] that the above
procedure indeed produces a Slater point in a finite number of iterations, provided
that {εk} is chosen to be a strictly decreasing sequence that tends to zero at a rate
slower than any linearly convergent sequence. A possible choice of {εk} would be
to let εk = ε/k for all k, where ε is a positive constant. Alternatively, we can solve
approximately the minimax problem

minimize max
i=1,...,m

ci(x),

for which many methods are available. In particular, it suffices to find a point x
with negative objective value, which is easier than solving the minimax problem to
optimality. We can also reformulate the minimax problem as

minimize ξ subject to ci(x)− ξ ≤ 0, i = 1, . . . ,m,

which is a special case of (2.1) with readily known Slater points. Our SQCQP method
can thus be applied to this “phase I” problem, terminating whenever a point (x, ξ)
with ci(x) < 0, i = 1, . . . ,m, is found. Finite termination can be shown by assuming
the existence of a Slater point and the boundedness of the feasible set for (2.1). The
resulting two-phase SQCQP method is reminiscent of the two-phase simplex method
for linear programming, with strict feasibility replacing feasibilty as the goal of phase I.

As an alternative to finding a Slater point a priori, it suffices that we have
estimates c̄ and κ̄ satisfying maxi=1,...,m ci(x̄) ≤ c̄ < 0 and κ̄ ≥ maxi=1,...,m(x̄ −
xk)TGi(x

k)(x̄− xk) for all k for some (unknown) Slater point x̄. Then, in determin-
ing αk, we can replace ci(x̄) and κi in (2.4)–(2.6) by c̄ and κ̄, respectively. It can be
verified that this replacement does not affect the global and local convergence proper-
ties of our SQCQP method. If such estimates c̄ and κ̄ are not known a priori, we can
make an initial guess of them and use an infeasibility-detecting method to solve the
subproblem (2.2) associated with xk, Bk, αk. In particular, there are methods that,
for a given tolerance ε > 0, can detect in a finite number of iterations whether the
subproblem has a strictly feasible solution with slacks of at least ε [24, Theorem 3.1].
If it is detected that no such strictly feasible solution exists, we increase c̄ and κ̄ by
constant factors, adjust αk accordingly, and resolve the subproblem. The number of
times in which c̄ and κ̄ are increased is finite, provided ε is taken sufficiently small.
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3. Global convergence. In this section, we analyze the global convergence of
the SQCQP method. We begin with the following lemma giving conditions for an
optimal solution d of (2.2) to be a descent direction for the penalty function Fr at x.

Lemma 3.1. For any x ∈ �n and α = (αi)
m
i=1 ≥ 0, suppose that subproblem (2.2)

has a KKT pair (d, v). Also, suppose there exists a µ > 0 such that

2B −G(x) +

m∑
i=1

αiviGi(x) � µI(3.1)

and r ≥ maxi vi. Then

F̄r(x, d, α)− Fr(x) ≤ −1
2
µ‖d‖2.(3.2)

Proof. We have from (2.14) that

g(x)T d+
1

2
dTG(x)d = −

(
Bd+

m∑
i=1

vi(αiGi(x)d+ gi(x))

)T
d+

1

2
dTG(x)d

= −dT
(
B +

m∑
i=1

αiviGi(x)− 1

2
G(x)

)
d−

m∑
i=1

vigi(x)
T d

= −1
2
dT

(
2B +

m∑
i=1

αiviGi(x)−G(x)

)
d+ vT c(x),(3.3)

where c(x) = (c1(x), . . . , cm(x))
T . Then, from (2.13) we obtain

F̄r(x, d, α)− Fr(x) = g(x)T d+
1

2
dTG(x)d− r

m∑
i=1

[ci(x)]+

= −1
2
dT

(
2B −G(x) +

m∑
i=1

αiviGi(x)

)
d+ vT c(x)− r

m∑
i=1

[ci(x)]+

≤ −1
2
µ‖d‖2 −

m∑
i=1

(r − vi)[ci(x)]+

≤ −1
2
µ‖d‖2,

where the second equality follows from (3.3), the first inequality is due to (3.1) and
vT c(x) ≤∑i vi[ci(x)]+, and the last inequality is due to r ≥ maxi vi.

Since each Gi(x) is positive semidefinite and vi and αi are nonnegative, condition
(3.1) is satisfied if B is chosen to satisfy

2B � G(x) + µI

for some constant µ > 0.
The next lemma shows that the line search for the penalty function Fr at x along

the direction d is well defined.
Lemma 3.2. Suppose that the conditions in Lemma 3.1 are satisfied. If d �= 0,

then the descent condition (2.11) holds for all β > 0 small enough.
Proof. Since each Gi(x) is positive semidefinite, then

ci(x) + gi(x)
T d ≤ ci(x) + gi(x)

T d+
αi
2
dTGi(x)d ≤ 0, i = 1, . . . ,m.
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Thus, for any β ∈ [0, 1], we have

ci(x) + βgi(x)
T d ≤ (1− β)ci(x),

implying that

[ci(x) + βgi(x)
T d]+ ≤ (1− β)[ci(x)]+, i = 1, . . . ,m.

As a result, we obtain

m∑
i=1

(
[ci(x) + βgi(x)

T d]+ − [ci(x)]+
) ≤ −β m∑

i=1

[ci(x)]+.(3.4)

Then, using the Taylor series approximation of f(x+βd) and ci(x+βd) at x, we have

Fr(x+ βd)− Fr(x)

= βg(x)T d+
β2

2
dTG(x)d+ o(β2‖d‖2)

+r
m∑
i=1

[
ci(x) + βgi(x)

T d+O(β2‖d‖2)
]
+
− r

m∑
i=1

[ci(x)]+

= βg(x)T d+
β2

2
dTG(x)d+ r

m∑
i=1

(
[ci(x) + βgi(x)

T d]+ − [ci(x)]+

)
+O(β2‖d‖2)

≤ βg(x)T d+
β2

2
dTG(x)d− βr

m∑
i=1

[ci(x)]+ +O(β2‖d‖2),

where the second equality uses the Lipschitzian property of [·]+ and the inequality
uses (3.4). Since G(x) is positive semidefinite and 0 < β ≤ 1, the above relation
implies that

Fr(x+ βd)− Fr(x) ≤ β

(
g(x)T d+

1

2
dTG(x)d− r

m∑
i=1

[ci(x)]+

)
+O(β2‖d‖2)

= β
(
F̄r(x, d, α)− Fr(x)

)
+O(β2‖d‖2),

where the equality follows from (2.13). Then by (3.2) and σ ∈ (0, 1), we have

Fr(x+ βd)− Fr(x) ≤ σβ
(
F̄r(x, d, α)− Fr(x)

)
for all sufficiently small β > 0.

The next lemma shows that a KKT pair (d, v) obtained by solving subproblem
(2.2) is bounded when (x,B) lies in a bounded set.

Lemma 3.3. Let X be any nonempty bounded subset of �n. Let Ω := {B ∈
Sn |µ1I � B � µ2I} for some constants µ1 ≥ µ2 > 0. Then there exists a bounded
subset D×V of �n×�m such that, for any (x,B) ∈ X ×Ω and any KKT pair (d, v)
of subproblem (2.2) with (αi)

m
i=1 given by (2.10), we have (d, v) ∈ D × V .

Proof. First we show the boundedness of d. Fix any x ∈ X and B ∈ Ω. Since
(αi)

m
i=1 is given by (2.10), we see from Lemma 2.1 that there exists a t ∈ (0, 1] such
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that t(x̄− x) is a feasible solution of subproblem (2.2). So d satisfies

−‖g(x)‖‖d‖+ µ2

2
‖d‖2 ≤ g(x)T d+

1

2
dTBd

≤ tg(x)T (x̄− x) +
t2

2
(x̄− x)TB(x̄− x)

≤ ‖g(x)‖ ‖x̄− x‖+ µ1

2
‖x̄− x‖2,

where the first and last inequalities follow from B ∈ Ω and t ∈ (0, 1]. Notice that the
right-hand side of this inequality, as well as ‖g(x)‖ on the left-hand side, are bounded
for x ∈ X. This implies that d is bounded for x ∈ X. Also, B ∈ Ω is bounded since
B is symmetric and its eigenvalues are bounded.

Next we show the boundedness of v. Suppose to the contrary that there exists a
sequence of KKT pair {(dk, vk)} of subproblem (2.2) associated with some (xk, Bk) ∈
X × Ω and (αki )

m
i=1 given by (2.10) for xk, k = 1, 2, . . ., such that ‖vk‖ → +∞. By

passing to a subsequence if necessary, we may assume that (xk, Bk, dk) converges to
some (x∞, B∞, d∞), and vk/‖vk‖ → w with ‖w‖ = 1 and w ≥ 0. By the KKT
conditions (2.14), we have for each k that

Bkdk + g(xk) +

m∑
i=1

vki∇qki (dk) = 0,

qki (d
k) ≤ 0, vki ≥ 0, vki q

k
i (d

k) = 0, i = 1, . . . ,m,

(3.5)

where qki : �n → � are quadratic functions defined by

qki (d) := ci(x
k) + gi(x

k)T d+
αki
2
dTGi(x

k)d.

By further passing to a subsequence if necessary, we may assume that αki converges
to some α∞

i ∈ {0, 1} for each i. Define the quadratic functions q∞i : �n → �,
i = 1, . . . ,m, by

q∞i (d) = ci(x
∞) + gi(x

∞)T d+
α∞
i

2
dTGi(x

∞)d.

Then, upon dividing both sides of the first equality in (3.5) by ‖vk‖ and taking limit,
we obtain

m∑
i=1

wi∇q∞i (d∞) = 0.(3.6)

Moreover, the rest of (3.5) implies that q∞i (d∞) ≤ 0, i = 1, . . . ,m, and

wi > 0 =⇒ q∞i (d∞) = 0.(3.7)

Note that there is at least one index i such that wi > 0.
By Lemma 2.1, for each k, there exists tk ∈ {1, sk2 , sk3} such that d̂k := tk(x̄− xk)

satisfies

qki (d̂
k) ≤ tk(1− ϑ)ci(x̄), i = 1, . . . ,m,



SQCQP METHOD FOR CONVEX MINIMIZATION 1109

where sk2 , s
k
3 are given by (2.3), (2.5), (2.6) with x = xk. It is readily seen that

sk2 ≥ sk3 ≥ min

{
min

i=1,...,m

−(ϑ− θ)ci(x̄)

κki
, 1

}
,

where κki := (x̄ − xk)TGi(x
k)(x̄ − xk) for all i. Since {xk} converges, {κki } also

converges for all i, so the above inequalities show that {sk2} and {sk3} are uniformly
bounded away from zero. This in turn implies that {tk} is uniformly bounded away

from zero. Then any accumulation point (d̂∞, t∞) of {(d̂k, tk)} satisfies

q∞i (d̂∞) ≤ t∞(1− ϑ)ci(x̄) < 0, i = 1, . . . ,m.

Then, for every i such that wi > 0, (3.7) implies that q∞i (d∞) = 0 so that the
convexity of q∞i yields

∇q∞i (d∞)T (d̂∞ − d∞) ≤ q∞i (d̂∞)− q∞i (d∞) < 0.

Since w ≥ 0 and there is at least one index i such that wi > 0, this implies that

m∑
i=1

wi∇q∞i (d∞)T (d̂∞ − d∞) < 0.

This contradicts (3.6), thus completing the proof.
It is well known that, for a convex program, the Slater condition implies the

boundedness of the Lagrange multipliers. Thus, Lemma 3.3 can be viewed as a gen-
eralization of this result to the uniform boundedness of the multipliers for all the
subproblems which are convex and have nonempty interiors. Now we are ready to
establish a global convergence result for the SQCQP method.

Theorem 3.4. Let {xk}, {Bk}, {αk}, {vk} be generated by the SQCQP method.
Suppose that {xk} is bounded. Also, suppose that

2Bk −G(xk) +

m∑
i=1

αki v
k
i Gi(x

k) � µI and µ1I � Bk � µ2I

for all k, where µ > 0 and µ1 ≥ µ2 > 0 are some constants. Then the SQCQP
method either terminates at an optimal solution of problem (2.1) or generates an
infinite sequence {xk} of which every accumulation point is an optimal solution of
problem (2.1).

Proof. For each k, by Lemma 2.1 and the choice of αk, subproblem (2.1) associated
with xk, Bk, αk is feasible and, by Bk being positive definite, has a unique optimal
solution dk. Since rk ≥ maxi v

k
i by (2.15), Lemma 3.2 implies that βk in the line

search is well defined. If the method terminates at some iteration k, then Lemma 2.2
implies that the iterate xk is an optimal solution of problem (2.1). Suppose that the
method generates an infinite sequence {xk}. Since {xk} is assumed to be bounded and
µ1I � Bk � µ2I for all k, Lemma 3.3 implies that {(dk, vk)} is also bounded, which
in particular implies that the penalty parameter rk is constant for all k sufficiently
large. Moreover, we have from Lemma 3.1 that

F̄rk(x
k, dk, αk)− Frk(x

k) ≤ −1
2
µ‖dk‖2(3.8)

for all k.
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We consider two cases: (i) The sequence of step sizes {βk} is bounded away from

zero, say by β̂ > 0; and (ii) {βk} contains a subsequence converging to zero.
In case (i), since (2.16) holds with β = βk, (3.8) yields

Frk(x
k + βkdk)− Frk(x

k) ≤ −1
2
σβ̂µ‖dk‖2

for all k. Since {xk} is bounded so that {Frk(xk)} is bounded from below, this in-
equality implies that {dk} tends to 0. Since (dk, vk) satisfies the KKT conditions
(2.14) for subproblem (2.2) associated with xk, Bk, αk, by taking the limit as k →∞
and using the boundedness of {xk}, {Bk}, {vk} and {αk}, we see that any accumula-
tion point (x∗, v∗) of {(xk, vk)} satisfies the KKT conditions for problem (2.1). Since
(2.1) is a convex program, x∗ is an optimal solution of (2.1).

In case (ii), there exists a subsequence {βk}k∈K converging to 0, where K ⊂
{0, 1, . . .}. Since {(xk, dk, αk)} is bounded and {rk} has a constant tail, by further
passing to a subsequence if necessary, we can assume that {(xk, dk, αk)}k∈K converges
to some limit (x∗, d∗, α∗) and rk = r, βk < 1 for all k ∈ K, where r > 0 is a constant.
For each k ∈ K, since βk < 1 and rk = r, the Armijo-type line search rule in Step 2
of the SQCQP method implies that

Fr(x
k + (βk/γ)dk)− Fr(x

k) > σ(βk/γ)
(
F̄r(x

k, dk, αk)− Fr(x
k)
)
.(3.9)

Using the simple property [u1 + u2]+ − [u1]+ ≤ [u2]+ for any real numbers u1, u2, we
deduce

[ci(x+ βd)]+ − [ci(x)]+ = [ci(x) + β∇ci(x)T d+ oi(x;βd)]+ − [ci(x)]+

≤ β[∇ci(x)T d]+ + [oi(x;βd)]+

for any i, x, d, and β > 0, with lim(x,d,β)→(x∗,d∗,0+) oi(x;βd)/β = 0. Dividing both
sides of the above inequality by β and taking the limit give

[∇ci(x∗)T d∗]+ ≥ lim sup
(x,d,β)→(x∗,d∗,0+)

([ci(x+ βd)]+ − [ci(x)]+)/β ∀i.

Notice that the directional derivative of [ci(x)]+ at x∗ in the direction of d∗ is
[∇ci(x∗)T d∗]+ if ci(x

∗) = 0 and is zero if ci(x
∗) < 0. Combining this with the

above relation, we obtain

F ′
r(x

∗; d∗) = ∇f(x∗)T d∗ + r
∑

{i:ci(x∗)=0}
[∇ci(x∗)T d∗]+

≥ lim sup
(x,d,β)→(x∗,d∗,0+)

(Fr(x+ βd)− Fr(x))/β,

where F ′
r(x

∗; d∗) denotes the directional derivative of Fr at x∗ in the direction d∗.
Thus, dividing both sides of (3.9) by βk/γ and taking the limit as k ∈ K, k → ∞,
yield

F ′
r(x

∗; d∗) ≥ σ
(
F̄r(x

∗, d∗, α∗)− Fr(x
∗)
)
.(3.10)

On the other hand, we note from (2.12) that F̄r(x
∗, 0, α∗) = Fr(x

∗) and F̄r(x
∗, d, α∗)

is convex in d and its directional derivative at d = 0 in the direction d∗ coincides with
F ′
r(x

∗; d∗). Therefore

F ′
r(x

∗; d∗) ≤ F̄r(x
∗, d∗, α∗)− Fr(x

∗).(3.11)
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Combining (3.10) and (3.11), and using σ ∈ (0, 1), we obtain

F̄r(x
∗, d∗, α∗)− Fr(x

∗) ≥ 0.

Also, using rk = r and passing to the limit in (3.8) as k ∈ K, k →∞, yield

F̄r(x
∗, d∗, α∗)− Fr(x

∗) ≤ −1
2
µ‖d∗‖2.

The last two inequalities imply that d∗ = 0. Hence, by the same reasoning as in case
(i), we obtain that x∗ is an optimal solution of problem (2.1).

4. Local quadratic rate of convergence. In this section, we analyze the local
quadratic convergence of the SQCQPmethod under the following further assumptions.

Assumption 2.
(a) Problem (2.1) has an optimal solution x∗ satisfying

H(x∗, v∗) � µ∗I ∀v∗ ∈ V ∗

for some constant µ∗ > 0, where H(x, v) := G(x) +
∑m
i=1 viGi(x) and V ∗ := {v∗ ∈

�m | (x∗, v∗) is a KKT pair of problem (2.1)}.2
(b) G and G1, . . . , Gm are Lipschitz continuous in a neighborhood of x∗.
In addition, we will choose B = G(x) in the SQCQP method, so subproblem (2.2)

becomes

minimize g(x)T d+
1

2
dTG(x)d

subject to ci(x) + gi(x)
T d+

αi
2
dTGi(x)d ≤ 0, i = 1, . . . ,m.

(4.1)

Assumption 2(a) implies that x∗ is the unique solution of the convex program (2.1).
The next lemma shows that, for x near x∗, all constraints in subproblem (4.1)

use the second-order information.
Lemma 4.1. If x is sufficiently close to x∗, then (αi)

m
i=1 given by (2.10) satisfies

αi = 1 for all i and subproblem (4.1) has at least one KKT pair.
Proof. Since α1, . . . , αm are chosen by (2.10), Lemma 2.1 implies that (4.1) is

feasible for any x. Suppose x is close to the optimal solution x∗ (thus nearly feasible).
Let s1, s3 be given by (2.4)–(2.6). Then s1 is close to 0 if x is infeasible, and s1 = −∞
if x is feasible. Moreover, in a neighborhood of x∗, s3 is bounded from below by
a positive constant. Therefore there exists a neighborhood X of x∗ such that, for
x ∈ X, we have 2s1 ≤ s3 and the rule (2.10) yields αi = 1 for all i.

Fix any v∗ ∈ V ∗ �= ∅. Assumption 2(a) and the continuity property of G,
G1, . . . , Gm and their eigenvalues imply H(x, v∗) is positive definite for all x ∈ X
sufficiently close to x∗. Then d = 0 is the only solution of G(x)d = 0, Gi(x)d = 0, i =
1, . . . ,m, from which we can deduce that the objective function of (4.1) is bounded
from below on the feasible region. This implies that (4.1) has an optimal solution [13].
In addition, Lemma 2.1 ensures that the Slater condition (2.7) holds with t = s3 and
d = s3(x̄ − x), so (4.1) has at least one Lagrange multiplier vector by [25, Theorem
28.2].

By Lemma 4.1, for all x sufficiently close to x∗, subproblem (4.1) reduces to

minimize g(x)T d+
1

2
dTG(x)d

subject to ci(x) + gi(x)
T d+

1

2
dTGi(x)d ≤ 0, i = 1, . . . ,m.

(4.2)

2V ∗ is nonempty and bounded by Assumption 1 and [25, Theorem 28.2].
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Then (d, v) forms a KKT pair for (4.2) if and only if

g(x) +G(x)d+
∑

i∈I(x;d)

vi(gi(x) +Gi(x)d) = 0,(4.3)

ci(x) + gi(x)
T d+

1

2
dTGi(x)d = 0, vi ≥ 0, i ∈ I(x; d),(4.4)

ci(x) + gi(x)
T d+

1

2
dTGi(x)d < 0, vi = 0, i �∈ I(x; d),(4.5)

for some I(x; d) ⊆ {1, . . . ,m}.
Lemma 4.2. Problem (4.2) with x = x∗ has the unique optimal solution d = 0.
Proof. Fix any v∗ ∈ V ∗ �= ∅. Then it is readily verified using (4.3)–(4.5) that

d = 0 together with v∗ satisfies the KKT conditions for subproblem (4.2) with x = x∗.
Since (4.2) is a convex program, this shows d = 0 is an optimal solution. To show
uniqueness, consider any optimal solution d∗ of (4.2) with x = x∗. Then d∗ is a
feasible solution with objective function value of zero so that

g(x∗)T d∗ +
1

2
(d∗)TG(x∗)d∗ = 0,(4.6)

gi(x
∗)T d∗ +

1

2
(d∗)TGi(x

∗)d∗ ≤ 0, i ∈ I∗,(4.7)

where I∗ := {i | ci(x∗) = 0}. Multiplying (4.7) by v∗i (which is nonnegative) and
adding to (4.6) yield

0 ≥ g(x∗)T d∗ +
1

2
(d∗)TG(x∗)d∗ +

∑
i∈I∗

v∗i

(
gi(x

∗)T d∗ +
1

2
(d∗)TGi(x

∗)d∗
)

=
1

2
(d∗)TH(x∗, v∗)d∗,

where the equality uses g(x∗) +
∑m
i=1 v

∗
i gi(x

∗) = 0 and v∗i = 0 for i �∈ I∗. Since
H(x∗, v∗) � 0 by Assumption 2(a), this implies that d∗ = 0.

Lemma 4.3. There exist a neighborhood X of x∗ and a constant ρ1 > 0 such
that, for each x ∈ X, problem (4.2) has a KKT pair and each such KKT pair (d, v)
satisfies ‖d‖ ≤ ρ1 and ‖v‖ ≤ ρ1.

Proof. By Lemma 4.1, there exists a neighborhood X0 of x∗ such that, for each
x ∈ X0, (4.2) has a KKT pair. Moreover, the proof of Lemma 4.1 shows that the
vector s3(x̄ − x) is a feasible solution of (4.2), where s3 is given by (2.5)–(2.6). For
each KKT pair (d, v) of (4.2), since d is an optimal solution of (4.2), we then have

g(x)T d+
1

2
dTG(x)d ≤ s3g(x)

T (x̄− x) +
(s3)

2

2
(x̄− x)TG(x)(x̄− x)

≤ ‖g(x)‖‖x̄− x‖+ 1

2
(x̄− x)TG(x)(x̄− x),

where the last inequality follows from 0 < s3 ≤ 1. Moreover, the feasibility of d for
(4.2) implies that

ci(x) + gi(x)
T d+

1

2
dTGi(x)d ≤ 0, i = 1, . . . ,m.
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Fix any v∗ ∈ V ∗ �= ∅. Then the above inequalities and v∗ ≥ 0 yield

m∑
i=1

v∗i ci(x) +

(
g(x) +

m∑
i=1

v∗i gi(x)

)T
d+

1

2
dTH(x, v∗)d

≤ ‖g(x)‖‖x̄− x‖+ 1

2
(x̄− x)TG(x)(x̄− x).

(4.8)

By Assumption 2(a) and the continuity property of G,G1, . . . , Gm and their eigenval-
ues, there exists a neighborhood X ⊆ X0 of x∗ such that

H(x, v∗) � µ∗

2
I

for every x ∈ X. Thus, the left-hand side of (4.8) is a convex quadratic function
of d with bounded coefficients and uniformly positive definite Hessians. Since the
right-hand side of (4.8) is clearly bounded for x ∈ X, this implies the boundedness of
d.

By using Lemma 4.1, the boundedness of v can be proved in the same manner as
in Lemma 3.3 and thus is omitted.

In the next lemma, we show that the solution d of subproblem (4.2) tends to zero
as the iterate x approaches x∗. In what follows, for any nonempty closed set V ⊆ �m,
we denote dist(v, V ) := minv′∈V ‖v − v′‖.

Lemma 4.4. There exist a neighborhood X of x∗ and a constant ρ2 > 0 such
that for each x ∈ X and each KKT pair (d, v) of (4.2), conditions (4.3)–(4.5) hold for
some I(x; d) ⊆ {1, . . . ,m} and

max{‖d‖,dist(v, V ∗)} ≤ ρ2‖x− x∗‖.(4.9)

Proof. Let X be the neighborhood from Lemma 4.3. Consider any sequence
{xk} ⊂ X converging to x∗. Let (dk, vk) be any KKT pair of (4.2) with x = xk.
By Lemma 4.3, {(dk, vk)} is bounded. Then it follows from (4.3)–(4.5) that every
accumulation point of {(dk, vk)} is a KKT pair for (4.2) with x = x∗. By Lemma
4.2, d = 0 is the unique optimal solution of (4.2) with x = x∗. Hence it follows that
dk → 0. For any subset I of {1, . . . ,m}, let VI denote the set of vectors v satisfying

g(x∗) +
∑
i∈I

vigi(x
∗) = 0, vi ≥ 0, i ∈ I, vi = 0, i �∈ I.(4.10)

Then we can deduce that, if I(xk; dk) = I holds for an infinite number of k’s, then I ⊆
I∗ := {i | ci(x∗) = 0} and any accumulation point v of {vk} along this subsequence
belongs to VI . Consequently, by taking X small enough, we can assume that

I(x; d) ⊆ I∗ and VI(x;d) �= ∅(4.11)

for every x ∈ X and every optimal solution d of subproblem (4.2).
We claim that

dist(v, V ∗) = O(‖d‖+ ‖x− x∗‖)(4.12)

for all x ∈ X and all (d, v) satisfying the KKT conditions (4.3)–(4.5) for problem
(4.2). To see this, note that V ∗ �= ∅ coincides with the solution set of the following
linear system in v:

g(x∗) +
∑
i∈I∗

vigi(x
∗) = 0, vi ≥ 0, i ∈ I∗, vi = 0, i �∈ I∗.(4.13)



1114 MASAO FUKUSHIMA, ZHI-QUAN LUO, AND PAUL TSENG

Since (d, v) satisfies (4.3)–(4.5) and I(x; d) ⊆ I∗ by (4.11), v satisfies the last two
conditions of (4.13). Moreover, v satisfies the first equation of (4.13) approximately
in the sense that

g(x∗) +
∑
i∈I∗

vigi(x
∗) = g(x∗)− g(x)−G(x)d+

∑
i∈I∗

vi(gi(x
∗)− gi(x))−

∑
i∈I∗

viGi(x)d

= O(‖d‖+ ‖x− x∗‖),
where the first equality follows from (4.3) and the second equality follows from the
local Lipschitz continuity of g and gi, i = 1, . . . ,m (cf. Assumption 2(b)) and the
uniform boundedness of (x, v) for x ∈ X (cf. Lemma 4.3). Thus, by applying a well-
known Hoffman’s error bound [9] to the linear system (4.13) in v, we obtain (4.12),
where the constant in the big “O” notation is independent of x and (d, v).

We now show that, by taking a smaller neighborhood X if necessary, we further
have that

‖d‖ = O(‖x− x∗‖),
which together with (4.12) would complete the proof. To show this, suppose to the
contrary that there exist a sequence {xk} ⊂ X converging to x∗ and a sequence
{(dk, vk)} satisfying (4.3)–(4.5) with x = xk such that ‖dk‖/‖xk − x∗‖ → ∞. By
passing to a subsequence if necessary, we can assume that I(xk; dk) in (4.3)–(4.5) is
fixed at some I for all k. Since xk → x∗, we have dk → 0 as was shown earlier.
Moreover, by (4.11), we have I ⊆ I∗ and VI �= ∅. By replacing I∗ by I in the proof
of (4.12), we have that

dist(v, VI) = O(‖d‖+ ‖x− x∗‖)
for all x ∈ X and all (d, v) satisfying (4.3)–(4.5) with I(x; d) = I. Since I(xk; dk) = I,
this together with the assumption ‖dk‖/‖xk − x∗‖ → ∞ implies that ‖vk − v̂k‖ =
O(‖dk‖), where v̂k is the element of VI nearest to vk. Since v̂k ∈ VI , there holds

g(x∗) +
∑
i∈I

v̂ki gi(x
∗) = 0, v̂ki ≥ 0, i ∈ I, v̂ki = 0, i �∈ I.

Then it follows from (4.3) that

g(xk)− g(x∗) +G(xk)dk +
∑
i∈I

vki (gi(x
k)− gi(x

∗) +Gi(x
k)dk)

= −
∑
i∈I

(vki − v̂ki )gi(x
∗).

(4.14)

Also, I(xk; dk) = I together with (4.4) implies that

ci(x
k)− ci(x

∗) + gi(x
k)T dk +

1

2
(dk)TGi(x

k)dk = 0, i ∈ I.

By Lemma 4.3, {vk} is bounded. Then, by further passing to a subsequence if
necessary, we can assume that {(dk/‖dk‖, (vk − v̂k)/‖dk‖, vk)} converges to some
(u, z, w) with ‖u‖ = 1. Dividing (4.14) and the above equality by ‖dk‖, and using
(xk, dk)→ (x∗, 0), ‖xk −x∗‖/‖dk‖ → 0, and local Lipschitz continuity of g and ci, gi,
i ∈ I, yield in the limit that

G(x∗)u+
∑
i∈I

wiGi(x
∗)u = −

∑
i∈I

zigi(x
∗),

gi(x
∗)Tu = 0, i ∈ I.
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The above two equalities imply that uT (G(x∗) +
∑
i∈I wiGi(x

∗))u = 0. Since it is
readily seen from I ⊆ I∗ that w ∈ VI ⊆ V ∗, Assumption 2(a) implies that G(x∗) +∑
i∈I wiGi(x

∗) � 0, and hence u = 0, contradicting ‖u‖ = 1.
Like the ordinary SQP method, the SQCQP method is locally convergent at a

quadratic rate if the unit step size is used.
Lemma 4.5. For any x sufficiently close to x∗ and any KKT pair (d, v) of (4.2),

we have H(x, v) � 1
2µ

∗I and

‖x+ d− x∗‖ = O(‖x− x∗‖2), dist(v, V ∗) = O(‖x− x∗‖2).(4.15)

Proof. For each x and each KKT pair (d, v) of (4.2), we have that (d, v) satisfies
(4.3) and

ci(x) + gi(x)
T d+

1

2
dTGi(x)d = 0, i ∈ I(x; d),(4.16)

and vi = 0 for i �∈ I(x; d), for some I(x; d) ⊆ {1, . . . ,m}.
Let X be a sufficiently small neighborhood of x∗ so that Lemmas 4.3 and 4.4

apply. As was shown in the proof of Lemma 4.4, by taking X smaller if necessary, we
can further assume that (4.11) holds for every x ∈ X and every KKT pair (d, v) of
(4.2), where VI(x;d) denotes the set of vectors v satisfying (4.10) with I being replaced
by I(x; d). Since I(x; d) takes on only a finite number of distinct values, it suffices
to prove the lemma for those x and d such that I(x; d) = I for some fixed index set
I ⊆ {1, . . . ,m}. Then we have from (4.11) that I ⊆ I∗ and VI �= ∅. Let v∗ be an
arbitrary element of VI . Then we have

g(x∗) +
∑
i∈I

v∗i gi(x
∗) = 0,(4.17)

ci(x
∗) = 0, i ∈ I.(4.18)

It follows from (4.3) and (4.17) that

0 = g(x)− g(x∗) +G(x)d+
∑
i∈I

(
vigi(x)− v∗i gi(x

∗) + viGi(x)d
)

=

(
G(x) +

∑
i∈I

viGi(x)

)
(x+ d− x∗) +

∑
i∈I

(vi − v∗i )gi(x
∗)

+ g(x)− g(x∗)−G(x)(x− x∗)

+
∑
i∈I

vi

(
gi(x)− gi(x

∗)−Gi(x)(x− x∗)
)

=

(
G(x) +

∑
i∈I

viGi(x)

)
(x+ d− x∗)

+
∑
i∈I

(vi − v∗i )gi(x
∗) +O(‖x− x∗‖2),(4.19)

where the last equality follows from Assumption 2(b) and the uniform boundedness
of v shown by Lemma 4.3. On the other hand, by (4.16) and (4.18), we have for each
i ∈ I that
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0 = ci(x) + gi(x)
T d+

1

2
dTGi(x)d− ci(x

∗)

= gi(x
∗)T (x+ d− x∗) + ci(x)− ci(x

∗)− gi(x
∗)T (x− x∗)

+ (gi(x)− gi(x
∗))T d+

1

2
dTGi(x)d

= gi(x
∗)T (x+ d− x∗) +O(‖x− x∗‖2) +O(‖x− x∗‖ · ‖d‖) +O(‖d‖2)

= gi(x
∗)T (x+ d− x∗) +O(‖x− x∗‖2),(4.20)

where the third equality follows from Assumption 2(b) and the last equality follows
from Lemma 4.4 and (4.9). Since vi = 0 for all i �∈ I, then

H(x, v) = G(x) +
∑
i∈I

viGi(x).

Let AI be the n×|I| matrix whose columns are gi(x
∗), i ∈ I. Then (4.19) and (4.20)

yield (
H(x, v) AI
ATI 0

)(
x+ d− x∗

vI − v∗I

)
= O(‖x− x∗‖2),(4.21)

where v∗I := (v∗i )i∈I and vI := (vi)i∈I . Let AI1 ∈ �n×|I1|, with I1 ⊆ I, be any
submatrix of AI whose columns are linearly independent and span the column space
of AI . Then AI(vI − v∗I) = AI1

u for some u ∈ �|I1|, so that (4.21) implies that(
H(x, v) AI1

ATI1
0

)(
x+ d− x∗

u

)
= O(‖x− x∗‖2).(4.22)

Also, Assumption 2(a) together with Lemma 4.4 implies that H(x, v) � 1
2µ

∗I for all
x sufficiently close to x∗. Thus, by taking X sufficiently small, we can assume that
H(x, v) � 1

2µ
∗I for all x ∈ X and all KKT pairs (d, v) of (4.2). Since the matrix ATI1

is constant with full column rank, this implies that the coefficient matrix in (4.22) is
nonsingular and its inverse is uniformly bounded in operator norm for x ∈ X. Then
it follows from (4.22) that

‖x+ d− x∗‖ = O(‖x− x∗‖2), ‖u‖ = O(‖x− x∗‖2).
Consequently, we have∑

i∈I
(vi − v∗i )gi(x

∗) = AI(vI − v∗I) = AI1u = O(‖x− x∗‖2).(4.23)

Recall that v∗ is an arbitrary element of the solution set VI of the linear system
(4.10) in v. Then (4.23) shows that v is an approximate solution of the first equation
in (4.10) with residual being O(‖x− x∗‖2). Since v satisfies the remaining equations
and inequalities in (4.10), by invoking Hoffman’s error bound [9] and using VI ⊆ V ∗,
we obtain

dist(v, V ∗) ≤ dist(v, VI) = O(‖x− x∗‖2),
as desired.

The next lemma shows that the unit step size is accepted whenever an iterate x
is sufficiently close to the optimal solution x∗. In other words, the Maratos effect will
not occur.
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Lemma 4.6. Let X and ρ1 be given by Lemma 4.3. Fix r0 > 0 and δ > 0. Let
ρ3 := max{r0, ρ1 + 2δ}. If x ∈ X is sufficiently close to x∗ and (d, v) is any KKT
pair of (4.2) satisfying maxi vi ≤ r ≤ ρ3, then the step size β = 1 is accepted by the
line search criterion (2.11) with αi = 1 for all i.

Proof. Since x ∈ X, Lemma 4.3 implies that (4.2) has a KKT pair. Any KKT
pair (d, v) of (4.2) satisfies ci(x) + gi(x)

T d+ 1
2d
TGi(x)d ≤ 0 for all i. Thus

|[ci(x+ d)]+| =
∣∣∣∣[ci(x+ d)]+ − [ci(x) + gi(x)

T d+
1

2
dTGi(x)d]+

∣∣∣∣
≤
∣∣∣∣ci(x+ d)−

(
ci(x) + gi(x)

T d+
1

2
dTGi(x)d

)∣∣∣∣
= o(‖d‖2)

for all i so that

Fr(x+ d)− Fr(x) = g(x)T d+
1

2
dTG(x)d− r

m∑
i=1

[ci(x)]+ + r · o(‖d‖2)

=
(
F̄r(x, d, α)− Fr(x)

)
+ r · o(‖d‖2),(4.24)

where αi = 1 for all i and the second equality follows from (2.13). Moreover,
Lemma 4.5 implies that, for x sufficiently close to x∗, condition (3.1) with B = G(x)
is satisfied with µ = 1

2µ
∗. Since r ≥ maxi vi, Lemma 3.1 yields that (3.2) holds. Let

σ ∈ (0, 1) be the constant in the line search criterion (2.11). Then combining (3.2)
with (4.24) yields

Fr(x+ d)− Fr(x) ≤ σ
(
F̄r(x, d, α)− Fr(x)

)
,

provided r · o(‖d‖2) ≤ (1− σ)µ‖d‖2/2. Since r ≤ ρ3, the latter holds whenever ‖d‖ is
sufficiently small. Notice that maxi vi ≤ ρ1 < ρ3 so that r exists. Since Lemma 4.4
shows that ‖d‖ becomes arbitrarily small as x approaches x∗, this implies that (2.11)
is satisfied by β = 1 whenever x ∈ X is sufficiently close to x∗.

We can now establish the local quadratic convergence of the SQCQP method.
Theorem 4.7. There exists a neighborhood X of x∗ (depending on r0 and δ)

such that the sequence {xk} generated by the SQCQP method, with x1 ∈ X and
Bk := G(xk) for all k, converges to x∗ at a Q-quadratic rate. In this case, we also
have dist(vk, V ∗)→ 0 at an R-quadratic rate.3

Proof. By Lemma 4.1, there exists a neighborhood X of x∗ such that, whenever
xk ∈ X, we have αki = 1 for all i and (dk, vk) is a well defined KKT pair of (4.2) with
x = xk. By Lemmas 4.3 and 4.6, we can assume by taking X smaller if necessary
that there exists a ρ1 > 0 such that, whenever xk ∈ X and maxi v

k
i ≤ rk ≤ ρ3 :=

max{r0, ρ1 + 2δ}, we have ‖vk‖ ≤ ρ1 and βk = 1. By Lemma 4.5, we can further
assume by taking X smaller if necessary that, whenever xk ∈ X, we have xk+dk ∈ X
and ‖xk + dk − x∗‖ ≤ 1

2‖xk − x∗‖.
Then, whenever

xk ∈ X and rk−1 ≤ ρ3,(4.25)

we have that αki = 1 for all i and the KKT pair (dk, vk) is well defined. Moreover,
‖vk‖ ≤ ρ1 so the updating rule (2.15) and the definition of ρ3 imply that rk ≤ ρ3

3For the definition of Q-quadratic and R-quadratic rate of convergence, see [18].
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as well as rk ≥ maxi v
k
i . This then implies that βk = 1, and hence xk+1 ∈ X and

‖xk+1 − x∗‖ ≤ 1
2‖xk − x∗‖. Since x1 ∈ X and r0 ≤ ρ3, it follows by induction on

k that (4.25) holds for all k and that xk → x∗. Moreover, Lemma 4.5 implies that
‖xk+1 − x∗‖ = O(‖xk − x∗‖2) and dist(vk, V ∗) = O(‖xk − x∗‖2) so that xk → x∗ at
a Q-quadratic rate and dist(vk, V ∗)→ 0 at an R-quadratic rate.

If G(x) � µI for all x, where µ > 0 is some constant, then Assumption 2(a)
holds automatically and Bk = G(xk) satisfies the assumptions of Theorem 3.4. Thus,
in this case, we conclude from Theorems 3.4 and 4.7 that if {xk} generated by the
SQCQP method is bounded (in addition to Assumptions 1 and 2(b)), then {xk} either
terminates finitely at the unique optimal solution x∗ or converges to x∗ at a quadratic
rate locally.

We remark that Lemmas 4.1–4.6 and Theorem 4.7 still hold if Assumption 2(a)
is replaced by the weaker assumption that, for each x sufficiently close to x∗ and each
u ∈ �n, there exists a Lagrange multiplier vector v of (4.2) satisfying

uTH(x, v)u ≥ µ∗‖u‖2

for some constant µ∗ > 0. This assumption is more restrictive than the quadratic
growth assumption made by Anitescu [2, equations (1.1), (1.12)], although our con-
clusion of quadratic rate of convergence is stronger than the conclusion of superlinear
rate of convergence obtained in [2, Theorem 3.6].

5. Conclusion. In this paper we have presented a sequential quadratically con-
strained quadratic programming (SQCQP) method for solving smooth convex pro-
grams. At each iteration, this method solves a single convex quadratically constrained
quadratic minimization subproblem. The latter can be formulated as a second-order
cone program and solved efficiently. A key advantage of the SQCQP method as com-
pared to the classical SQP methods is that the Maratos effect can be avoided when
using an ordinary �1 exact penalty function for the line search.

As future work, numerical experimentation with the SQCQP method is needed in
order to assess the computational saving (if any) that can be achieved over classical
SQP methods. Also, it would be interesting to see if some of the assumptions (such
as the Slater condition and Assumption 2) used in the convergence analysis can be
relaxed.

Acknowledgments. The authors thank Jim Burke and Steve Wright for bring-
ing to their attention the references [21] and [2], respectively. They also thank two
referees for helpful comments and suggestions on the original version of the paper.

REFERENCES

[1] F. Alizadeh and S. Schmieta, Symmetric cones, potential reduction methods, in Handbook
of Semidefinite Programming, H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Kluwer
Academic Publishers, Boston, MA, 2000, pp. 195–233.

[2] M. Anitescu, A superlinearly convergent sequential quadratically constrained quadratic pro-
gramming algorithm for degenerate nonlinear programming, SIAM J. Optim., 12 (2002),
pp. 949–978.

[3] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press,
New York, 1982.

[4] B.T. Boggs and J.W. Tolle, Sequential Quadratic Programming, Acta Numer. 4, Cambridge
University Press, Cambridge, UK, 1995, pp. 1–51.

[5] T.F. Coleman and A.R. Conn, Nonlinear programming via an exact penalty function: Global
analysis, Math. Programming, 24 (1982), pp. 137–161.



SQCQP METHOD FOR CONVEX MINIMIZATION 1119

[6] A.S. El-Bakry, R.A. Tapia, T. Tsuchiya, and Y. Zhang, On the formulation and theory of
the Newton interior-point method for nonlinear programming, J. Optim. Theory Appl., 89
(1996), pp. 507–541.

[7] M. Fukushima, A finitely convergent algorithm for convex inequalities, IEEE Trans. Autom.
Contr., 27 (1982), pp. 1126–1127.

[8] M. Fukushima, A successive quadratic programming algorithm with global and superlinear
convergence properties, Math. Programming, 35 (1986), pp. 253–264.

[9] A.J. Hoffman, On approximate solutions of systems of linear inequalities, J. Research Nat.
Bur. Standards, 49 (1952), pp. 263–265.

[10] S. Kruk and H. Wolkowicz, SQ2P, sequential quadratic constrained quadratic programming,
in Advances in Nonlinear Programming, Y.X. Yuan, ed., Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1998, pp. 177–204.

[11] S. Kruk and H. Wolkowicz, Sequential, quadratic constrained, quadratic programming for
general nonlinear programming, in Handbook of Semidefinite Programming, H. Wolkowicz,
R. Saigal, and L. Vandenberghe, eds., Kluwer Academic Publishers, Boston, MA, 2000, pp.
563–575.

[12] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone
programming, Linear Algebra Appl., 284 (1998), pp. 193–228.

[13] Z.-Q. Luo and S. Zhang, On extensions of Frank-Wolfe Theorems, Comput. Optim. Appl.,
13 (1999), pp. 87–110.

[14] D.Q. Mayne and E. Polak, A superlinearly convergent algorithm for constrained optimization
problems, Math. Programming Stud., 16 (1982), pp. 45–61.

[15] R.D.C. Monteiro and T. Tsuchiya, Polynomial convergence of primal-dual algorithms for
the second-order cone programs based on the MZ-family of directions, Math. Program., 88
(2000), pp. 61–83.

[16] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia, PA, 1994.

[17] Y.E. Nesterov, M.J. Todd, and Y. Ye, Infeasible-start primal-dual methods and infeasibility
detectors for nonlinear programming problems, Math. Program., 84 (1999), pp. 227-267.

[18] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

[19] V.M. Panin, A second-order method for the discrete min-max problem, U.S.S.R. Comput.
Math. and Math. Phys., 19 (1) (1979), pp. 90–100.

[20] V.M. Panin, Some methods of solving convex programming problems, U.S.S.R. Comput. Math.
and Math. Phys., 21 (2) (1981), pp. 57–72.

[21] E. Polak, D.Q. Mayne, and J.E. Higgins, On the extension of Newton’s method to semi-
infinite minimax problems, SIAM J. Control Optim., 30 (1992), pp. 367–389.

[22] M.J.D. Powell, Variable metric methods for constrained optimization, in Mathematical Pro-
gramming: State of the Art, A. Bachem, M. Grötschel, and B. Korte, eds., Springer-Verlag,
Berlin, 1983, pp. 288–311.

[23] D. Ralph and S.J. Wright, Superlinear convergence of an interior-point method for monotone
variational inequalities, in Complementarity and Variational Problems: State of the Art,
M.C. Ferris and J.-S. Pang, eds., SIAM, Philadelphia, 1997, pp. 345–385.

[24] J. Renegar, Linear programming, complexity theory and elementary functional analysis,
Math. Programming, 70 (1995), pp. 279-351.

[25] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[26] T. Tsuchiya, A convergence analysis of the scaling-invariant primal-dual path-following al-

gorithms for second-order cone programming, Optim. Methods Softw., 11/12 (1999), pp.
141–182.

[27] E.J. Wiest and E. Polak, A generalized quadratic programming-based phase-I–phase-II
method for inequality-constrained optimization, Appl. Math. Optim., 26 (1992), pp. 223–
252.



AUGMENTED LAGRANGIANS WITH ADAPTIVE PRECISION
CONTROL FOR QUADRATIC PROGRAMMING WITH SIMPLE

BOUNDS AND EQUALITY CONSTRAINTS∗
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problems. Moreover, boundedness of the penalty parameter is achieved for the precision control used.
Numerical experiments illustrate the efficiency of the presented algorithm and encourage its usage.
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1. Introduction. We shall be concerned with the problem of finding a minimizer
of a quadratic function subject to simple bounds and linear equality constraints, that
is,

minimize q(x)
subject to x ∈ Ω(1.1)

with Ω = {x ∈ R
n : x ≥ 0 and Cx = d}, q(x) = 1

2x
TAx − bTx, b ∈ R

n, d ∈ R
m,

A ∈ R
n×n symmetric positive definite, and C ∈ R

m×n a full rank matrix, withm < n.

We are especially interested in problems with m much smaller than n and with
the matrix A large and reasonably conditioned (or preconditioned), so that conjugate
gradient–based methods are directly applicable. Such problems arise, for example,
from the discretization of the variational inequality that describes the equilibrium of
a system of elastic bodies in contact in reciprocal formulation whenever such system
includes floating bodies [6, 7, 8, 23] or from application of duality-based domain
decomposition to the solution of variational inequalities [14, 15].

We restrict our attention to algorithms that reduce problem (1.1) to a sequence
of quadratic programming problems with simple bounds. Our approach has been
motivated by an effort to exploit recent progress in the solution of the latter problem,
namely, effective exploitation of projections [25] that allows drastic changes in the
active set from one iteration to another, and results [2, 3, 6, 7, 8, 10, 17, 18, 19] that
enable adaptive control of the precision of the solution of auxiliary problems while
preserving qualitative properties of the algorithms.
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Our starting point is the algorithm presented by Conn, Gould, and Toint [4],
who adapted the augmented Lagrangian method of Powell [26] and Hestenes [22]
to the solution of problems with a general cost function subject to general equality
constraints and simple bounds. When applied to (1.1), their algorithm reduces to a
sequence of simple bound constrained problems of the form

minimize L(x, µk, ρk)
subject to x ≥ 0,(1.2)

where

L(x, µk, ρk) = q(x) + (µk)T (Cx− d) +
ρk
2
‖Cx− d‖2(1.3)

is known as the augmented Lagrangian function, µk = (µk1 , . . . , µ
k
m)

T is the vector of
Lagrange multipliers for the equality constraints, ρk > 0 is the penalty parameter,
and ‖ · ‖ denotes the Euclidean norm. In [4] the authors developed basic methods of
analysis, proved convergence results that also cover the possibility of inexactly solving
the auxiliary problems (1.2), and established that a potentially troublesome penalty
parameter is bounded away from zero. They implemented their algorithm in the
well-known package LANCELOT [5].

The main improvement of the algorithm of Conn, Gould, and Toint that we pro-
pose here concerns the precision control of the solution of the auxiliary problems (1.2).
In [4] the authors require that problems (1.2) are solved with precision ωk, where the
sequence {ωk} is defined a priori and converges to zero. Our approach arises from the
simple observation that the precision of the solution xk of the auxiliary problems (1.2)
should be related to the feasibility of xk, i.e., ‖Cxk − d‖, since it does not seem rea-
sonable to solve (1.2) with high precision when µk is far from the vector of Lagrange
multipliers corresponding to the solution of (1.1) (see also [21]). Due to the choice
introduced for precision control, an estimate of the rate of convergence is obtained
such that it does not have any term accounting for inexact minimization. It is also
proved that the penalty parameter generated by our algorithm remains bounded.

After introducing the notation and the notion of extended regularity for points
satisfying the nonnegativity constraints, in section 3 we present the algorithm and
prove that it is well defined. The sequence of solutions to subproblems is distinguished
according to the fulfillment, or not, of extended regularity. The global convergence of
the algorithm is proved in section 4, and under the assumption of regularity at the
solution x∗ of problem (1.1), it is proved that the generated sequence is asymptot-
ically extended regular. These results allow us to extend [12, 13] to include bound
constraints. In section 5 we first prove some identification properties of the algorithm.
Next we obtain the rate of convergence of the sequence of multipliers and prove that
the penalty parameter is bounded. Numerical experiments are described in section 6.
In section 7 some comments and conclusions are presented.

2. Notation and preliminaries. Given J ⊆ N ≡ {1, . . . , n}, J nonempty, and
matrices A and C and vector b, data of problem (1.1), we define the submatrices
AJJ and CJ and the subvector bJ that comprise rows and columns determined by the
set J . The submatrix CJ is assumed to have the same rows as C. In the same spirit,
given a vector v ∈ R

n, a subvector with components determined by J will be denoted
by vJ .

The next equality constrained problem has been discussed by the authors in
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[12, 13], and some results obtained there will be useful in this paper:

minimize ϕ(y)
subject to CJy = d,

(2.1)

where ϕ(y) = 1
2y
TAJJy−bTJ y, AJJ ∈ R

p×p is symmetric positive definite, CJ ∈ R
m×p

is a full row rank matrix, m ≤ p, bJ , y ∈ R
p, and d ∈ R

m (vector d is the same as
in (1.1)). We denote by µ∗

E,J ∈ R
m the optimal vector of Lagrange multipliers of

problem (2.1). We shall sometimes consider also more general situations including
p ≤ m < n and CJ with dependent rows. In such cases µ

∗
E,J may not exist, and we

shall avoid any reference to it.
The following notation will be used throughout the whole paper. The first order

updates of the vector of Lagrange multipliers of problems (1.1) and (2.1) will be
denoted, respectively, by

µ̃ = µ+ ρ(Cx− d)(2.2)

and

µ̃E,J = µE,J + ρ(CJy − d).(2.3)

The augmented Lagrangian of (2.1) will be given by

LE(y, µE,J , ρ) = ϕ(y) + µTE,J(CJy − d) +
ρ

2
‖CJy − d‖2.(2.4)

The gradients of the augmented Lagrangians (1.3) and (2.4) will be denoted respec-
tively as follows:

g(x, µ, ρ) = ∇xL(x, µ, ρ) = ∇q(x) + CTµ+ ρCT (Cx− d),(2.5)

gE(y, µE,J , ρ) = ∇yLE(y, µE,J , ρ) = ∇ϕ(y) + CT
J µE,J + ρCT

J (CJy − d).(2.6)

Note that the dimension of vector gE coincides with the dimension of vector y.
For B = BT ∈ R

n×n, we define λ1(B) and λn(B), respectively, the largest and
smallest eigenvalues of matrix B. The smallest eigenvalue of matrix CJA

−1
JJC

T
J will

be denoted by γJ .
The Karush–Kuhn–Tucker (KKT) conditions for problem (1.2) may be conve-

niently described by the projected gradient gP that is defined by

gPi (x, µ, ρ) = gi(x, µ, ρ) if xi > 0 or xi = 0 and gi(x, µ, ρ) < 0,
gPi (x, µ, ρ) = 0 otherwise, i.e. xi = 0 and gi(x, µ, ρ) ≥ 0,(2.7)

where g(x, µ, ρ) = (g1, . . . , gn)
T . Thus, the KKT conditions for problem (1.2) are

satisfied at x if and only if gP (x, µ, ρ) = 0.
For each vector x ∈ R

n, we shall denote by A(x) and F(x) the active and the
free set of x, respectively, related to the inequality constraints, so that

A(x) = {i ∈ N : xi = 0} and F(x) = {i ∈ N : xi �= 0}.
Note that if J = F(x), then

Cx = CJxJ ,(2.8)

gJ(x, µ, ρ) = gE(xJ , µ, ρ),(2.9)
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and if µ = µE,J (and y = xJ), then the corresponding update satisfies

µ̃ = µ̃E,J .(2.10)

For the KKT pair (x∗, µ∗) of problem (1.1), we shall also define the binding set

B∗ = {i : x∗
i = 0 and [∇q(x∗) + CTµ∗]i ≥ 0}(2.11)

and its decomposition into the sets

B∗0 = {i : x∗
i = 0 and [∇q(x∗) + CTµ∗]i = 0}(2.12)

and

B∗1 = {i : x∗
i = 0 and [∇q(x∗) + CTµ∗]i > 0}.(2.13)

Definition 2.1. Let x ∈ Ω (the feasible set of problem (1.1)) denote a given
point. If the gradients of all the active constraints (equalities and inequalities) at x
are linearly independent, we say that x is regular.

Definition 2.2. Given a point x ∈ R
n such that x ≥ 0, let J = F(x) contain

p indices. If the matrix CJ ∈ R
m×p is full row rank we say that x is extended regular,

or briefly, e-regular.
For feasible points x ∈ Ω, the notions of e-regularity and regularity are equivalent.

Moreover, for every e-regular point, since the corresponding matrix CJ is full row rank
and matrix AJJ is positive definite, it follows that γJ , the smallest eigenvalue of matrix
CJA

−1
JJC

T
J , is strictly positive.

3. Algorithm for equality and simple bound constraints. The following
algorithm is a modification of the classical augmented Lagrangian method for the
solution of strictly convex quadratic functions subject to linear equality and box
constraints that enables adaptive precision control of the auxiliary problems.

Algorithm 3.1. Given 0 < α < 1, β > 1, M > 0, ν > 0, ρ0 > 0, η0 > 0,
µ0 ∈ R

m, and the matrices and vectors that define problem (1.1), set k = 0.
Step 1. Inner iteration with adaptive precision control.

Find z ≥ 0 such that

‖gP (z, µk, ρk)‖ ≤M‖Cz − d‖.(3.1)

If z is e-regular or ‖gP (z, µk, ρk)‖ ≤ ρ−νk , set xk = z and go to Step 2.
Otherwise, continue with the inner iteration to obtain a point v ≥ 0 such
that

‖gP (v, µk, ρk)‖ ≤ min{ρ−νk ,M‖Cv − d‖}(3.2)

and set xk = v.
Step 2. Updating of µ, ρ, η.

If xk is e-regular, then

µk+1 = µk + ρk(Cxk − d).(3.3)

If ‖Cxk − d‖ ≤ ηk, then

ρk+1 = ρk, ηk+1 = αηk(3.4)
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else

ρk+1 = βρk, ηk+1 = ηk.(3.5)

If xk is not extended regular, then

µk+1 = µk, ρk+1 = βρk, ηk+1 = ηk.(3.6)

Step 3. Set k = k + 1 and return to Step 1.
In Step 1 we can use any algorithm for minimizing a bound constrained quadratic

such that the projected gradient converges to zero. Algorithms of this type are pre-
sented in [2, 7, 17, 18].

In Algorithm 1 of [4] the vector of Lagrange multipliers is updated after checking
if both the projected gradient and the feasibility error are small enough. In Algo-
rithm 3.1 the multipliers are updated by (3.3) every time the current iterate xk is
e-regular. The good behavior of the estimates of the Lagrange multipliers is guaran-
teed for e-regular points by the adaptive precision control (3.1). Whenever the iterate
is not e-regular, we must force this good behavior by (3.6). We prove later that the
stopping criterion (3.2) used for points that are not e-regular forces the sequence {xk}
produced by Algorithm 3.1 to be asymptotically e-regular. Due to the structure of
problem (1.1) it is not necessary to enforce that the feasibility error be bounded by a
quantity related to the penalty parameter.

The next theorem shows that Algorithm 3.1 is well defined; that is, any conver-
gent algorithm for the solution of the auxiliary problems will generate either xk that
satisfies the conditions required in Step 1 in a finite number of iterations or a sequence
of approximations that converges to the solution of (1.1).

Theorem 3.2. Let M > 0, ν > 0, µk ∈ R
m, and ρk > 0 be given, and let {zj}

denote any sequence that converges to the unique solution x of the problem

minimize L(z, µk, ρk)
subject to z ≥ 0.(3.7)

There exists an index j such that zj satisfies condition (3.1) or (3.2) stated in Step 1
of Algorithm 3.1 or {zj} converges to the solution x∗ of problem (1.1).

Proof. Since ρk is fixed and ‖gP (zj , µk, ρk)‖ tends to zero because {zj} converges
to x, there exists j0 such that ‖gP (zj , µk, ρk)‖ ≤ ρ−νk for j ≥ j0. Hence, if neither
(3.1) nor (3.2) holds for any j, for j ≥ j0, ‖gP (zj , µk, ρk)‖ > M‖Czj − d‖ and
therefore ‖Czj − d‖ also converges to zero and we must have Cx = d. In this case, if
r = g(x, µk, ρk), since x is the solution of (3.7), writing the KKT conditions for that
problem, it follows that

Ax− b+ CTµk + ρkC
T (Cx− d) = r,(3.8)

r ≥ 0, x ≥ 0, rTx = 0.(3.9)

Substituting Cx = d into (3.8), we get

Ax− b+ CTµk = r.(3.10)

However, conditions (3.9), (3.10), and Cx = d are sufficient for x to be the unique
solution of (1.1), so that x = x∗.
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The following simple observation will be useful in our proofs.
Lemma 3.3. Let {xk}, {µk}, and {ρk} be generated by Algorithm 3.1, k ≥ 1,

J = F(xk). Then
‖gE(xkJ , µk, ρk)‖ ≤M‖CJxkJ − d‖.(3.11)

Proof. For {xk}, {µk}, and {ρk} generated by Algorithm 3.1, k ≥ 1, and
J = F(xk), by (2.7), (2.8), and (2.9), it follows that

‖gE(xkJ , µk, ρk)‖ = ‖gJ(xk, µk, ρk)‖ ≤ ‖gP (xk, µk, ρk)‖(3.12)

and

Cxk = CJx
k
J .(3.13)

Therefore, since by the mechanism of Algorithm 3.1 we have

‖gP (xk, µk, ρk)‖ ≤M‖Cxk − d‖,(3.14)

then

‖gE(xkJ , µk, ρk)‖ ≤M‖CJxkJ − d‖,(3.15)

where M is given in Algorithm 3.1.

4. Global convergence. In this section we prove the global convergence of
Algorithm 3.1 and, under the assumption of regularity at the solution x∗ of prob-
lem (1.1), that the sequence {xk} is asymptotically e-regular.

Assumption (AS1). The solution x∗ of problem (1.1) is regular.
In [12, 13] the authors addressed the minimization of strictly convex quadrat-

ics with equality constraints and proved that the following result holds (Lemma 3.1
of [13]).

Lemma 4.1. Given the equality problem (2.1) with AJJ ∈ R
p×p symmetric pos-

itive definite and CJ ∈ R
m×p a full row rank matrix, let γJ > 0 be the smallest

eigenvalue of matrix CJA
−1
JJC

T
J , M be a positive constant, y ∈ R

p, µ ∈ R
m, and

ρ ≥ ρJ ≡ 2‖CJ‖‖A−1
JJ‖M/γJ .(4.1)

If

‖gE(y, µ, ρ)‖ ≤M‖CJy − d‖,(4.2)

then

‖µ̃E,J − µ∗
E,J‖ ≤

MJ

ρ
‖µ− µ∗

E,J‖,(4.3)

where µ̃E,J is the update defined in (2.3) with µE,J = µ, MJ = ρJ +2γ
−1
J and µ∗

E,J is
the optimal vector of Lagrange multipliers of problem (2.1).

In the next lemma we prove that Algorithm 3.1 generates a bounded sequence {µk}
of approximations to the optimal vector of Lagrange multipliers µ∗ for the equality
constraints of problem (1.1).

Lemma 4.2. Let {µk} be a sequence generated by Algorithm 3.1. Then {µk} is
bounded.
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Proof. Let {µk}, {xk}, and {ρk} be generated by Algorithm 3.1. In particular, it
follows that {ρk} is nondecreasing.

Assume first that {ρk} is not bounded. For any k ≥ 1 and J = F(xk), it follows
from Lemma 3.3 that

‖gE(xkJ , µk, ρk)‖ ≤M‖CJxkJ − d‖,
where M is given in Algorithm 3.1.

If xk is e-regular, µk+1 is defined by (3.3) in Step 2 of Algorithm 3.1 and

µk+1 = µk + ρk(Cxk − d) = µk + ρk(CJx
k
J − d),(4.4)

so that the vector of multipliers µk is updated in the same way as that of the equality
problem (2.1) corresponding to J = F(xk) at y = xkJ . Moreover, by Definition 2.2,
the e-regularity of xk implies that the smallest eigenvalue γJ of CJA

−1
JJC

T
J satisfies

γJ > 0. Applying Lemma 4.1 to this equality problem with µ = µk, µ̃E,J = µk+1 and
using (3.11), we have that, for ρk ≥ ρJ ,

‖µk+1 − µ∗
E,J‖ ≤

MJ

ρk
‖µk − µ∗

E,J‖.(4.5)

Since there is a finite number of different free sets J corresponding to the extended
regular iterates, and by the assumption that ρk is not bounded, there exists & > 0
such that, for k ≥ &, ρk ≥ max ρJ and 0 < maxMJ/ρk ≤ δ = maxMJ/ρ� < 1. It
follows that if xk is e-regular and k ≥ &, then

‖µk+1 − µ∗
E,J‖ ≤ δ‖µk − µ∗

E,J‖.(4.6)

If xk is not e-regular, then µk+1 is updated by (3.6) in Step 2 as

µk+1 = µk.(4.7)

We have thus proved that if {ρk} is not bounded, then the subsequence {µk}k≥�
satisfies either (4.6) or (4.7). However, these are just the assumptions of Corollary A.2
in the appendix, where the vectors µ∗

E,J for the different sets J play the role of µ
i

with the different indices i. Thus {µk} is bounded whenever {ρk} is not bounded.
Now, if {ρk} is bounded, there is k0 such that, for k ≥ k0, the values of ρk and ηk

are updated by (3.4) in Step 2. It follows that for any i ≥ 0
‖Cxk0+i − d‖ ≤ ηk0+i = αiηk0

and for & ≥ 1

µk0+� − µk0 = ρk0

�−1∑
i=0

(Cxk0+i − d),

so that

‖µk0+�‖ ≤ ‖µk0‖+ ρk0

�−1∑
i=0

‖Cxk0+i − d‖

≤ ‖µk0‖+ ρk0(1 + · · ·+ α�−1)ηk0

≤ ‖µk0‖+ (ρk0/(1− α))ηk0 .
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Hence {µk} is also bounded in this case and the proof is complete.
The next three results are valid for any augmented Lagrangian algorithm that

generates bounded sequences of multipliers for problem (1.1). The proofs of these
results exploit the particular structure of problem (1.1).

Lemma 4.3. Let {xk} and {µk} denote sequences in R
n and R

m, respectively,
such that {µk} is bounded. If {ρk} is any sequence of positive numbers and K ≥ 0 is
such that

‖gP (xk, µk, ρk)‖ ≤ K,(4.8)

then {xk} is bounded.
Proof. For any k ≥ 0, if J = F(xk), by (2.9)

‖gE(xkJ , µk, ρk)‖ ≤ ‖gP (xk, µk, ρk)‖ ≤ K.(4.9)

Notice that if J is empty, then xk = 0, so that we can assume that J is not empty,
without loss of generality. Let

rkJ = gE(x
k
J , µ

k, ρk) = AJJx
k
J − bJ + CT

J µ
k + ρkC

T
J (CJx

k
J − d).(4.10)

Eliminating xkJ from (4.10) yields

xkJ = (AJJ + ρkC
T
J CJ)

−1(bJ + rkJ − CT
J µ

k) + ρk(AJJ + ρkC
T
J CJ)

−1CT
J d.(4.11)

We recall the notation of section 2; that is, for matrix B = BT ∈ R
n×n, let λ1(B)

and λn(B) be its largest and smallest eigenvalues, respectively. We recast a result on
eigenvalues of the sum of symmetric and positive semidefinite matrices (see, e.g., [24,
Corollary 4.3.3]), namely

λp(AJJ + ρkC
T
J CJ) ≥ λp(AJJ),

assuming AJJ ∈ R
p×p. Therefore,

‖(AJJ + ρkC
T
J CJ)

−1‖ = 1

λp(AJJ + ρkCT
J CJ)

≤ 1

λp(AJJ)
= ‖A−1

JJ‖(4.12)

and it follows from (4.11)–(4.12) that

‖xkJ‖ ≤ ‖A−1
JJ‖

(‖bJ‖+ ‖rkJ‖+ ‖CT
J ‖‖µk‖

)
+ ρk‖(AJJ + ρkC

T
J CJ)

−1CT
J d‖.(4.13)

To give a bound on the last term in (4.13), notice that it is zero if CJ = 0. If
CJ �= 0, then by the spectral decomposition theorem [24, Theorem 4.1.5] there is an
orthogonal matrix QJ = (q1, . . . , qp) ∈ R

p×p and a nonzero diagonal matrix ΣJ =
diag(σ1, . . . , σr, 0, . . . , 0) ∈ R

p×p, σ1 ≥ · · · ≥ σr > 0, such that CT
J CJ = QJΣJQ

T
J .

Thus, taking Σ̂J = diag(σ1, . . . , σr) ∈ R
r×r and Q̂J = (q1, . . . , qr) ∈ R

p×r, we can
define a full rank matrix

DJ = Σ̂
1
2

J Q̂
T
J = (

√
σ1 q1, . . . ,

√
σr qr)

T ∈ R
r×p

that satisfies CT
J CJ = DT

JDJ and ‖CJ‖ = ‖DJ‖. Moreover, as ImCT
J = ImDT

J , there

is d̂ ∈ R
r such that CT

J d = DT
J d̂, so that

(AJJ + ρkC
T
J CJ)

−1CT
J d = (AJJ + ρkD

T
JDJ)

−1DT
J d̂.
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Now, combining the last equality with the Sherman–Morrison–Woodbury formula [20,
p. 51] yields

(AJJ + ρkC
T
J CJ)

−1CT
J d = (AJJ + ρkD

T
JDJ)

−1DT
J d̂

=
(
A−1
JJD

T
J −A−1

JJD
T
J (ρ

−1
k I +DJA

−1
JJD

T
J )

−1DJA
−1
JJD

T
J

)
d̂

= A−1
JJD

T
J

(
I − (ρ−1

k I +DJA
−1
JJD

T
J )

−1DJA
−1
JJD

T
J

)
d̂

= A−1
JJD

T
J

(
I − (ρ−1

k I +DJA
−1
JJD

T
J )

−1

× ((DJA
−1
JJD

T
J + ρ−1

k I)− ρ−1
k I

))
d̂

= ρ−1
k A−1

JJD
T
J (ρ

−1
k I +DJA

−1
JJD

T
J )

−1d̂.(4.14)

As a consequence of the submultiplicativity of the matrix norms, we have from (4.14)
that

‖(AJJ + ρkC
T
J CJ)

−1CT
J d‖ ≤

‖DT
J ‖‖A−1

JJ‖‖d̂‖
ρk(ρ

−1
k + ξJ)

≤ ‖C
T
J ‖‖A−1

JJ‖‖d̂‖
ρkξJ

,(4.15)

where ξJ > 0 is the smallest eigenvalue of matrix DJA
−1
JJD

T
J . Observing that the

spectral norm is self-adjoint and applying (4.15), it follows from (4.13) that

‖xk‖ = ‖xkJ‖ ≤MJ
1 +MJ

2 ‖µk‖+MJ
3 K,(4.16)

where the constants

MJ
1 = ‖A−1

JJ‖
(
‖bJ‖+ ‖CJ‖‖d̂‖

ξJ

)
, MJ

2 = ‖A−1
JJ‖‖CT

J ‖, and MJ
3 = ‖A−1

JJ‖

depend only on J . Since the number of all possible free sets is finite and {µk} is
bounded, it follows that {xk} is bounded.

Remark. The previous result is valid for any iterate xk, whether or not it is
e-regular.

Lemma 4.4. Let {xk} be a sequence in R
n such that xk ≥ 0 for every k, {µk} be a

bounded sequence in R
m, and {ρk} be a nondecreasing unbounded sequence of positive

numbers, and suppose that

gP (xk, µk, ρk) = 0, k = 0, 1, . . . .(4.17)

Then {xk} converges to the solution x∗ of (1.1).
Proof. By Lemma 4.3, {xk} is bounded. Moreover, (4.17) implies that each xk is

the solution of

minimize L(x, µk, ρk)
subject to x ≥ 0.(4.18)

Thus the solution x∗ of (1.1) satisfies

L(xk, µk, ρk) ≤ min
Cx=d
x≥0

L(x, µk, ρk) = min
Cx=d
x≥0

q(x) = q(x∗)

so that, for all k ≥ 0,

q(xk) + (Cxk − d)Tµk +
1

2
ρk‖Cxk − d‖2 ≤ q(x∗).(4.19)
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Let x and µ denote limit points of {xk} and {µk}, respectively. Without loss of
generality, we may assume that {xk} converges to x and {µk} converges to µ. By
taking the upper limit in (4.19), we get

q(x) + (Cx− d)Tµ+
1

2
lim sup ρk‖Cxk − d‖2 ≤ q(x∗).(4.20)

Since {ρk} is unbounded, it follows that ‖Cxk−d‖ converges to zero and Cx = d.
Hence, x is feasible. However, by (4.20), q(x) ≤ q(x∗) and thus x solves (1.1). Because
this argument is valid for any limit point x of {xk} and the solution x∗ of (1.1) is
unique, it follows that {xk} converges to x∗.

Theorem 4.5 establishes that even if the auxiliary problems (1.2) are solved in-
exactly, with a tolerance that converges to zero, any sequence {xk} generated by an
augmented Lagrangian algorithm will converge to the solution x∗ of (1.1).

Theorem 4.5. Let {xk}, {µk}, and {ρk} be as in Lemma 4.4, let {εk} denote
a sequence of nonnegative numbers that converges to zero, and let

‖gP (xk, µk, ρk)‖ ≤ εk.(4.21)

Then {xk} converges to the solution x∗ of (1.1).
Proof. By Lemma 4.3, {xk} is bounded. Let xk be the solution of (4.18) so that

xk ≥ 0 and gP (xk, µk, ρk) = 0.(4.22)

Let I0 = {i | gPi (xk, µk, ρk) = 0} and I1 = {i | gPi (xk, µk, ρk) �= 0}. Thus, by the
definition of the projected gradient, if i ∈ I0, then gi(x

k, µk, ρk) ≥ 0 and, as xki ≥ 0,
we obtain

0 ≥ L(xk, µk, ρk)− L(xk, µk, ρk)

=
1

2
(xk − xk)T (A+ ρkC

TC)(xk − xk) + (xk − xk)T g(xk, µk, ρk)

≥ λn(A)

2
‖xk − xk‖2 + (xkI0 − xkI0)

T gI0(x
k, µk, ρk) + (x

k
I1 − xkI1)

T gI1(x
k, µk, ρk)

≥ λn(A)

2
‖xk − xk‖2 + (xkI0)T gI0(xk, µk, ρk) + (xkI1 − xkI1)

T gI1(x
k, µk, ρk)

≥ λn(A)

2
‖xk − xk‖2 + (xkI1 − xkI1)

T gI1(x
k, µk, ρk)

≥ λn(A)

2
‖xk − xk‖2 − ‖xkI1 − xkI1‖‖gI1(xk, µk, ρk)‖

≥ λn(A)

2
‖xk − xk‖2 − εk‖xk − xk‖,

where the last inequality is due to (4.21). It follows that

‖xk − xk‖ ≤ 2(λn(A))−1εk.(4.23)

Then

‖xk − x∗‖ ≤ ‖xk − xk‖+ ‖xk − x∗‖ ≤ 2(λn(A))−1εk + ‖xk − x∗‖,

and by the assumption on {εk} and since Lemma 4.4 ensures that the sequence of
solutions {xk} converges to x∗, we get the desired result.
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Next we show that ultimately the algorithm generates e-regular iterations and
finish this section with the global convergence result for Algorithm 3.1.

Lemma 4.6. Suppose that Assumption (AS1) holds, and let {xk}, {µk}, and {ρk}
be generated by Algorithm 3.1. Then there is k0 such that x

k is e-regular for k ≥ k0.
Proof. Since x∗ is e-regular, it follows from Definition 2.2 that the matrix CI

where I = F(x∗) has full row rank. Observing that there is a neighborhood U of x∗

such that F(x∗) ⊆ F(x) for every x ∈ U , it follows that the matrix CJ , J = F(x),
is full row rank whenever x ∈ U . Thus, there is a neighborhood U of x∗ such that
every x ∈ U is e-regular. Suppose that there is an infinite set S ⊆ N such that for
any k ∈ S, xk is not e-regular. By definition of Step 1, for any k ∈ S

‖gP (xk, µk, ρk)‖ ≤ ρ−νk
and, by (3.6), {ρk}k∈S is an unbounded nondecreasing sequence. Since {µk} is
bounded by Lemma 4.2, it follows that if

εk = ρ−νk , k ∈ S,

{xk}k∈S , {µk}k∈S , and {ρk}k∈S satisfy the assumptions of Theorem 4.5 so that
{xk}k∈S converges to the solution x∗ of (1.1). Hence there is k0 such that xk

is e-regular for k ≥ k0 and k ∈ S. This contradicts our assumption that S is
infinite.

Theorem 4.7. Let {xk}, {µk}, and {ρk} be generated by Algorithm 3.1, x∗ be the
solution of problem (1.1), and µ∗ be the corresponding vector of Lagrange multipliers
for the equality constraints, and suppose that Assumption (AS1) holds. Then {xk}
converges to x∗ and {µk} converges to µ∗.

Proof. By Lemma 4.6 there is k0 such that x
k is extended regular for k ≥ k0.

Thus, for k ≥ k0, all µ
k are updated by (3.3) in Step 2 and

‖Cxk − d‖ = ρ−1
k ‖µk+1 − µk‖ ≤ ρ−1

k (‖µk+1‖+ ‖µk‖).(4.24)

If {ρk} is not bounded, as it is monotone and {µk} is bounded by Lemma 4.2, then
‖Cxk − d‖ converges to zero.

On the other hand, if {ρk} is bounded, it follows that there is k1 ≥ k0 such that
for k ≥ k1, ρk and ηk are updated by (3.4) in Step 2 and

‖Cxk − d‖ ≤ ηk = αk−k1ηk1 .(4.25)

Since 0 < α < 1 we can conclude that ‖Cxk−d‖ converges to zero. However, since at
each iteration xk satisfies (3.1) or (3.2), it follows that ‖gP (xk, µk, ρk)‖ also converges
to zero. So, by Lemma 4.3, {xk} is bounded.

Since both sequences {xk} and {µk} are bounded, they have limit points x and µ,
respectively. As ‖Cxk − d‖ converges to zero, x is feasible, i.e.,

Cx = d.(4.26)

Now, as xk is e-regular for k ≥ k1, then µk+1 is updated by (3.3) in Step 2 and

gP (xk, µk, ρk) = gP (xk, µk+1, 0).(4.27)

As ‖gP (xk, µk, ρk)‖ converges to zero, it follows that
gP (x, µ, 0) = 0.(4.28)

Equations (4.26) and (4.28) are the sufficient conditions for x to be the unique solution
of problem (1.1), with corresponding vector of Lagrange multipliers µ. Therefore,
x = x∗, µ = µ∗, and both sequences {xk}, {µk} are convergent.
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5. Asymptotic convergence analysis. In this section, we first show that the
strictly binding set B∗1 (2.13) of the solution of problem (1.1) is identified in a finite
number of steps (i.e., B∗1 ⊆ A(xk) for all k sufficiently large). Next, it is proved
that the rate of convergence of the sequence {µk} of multipliers is linear. The special
structure of the problem under consideration allows us an improvement on the result
of Conn, Gould, and Toint [4] in the sense that our estimate does not have any
term accounting the errors in the solution of the auxiliary simple bounded problems.
Finally, we prove that the penalty parameter is bounded.

Lemma 5.1. Suppose that Assumption (AS1) holds, and let {xk} be a sequence
generated by Algorithm 3.1, x∗ be the solution of (1.1), and µ∗ be the corresponding
vector of Lagrange multipliers associated with the equality constraints. Then there is
k0 such that for k ≥ k0

F(x∗) ⊆ F(xk) ⊆ F(x∗) ∪ B∗0 ,(5.1)

and µ∗
E,J = µ∗ for any J that satisfies

F(x∗) ⊆ J ⊆ F(x∗) ∪ B∗0 .(5.2)

Proof. Let

ε = min{x∗
i : i ∈ F(x∗)},(5.3)

δ =

{
min{gi(x∗, µ∗, 0) : i ∈ B∗1} if B∗1 �= ∅
0 if B∗1 = ∅(5.4)

so that ε > 0 by Assumption (AS1) and δ ≥ 0 by (5.4).
Since by Theorem 4.7 {xk} converges to x∗, there is k1 such that for k ≥ k1 and

i ∈ F(x∗)

xki ≥ ε/2 > 0

so that i ∈ F(xk), proving the first inclusion of (5.1) for k ≥ k1. In other words, any
free component at the solution is also free for all iterates after k1.

If δ = 0, by the definition of B∗1 and (5.4)
N = F(x∗) ∪ B∗0 ,

and the second inclusion of (5.1) is trivially satisfied in this case for k ≥ k1.
If δ > 0, let us assume that i ∈ B∗1 . As the sequence {µk} generated by

Algorithm 3.1 converges to µ∗ and {xk} converges to x∗ by Theorem 4.7, there
is k2 ≥ k1 such that, for k ≥ k2, xk is e-regular by Lemma 4.6 and by (3.3)
gi(x

k, µk, ρk) = gi(x
k, µk+1, 0). As gi(x

k, µk+1, 0) converges to gi(x
∗, µ∗, 0) ≥ δ, there

exists k3 ≥ k2 such that, for k ≥ k3,

gi(x
k, µk, ρk) > δ/2.(5.5)

Since ‖gP (xk, µk, ρk)‖ converges to zero, there is k4 ≥ k3 such that, for k ≥ k4,

‖gP (xk, µk, ρk)‖ < δ/2.(5.6)

But

gi(x
k, µk, ρk) = gPi (x

k, µk, ρk) for i ∈ F(xk),(5.7)
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and so (5.5) contradicts (5.6) for k ≥ k4 and xki > 0. Thus, i ∈ B∗1 implies i /∈ F(xk)
for k ≥ k0 ≡ max{k1, k4}, which proves the second inclusion in (5.1).

Now, notice that

gJ(x
∗, µ∗, 0) = gPJ (x

∗, µ∗, 0)

holds for any J satisfying (5.2), and because (x∗, µ∗) is the KKT pair of (1.1) we
obtain by (2.9)

gE(x
∗
J , µ

∗, 0) = gJ(x
∗, µ∗, 0) = 0.

This shows that the pair (x∗
J , µ

∗) satisfies the optimality conditions of problem (2.1),
and as this problem has a unique solution, then for each J satisfying (5.2), necessarily
µ∗
E,J = µ∗.
Theorem 5.2. Suppose that Assumption (AS1) holds, and let x∗ be the solution

of problem (1.1) and µ∗ be the corresponding vector of optimal Lagrange multipliers

for the equality constraints. Then there are positive constants M̃ and ρ such that for
any sequences {ρk} and {µk} generated by Algorithm 3.1 there is k0 such that, for
k ≥ k0 and ρk ≥ ρ,

‖µk+1 − µ∗‖ ≤ M̃

ρk
‖µk − µ∗‖.(5.8)

Proof. Let {xk} be a sequence generated by Algorithm 3.1. If J = F(xk) and
xk is e-regular, then by Lemma 4.1 applied to problem (2.1) associated with J , there
exists MJ such that, if ρk ≥ ρJ and

‖gE(xkJ , µk, ρk)‖ ≤M‖CJxkJ − d‖,(5.9)

then

‖µ̃E,J − µ∗
E,J‖ ≤ ρ−1

k MJ‖µk − µ∗
E,J‖(5.10)

where M is the value set in the initialization of Algorithm 3.1 and µ̃E,J is the update
defined in (2.3) with µE,J = µk, ρ = ρk, and y = xkJ . Since, by Lemma 3.3, (5.9) holds
for k ≥ 1, we conclude that (5.10) holds.

By Lemma 4.6 and Lemma 5.1, there exists k0 such that, for k ≥ k0, x
k is

e-regular, J = F(xk) satisfies (5.2), and µ∗ = µ∗
E,J . Denoting ρ = max{ρJ : F(x∗) ⊆

J ⊆ F(x∗)∪B∗0} and M̃ = max{MJ : F(x∗) ⊆ J ⊆ F(x∗)∪B∗0}, we obtain for ρk ≥ ρ,
using

µ̃E,J = µE,J + ρ(CJy − d) = µk + ρk(Cxk − d) = µk+1

and (5.10), that

‖µk+1 − µ∗‖ ≤ M̃

ρk
‖µk − µ∗‖.

In section 5 of [4], where the asymptotic convergence analysis of the authors’
algorithm is discussed, the typical error bound for the multipliers looks like

‖µk+1 − µ∗‖ ≤ c1ωk + c2ρ
−1
k ‖µk − µ∗‖,
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where c1 and c2 are positive constants and {ωk} is the sequence of precision control
for the auxiliary problems. This sequence is set a priori and assumed to converge to
zero. The particular structure of problem (1.1) makes the bound (5.8) possible, where
such a term does not appear.

The next two lemmas are preliminary to the result on the boundedness of the
penalty parameter.

Lemma 5.3. Suppose that Assumption (AS1) holds, and let x∗ be the solution of
problem (1.1), µ∗ be the corresponding vector of optimal Lagrange multipliers for the
equality constraints, and

I = F(x∗) ∪ B∗0 .(5.11)

Then there are positive constants M1 and M2 such that, for any µ ∈ R
m, ρ ≥ 0, and

x ≥ 0 such that F(x∗) ⊆ F(x),
‖gI(x, µ, ρ)‖ ≤M1‖gP (x, µ, ρ)‖+M2‖µ̃− µ∗‖,(5.12)

where µ̃ is given by (2.2).
Proof. Let µ ∈ R

m, ρ ≥ 0, and x ≥ 0 such that F(x∗) ⊆ F(x) is given, and let us
split the set I into

Q = {i ∈ I : xi = 0 and gi(x, µ, ρ) > 0} and R = I \Q.

Observe that the indices in I are related to the solution x∗ and not to the point x
under consideration. Moreover, F(x∗) ⊆ F(x) implies that if xi = 0 then x∗

i = 0 and
if x∗

i > 0 then xi > 0. By Assumption (AS1) and F(x∗) ⊆ F(x), the set R is not
empty. However, it is possible that Q = ∅. It is easy to verify that

‖gPI (x, µ, ρ)‖ = ‖gR(x, µ, ρ)‖(5.13)

so that (5.12) holds for Q = ∅, with any constant M1 ≥ 1, because in this case R = I
and ‖gPI (x, µ, ρ)‖ ≤ ‖gP (x, µ, ρ)‖.

Let us assume that Q is not empty and notice that, by (5.11),

gI(x
∗, µ∗, 0) = 0(5.14)

and that, for any x ≥ 0 such that F(x∗) ⊆ F(x) and µ̃ satisfying (2.2),

gI(x, µ̃, 0) = gI(x, µ̃− µ∗, 0) + CT
I µ

∗.(5.15)

Using (2.2), subtracting (5.14) from (5.15), and writing the result in block matrix
form, we get(

gR(x, µ, ρ)

gQ(x, µ, ρ)

)
=

(
ARR ARQ
AQR AQQ

)(
xR − x∗

R

xQ − x∗
Q

)
+

(
CT
R

CT
Q

)
(µ̃− µ∗),(5.16)

so that after using xQ = x∗
Q = 0 and eliminating xR − x∗

R from (5.16) we obtain

xR − x∗
R = A−1

RR

(
gR(x, µ, ρ)− CT

R(µ̃− µ∗)
)

and

gQ(x, µ, ρ) = AQRA
−1
RRgR(x, µ, ρ) + (C

T
Q −AQRA

−1
RRC

T
R)(µ̃− µ∗),
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so that

‖gI(x, µ, ρ)‖ ≤ ‖gR(x, µ, ρ)‖+ ‖gQ(x, µ, ρ)‖
≤ (1 + ‖AQRA−1

RR‖)‖gR(x, µ, ρ)‖+ ‖AQRA−1
RRC

T
R − CT

Q‖‖µ̃− µ∗‖.
Observe that ARR is a symmetric positive definite matrix, because it is a square
submatrix of A. Therefore, ‖A−1‖ = 1/λn(A) and ‖A−1

RR‖ = 1/λs(ARR), where
ARR ∈ R

s×s, s ≤ n. By the interlacing property (see [27, pp. 103–104]) it follows
that λs(ARR) ≥ λn(A) and so

‖A−1
RR‖ ≤ ‖A−1‖.(5.17)

The inequalities

‖CT
R‖ ≤ ‖C‖, ‖CT

Q‖ ≤ ‖C‖, ‖AQR‖ ≤ ‖A‖,
and (5.17), together with (5.13) and the fact that ‖gPI (x, µ, ρ)‖ ≤ ‖gP (x, µ, ρ)‖, com-
plete the proof.

Lemma 5.4. Suppose that Assumption (AS1) holds, and let {xk}, {µk}, and {ρk}
be generated by Algorithm 3.1, with {ρk} unbounded. Let I = F(x∗)∪B∗0. Then there
exist k0 and a positive constant M1 such that if k ≥ k0, then

‖gI(xk, µk, ρk)‖ ≤M1‖Cxk − d‖.(5.18)

Proof. By Lemma 4.6 and Lemma 5.1, there is k1 such that, for k ≥ k1, x
k is

e-regular, F(x∗) ⊆ F(xk) ⊆ F(x∗) ∪ B∗0 , and
µ̃ = µk+1 = µk + ρk(Cxk − d).(5.19)

Moreover, by Lemma 5.3 and the definition of Step 1, there are constantsM ′
1 andM ′

2

such that, for I = F(x∗) ∪ B∗0 and k ≥ k1,

‖gI(xk, µk, ρk)‖ ≤M ′
1‖Cxk − d‖+M ′

2‖µk+1 − µ∗‖.(5.20)

Now notice that, if F(x∗) ⊆ J ⊆ F(x∗) ∪ B∗0 , then by Lemma 5.1, µ∗ = µ∗
E,J ,

and if F(xk) ⊆ J , then CJx
k
J = Cxk. Thus we can estimate the second term on the

right-hand side of (5.20) by applying Lemma 4.1 to problem (2.1) corresponding to
the set J = F(xk). Let M be the value given in Algorithm 3.1, denote by M ′′

1 the
maximum of all MJ over F(x∗) ⊆ J ⊆ F(x∗) ∪ B∗0 , and let k2 ≥ k1 be such that
k ≥ k2 implies ρk ≥ ρJ for F(x∗) ⊆ J ⊆ F(x∗) ∪ B∗0 .

By Algorithm 3.1, (2.8) and (2.9), for k ≥ k2 and J = F(xk), we have
‖gE(xkJ , µk, ρk)‖ = ‖gJ(xk, µk, ρk)‖ ≤ ‖gP (xk, µk, ρk)‖ ≤M‖Cxk−d‖ =M‖CJxkJ−d‖
so that the assumptions of Lemma 4.1 for problem (2.1) are satisfied with µ = µk and
y = xkJ and by (2.10) and (5.19) imply that

‖µk+1 − µ∗‖ ≤ M ′′
1

ρk
‖µk − µ∗‖.(5.21)

Now, by (2.2), (5.19), and (5.21) we have

ρk‖CJxkJ − d‖ = ‖µk+1 − µk‖
≥ ‖µk − µ∗‖ − ‖µk+1 − µ∗‖
≥
(

ρk
M ′′

1

− 1
)
‖µk+1 − µ∗‖,
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and since for sufficiently large k

ρkM
′′
1

ρk −M ′′
1

=
M ′′

1

1− M ′′
1

ρk

≤ 2M ′′
1 ,

it follows, by (2.8), that there exists k0 ≥ k2 such that, for k ≥ k0 and M ′′
2 ≥ 2M ′′

1 ,

‖µk+1 − µ∗‖ ≤M ′′
2 ‖CJxkJ − d‖ =M ′′

2 ‖Cxk − d‖.
Hence, from (5.20), for M1 =M ′

1 +M ′
2M

′′
2 and k ≥ k0,

‖gI(xk, µk, ρk)‖ ≤M1‖Cxk − d‖.
Theorem 5.5. Suppose that Assumption (AS1) holds, and let the sequences

{xk}, {µk}, and {ρk} be generated by Algorithm 3.1. Then {ρk} is bounded.
Proof. Assume that {ρk} is not bounded. Then, by Lemma 4.6 and (3.5) in

Step 2, there exists a subsequence K such that ‖Cxk − d‖ > ηk for k ∈ K. It follows
that N \ K is also infinite by (3.4) and the fact that ‖Cxk − d‖ converges to zero.
Thus, there exists a subsequence K1 of N \ K such that, for k ∈ K1, k + 1 ∈ K. For
k ∈ K1, ρk+1 = ρk. Let k0 be large enough so that x

k satisfies (5.1), (5.8), and (5.18).
In particular, Assumption (AS1) and (5.1) imply that xk is e-regular for k ≥ k0.

Let k ∈ K1, k ≥ k0, J = F(xk) ∪ F(xk+1), rk+1
J = gJ(x

k+1, µk+1, ρk+1) =

gJ(x
k+1, µk+1, ρk), and rkJ = gJ(x

k, µk, ρk). Eliminating xkJ and xk+1
J from rkJ and

rk+1
J , respectively, it follows by (3.3) that

xkJ = (AJJ + ρkC
T
J CJ)

−1(bJ − CT
J µ

k + ρkC
T
J d+ rkJ)

and

xk+1
J = (AJJ + ρkC

T
J CJ)

−1
(
bJ − CT

J µ
k + ρkC

T
J d− ρkC

T
J (CJx

k
J − d) + rk+1

J

)
.

Thus,

CJx
k+1
J − d = CJ(AJJ + ρkC

T
J CJ)

−1
(
(bJ − CT

J µ
k + ρkC

T
J d+ rkJ)

− ρkC
T
J (CJx

k
J − d) + rk+1

J − rkJ
)− d

=
(
I − ρkCJ(AJJ + ρkC

T
J CJ)

−1CT
J

)
(CJx

k
J − d)

+ CJ(AJJ + ρkC
T
J CJ)

−1(rk+1
J − rkJ).(5.22)

Applying the Sherman–Morrison–Woodbury formula [20, p. 51]

(AJJ + ρkC
T
J CJ)

−1 = A−1
JJ −A−1

JJC
T
J (ρ

−1
k I + CJA

−1
JJC

T
J )

−1CJA
−1
JJ

and denoting SJ = CJA
−1
JJC

T
J we get

CJ(AJJ + ρkC
T
J CJ)

−1CT
J = SJ − (SJ + ρ−1

k I − ρ−1
k I)(ρ−1

k I + SJ)
−1SJ

= SJ − SJ + ρ−1
k (ρ

−1
k I + SJ)

−1SJ

= ρ−1
k (ρ

−1
k I + SJ)

−1SJ

= ρ−1
k (ρ

−1
k I + SJ)

−1(SJ + ρ−1
k I − ρ−1

k I)

= ρ−1
k

(
I − ρ−1

k (ρ
−1
k I + SJ)

−1
)

= ρ−1
k

(
I − ρ−1

k (ρ
−1
k I + CJA

−1
JJC

T
J )

−1
)
.
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Thus,

I − ρkCJ(AJJ + ρkC
T
J CJ)

−1CT
J = ρ−1

k (ρ
−1
k I + CJA

−1
JJC

T
J )

−1,(5.23)

and by the analysis of the spectrum of the matrix on the right-hand side of (5.23),

‖I − ρkCJ(AJJ + ρkC
T
J CJ)

−1CT
J ‖ = ρ−1

k /(γJ + ρ−1
k ),(5.24)

where γJ is the smallest eigenvalue of CJA
−1
JJC

T
J . With the same reasoning that leads

to (4.15) we deduce that

‖CJ(AJJ + ρkC
T
J CJ)

−1‖ ≤ ‖CJ‖‖A
−1
JJ‖

ρk(γJ + ρ−1
k )

,

and using (5.24) in (5.22) we obtain that

‖CJxk+1
J − d‖ ≤ ρ−1

k

(‖CJ‖‖A−1
JJ‖

γJ + ρ−1
k

‖rk+1
J − rkJ‖+

1

γJ + ρ−1
k

‖CJxkJ − d‖
)
.(5.25)

Now, since xk is e-regular for k ≥ k0, it follows from Definition 2.2 that γJ > 0 and
1/(γJ + ρ−1

k ) ≤ γ−1
J , so, after renaming the constants,

‖CJxk+1
J − d‖ ≤ ρ−1

k

(
M1
J‖rk+1

J − rkJ‖+M2
J‖CJxkJ − d‖) .

Observing again that

CJx
k+1
J = Cxk+1 and CJx

k
J = Cxk,

we get

‖Cxk+1 − d‖ ≤ ρ−1
k

(
M1
J(‖rkJ‖+ ‖rk+1

J ‖) +M2
J‖Cxk − d‖) .(5.26)

After taking maxima of M1
J ,M

2
J and noting that, for all k ≥ k0, F(xk) ⊆ I =

F(x∗) ∪ B∗0 , we may use Lemma 5.4 to obtain

‖Cxk+1 − d‖ ≤ ρ−1
k

(
M1‖Cxk − d‖+M2‖Cxk+1 − d‖) ,(5.27)

where M1 = M1max{M1
J}+max{M2

J}, M2 = M1max{M1
J}. Thus, for k such that

ρk ≥ 2M2, we have

‖Cxk+1 − d‖ ≤ ρ−1
k M3‖Cxk − d‖,

where M3 = 2M
1, and

αηk = ηk+1 < ‖Cxk+1 − d‖ ≤ ρ−1
k M3‖Cxk − d‖ ≤ ρ−1

k M3ηk

for k ∈ K1. Thus for arbitrarily large values of ρk,

α < ρ−1
k M3,

which contradicts our assumption that {ρk} is unbounded.
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6. Numerical experiments. The algorithm has already proved to be useful
for numerical solution of contact problems of elasticity discretized by the finite el-
ement [11] or boundary element [10] methods. In combination with duality-based
domain decomposition methods, the algorithm required as little as 81 conjugate gra-
dient iterations to solve an elliptic variational inequality discretized by 557040 nodes
with 513 nodes on the free boundary [14, 15].

The goal of the experiments presented here is just to illustrate the effect of the
adaptive precision control of the solution of auxiliary bound constrained problems.
We solved a model problem resulting from the finite difference discretization of

Minimize q(u1, u2) =

2∑
i=1

(∫
Ωi

|∇ui|2 dΩ−
∫

Ωi

Pui dΩ

)
subject to u1(0, y) ≡ 0 and u1(1, y) ≤ u2(1, y) for y ∈ [0, 1],

where Ω1 = (0, 1)×(0, 1), Ω2 = (1, 2)×(0, 1), P (x, y) = −3 for (x, y) ∈ (0, 1)×[0.75, 1),
P (x, y) = 0 for (x, y) ∈ (0, 1) × (0, 0.75), P (x, y) = −1 for (x, y) ∈ (1, 2) × (0, 0.25),
and P (x, y) = 0 for (x, y) ∈ (1, 2)× (0.25, 1).

This problem is semicoercive due to the lack of Dirichlet data on the boundary
of Ω2. The solution of the model problem may be interpreted as the displacement of
two membranes under the traction P . The left membrane is fixed on the left, and the
left edge of the right membrane is not allowed to penetrate below the edge of the left
membrane. The solution is unique because the right membrane is pressed down. The
problem was used as a benchmark in [7, 14, 15].

The discretization scheme consists of a regular grid of 65 × 65 nodes for each
subdomain Ωi. The duality turns the problem to the minimization problem (1.1)
with a strictly convex quadratic function in 65 variables and one equality constraint.

The initial approximation µ0 for the scalar Lagrange multiplier µ∗ for the equality
constraint was zero; the other parameters used were defined by M = 100, α = 0.1,
β = 10, ν = 1, ρ0 = 100, and η0 = 1. The final penalty parameter ρ was 1000 whenever
the adaptive precision control was applied. The inner bound constrained quadratic
programming problem was solved by the so-called monotone preconditioning with the
proportioning parameter Γ = 1 (see [8]). The outer stopping rules were defined by
‖gP ‖ ≤ ε‖b‖ and ‖Cx − d‖ ≤ 10−2ε‖b‖ with ε ∈ {10−5, 10−7, 10−9}. To assess the
effect of the adaptive precision control, we implemented the algorithm also without
such precision control, so that the auxiliary bound constrained problems were solved
to the precision defined by ‖gP ‖ ≤ ε‖b‖. Moreover, to get an approximate lower
bound on the number of the conjugate gradient iterations, we resolved the problem
with µ0 = µ∗, which obviously resulted in one iteration in the outer loop.

The inner stopping rules, that is, the bounds on ‖gP ‖ used in Step 1 of Algo-
rithm 3.1 and its variants, are on the second row of Table 1. In this table, the total
number of inner conjugate gradient iterations is reported in the subcolumns (cg), and
the number of the updates of the Lagrange multipliers in the outer loop is presented
in the subcolumns (outer). The results of three families of experiments are reported
in three major columns. In the first, the auxiliary problems are solved with the adap-
tive precision control ‖gP ‖ ≤ 100‖Cx − d‖. In the second and third major columns,
the inner stopping criterion coincides with the outer one, although in the second the
multipliers are initially zero and in the third they are set as the optimal ones, for
reference purposes. Comparing results of the first and second sets, row by row, as
the tolerance ε varies, one can see that our adaptive precision control improves the
performance of the algorithm as predicted by the theory. Moreover, the first and third
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Table 1
Performance of Algorithm 3.1.

µ0 = 0 µ0 = µ∗

ε ‖gP ‖ ≤ 100‖Cx− d‖ ‖gP ‖ ≤ ε‖b‖ ‖gP ‖ ≤ ε‖b‖
cg outer cg outer cg outer

10−5 29 6 34 3 29 1

10−7 39 7 50 3 37 1

10−9 54 8 74 4 45 1

sets show that the total number of conjugate gradient iterations necessary to reach the
solution with adaptive precision control approaches the optimal performance given by
initialization µ0 = µ∗.

7. Conclusions. In order to deal with bounded variables, in this paper we ex-
tend previous results on the solution of quadratic programming problems with equality
constraints [12, 13] and improve, for the quadratic case, results of [4] for the solution
of more general problems. The new feature of our algorithm is the adaptive precision
control for solution of the auxiliary problems in the context of augmented Lagrangians.
A new result for the rate of convergence of the multipliers is obtained, and the bound-
edness of the penalty parameter is proved. The algorithm was implemented and an
experiment illustrates its behavior. Other applications may be found in [10, 11].

The performance of the algorithm may be further improved by using a problem
dependent preconditioning [9] or suitable orthogonal projectors that decompose the
Hessian of the augmented Lagrangian [14, 15, 16]. These strategies challenge the gen-
eral wisdom recommending that large penalty parameters should be avoided (see [1]).
Indeed, this class of problems, according to [9, 14, 15, 16], yields estimates for the rate
of convergence of conjugate gradient independent of both the penalty parameter and
the number of equality constraints. We believe that the algorithm may be a powerful
tool for the solution of large problems arising in applied sciences and engineering.

A. Appendix.

Lemma A.1. Let µ1, . . . , µk be given m-vectors, D ⊆ R
m, let a denote a mapping

from D to R
m, and let 0 ≤ δ < 1.

If for each µ ∈ D there is i such that

‖a(µ)− µi‖ ≤ δ‖µ− µi‖,(A.1)

then for each µ ∈ D

‖a(µ)‖ ≤ max{‖µ‖, (1 + δ)M/(1− δ)},(A.2)

where

M = max{‖µ1‖, . . . , ‖µk‖}.(A.3)

Proof. For any µ ∈ D, there is i such that

‖a(µ)‖ ≤ ‖a(µ)− µi‖+ ‖µi‖ ≤ δ‖µ− µi‖+M

≤ δ‖µ‖+ (1 + δ)M.(A.4)
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To finish the proof, it is enough to observe that if

‖µ‖ ≥ 1 + δ

1− δ
M,

then substituting into (A.4) we have

‖a(µ)‖ ≤ δ‖µ‖+ (1 + δ)M ≤ δ‖µ‖+ (1− δ)‖µ‖ = ‖µ‖,

while if

‖µ‖ < 1 + δ

1− δ
M,

then

‖a(µ)‖ ≤ δ
1 + δ

1− δ
M + (1 + δ)M =

1 + δ

1− δ
M.

Corollary A.2. Let µ1, . . . , µk be given m-vectors, let {µ�} denote any sequence
of vectors of R

m, and let 0 ≤ δ < 1.
If for each i there is j such that

‖µi+1 − µj‖ ≤ δ‖µi − µj‖ or ‖µi+1‖ ≤ ‖µi‖,(A.5)

then for any &

‖µ�‖ ≤ max{‖µ0‖, (1 + δ)M/(1− δ)}(A.6)

where M is defined by (A.3).
Proof. The inequality (A.6) is trivial for & = 0. If & > 0, then by the assump-

tion (A.5) either ‖µ�‖ ≤ ‖µ�−1‖, or, applying Lemma A.1 to the mapping a defined
on D = {µ�} by

a(µ�−1) = µ�,

we get

‖µ�‖ ≤ max{‖µ�−1‖, (1 + δ)M/(1− δ)}.(A.7)

Repeating (A.7), we get (A.6).

Acknowledgments. We thank the anonymous referees for their insightful com-
ments and suggestions that helped us to improve the notation and the reading of this
paper.
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problems using symmetric BEM and augmented Lagrangians, Engineering Analysis with
Boundary Elements, 18 (1997), pp. 195–201.

[11] Z. Dostál, A. Friedlander, and S.A. Santos, Solution of coercive and semicoercive contact
problems by FETI domain decomposition, in Domain Decompostion Methods 10, Contemp.
Math. 218, J. Mandel, C. Farhat, and X.-C. Cai, eds., AMS, Providence, RI, 1998, pp. 83–
93.

[12] Z. Dostál, A. Friedlander, and S.A. Santos, Augmented Lagrangians with adaptive preci-
sion control for quadratic programming with equality constraints, Comput. Optim. Appl.,
14 (1999), pp. 37–53.

[13] Z. Dostál, A. Friedlander, S.A. Santos, and K. Alesawi, Augmented Lagrangians with
adaptive precision control for quadratic programming with equality constraints: Corrigen-
dum and addendum, Comput. Optim. Appl., 23 (2000), pp. 127–133.

[14] Z. Dostál, F.A.M. Gomes, and S.A. Santos, Solution of contact problems by FETI domain
decomposition with natural coarse space projection, Comput. Methods Appl. Mech. Engrg.,
190 (2000), pp. 1611–1627.

[15] Z. Dostál, F.A.M. Gomes, and S.A. Santos, Duality based domain decomposition with natu-
ral coarse space for variational inequalities, J. Comput. Appl. Math., 126 (2000), pp. 397–
415.

[16] Z. Dostál, F.A.M. Gomes, and S.A. Santos, Duality based domain decomposition with adap-
tive natural coarse grid for contact problems, in The Mathematics of Finite Elements and
Applications X, J.R. Whiteman, ed., Elsevier, Amsterdam, 2000, pp. 259–270.

[17] A. Friedlander, J.M. Mart́ınez, and S.A. Santos, A new trust region algorithm for bound
constrained minimization, Appl. Math. Optim., 30 (1994), pp. 235–266.

[18] A. Friedlander and J.M. Mart́ınez, On the maximization of concave quadratic functions
with box constraints, SIAM J. Optim., 4 (1994), pp. 177–192.

[19] A. Friedlander, J.M. Mart́ınez, and M. Raydan, A new method for large scale box con-
strained quadratic minimization problems, Optim. Methods Softw., 5 (1995), pp. 57–74.

[20] G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University
Press, Baltimore, 1989.

[21] W.W. Hager, Analysis and implementation of a dual algorithm for constraint optimization,
J. Optim. Theory Appl., 79 (1993), pp. 33–71.

[22] M.R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303–
320.
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Abstract. For constrained smooth or nonsmooth optimization problems, new continuously
differentiable penalty functions are derived. They are proved exact in the sense that under some
nondegeneracy assumption, local optimizers of a nonlinear program are precisely the optimizers of
the associated penalty function. This is achieved by augmenting the dimension of the program by a
variable that controls both the weight of the penalty terms and the regularization of the nonsmooth
terms.
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1. Introduction. Smooth nonlinear programs are traditionally solved by aug-
menting the objective function or a corresponding Lagrangian function using penalty
or barrier terms to take account of the constraints (see, e.g., the surveys [3, 15]).
The resulting merit function is then optimized using either standard unconstrained
(or bound constrained) optimization software or sequential quadratic programming
(SQP) techniques. Independently of the technique used, the merit function always
depends on a small parameter ε (or a large parameter ρ = ε−1); as ε→ 0, minimizers
of the merit function converge to the set of minimizers of the original problem. In
some SQP approaches, one uses instead so-called exact penalty functions that pro-
duce exact optimizers already at sufficiently small positive values of ε. In return,
these exact penalty functions have the disadvantage that the evaluation of the merit
function either needs Jacobian information (to estimate multipliers) or (for l1 or l∞
penalties) is no longer smooth. In addition, both kinds of penalty functions may be
unbounded below even when the constrained problem is bounded, which may make
it difficult or impossible to locate a minimizer.

For nonsmooth nonlinear programs, solution techniques are much less developed
and often restricted to the convex or unconstrained case; in the latter case, constraints
are usually handled by an l∞ exact penalty function (e.g., in SolvOpt [6]). The
various approaches are based on combinations of subgradient methods (e.g., [13, 4]),
Moreau–Yosida regularization (e.g., [8, 9, 14]), or bundle techniques (e.g., [5, 7, 10]).
The regularization again depends on a small smoothing parameter ε > 0 such that
for ε→ 0 the original nonsmooth functions are recovered.

In the following, we discuss a new merit function for smooth or nonsmooth opti-
mization problems with equality, inequality, and bound constraints that

• has good smoothness and exactness properties,
• remains bounded below under reasonable conditions,
• combines regularization with penalty techniques, and
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• is flexible enough to give enough freedom for incorporating available Lagrange
multiplier estimates.

The most important new idea is that the merit function is considered as a function of
x and ε simultaneously, with the property that under appropriate assumptions, the
minimizer (x∗, ε∗) of the merit function satisfies ε∗ = 0, so that x∗ solves the original
problem.

This paper is organized as follows. In section 2, the case of a smooth constrained
optimization problem with equality constraints and bound constraints is considered.
A penalty function is introduced, and it is proved that under certain assumptions all
local minimizers of this penalty function have the form (x, ε), with ε = 0 and x a
solution of the original problem. A converse of this can be proved in much greater
generality, namely for nonsmooth functions that are suitably regularized. Therefore,
in section 3, a nonsmooth objective function and nonsmooth constraints are replaced
by regularized functions, and regularization recipes for some common nonsmooth
functions are given. As a preparation for the exactness proof, section 4 proves some
results involving regular zeros of a not necessarily smooth function. In section 5
the penalty function is generalized to the regularized problem, and it is proved that,
for a solution x∗ of the constrained optimization problem, (x∗, 0) is a minimizer of
the penalty function. In section 6 we illustrate our theory with an example, where
the traditional penalty functions are unbounded. Finally, in section 7 our penalty
function is generalized to problems involving in addition inequality constraints; results
analogous to those for equality constraints are shown to hold by reducing this case to
the previous one with the aid of slack variables.

Notation. In the following, the absolute value of a vector is defined compo-
nentwise, |x| := (|x1|, . . . , |xn|)T . Similarly, vector inequalities are understood com-
ponentwise. The norm used throughout is the Euclidean norm ‖x‖ =

√∑
x2
k, and

B[x0; r] denotes a closed Euclidean ball around x0 with radius r. The subvector of x
indexed by the indices in J is denoted by xJ , and A:J denotes the matrix consisting
of the columns of a matrix A indexed by the indices in J . Sets of the form

x = [x, x] := {x ∈ R
n | x ≤ x ≤ x},

where the lower bound x ∈ (R ∪ {−∞})n and the upper bound x ∈ (R ∪ {∞})n are
vectors containing proper or infinite bounds on the components of x and x ≤ x, are
referred to as n-dimensional boxes.

2. The smooth case. In this section we propose a class of penalty functions
for the smooth constrained nonlinear optimization problem

min f(x)
s.t. x ∈ [u, v], F (x) = 0,

(2.1)

where [u, v] is a box in R
n with nonempty interior, f : D → R and F : D → R

m are
continuously differentiable in an open set D containing [u, v]. We fix w ∈ R

m and
consider the equivalent problem

min f(x)
s.t. Fi(x) = εwi (i = 1, . . . ,m),

x ∈ [u, v], ε = 0.
(2.2)
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This motivates the definition of the penalty function fσ on D × [0, ε̄] by

fσ(x, ε) =



f(x) if ε = ∆(x, ε) = 0,

f(x) +
1

2ε
· ∆(x, ε)

1− q∆(x, ε)
+ σβ(ε) if ε > 0, ∆(x, ε) < q−1,

∞ otherwise,

(2.3)

with the constraint violation measure

∆(x, ε) := ‖εw − F (x)‖2,(2.4)

where, in addition, ε̄ > 0 and q > 0 are fixed and β : [0, ε̄] → [0,∞) is continuous
and continuously differentiable on (0, ε̄] with β(0) = 0. The surrogate optimization
problem then reads

min fσ(x, ε)
s.t. (x, ε) ∈ [u, v]× [0, ε̄].

(2.5)

Note that fσ(x, ε) is continuously differentiable in

Dσ = {(x, ε) ∈ D × (0, ε̄) | ∆(x, ε) < q−1},

with continuous limits at the part of the boundary where the limit values are finite,
in particular at (x, 0) with feasible x. Moreover,

fσ(x, ε) = f(x) +
ε

2
· ‖w‖2
1− q‖w‖2ε2 + σβ(ε) ≥ f(x) = fσ(x, 0) if F (x) = 0.(2.6)

The shift by εw in the definition of the constraint violation measure allows one to
incorporate Lagrange multiplier estimates (that serve to be able to work with better
conditioned Hessians; see the remark at the end of this section).

The denominator 1 − q∆(x, ε) is included since it forces the level sets of fσ to
remain in the set {(x, ε) ∈ R

n | ∆(x, ε) < q−1} and hence in some sense close to
the feasible set of (2.1). In particular, in many cases where the traditional quadratic
penalty function (where w = 0 and q = 0) is unbounded below, moderate positive
values for q give a well-behaved penalty problem (cf. the example in section 6). Indeed,
fσ is bounded below on [u, v]× [0, ε̄] whenever f(x) is bounded below on the set

D′ = {x ∈ [u, v] | ‖F (x)‖ ≤ q−1/2 + ε̄‖w‖}.(2.7)

This is a reasonable condition since it usually holds when f is bounded below on the
feasible set, ε̄ is small enough, and q is large enough.

The term σβ(ε) is included since it allows us to optimize simultaneously on x and
ε, thus automatizing the adaptation of the penalty factor 1/2ε. Intuitively, many slices
with different, fixed values of ε that are optimized in traditional quadratic penalty
methods are arranged consecutively and translated by the term σβ(ε) in such a way
that the minimizers form a curve with decreasing function values as ε→ 0. Therefore,
simultaneous optimization over both x and ε automatically leads to a local minimum
at ε = 0. Of course, we need conditions guaranteeing that the term σβ(ε) is enough
to cause this behavior of the penalty function. As we shall see in section 5, β(ε) =

√
ε

is an appropriate (but not the only possible) choice.
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We say that the Mangasarian–Fromovitz condition (see [11]) for (2.1) holds at
x ∈ [u, v] if F ′(x) has full rank and there is a p ∈ R

n with F ′(x)p = 0 and

pi

{
> 0 if xi = ui,
< 0 if xi = vi.

Theorem 2.1. In addition to the general assumptions mentioned after (2.1)
and after (2.4), assume that the set (2.7) is bounded, that each x ∈ D′ satisfies the
Mangasarian–Fromovitz condition, and that

β′(ε) ≥ β1 > 0 for 0 < ε < ε̄.(2.8)

If σ is sufficiently large, there is no Kuhn–Tucker point (x, ε) of (2.5) with ε > 0.
In particular, for sufficiently large σ, every local minimizer (x∗, ε∗) of the penalty

problem (2.5) with finite fσ(x
∗, ε∗) has the form (x∗, 0), where x∗ is a local minimizer

of the original problem (2.1).
Proof. If (x, ε) is a Kuhn–Tucker point of (2.5) with ε > 0, then there exist vectors

y, z ∈ R
n+1 such that

∇fσ(x, ε) = y − z,
inf(yi, xi − ui) = inf(zi, vi − xi) = 0, i = 1, . . . , n,

yn+1 = inf(zn+1, ε̄− ε) = 0,

where ∇fσ(x, ε) is the gradient of fσ with respect to (x, ε). The assertion of the
theorem is proved by contradiction. Assume that there exists a sequence (xk, εk, σk),
εk �= 0 for all k, σk → ∞ as k → ∞, where (xk, εk) is a Kuhn–Tucker point of fσk .
We use the abbreviation ∆k := ∆(xk, εk). The point xk satisfies

‖F (xk)‖ ≤ ∆
1/2
k + εk‖w‖ ≤ q−1/2 + ε̄‖w‖;

hence xk ∈ D′. Since D′ is closed and bounded, we may restrict ourselves to a
subsequence if necessary and assume that

lim
k→∞

εk = ε∗ ∈ [0, ε̄] and lim
k→∞

xk = x∗ ∈ D′.(2.9)

The condition ∂
∂εfσk(x

k, εk) ≤ 0 yields

q∆2
k + ε2k‖w‖2 + 2ε2k(1− q∆k)

2σkβ
′(εk) ≤ ‖F (xk)‖2,(2.10)

with equality in the case εk �= ε̄. Since the right-hand side is bounded and σk →∞,
this yields (in view of (2.8) and (2.9))

ε∗ = 0 or ∆∗ = q−1,(2.11)

where ∆∗ := ∆(x∗, ε∗). The derivatives with respect to x give

fxi(x
k) +

1

(1− q∆k)2εk
(F ′(xk)T (F (xk)− εkw))i



≥ 0 if xki = ui,
= 0 if ui < xki < vi,
≤ 0 if xki = vi

(2.12)

or

(F ′(xk)T (F (xk)− εkw))i + (1− q∆k)
2εkfxi(x

k)



≥ 0 if xki = ui,
= 0 if ui < xki < vi,
≤ 0 if xki = vi,
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where fxi denotes the partial derivative of f with respect to xi. By passing to the
limit, using (2.9) and (2.11), we obtain

(F ′(x∗)T (F (x∗)− ε∗w))i



≥ 0 if x∗i = ui,
= 0 if ui < x∗i < vi,
≤ 0 if x∗i = vi.

(2.13)

Since x∗ ∈ D′, the Mangasarian–Fromovitz condition holds for x = x∗ and some
vector p ∈ R

n. Let I1 := {i | x∗i = ui}, I2 := {i | x∗i = vi} and w∗ := F (x∗) − ε∗w.
Then

0 = (F ′(x∗)p)Tw∗ =
∑
i∈I1

pi(F
′(x∗)Tw∗)i +

∑
i∈I2

pi(F
′(x∗)Tw∗)i,

and the Mangasarian–Fromovitz condition and (2.13) imply (F ′(x∗)Tw∗)i = 0 for
i ∈ I1 ∪ I2 and thus F ′(x∗)Tw∗ = 0. Now the fact that F ′(x∗) has full rank yields
w∗ = 0, giving

F (x∗)− ε∗w = 0.(2.14)

Hence ∆∗ = 0, and by (2.11) we must have ε∗ = 0; therefore F (x∗) = 0 by (2.14).
Now (2.10) and (2.8) yield

q

ε2k
∆2
k + ‖w‖2 + 2(1− q∆k)

2σkβ1 ≤ 1

ε2k
‖F (xk)‖2.

Since β1 > 0, the last term on the left-hand side tends to ∞ as k → ∞. Thus the
vectors yk := ε−1

k F (xk) satisfy ‖yk‖ → ∞, the vectors zk := yk/‖yk‖ have norm 1,
and (2.12) implies that the numbers µki (i = 1, . . . , n), defined by

µki :=
1

‖yk‖fxi(x
k) +

1

(1− q∆k)2
(F ′(xk)T zk)i − 1

(1− q∆k)2‖yk‖ (F
′(xk)Tw)i,

satisfy

µki



≥ 0 if xki = ui,
= 0 if ui < xki < vi,
≤ 0 if xki = vi.

If we pick a convergent subsequence zkl with limit z∗ and pass to the limit we obtain

(F ′(x∗)T z∗)i



≥ 0 if x∗i = ui,
= 0 if ui < x∗i < vi,
≤ 0 if x∗i = vi.

Now similarly as above this yields z∗ = 0, which is a contradiction to ‖z∗‖ = 1. Thus
such a sequence (xk, εk, σk) cannot exist, and for sufficiently large σ all Kuhn–Tucker
points of fσ are of the form (x, 0).

Now let (x∗, ε∗) be a local minimizer of fσ with finite fσ(x
∗, ε∗). If ε∗ > 0, then

(x∗, ε∗) must be a Kuhn–Tucker point, which is a contradiction. Therefore, ε∗ = 0,
and since fσ(x

∗, ε∗) is finite, ∆(x∗, ε∗) = 0. Now (2.4) implies F (x∗) = 0, so that
x∗ is a feasible point of (2.1). Thus (2.6) implies that there is a neighborhood of x∗

where f(x) ≥ f(x∗) for feasible x. Therefore x∗ is a local minimizer of (2.1).
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We conclude that under the stated assumptions, minimizing the penalty function
fσ for sufficiently large σ yields a minimizer of the original problem. Conversely, as
we shall prove in section 5 in a more general setting, a minimizer x∗ of (2.1) yields
a minimizer (x∗, 0) of fσ for sufficiently large σ and slightly stronger conditions on
β(ε).

Remark. If wi �= 0 for i = 1, . . . , n, we can write wi = λ−1
i and rewrite (2.2) as

min f(x)
s.t. λiFi(x) = ε (i = 1, . . . ,m),

x ∈ [u, v], ε = 0.

This is again of the form (2.2) with Fi replaced by λiFi and wi replaced by 1. There-
fore, the theorem also holds with ∆(x, ε) =

∑m
i=1(ε − λiFi(x, ε))

2 in the penalty
function (2.3). Now the penalty function has an augmented Lagrangian interpreta-
tion. Indeed, for (x, ε) with small ∆(x, ε) we obtain

fσ(x, ε) = f(x) +
1

2ε
· ∆(x, ε)

1− q∆(x, ε)
+ σβ(ε)

= f(x) +
1

2ε
∆(x, ε) + σβ(ε) +O(∆(x, ε)2)

= f(x) +
1

2ε

m∑
i=1

(λiFi(x)− ε)2 + σβ(ε) +O(∆(x, ε)2)

= f(x)−
∑

λiFi(x) +
1

2ε

∑
λ2
iFi(x)

2 +
mε

2
+ σβ(ε) +O(∆(x, ε)2).

Thus, for fixed ε and up to constant additive terms and higher order terms, fσ is an
augmented Lagrangian, and the λi play the role of (fixed, initial) Lagrange multiplier
estimates.

In particular, as in traditional multiplier penalty functions [1], if the λi are close
to the Lagrange multipliers at the optimizer x∗, then fσ(x, ε) is nearly stationary
at x∗ for arbitrary fixed ε > 0. Therefore, numerical schemes for the minimization
of fσ(x, ε) get close to the minimizer already when ε is not very small and hence
when the Hessian of fσ (which gets more and more ill-conditioned as ε → 0) is still
well-conditioned.

3. Regularization of nonsmooth and ill-conditioned problems. In order
to regularize the optimization problem (2.1) with not necessarily smooth functions f
and F , we assume that we can embed f and F into a family of regularized functions
f(x, ε) and F (x, ε) that are twice continuously differentiable in (x, ε) when ε > 0 and
satisfy

f(x) = f(x, 0) = lim
ε→0

f(x, ε), F (x) = F (x, 0) = lim
ε→0

F (x, ε).

Of course, the case where the objective function and the constraints are already well-
behaved needs no modification, and in this case we simply put f(x, ε) = f(x) and
F (x, ε) = F (x) for all ε.

Nonsmooth functions arising in practice are often factorable, i.e., composed of a
finite sequence of elementary operations. Most elementary operations are smooth; the
nonsmoothness arises through a small number of nonsmooth elementary functions. A
natural regularization approach for factorable functions is to write each nonsmooth
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Table 1
Some regularization recipes.

N(x) N(x, ε) Condition

max
k

xk ξ + ε log
∑

exp ((xk − ξ)/ε) ξ = max
k

xk

min
k

xk ξ − ε log
∑

exp ((ξ − xk)/ε) ξ = min
k

xk

xt (x ≥ 0, t < 2) (x + ε)t t �= 0, 1

xt log x (x ≥ 0, t ≤ 2) xt log(x + ε) t = 0, 1, 2
(x + ε)t log(x + ε) t �= 0, 1, 2

|x|t (t < 2) |xt+k|/(|x|k + εk) k = �2 − t�
|x|t log |x| (0 < t ≤ 2) |xt+k| log |x|/(|x|k + εk) k = 1 + �2 − t	
c (huge constant) c/(1 + ε|c|)
c (tiny constant) c + ε sign c

elementary function N(x) as a limit of smooth functions N(x, ε) that are twice con-
tinuously differentiable in (x, ε) when ε > 0,

N(x) = lim
ε→0

N(x, ε).

Assuming that the objective and constraint functions are factorable, we may replace
each occurrence N(ri) of a nonsmooth elementary function in the definition of the
objective and constraint functions with N(ri, ερi) depending on an intermediate result
ri and a suitable scaling constant ρi. Then we end up with regularized functions
f(x, ε) and F (x, ε) with the required properties. Possible forms of N(x, ε) for the most
important nonsmooth N(x) are given in Table 1. Note that the first two formulas
are independent of ξ; the particular choice indicated is numerically stable and allows
us to restrict the sum to those terms where the exponent is > logmacheps, where
macheps is the machine accuracy.

Some smooth nonlinear programs are very difficult to solve since the Hessian
matrix of the Lagrangian is severely ill-conditioned everywhere. Often, the reason
for this is that the objective function or some constraint contains subexpressions
involving some huge or tiny constants. Such constants can be regularized, too, by
adapting them according to the last two lines of Table 1.

To approximate elementary functions with step discontinuities, such as

pos(x) =

{
1 if x > 0,
0 if x ≤ 0,

nneg(x) =

{
1 if x ≥ 0,
0 if x < 0,

sign(x) =




1 if x > 0,
0 if x = 0,
−1 if x < 0,

one may use the regularizations given in Table 2 (using x+ = max(x, 0)). However,
no accompanying theory is available since the results presented in section 5 require
the Lipschitz continuity of the functions involved.

4. Regular zeros of nonsmooth functions. In this section we derive some
technical results that are needed for the successful analysis of nonsmooth equality
constraints.
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Table 2
Regularization of functions with step discontinuities

N(x) N(x, ε) Condition

pos(x) x3+/(x3+ + ε3)

nneg(x) x3+/(x3+ + ε3)

sign(x) x3/(|x3| + ε3){
p if x ≥ 0(> 0),
q otherwise

{
px3/(x3 + ε3) if x ≥ 0,
qx3/(x3 − ε3) otherwise

pq ≤ 0

Definition 4.1. A point x∗ ∈ R
n is called a regular zero of a function H : D ⊆

R
n → R

m, m ≤ n, if x∗ is in the interior of D and satisfies H(x∗) = 0 and there are
a closed, convex, and bounded set A of m × n matrices and a matrix B ∈ R

(n−m)×n

such that the augmented matrix
(
A
B

)
is nonsingular for all A ∈ A and for every x, y

in some neighborhood N ⊆ D of x∗ there exists a matrix A ∈ A with

H(x)−H(y) = A(x− y).(4.1)

The regularity of a zero can be verified under quite general circumstances.
Proposition 4.2. A point x∗ ∈ R

n is a regular zero of H if H is continuously
differentiable in a neighborhood of x∗ and H ′(x∗) has full rank.

Proof. If H ′(x∗) has full rank, there is a matrix B such that
(
H′(x∗)
B

)
is square

and nonsingular. By continuity, there exists a convex neighborhood N of x∗ such that(
H′(x)
B

)
is nonsingular for x ∈ N and, as in the proof of [12, Proposition 5.1.4], (4.1)

is satisfied if we take for A the closed convex hull of {H ′(x) | x ∈ N}.
The preceding result generalizes to certain piecewise differentiable functions if the

nonsmoothness is not too severe. For example, we have the following proposition.
Proposition 4.3. A point x∗ ∈ R

n is a regular zero of H(x) = G(x, |x− x∗|) if
G is continuously differentiable in a neighborhood of (x∗, 0) with G(x∗, 0) = 0, and if
there exists a matrix B such that, for all diagonal matrices Σ ∈ R

n×n with |Σii| ≤ 1

for i = 1, . . . , n, the matrix
(
∂1G(x∗,0)+∂2G(x∗,0)Σ

B

)
is nonsingular.

Proof. We mimic the proof of Neumaier [12, Proposition 5.1.4]. Without loss
of generality, x∗ = 0. There is a ball N = B[0; δ] such that G(x, z) is continuously

differentiable for x, z ∈ N and every matrix
(
∂1G(x,z)+∂2G(x,z)Σ

B

)
is nonsingular. Let

x, y ∈ N . By a version of the mean value theorem we have

G(x, |x|)−G(y, |y|) =
∫ 1

0

∂1G(y + s(x− y), |x|)(x− y) ds

+

∫ 1

0

∂2G(y, |y|+ s(|x| − |y|))(|x| − |y|) ds
= A(x− y),

where

A =

∫ 1

0

∂1G(y + s(x− y), |x|) ds+
∫ 1

0

∂2G(y, |y|+ s(|x| − |y|))Σ ds

and Σ is the diagonal matrix with the diagonal entries

Σii :=

{
(|xi| − |yi|)/(xi − yi) if xi �= yi,
0 otherwise.
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Since N is convex, A is contained in the closed convex hull A of the set of expressions
∂1G(x, |x′|) + ∂2G(y, |y′|)Σ, where x, x′, y, y′ ∈ N and Σ is a diagonal matrix with
|Σii| ≤ 1 for i = 1, . . . , n. If N is chosen sufficiently small,

(
A
B

)
is nonsingular for all

A ∈ A.
In particular, this applies to H(x) = G(x) + δG1(x, |x|) if G and G1 are continu-

ously differentiable near 0, G′(0) has full rank, and δ is sufficiently small.
With a similar argument but now involving generalized derivatives (essentially

the convex hull of the limit set of gradients of nicely approximating smooth functions;
see, e.g., [2, 12]), the following result can be proved.

Proposition 4.4. A point x∗ ∈ R
n is a regular zero of H(x) if H is Lipschitz

continuous in a neighborhood of x∗ with H(x∗) = 0, and if there exists a matrix B
such that, for all matrices H ′ contained in the generalized derivative of H at x∗, the
matrix

(
H′

B

)
is nonsingular.

For x near a regular zero of H and an arbitrary set J of indices, one can find
a small perturbation of the order of O(‖HJ(x)‖) such that the perturbed vector y
satisfies HJ(y) = 0 and Hi(y) = Hi(x) for all i /∈ J .

Theorem 4.5. Let x∗ be a regular zero of H : D ⊆ R
n → R

m, m ≤ n. Then
there are a neighborhood N0 ⊆ N of x∗ and a constant γ0 > 0 such that for each
x ∈ N0 and each subset J of {1, . . . ,m} there exists a vector y = y(x) ∈ N with
Hi(y) = 0 for i ∈ J and Hi(y) = Hi(x) for i /∈ J such that

‖x− y‖ ≤ γ0‖HJ(x)‖.
Proof. We define the neighborhood N0 := B[x∗; (2γ0(L + ‖B‖))−1r] ∩N , where

r > 0 is such that the closed ball N1 := B[x∗; r] is contained in the neighborhood N
of x∗, and

L := sup
A∈A
‖A‖ <∞, γ0 := sup

A∈A

∥∥∥∥
(
A

B

)−1∥∥∥∥ <∞
by assumption. By (4.1), the constant L is a Lipschitz constant for H. We fix a vector
x ∈ N0 and a subset J of {1, . . . ,m}, and put K := {1, . . . ,m} \ J .

To find y, we want to apply the nonsmooth inverse function theorem given in
Neumaier [12, Theorem 5.1.6(iv)] to the mapping F : N → R

n defined by

F (z) :=

(
H(z)

B(z − x∗)

)
for z ∈ N,

with the right-hand side

b∗ =

(
b

B(x− x∗)

)
,(4.2)

where bi = 0 for i ∈ J and bi = Hi(x) for i ∈ K, and x̃0 = x∗. Since H(x∗) = 0
implies F (x∗) = 0, this requires that we show

F (z) �= sb∗ for all z ∈ ∂N1, s ∈ [0, 1).(4.3)

If this holds, [12, Theorem 5.1.6(iv)] implies that there is a unique y ∈ N1 with
F (y) = b∗; hence Hi(y) = 0 for i ∈ J and Hi(y) = Hi(x) for i ∈ K. Moreover,

F (x)− F (y) =

(
A

B

)
(x− y)
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for some A ∈ A and

‖F (x)− F (y)‖ = ‖HJ(x)‖;
hence

‖x− y‖ ≤
∥∥∥∥
(
A

B

)−1∥∥∥∥ ‖HJ(x)‖ ≤ γ0‖HJ(x)‖.

Thus y has the required properties.
To show (4.3), we suppose that F (z) = sb∗ for some z ∈ N1, s ∈ [0, 1). Since N1

is contained in N , there exists an A ∈ A such that

sb∗ = F (z) = F (z)− F (x∗) =
(
A

B

)
(z − x∗),

and we obtain

‖z − x∗‖ = ‖s
(
A

B

)−1

b∗‖ ≤ sγ0‖b∗‖.

Since H(x∗) = 0, (4.2) implies ‖b∗‖ ≤ ‖HK(x) − HK(x∗)‖ + ‖B(x − x∗)‖ ≤ (L +
‖B‖)‖x− x∗‖, and we conclude

‖z − x∗‖ ≤ sγ0(L+ ‖B‖)‖x− x∗‖.(4.4)

Hence z ∈ B[x∗; r/2] cannot lie on the boundary of N1; in particular, (4.3) holds.
This proves the theorem.

5. The local exactness proof. We now consider the optimization problem
(2.1), where we now allow f and F to be nonsmooth functions. Clearly, with the
embedding of section 3 and a fixed w ∈ R

m, (2.1) is equivalent to

min f(x, ε)
s.t. Fi(x, ε) = εwi (i = 1, . . . ,m),

x ∈ [u, v], ε = 0.
(5.1)

We assume that f and F are continuous onD×[0, ε̄], whereD is an open set containing
[u, v] and ε̄ > 0, and twice continuously differentiable on its interior.

We use again the expression (2.3) for the penalty function but with f(x, ε) in
place of f(x) and the regularized constraint violation measure

∆(x, ε) := ‖εw − F (x, ε)‖2.(5.2)

If, in addition to the assumptions mentioned after (2.4), β is twice continuously dif-
ferentiable for ε > 0, the function fσ is twice continuously differentiable for (x, ε) ∈
(0, ε̄)× [u, v] with ∆(x, ε) < q−1.

It is conceivable that for this penalty function, a suitable analogue of Theorem
2.1 holds even in the nonsmooth case, but this requires an extension of the Kuhn–
Tucker optimality conditions to nonsmooth problems, and we have not tried to handle
the technicalities associated with this. On the other hand, we show here (after some
preparation) that a converse of Theorem 2.1 can be proved in the nonsmooth case.

Assumptions. For the formal analysis, we shall suppose that, in addition to the
general assumptions made above, the following assumptions (Hf ), (HF ), and (Hε) are
satisfied in a neighborhood of some local (or global) minimizer x = x∗ of (5.1). Let
I := {i | ui < x∗i < vi}; to simplify notation we assume that I = {1, . . . , p} with
m ≤ p ≤ n.
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(Hf ) f(·, 0) is Lipschitz continuous with the Lipschitz constant k.

(HF ) x
∗ is a regular zero of F (·, 0) and x∗I is a regular zero of G : D1 ⊆ R

p → R
m,

defined by G(x̃) := F (x, 0), where xi = x̃i for i = 1, . . . , p and xi = x∗i for
i = p + 1, . . . , n and D1 is an appropriate open set containing [uI , vI ]. N
is a neighborhood of x∗ according to Definition 4.1 such that, in addition,
F (·, 0) is Lipschitz continuous in N and xI ∈ [uI , vI ] for x ∈ N .

(Hε) There are positive constants ε̄ and K such that for all x ∈ N and all
ε ∈ [0, ε̄],

‖F (x, 0)− F (x, ε)‖∞ ≤ Kε, |f(x, 0)− f(x, ε)| ≤ Kε.

(Hβ) β satisfies lim infε→0 β(ε)/
√
ε > 0.

Lemma 5.1. x∗ is a regular zero of H : D ⊆ R
n → R

m+n−p, defined by Hi(x) :=
Fi(x, 0) for i = 1, . . . ,m and Hi(x) := xi−m+p−x∗i−m+p for i = m+1, . . . ,m+n−p,
if and only if x∗ is a regular zero of F (·, 0) and x∗I is a regular zero of the mapping
G defined in (HF ).

Proof. Let x, y ∈ N , where N is an appropriate neighborhood of x∗ according
to Definition 4.1. In both cases we have F (x, 0) − F (y, 0) = A(x − y) for a matrix
A ∈ A, where A is a closed, convex, and bounded set of m×n matrices such that the
augmented matrix

(
A
B

)
is nonsingular for all A ∈ A for some matrix B ∈ R

(n−m)×n.
Then

H(x)−H(y) =

(
A

A′

)
(x− y),

where A′ := (0 In−p) ∈ R
(n−p)×n, and

G(xI)−G(yI) = A:I(xI − yI).

Let x∗ be a regular zero of H and let B′ ∈ R
(p−m)×n be such that

 A
A′

B′




is nonsingular for all A ∈ A. Then (A:I

B′
:I

)
is nonsingular, i.e., x∗I is a regular zero of G.

Conversely, let x∗I be a regular zero of G and let B′
:I be such that

(
A:I

B′
:I

)
is nonsingular.

Then 
 A

A′

B′′




is nonsingular with B′′ = (B′
:I 0) ∈ R

(p−m)×n. Therefore x∗ is a regular zero
of H.

Lemma 5.2. If (Hf ) and (HF ) hold, there are a neighborhood N0 ⊆ N of x∗ and
a constant γ1 > 0 such that

f(x, 0) ≥ f(x∗, 0)− γ1‖F (x, 0)‖ for all x ∈ N0 ∩ [u, v].

Proof. By (HF ), x
∗ is a regular zero of the mapping H defined in Lemma 5.1.

Let N0 ⊆ N and γ0 be as in Theorem 4.5, and let x ∈ [u, v] ∩N0. Then by Theorem
4.5 with J := {i | Fi(x, 0) �= 0} there exists a y = y(x) with HJ(y) = 0 such that

‖x− y‖ ≤ γ0‖HJ(x)‖ = γ0‖F (x, 0)‖.
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The fact that yi = xi for i = p+1, . . . , n and the choice of N in (HF ) imply that y ∈
[u, v]; i.e., y is a feasible point. We therefore have f(y, 0) ≥ f(x∗, 0) by assumption,
and

f(x, 0) = f(x, 0)− f(y, 0) + f(y, 0) ≥ f(x∗, 0)− k‖x− y‖
≥ f(x∗, 0)− kγ0‖F (x, 0)‖,

which completes the proof.
Now we can prove the main theorem of this section.
Theorem 5.3. Under the above assumptions and for sufficiently large σ, there

are a neighborhood N ′ of x∗ and an ε′ ∈ (0, ε̄] such that

fσ(x, ε) > fσ(x
∗, 0) = f(x∗, 0) for all (x, ε) ∈ N ′ × (0, ε′].

In particular, (x∗, 0) is a local minimizer of fσ.
Proof. Let the neighborhood N ′ ⊆ N0 of x∗ (N0 as in Lemma 5.2) be sufficiently

small such that

sup
x∈N ′

(f(x∗, 0)− f(x, 0)) ≤ 1

2
;(5.3)

let ε′ ∈ (0, ε̄], ε′ ≤ 1, be sufficiently small such that

β(ε) ≥ β2

√
ε(5.4)

for 0 ≤ ε ≤ ε′ and a β2 > 0; and let

σ ≥ 1

β2
(K(γ1 + 1) + γ1(‖w‖+ 1)).(5.5)

For (x, ε) ∈ N ′ × (0, ε′] we distinguish two cases.
Case 1. Let ∆(x, ε) ≥ ε. Then

fσ(x, ε) ≥ f(x, ε) +
1

2
+ σβ(ε)

≥ f(x∗, 0)− 1

2
−Kε+

1

2
+ σβ(ε)

≥ f(x∗, 0)−K
√
ε+ σβ2

√
ε > f(x∗, 0),

where we have used (Hε), (5.3), (5.4), (5.5), and the fact that ε ≤ ε′ ≤ 1.
Case 2. If ∆(x, ε) < ε, then ‖F (x, ε)‖ < ε‖w‖ + ‖εw − F (x, ε)‖ ≤ ε‖w‖ + √ε;

hence by Lemma 5.2 and (Hε),

f(x∗, 0) ≤ f(x, 0) + γ1‖F (x, 0)‖
≤ f(x, ε) +Kε+ γ1(‖F (x, ε)‖+Kε)

< f(x, ε) +K(γ1 + 1)ε+ γ1(
√
ε+ ε‖w‖).

Therefore fσ(x, ε) ≥ f(x, ε) + σβ(ε) > f(x∗, 0) by (5.4), (5.5), and ε ≤ ε′ ≤ 1.
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6. An example. To illustrate the theory developed, we consider the simple
smooth nonlinear optimization problem

min x3
1x

3
2

s.t. x2
1 + x2

2 = 1.

It has a bounded feasible domain, two global minimizers at x∗ = ( 1
2

√
2,− 1

2

√
2)T and

x∗∗ = (− 1
2

√
2, 1

2

√
2)T with f(x∗) = f(x∗∗) = − 1

8 , and no other local minima. The
traditional quadratic penalty function for this problem,

p(x) = x3
1x

3
2 +

1

2ε
(x2

1 + x2
2 − 1)2,

is unbounded below for all ε > 0 since, e.g., p(x)→ −∞ for x = (s,−s)T , s→∞. This
is also the case for traditional exact penalty functions, including multiplier penalty
functions [1] that use an additional term +λ(x2

1 + x2
2 − 1). On the other hand, our

new penalty function is bounded below. For w = 1 it reads

fσ(x, ε) =



x3

1x
3
2 for ε = ∆(x, ε) = 0,

x3
1x

3
2 +

1

2ε
· r2

1− qr2
+ σβ(ε) for ε > 0, |r| < q−1/2,

∞ otherwise,

where r := 1 + ε − x2
1 − x2

2. Since fσ(x, ε) = ∞ if ‖x‖ ≥
√
q−1/2 + 1 + ε, the

boundedness of our penalty function below is trivial. The Mangasarian–Fromovitz
condition holds for all x �= 0; hence the assumptions of Theorem 2.1 are satisfied
if q−1/2 + ε̄ < 1 and (2.8) holds. In this case, every local minimizer of the penalty
function with a sufficiently large σ gives a solution of the original constrained problem.

In this particular example we can give an explicit analysis, and find that in fact
weaker assumptions than those given in Theorem 2.1 suffice to get the conclusions,
since ε̄ can be chosen arbitrarily large. To show this, let (x, ε) be a Kuhn–Tucker
point of fσ with ε > 0 and |r| < q−1/2. Then ∂fσ/∂x1 and ∂fσ/∂x2 vanish at (x, ε),
and ∂fσ(x, ε)/∂ε ≤ 0, with equality if ε < ε̄. We have

∂fσ
∂x1

(x, ε) = x1

(
3x1x

3
2 −

2r

ε(1− qr2)2

)
,

∂fσ
∂x2

(x, ε) = x2

(
3x3

1x2 − 2r

ε(1− qr2)2

)
,

∂fσ
∂ε

(x, ε) =
r(2ε− r + qr3)

2ε2(1− qr2)2
+ σβ′(ε).

Since σβ′(ε) > 0, ∂fσ/∂ε ≤ 0 implies

r(2ε− r + qr3) < 0;(6.1)

in particular r �= 0. Under this condition, the other partial derivatives vanish if and
only if either x1 = x2 = 0 or

3x1x
3
2 = 3x3

1x2 =
2r

ε(1− qr2)2
.(6.2)
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If (6.2) holds, then x1 = ±x2, the definition of r gives 1 + ε − r = 2x2
1, and (6.2)

simplifies to

8|r| = 3ε(1− qr2)2(1 + ε− r)2.(6.3)

If r > 0, then r > 2ε+ qr3 > 2ε by (6.1), giving 0 ≤ 1+ ε− r < 1− ε < 1. Now (6.3)
implies 8r ≤ 3ε, contradicting r > 2ε. And if r < 0, then (6.3) and qr2 < 1 imply for
q ≥ 1 that

−r
2ε(1− qr2)2

=
3

16
(1 + ε+ |r|)2 ≤ 3

16
(2 + ε̄) =: t

and

2ε− r + qr3 ≤ 2ε− r ≤ (2 + 2t)ε.

Now ∂fσ/∂ε ≤ 0 gives σβ′(ε) ≤ t(2 + 2t). If (2.8) holds and σ > 2t(t+ 1)/β1, this is
violated, (6.2) is impossible, and the only Kuhn–Tucker point of fσ with ε > 0 can
be at x1 = x2 = 0. But then r = 1 + ε and (6.1) requires q < (1− ε)/(1 + ε)3, again
impossible if q ≥ 1.

Thus, for this example, the conclusion of Theorem 2.1 is valid for arbitrary ε̄ > 0 if
(2.8) holds and q ≥ 1, provided that σ is sufficiently large. Note that for q ≥ 1 we have
∆(0, ε) = (1+ε)2 > q−1, so that the only point violating the Mangasarian–Fromovitz
condition does not satisfy ∆(x, ε) < q−1.

We now look at the converse. Theorem 5.3 gives conditions guaranteeing that
every solution of the constrained problem is a local minimizer of fσ. To verify this
explicitly we need to investigate when it is possible that fσ is below the common
value − 1

8 of fσ(x
∗, 0) and fσ(x

∗∗, 0). Thus suppose that fσ(x, ε) ≤ − 1
8 , (x, ε) �=

(x∗, 0), (x∗∗, 0). Then ε > 0. Since

x3
1x

3
2 ≥ −

1

8
(x2

1 + x2
2)

3 = −1

8
(1 + ε− r)3 ≥ −1

8
(1 + ε+ |r|)3,

we find

8σβ(ε) ≤ −1 + (1 + ε+ |r|)3 − 4r2/ε =: p(|r|), |r| < q−1/2.(6.4)

Now p(r) is a cubic polynomial. If ε < ε0 := 1
6 (−3+

√
33) = 0.45742 . . . , the positive

solution of ε0(1 + ε0) =
2
3 , then δ := 2 − 3ε(1 + ε) > 0, and p(r) has a unique local

maximum at

r0 =
3ε(1 + ε)2

2 + δ +
√
8δ
≤ 3

2
ε(1 + ε)2 ≤ 3

2
ε(1 + ε0)

2 = ε(1 + ε−1
0 )

with function value

p(r0) ≤ −1 + (1 + ε+ r0)
3 ≤ −1 + (1 + ε(2 + ε−1

0 ))3 ≤ −1 + (2 + 2ε0)
3

ε0
ε < 52ε.

Here we used the fact that (−1 + (1 + ε(2 + ε−1
0 ))3)/ε is monotone increasing. Now

p(|r|) ≤ max(p(r0), p(q
−1/2)) < 52ε for |r| < q−1/2
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if p(q−1/2) < 0, which holds for any fixed q if ε is small enough. Thus (6.4) is violated
if σβ(ε) > 6.5ε and ε is small enough. If (Hβ) holds, this is the case for arbitrary
σ and sufficiently small ε > 0. Thus we have a contradiction, and the conclusion of
Theorem 5.3 holds for arbitrary σ. We also see that in this example the conclusion of
Theorem 5.3 still holds if the condition lim infε→0 β(ε)/

√
ε > 0 in (Hβ) is relaxed to

lim infε→0 β(ε)/ε > 0 and σ is chosen sufficiently large.

7. More general constraints. In this section we extend our theory to the more
general constrained optimization problem

min f(x)
s.t. x ∈ [u, v], Fl ≤ F (x) ≤ Fu,

(7.1)

where Fl ∈ (R ∪ {−∞})m and Fu ∈ (R ∪ {∞})m are vectors containing proper or
infinite bounds on the constraint functions and Fl ≤ Fu. This formulation is quite
general since equality constraints are allowed by taking equal lower and upper bounds,
and one-sided inequalities by taking infinite lower or upper bounds. Thus we treat
equality constraints and one- or two-sided inequality constraints on the same footing.
Moreover, we again assume that f and F are embedded into families of regularized
functions f(x, ε) and F (x, ε) with f(x, 0) = f(x) and F (x, 0) = F (x).

For the one-dimensional boxes (which are just the closed intervals) we define the
mignitude [12]

〈x〉 := min{|x| | x ∈ x} =



x if x > 0,
−x if x < 0,
0 otherwise.

We also need the simple interval operations

α+ βx = {α+ βx | x ∈ x} =
{
[α+ βx, α+ βx] if β ≥ 0,
[α+ βx, α+ βx] if β ≤ 0.

Using this interval notation, we introduce a box-valued function E on [u, v]× [0, ε̄]
by

E : (x, ε)→ E(x, ε) := F (x, ε)− [Fl, Fu],(7.2)

where we assume that (Hε) is satisfied, and consider the following optimization prob-
lem in inclusion form:

min f(x, ε)
s.t. εwi ∈ Ei(x, ε) (i = 1, . . . ,m),

x ∈ [u, v], ε = 0,
(7.3)

where again w ∈ R
m is fixed. Clearly, this formulation is equivalent to the optimiza-

tion problem (7.1). The usefulness of this particular formulation will become apparent
when we look at the associated penalty function.

The penalty function is again defined by (2.3) with f(x, ε) in place of f(x), but
now the constraint violation measure ∆(x, ε) is of the form

∆(x, ε) :=
m∑
i=1

∆i(x, ε)(7.4)
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with

∆i(x, ε) := 〈εwi −Ei(x, ε)〉2,(7.5)

the squared distance of εwi from the interval Ei(x, ε). Without loss of generality we
assume that the constraints are inequality constraints for i = 1, . . . , r and equality
constraints for i = r + 1, . . . ,m, where 1 ≤ r ≤ m. Then

∆i(x, ε) = (εwi − (Fi(x, ε)− Fli))
2 for i = r + 1, . . . ,m

and

∆i(x, ε) = (εwi − (Fi(x, ε)− yi))
2 for i = 1, . . . , r,(7.6)

where

yi =



Fi(x, ε)− εwi if Fi(x, ε)− εwi ∈ [Fli, Fui],
Fli if Fi(x, ε)− εwi < Fli,
Fui if Fi(x, ε)− εwi > Fui.

(7.7)

Moreover, ∆(x, ε) is continuously differentiable for ε > 0, with

∂

∂x
∆i(x, ε) = −2(εwi − Fi(x, ε) + yi)

∂Fi
∂x

(x, ε)

and

∂

∂ε
∆i(x, ε) = 2(εwi − Fi(x, ε) + yi)

(
wi − ∂Fi

∂ε
(x, ε)

)
for i = 1, . . . , r.

We reduce this more general situation to the previous one with the aid of slack
variables and use the abbreviations J := {1, . . . , r} and J ′ := {r + 1, . . . ,m}. By
introducing the slack variables yi := Fi(x, ε) for i = 1, . . . , r we obtain the problem

min f(x, ε)
s.t. x ∈ [u, v], y ∈ [FlJ , FuJ ], ε = 0,

FJ(x, ε)− y = εwJ , FJ′(x, ε)− FlJ ′(= FJ′(x, ε)− FuJ ′) = εwJ′ ,
(7.8)

which is of the form (5.1). The penalty function for this problem is given by

f̃σ(x, y, ε) =



f(x) for ε = ∆̃(x, y, ε) = 0,

f(x, ε) +
1

2ε
· ∆̃(x, y, ε)

1− q∆̃(x, y, ε)
+ σβ(ε) for ε > 0, ∆̃(x, y, ε) < q−1,

∞ otherwise,

where

∆̃(x, y, ε) =

r∑
i=1

(εwi − (Fi(x, ε)− yi))
2 +

m∑
i=r+1

(εwi − (Fi(x, ε)− Fli))
2.

Let Ẽi(x, y) := Fi(x)−yi, i = 1, . . . , r, and Ẽi(x, y) := Fi(x)−Fli, i = r+1, . . . ,m.
Then

Ẽ′(x, y) =
(

F ′
J(x) −Ir

F ′
J′(x) 0

)
,
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and, for m ≤ n+ r, Ẽ′(x, y) has full rank if and only if F ′
J′(x) has full rank.

Lemma 7.1. Let (x, ε) ∈ [u, v]× [0, ε̄] with ∆(x, ε) < q−1. Then

∆(x, ε) = min
y∈[FlJ ,FuJ ]

∆̃(x, y, ε)(7.9)

and thus

fσ(x, ε) = min
y∈[FlJ ,FuJ ]

f̃σ(x, y, ε).

Moreover, if (x, ε) is a Kuhn–Tucker point of fσ, then there exists a vector y ∈
[FlJ , FuJ ] such that (x, y, ε) is a Kuhn–Tucker point of f̃σ.

Proof. Let (x, ε) ∈ [u, v] × [0, ε̄] with ∆(x, ε) < q−1, and let y be defined by
(7.7). Then, for i = r + 1, . . . ,m we have ∆i(x, ε) = (εwi − (Fi(x, ε) − Fli))

2, and
∆i(x, ε) is given by (7.6) and (7.7) for i = 1, . . . , r, i.e., ∆(x, ε) = ∆̃(x, y, ε) for y
defined by (7.7) and clearly (7.9) holds. Moreover, ∂

∂x∆(x, ε) = ∂
∂x∆̃(x, y, ε) and

∂
∂ε∆(x, ε) = ∆̃(x, y, ε). If (x, ε) is a Kuhn–Tucker point of fσ, (x, y, ε) thus fulfills the
Kuhn–Tucker conditions for x and ε, and due to the definition of y and the fact that

∂f̃σ
∂yi

(x, y, ε) =
1

ε(1− q∆̃(x, y, ε))2
(εwi − Fi(x, ε) + yi)

it also satisfies the Kuhn–Tucker conditions with respect to y.
The Mangasarian–Fromovitz condition for this problem holds for (x, y) ∈ [u, v]×

[FlJ , FuJ ] if

F ′
J′(x) has full rank, and there is a p ∈ R

n with F ′
J′(x)p = 0,

pi

{
> 0 if xi = ui,
< 0 if xi = vi,

(F ′
J(x)p)i

{
> 0 if yi = Fli,
< 0 if yi = Fui.

Let I := {i | ui < x∗i < vi} and J1 := {i ∈ J | Fi(x∗, 0) = Fil or Fi(x
∗, 0) = Fiu};

without loss of generality I := {1, . . . , p}. Moreover, let E(x) := F (x, 0) − F (x∗, 0),
x ∈ D. Then (HF ) is replaced by the following.

(HE) E is Lipschitz continuous in a neighborhood of x∗, x∗ is a regular zero of
EJ′ : D ⊆ R

n → R
m−r, and x∗I is a regular zero ofG : D1 ⊆ R

p → R
m−r+r1 ,

r1 := |J1|, defined by G(x̃) := EJ1∪J′(x) with xi := x̃i for i = 1, . . . , p and
xi := x∗i for i = p+1, . . . , n, where D1 is an appropriate open set containing
[uI , vI ].

Theorem 7.2. If the above Mangasarian–Fromovitz condition holds for all (x, y)
∈ [u, v]× [FlJ , FuJ ] with

r∑
i=1

(Fi(x)− yi)
2 +

m∑
i=r+1

(Fi(x)− Fli)
2 ≤ (q−1/2 + ε̄‖w‖)2,

the set of these (x, y) is bounded, and (2.8) is satisfied, then the conclusions of Theorem
2.1 hold for the smooth case of the penalty function defined in this section. Moreover,
under the assumptions (Hf ), (HE), (Hε), and (Hβ) the conclusions of Theorem 5.3
are satisfied for the penalty function defined by (2.3) with f(x) replaced by f(x, ε) and
∆ defined by (7.4) and (7.5).
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1. Standing assumptions, problem statement, and motivation. We as-
sume throughout this paper that

X is a Euclidean space with scalar product 〈·, ·〉 and induced norm ‖ · ‖(1.1)

and that

f : X → ]−∞, +∞] is a proper closed convex Legendre function
such that dom f∗ is open,

(1.2)

where f∗ denotes the conjugate of f . Recall that a function is Legendre if it is both
essentially smooth and essentially strictly convex (see, e.g., [31] for basic facts and
notions from convex analysis). In addition, we assume that

(Ci)i∈I are finitely many closed convex sets in X

such that (int dom f) ∩
⋂
i∈I

Ci 	= Ø.(1.3)

Our aim is to study algorithms for solving the fundamental convex feasibility problem
(see [4], [14], [17], [20], and [27] for further information and references)

find x ∈
⋂
i∈I

Ci.(1.4)

Assumption (1.2) guarantees that we capture a large class of functions (see Ex-
ample 2.1 below) for which the corresponding Bregman distance

Df : X ×X → [0, +∞] : (x, y) �→
{

f(x)− f(y)− 〈x− y,∇f(y)〉 if y ∈ int dom f ;

+∞ otherwise

(1.5)
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enjoys useful properties (Proposition 2.2). This type of directed distance was first
introduced by Bregman in [8]; see [17] for a historical account. Now fix a closed
convex set C in X such that C∩ int dom f 	= Ø and a point y ∈ int dom f . Then there
is a unique point in C ∩ int dom f , called the backward Bregman projection (or simply

the Bregman projection) of y onto C and denoted by
←−
PCy, which satisfies (Fact 2.3)

(∀c ∈ C) Df (
←−
PCy, y) ≤ Df (c, y).(1.6)

Moreover, if f allows forward Bregman projections (Definition 2.4), then there is
analogously a unique point in C ∩ int dom f , called the forward Bregman projection
of y onto C and denoted by

−→
PCy, which satisfies (Fact 2.6)

(∀c ∈ C) Df (y,
−→
PCy) ≤ Df (y, c).(1.7)

If f = 1
2‖ · ‖2, then both

←−
PCy and

−→
PCy coincide with the orthogonal projection of

y onto C; however, the backward and forward Bregman projections differ generally,
due to the asymmetry of Df .

With backward and forward Bregman projections in place, we now describe three
projection methods for solving (1.4). To this end, fix an index selector map i : N =
{0, 1, 2, . . . } → I that takes on each value in I infinitely often, and a starting point
y0 ∈ int dom f . The method of backward Bregman projections generates a sequence
(yn)n∈N by

(∀n ∈ N) yn+1 =
←−
PCi(n+1)

yn.(1.8)

Analogously, if f allows forward Bregman projections, then the update rule for the
method of forward Bregman projections is

(∀n ∈ N) yn+1 =
−→
PCi(n+1)

yn.(1.9)

Well-known cyclic versions arise if I = {1, . . . , N} and i(n) = n mod N , where the
range of the mod function is assumed to be {1, . . . , N}. The sequence (yn)n∈N gener-
ated by (1.8) (or by (1.9), if f allows forward Bregman projections) is known to solve
(1.4) asymptotically: indeed, (yn)n∈N converges to some point in

⋂
i∈I Ci; see [5] and

[16] (or [7], respectively).
The third algorithm is due to Byrne and Censor [12], who adapted Csiszár and

Tusnády’s classical alternating minimization procedure [22] to a product space setting
(see also section 5). Their algorithm assumes two constraints, I = {1, 2}, and a se-
quence (yn)n∈N is generated using alternating backward-forward Bregman projections:

(∀n ∈ N) yn+1 =
(←−
PC2 ◦ −→PC1

)
yn.(1.10)

They show that, under appropriate conditions, (yn)n∈N converges to some point in
C1 ∩ C2; see [12, Theorem 1].

The striking resemblance in the update rules of the three preceding algorithms
motivates this paper. Our objective is to provide a unified convergence analysis of
these algorithms using the notion of a Bregman retraction, which encompasses both
backward and forward Bregman projections. The main theorem not only recovers
known convergence results but also provides a theoretical basis for the application of
new sequential and parallel methods.

It is instructive to contrast our Bregman retraction-based framework with Cen-
sor and Reich’s [16] framework, which is built on paracontractions (Definition 3.11).
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While backward Bregman projections are both Bregman retractions and paracontrac-
tions, the two notions differ in general; actually, Examples 3.12 and 3.13 show that
neither framework contains the other.

The key advantage of the Bregman retraction-based framework presented here is
its applicability: the conditions on f are mild and easy to check. Moreover, simple
constraint qualifications guarantee that Bregman retractions—in the form of backward
Bregman projections (and forward Bregman projections, if f allows them)—always
exist.

The paper is organized as follows. Background material on Bregman distances
and associated projections is included in section 2. In section 3, Bregman retractions
are introduced, analyzed, and illustrated by examples. The main result is proved in
section 4, and applications are presented in section 5.

2. Preliminary results. Below is a selection of functions satisfying our assump-
tions (see [5] for additional examples).

Example 2.1 (see [5]). Suppose that X = R
J and, for every x ∈ X, write

x = (ξj)
J
j=1. Then the following functions satisfy (1.2) (here and elsewhere, we use

the convention 0 · ln(0) = 0):

(i) f : x �→ 1
2‖x‖2 = 1

2

∑J
j=1 |ξj |2, with dom f = R

J (energy);

(ii) f : x �→∑J
j=1 ξj ln(ξj)− ξj, with dom f = [0, +∞[

J
(negative entropy);

(iii) f : x �→∑J
j=1 ξj ln(ξj)+(1− ξj) ln(1− ξj), with dom f = [0, 1]J (Fermi–Dirac

entropy);

(iv) f : x �→ −∑J
j=1 ln(ξj), with dom f = ]0, +∞[

J
(Burg entropy);

(v) f : x �→ −∑J
j=1

√
ξj, with dom f = [0, +∞[

J
.

The assumptions imposed on f in (1.2) guarantee the following very useful prop-
erties of Df .

Proposition 2.2. Let Df be defined as in (1.5). Then we have the following:
(i) Df is continuous on (int dom f)2.
(ii) If x ∈ dom f and y ∈ int dom f , then Df (x, y) ≥ 0, and Df (x, y) = 0 ⇔

x = y.
(iii) If (xn)n∈N and (yn)n∈N are two sequences in int dom f converging to x ∈

int dom f and y ∈ int dom f , respectively, then Df (xn, yn)→ 0 ⇔ x = y.
(iv) If x ∈ int dom f and (yn)n∈N is a sequence in int dom f such that the sequence

(Df (x, yn))n∈N is bounded, then (yn)n∈N is bounded and all its cluster points
belong to int dom f .

(v) If x ∈ int dom f and (yn)n∈N is a sequence in int dom f such that Df (x, yn)→
0, then yn → x.

Proof. (i) This follows from the definition of Df and the continuity of f (respec-
tively, ∇f) on int dom f ; see [31, Theorem 10.1] (respectively, [31, Theorem 25.5]).
(ii) [5, Theorem 3.7.(iv)]. (iii) This is a consequence of (i) and (ii). (iv) [5, Theo-
rem 3.7.(vi) and Theorem 3.8.(ii)]. (v) (See also [7, Fact 2.18].) By (iv), (yn)n∈N is
bounded and has all its cluster points in int dom f . Pick an arbitrary cluster point
of (yn)n∈N, say ykn → y ∈ int dom f . Then Df (x, ykn) → 0 and thus x = y by
(iii).

We now turn to backward and forward Bregman projections.
Fact 2.3 (backward Bregman projection). Suppose that C is a closed convex

set in X such that C ∩ int dom f 	= Ø. Then, for every y ∈ int dom f , there exists
a unique point

←−
PCy ∈ C ∩ dom f such that Df (

←−
PCy, y) ≤ Df (c, y) for all c ∈ C.

The point
←−
PCy is called the backward Bregman projection (or simply the Bregman
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projection) of y onto C, and it is characterized by

←−
PC ∈ C ∩ int dom f and (∀c ∈ C)

〈
c−←−PCy,∇f(y)−∇f(

←−
PCy)

〉 ≤ 0;(2.1)

equivalently, it is characterized by
←−
PC ∈ C ∩ int dom f and (∀c ∈ C) Df (c, y) ≥ Df (c,

←−
PCy) + Df (

←−
PCy, y).(2.2)

Finally, the operator
←−
PC is continuous on int dom f .

Proof. Under the present assumptions on f , the claims follow from [5, Theo-

rem 3.14 and Proposition 3.16], except for the continuity of
←−
PC , which we derive now.

Suppose that (xn)n∈N is a sequence in int dom f converging to x̄ ∈ int dom f . Set

(cn)n∈N = (
←−
PCxn)n∈N and c̄ =

←−
PC x̄. We must show that (cn)n∈N converges to c̄.

Using Proposition 2.2(i) and (2.2), we have

Df (c̄, x̄)← Df (c̄, xn) ≥ Df (c̄, cn) + Df (cn, xn) ≥ Df (c̄, cn).(2.3)

Hence (Df (c̄, cn))n∈N is bounded. By Proposition 2.2(iv), (cn)n∈N is bounded and
all its cluster points belong to C ∩ int dom f . Let ĉ be such a cluster point, say
ckn → ĉ ∈ int dom f . Using the definition of c̄, Proposition 2.2(i), and (2.2), we deduce
Df (ĉ, x̄) ≥ Df (c̄, x̄)← Df (c̄, xkn) ≥ Df (c̄, ckn)+Df (ckn , xkn)→ Df (c̄, ĉ)+Df (ĉ, x̄) ≥
Df (ĉ, x̄); thus Df (c̄, ĉ) = 0, and hence, by Proposition 2.2(ii), c̄ = ĉ.

Definition 2.4. The function f allows forward Bregman projections if it satisfies
the following additional properties:

(i) ∇2f exists and is continuous on int dom f ;
(ii) Df is convex on (int dom f)2;
(iii) for every x ∈ int dom f , Df (x, ·) is strictly convex on int dom f .
Remark 2.5. The function f allows forward Bregman projections if and only if

it satisfies the standing assumptions of [7], which allows us to apply the results of [7].
This equivalence follows from [7, Remark 2.1] and

Df is convex on (int dom f)2 ⇔ Df is convex on X2.(2.4)

We now verify (2.4). The implication “⇐” is clear. To establish “⇒”, let us fix

(y1, y2) ∈ (int dom f)2, (x1, x2) ∈ (dom f)2, and (λ1, λ2) ∈ ]0, 1[
2
such that λ1 + λ2 =

1. For ε ∈ ]0, 1[ and i ∈ {1, 2}, set xi,ε = (1−ε)xi+εyi ∈ int dom f . Then Df (λ1x1,ε+
λ2x2,ε, λ1y1 +λ2y2) ≤ λ1Df (x1,ε, y1)+λ2Df (x2,ε, y2). Now take y ∈ int dom f . Since
f is closed and convex, so is Df (·, y). Hence, as ε ↓ 0+, the line segment continuity
property of Df (·, y) [31, Corollary 7.5.1] results in Df (λ1x1 + λ2x2, λ1y1 + λ2y2) ≤
λ1Df (x1, y1)+λ2Df (x2, y2). Thus Df is convex on dom f× int dom f = dom Df and,
thereby, on X2.

Fact 2.6 (forward Bregman projection). Suppose that f allows forward Bregman
projections and C is a closed convex set in X such that C ∩ int dom f 	= Ø. Then,
for every y ∈ int dom f , there exists a unique point

−→
PCy ∈ C ∩ dom f such that

Df (y,
−→
PCy) ≤ Df (y, c) for all c ∈ C. The point

−→
PCy is called the forward Bregman

projection of y onto C and it is characterized by
←−
PCy ∈ C ∩ int dom f and (∀c ∈ C)

〈
c−−→PCy,∇2f(

−→
PCy)(y −−→PCy)

〉 ≤ 0;(2.5)

equivalently, it is characterized by

←−
PCy ∈ C ∩ int dom f and (∀c ∈ C) Df (c, y) ≥ Df (c,

−→
PCy) + DDf

(
(c, c), (y,

−→
PCy)

)
.

(2.6)

Finally, the operator
−→
PC is continuous on int dom f .
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Proof. This follows from [7, Lemma 2.9, Lemma 3.5, Lemma 3.6, and Corol-
lary 3.7].

The key requirement in Definition 2.4 is the convexity of Df , which is studied
separately in [6]. Not every Legendre function allows forward Bregman projections,
but the most important ones from Example 2.1 do.

Example 2.7 (functions allowing forward Bregman projections; see [7, Exam-
ple 2.16]). Let X = R

J . Then the energy, the negative entropy, and the Fermi–Dirac
entropy allow forward Bregman projections.

The following example shows that backward and forward Bregman projections
are different notions.

Example 2.8 (entropic averaging in R
2). Let f : R

2 → ]−∞, +∞] : (ξ1, ξ2) �→∑2
i=1 ξi ln(ξi)−ξi be the negative entropy on R

2, and let ∆ = {(ξ1, ξ2) ∈ R
2 : ξ1 = ξ2}.

Then dom f = [0, +∞[
2

and clearly ∆ ∩ int dom f 	= Ø. Using (2.1) and (2.5), it is

straightforward to verify that, for every (ξ1, ξ2) ∈ int dom f = ]0, +∞[
2
,

←−
P∆(ξ1, ξ2) =

(√
ξ1ξ2,

√
ξ1ξ2

)
and

−→
P∆(ξ1, ξ2) =

(
1
2 (ξ1 + ξ2), 1

2 (ξ1 + ξ2)
)
.(2.7)

These formulae can also be deduced from Example 3.16 below.
We close this section with a characterization of convergence for Bregman mono-

tone sequences. Note that when f = 1
2‖ · ‖2, Bregman monotonicity reverts to the

standard notion of Fejér monotonicity, which is discussed in detail in [4] and [21].
Proposition 2.9 (Bregman monotonicity). Suppose that C is a closed convex

set in X such that C ∩ int dom f 	= Ø. Suppose further that (yn)n∈N is a sequence
which is Bregman monotone with respect to C ∩ int dom f ; i.e., it lies in int dom f
and

(∀c ∈ C ∩ int dom f)(∀n ∈ N) Df (c, yn+1) ≤ Df (c, yn).(2.8)

Then (yn)n∈N converges to some point in C ∩ int dom f ⇔ all cluster points of
(yn)n∈N are in C.

Proof. The implication “⇒” is clear. “⇐”: pick c ∈ C ∩ int dom f . Then
the sequence (Df (c, yn))n∈N is decreasing and nonnegative, and hence bounded. By
Proposition 2.2(iv), (yn)n∈N is bounded and all its cluster points lie in int dom f . Let
{c, ĉ} ⊂ C ∩ int dom f be two cluster points of (yn)n∈N, say ykn → c and yln → ĉ.
By Proposition 2.2(iii), Df (c, ykn) → 0. Since (yn)n∈N is Bregman monotone, we
have Df (c, yn) → 0 and, in particular, Df (c, yln) → 0. Using Proposition 2.2(v), we
conclude that c = ĉ.

3. Bregman retractions.

3.1. Properties and examples.
Definition 3.1 (Bregman retraction). Suppose that C is a closed convex set in

X such that C ∩ int dom f 	= Ø and µ is a function from dom µ = (C ∩ int dom f)×
int dom f to [0, +∞[. Then R : dom R = int dom f → C ∩ int dom f is a Bregman
retraction of C with modulus µ if the following two properties hold for every c ∈
C ∩ int dom f and every x ∈ int dom f :

(i) Df (c, x) ≥ Df (c,Rx) + µ(c, x).
(ii) If (xn)n∈N is a sequence in int dom f and y is a point in int dom f such that

xn → x, Rxn → y, and µ(c, xn)→ 0, then x = y.
Proposition 3.2 (basic properties of Bregman retractions). Suppose that C is

a closed convex set in X such that C ∩ int dom f 	= Ø. Suppose further that R is
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a Bregman retraction of C with modulus µ. Then the following holds true for every
c ∈ C ∩ int dom f and every x ∈ int dom f :

(i) Suppose that (xn)n∈N is a sequence in int dom f and y is a point in int dom f
such that xn → x and Rxn → y. Then µ(c, xn)→ 0 ⇔ x = y.

(ii) µ(c, x) = 0 ⇔ x = Rx ⇔ x ∈ C.
Proof. (i) The implication “⇒” is clear by Definition 3.1(ii). If x = y, then

(using Proposition 2.2(i) and Definition 3.1(i)) 0 = Df (c, x)−Df (c, x)← Df (c, xn)−
Df (c,Rxn) ≥ µ(c, xn) ≥ 0. Hence µ(c, xn) → 0 and “⇐” is verified. (ii) The first
equivalence is a special case of (i), while the implication x = Rx ⇒ x ∈ C is clear.
Now assume x ∈ C. Then Definition 3.1(i) with c = x yields 0 = Df (x, x) ≥
Df (x,Rx) + µ(x, x) ≥ Df (x,Rx) ≥ 0. Hence Df (x,Rx) = 0 and thus x = Rx by
Proposition 2.2(ii).

Every nonempty closed convex set in X possesses a Bregman retraction with
respect to the energy.

Example 3.3 (orthogonal projection). Suppose that f = 1
2‖ · ‖2 and C is a

nonempty closed convex set in X. Then its orthogonal projection PC is a Bregman
retraction with modulus µ : (c, x) �→ 1

2‖x− PCx‖2.
Proof. This will turn out to be a special case of Example 3.6 or Example

3.7.
However, the next example shows that there exist Bregman retractions that are

not projections.
Example 3.4. Let f = 1

2‖ · ‖2 and C = {x ∈ X : ‖x‖ ≤ 1}. Fix ε ∈ ]0, 1[,
define λ : X → [0, +∞[ : x �→ 1 + min{ε, ‖x − PCx‖}, and let R : X → C : x �→
(1 − λ(x))x + λ(x)PCx, where PC is the orthogonal projection onto C. Then R is a
Bregman retraction of C with modulus µ : (c, x) �→ 1

2 (2− λ(x))λ(x)‖x− PCx‖2.
Proof. Fix x ∈ X and c ∈ C. It follows from standard properties of orthogonal

projections (see, e.g., [4, Corollary 2.5]) that

‖x− c‖2 − ‖x−Rx‖2 ≥ (2− λ(x)
)
λ(x)‖x− PCx‖2,(3.1)

which corresponds to Definition 3.1(i). Now assume (xn)n∈N converges to x. Since PC ,
and hence λ, is continuous, we have PCxn → PCx and Rxn → Rx. Assume further
that µ(c, xn)→ 0. Then xn−PCxn → 0 and thus Rxn = xn+λ(xn)(PCxn−xn)→ x.
Hence Rx = x and therefore R is a Bregman retraction.

Remark 3.5. In passing, note that if C is a closed convex set in X such that
(int C)∩ int dom f 	= Ø and y ∈ int dom f �C, then both points

←−
PCy and

−→
PCy belong

to (bdry C)∩ int dom f . Now let R and C be as in Example 3.4. Since R maps points
outside C to the interior of C, there is no function f such that R is the backward or
forward Bregman projection onto C with respect to Df .

The following two examples contain Example 3.3 if we let f = 1
2‖ · ‖2.

Example 3.6 (backward Bregman projection). Suppose that C is a closed convex

set in X such that C ∩ int dom f 	= Ø. Then the backward Bregman projection
←−
PC is

a continuous Bregman retraction with modulus µ : (c, x) �→ Df (
←−
PCx, x).

Proof. This follows from Fact 2.3 and Proposition 2.2(iii).
Example 3.7 (forward Bregman projection). Suppose that f allows forward

Bregman projections and C is a closed convex set in X such that C ∩ int dom f 	= Ø.
Then the forward Bregman projection

−→
PC is a continuous Bregman retraction with
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modulus

(3.2) µ : (c, x) �→ DDf

(
(c, c), (x,

−→
PCx)

)
= Df (c, x)−Df (c,

−→
PCx) +

〈
c−−→PCx,∇2f(

−→
PCx)(x−−→PCx)

〉
.

Proof. See [7, Lemma 2.9] for the nonnegativity of DDf and for the expression

of DDf . Fact 2.6 states that
−→
PC is continuous and (2.6) verifies Definition 3.1(i). It

remains to establish condition (ii) of Definition 3.1. So pick c ∈ C ∩ int dom f and

(xn)n∈N in int dom f such that xn → x ∈ int dom f ,
−→
PCxn → y ∈ int dom f , and

µ(c, xn) → 0. By [7, Lemma 2.9], DDf is continuous on (int dom f)4 and therefore
µ(c, xn)→ DDf ((c, c), (x, y)). Altogether, DDf ((c, c), (x, y)) = 0 and [7, Lemma 2.10]
implies x = y.

The following example is motivated by [30, section 4.7].
Example 3.8. Let X = R

J , f be the negative entropy, and let

C =
{
x ∈ X : x ≥ 0 and 〈x,1〉 ≤ 1

}
, where 1 = (1, . . . , 1) ∈ X.(3.3)

Let

R : int dom f → C ∩ int dom f : x �→
{

x if x ∈ C;

x/〈x,1〉 otherwise.
(3.4)

Then R =
←−
PC =

−→
PC . Consequently, R is a continuous Bregman retraction of C.

Proof. Fix c ∈ C and x ∈ int dom f � C. Then, abusing notation slightly,

〈c−Rx,∇f(x)−∇f(Rx)〉 =
〈
c− x/〈x,1〉, ln(x)− ln

(
x/〈x,1〉)〉

=
〈
c− x/〈x,1〉, ln

(〈x,1〉)1〉
= ln

(〈x,1〉)(〈c,1〉 − 1
)

≤ 0.

By (2.1), we see that Rx =
←−
PCx. Similarly,〈

c−Rx,∇2f(Rx)(x−Rx)
〉

=
〈
c− x/〈x,1〉, (〈x,1〉 − 1

) · 1〉
=
(〈x,1〉 − 1

)(〈c,1〉 − 1
)

≤ 0.

Thus, using (2.5), Rx =
−→
PCx.

Remark 3.9. In [30, Section 4.7], it is observed that the orthogonal projection
of an arbitrary point in R

J onto C is hard to compute explicitly, and hence the use
of the following extension R̃ of R is suggested. Denoting the nonnegative part of a
vector x ∈ R

J by x+ (i.e., x+ is the orthogonal projection of x onto the nonnegative

orthant), the extension R̃ is defined by

R̃ : X → C : x �→
{

x+/〈x+,1〉 if 〈x+,1〉 > 1;

x+ otherwise.
(3.5)

It is important to note that for certain points x ∈ dom f �C and c ∈ C, the inequality
‖R̃x − c‖ = ‖Rx − c‖ ≤ ‖x − c‖ does not hold. Indeed, take X = R

2, let c = (1, 0),
consider the ray emanating from 0 that makes an angle of π/6 with [0, +∞[ ·c, and let

x be the orthogonal projection of c onto this ray. Then ‖R̃x−c‖ = ‖Rx−c‖ > ‖x−c‖
(and this example can be lifted to R

J , where J ≥ 3). Therefore, Example 3.8 shows
that an operator which is not a Bregman retraction with respect to the energy may
turn out to be a Bregman retraction with respect to some other function.
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3.2. Comparison with Censor and Reich’s paracontractions. Let us first
recall the concept of a Bregman function, as defined in [15] or [17] (see also [5], [9],
[25], and [32] for more concise definitions).

Definition 3.10. Let S be a nonempty open convex subset of R
J , let g : S → R

be a continuous and strictly convex function, and let Dg be the corresponding Bregman
distance. Then g is a Bregman function with zone S if the following conditions hold:

(i) g is continuously differentiable on S;
(ii) for every x ∈ S the sets ({y ∈ S : Dg(x, y) ≤ η})η∈R are bounded;
(iii) for every y ∈ S the sets ({x ∈ S : Dg(x, y) ≤ η})η∈R are bounded;
(iv) if (yn)n∈N lies in S and yn → y, then Dg(y, yn)→ 0;
(v) if (xn)n∈N is a bounded sequence in S, (yn)n∈N lies in S, yn → y, and

Dg(xn, yn)→ 0, then xn → y.
The following notion is due to Censor and Reich.
Definition 3.11 (see [16, Definition 3.2]). Suppose that g is a Bregman function

with zone S ⊂ R
J , and let T : S → R

J be an operator with domain S. A point x̄ ∈ R
J

is called an asymptotic fixed point of T if there exists a sequence (xn)n∈N in S such

that xn → x̄ and Txn → x̄. The set of asymptotic fixed points is denoted by F̂ (T ).

The operator T is a paracontraction if F̂ (T ) 	= Ø and the following two conditions
hold:

(i) (∀c ∈ F̂ (T ))(∀x ∈ S) Dg(c, Tx) ≤ Dg(c, x).

(ii) If (xn)n∈N is a bounded sequence in S and c ∈ F̂ (T ) satisfies Dg(c, xn) −
Dg(c, Txn)→ 0, then Dg(Txn, xn)→ 0.

Example 3.12 (Bregman retraction 	⇒ paracontraction). Let f and ∆ be as in

Example 2.8, and set T =
−→
P∆. Then T is a continuous Bregman retraction but not a

paracontraction.
Proof. The first claim follows from Examples 2.7 and 3.7. We now show that T

is not a paracontraction. First, f is a Bregman function with zone S = int dom f =
]0, +∞[

2
. In addition,

Df (x, y) = ξ1 ln(ξ1/η1)− ξ1 + η1 + ξ2 ln(ξ2/η2)− ξ2 + η2(3.6)

for x = (ξ1, ξ2) ∈ dom f = [0, +∞[
2

and y = (η1, η2) ∈ int dom f = ]0, +∞[
2
. The set

of asymptotic fixed points of T is seen to be

F̂ (T ) = ∆ ∩ dom f =
{

(ξ1, ξ2) ∈ R
2 : ξ1 = ξ2 ≥ 0

} 	= Ø.(3.7)

Fix c = (0, 0) ∈ F̂ (T ) and pick an arbitrary x = (ξ1, ξ2) ∈ int dom f � ∆. By

Example 2.8, Tx =
−→
P∆x = 1

2 (ξ1 + ξ2, ξ1 + ξ2). Hence,

(3.8) Df (c, x)−Df (c, Tx)

= Df (0, x)−Df (0, Tx) =
(
ξ1 + ξ2

)− ( 1
2 (ξ1 + ξ2) + 1

2 (ξ1 + ξ2)
)

= 0.

However, since x 	∈ ∆, we have Tx =
−→
P∆x 	= x and so, by Proposition 2.2(ii),

Df (Tx, x) > 0. Therefore Definition 3.11(ii) fails, and it follows that T is not a
paracontraction.

Example 3.13 (paracontraction 	⇒ Bregman retraction). Let X = R and f =
1
2 | · |2. Then f is a Bregman function with zone S = X and T : X → X : x �→ 1

2x is a

paracontraction with F̂ (T ) = {0}. Now suppose that T is a Bregman retraction. Then,
by Proposition 3.2(ii), the underlying set must be C = {0}. However, by Definition 3.1,



ITERATING BREGMAN RETRACTIONS 1167

this is absurd since the range of T is not a subset of C. Therefore T is not a Bregman
retraction.

3.3. New Bregman retractions via averages and products.
Proposition 3.14 (averaged Bregman retractions). Suppose that f allows for-

ward Bregman projections and C is a closed convex set in X such that C∩ int dom f 	=
Ø. Suppose further that R1 and R2 are two continuous Bregman retractions of C
with moduli µ1 and µ2. Fix λ1 > 0 and λ2 > 0 such that λ1 + λ2 = 1, and set R =
λ1R1 + λ2R2. Then R is a Bregman retraction of C with modulus µ = λ1µ1 + λ2µ2.

Proof. It is clear that the range of R is contained in C ∩ int dom f and that
dom R = int dom f . Fix c ∈ C ∩ int dom f and x ∈ int dom f . Since both R1 and R2

are Bregman retractions of C and since Df (c, ·) is convex on int dom f , we have

Df (c, x) = λ1Df (c, x) + λ2Df (c, x)

≥ λ1

(
Df (c,R1x) + µ1(c, x)

)
+ λ2

(
Df (c,R2x) + µ2(c, x)

)
=
(
λ1Df (c,R1x) + λ2Df (c,R2x)

)
+ µ(c, x)

≥ Df (c,Rx) + µ(c, x).

Hence condition (i) of Definition 3.1 holds. Next, assume (xn)n∈N is a sequence in
int dom f converging to x such that Rxn → y ∈ int dom f and µ(c, xn) → 0. Then
µ1(c, xn)→ 0 and µ2(c, xn)→ 0. On the other hand, since R1 and R2 are continuous
on int dom f , (R1xn, R2xn) → (R1x,R2x), and hence Rxn → Rx. Thus y = Rx.
Using condition (ii) of Definition 3.1 on each Ri, we also have x = R1x = R2x and
thus x = Rx. Altogether, x = y and condition (ii) of Definition 3.1 is verified as
well.

Example 3.15 (averaged backward-forward Bregman projections). Suppose that
f allows forward Bregman projections and C is a closed convex set in X such that
C ∩ int dom f 	= Ø. Denote the Bregman retraction and its modulus from Example 3.6
(respectively, Example 3.7) by R1 and µ1 (respectively, R2 and µ2). Fix λ1 > 0 and
λ2 > 0 such that λ1 + λ2 = 1, and set R = λ1R1 + λ2R2. Then R is a Bregman
retraction of C with modulus µ = λ1µ1 + λ2µ2.

We conclude this section with a product space construction first introduced by
Pierra in [28] (see also [29]). The extension to a Bregman distance setting is due to
Censor and Elfving [13]. The product space technique will be extremely useful for
analyzing the parallel projection methods presented in section 5.

Example 3.16 (product space setup). For convenience, let I = {1, . . . , N} in
(1.3). Denote the standard Euclidean product space XN by X, and write x = (xi)i∈I
for x ∈ X. Let

∆ =
{

(x, . . . , x) ∈ X : x ∈ X
}

and C = C1 × · · · × CN .(3.9)

Fix (λi)i∈I in ]0, 1] such that
∑
i∈I λi = 1, and set

f : X→ ]−∞, +∞] : x �→
∑
i∈I

λif(xi).(3.10)

Then f is Legendre, dom f∗ is open, and ∆ ∩ C ∩ int dom f 	= Ø. In addition, if
x ∈ dom f and y ∈ int dom f , then Df (x,y) =

∑
i∈I λiDf (xi, yi). Moreover, we have

the following:
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(i) The operators
←−
P∆ and

←−
PC are continuous Bregman retractions of ∆ and C,

respectively, and

←−
P∆y = (z, . . . , z), where z = ∇f∗

(∑
i∈I

λi∇f(yi)

)
,

←−
PCy =

(←−
PCiyi

)
i∈I .

(3.11)

(ii) Suppose that f allows forward Bregman projections. Then so does f . The

operators
−→
P∆ and

−→
PC are continuous Bregman retractions of ∆ and C, re-

spectively, and

−→
P∆y = (z, . . . , z), where z =

∑
i∈I

λiyi,

−→
PCy =

(−→
PCiyi

)
i∈I .

(3.12)

Proof. The fact that the operators
←−
P∆,

←−
PC (and

−→
P∆,

−→
PC, provided they

exist) are continuous Bregman retractions follows from Example 3.6 (and Exam-
ple 3.7, respectively). (i) See [5, Corollary 7.2] or [13, Lemmata 4.1 and 4.2]. (ii)
Using Definition 2.4, it is straightforward to check that f allows forward Bregman
projections. Next, let z =

∑
i∈I λiyi and z = (z, . . . , z) ∈ X. Then z ∈ ∆.

Observe that ∇2f(z)y = (λi∇2f(z)yi)i∈I and ∇2f(z)z = (λi∇2f(z)z)i∈I . Hence
∇2f(z)(y − z) ∈ ∆⊥ = {x ∈ X :

∑
i∈I xi = 0}, because

∑
i∈I λi∇2f(z)yi =

∇2f(z)(
∑
i∈I λiyi) = ∇2f(z)z =

∑
i∈I λi∇2f(z)z. Thus, it follows from (2.5) that

z =
−→
P∆y. In view of the separability of Df and C, the formula for

−→
PC is clear.

Remark 3.17. The case when f is replaced by
∑
i∈Iλigi(xi), where (gi)i∈I is

a family of possibly different Bregman functions, was considered in [12] and [13].

This setup is too general to permit closed forms for
←−
P∆ or

−→
P∆. Furthermore, since

Bregman functions are not necessarily Legendre, the existence of Bregman projections
is not guaranteed and must therefore be imposed.

4. Main result. Going back to (1.4), we henceforth set

C =
⋂
i∈I

Ci(4.1)

and assume that (the existence of the Bregman retractions is guaranteed by (1.3) and
Example 3.6)

(∀i ∈ I) Ri is a Bregman retraction of Ci with modulus µi.(4.2)

We now formulate our main result.
Theorem 4.1 (method of Bregman retractions). Given an arbitrary starting

point y0 ∈ int dom f , generate a sequence by

(∀n ∈ N) yn+1 = Ri(n+1)yn,(4.3)

where i : N → I takes on each value in I infinitely often. Then the sequence (yn)n∈N

converges to a point in C ∩ int dom f .
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Proof. We proceed in several steps.
Step 1. We have

(∀n ∈ N)(∀c ∈ Ci(n+1) ∩ int dom f) Df (c, yn) ≥ Df (c, yn+1) + µi(n+1)(c, yn).

Indeed, yn+1 = Ri(n+1)yn and Ri(n+1) is a Bregman retraction of Ci(n+1).
Step 2. (yn)n∈N is Bregman monotone with respect to C ∩ int dom f .

This is clear from Step 1.
Step 3. (yn)n∈N is bounded and all its cluster points belong to int dom f .

Fix c ∈ C ∩ int dom f . In view of Step 2, the sequence
(
Df (c, yn)

)
n∈N

is decreasing,

and hence bounded. Now apply Proposition 2.2(iv).
Next, let us consider an arbitrary cluster point of (yn)n∈N, say ykn → y.
Step 4. y ∈ int dom f and Df (y, ykn)→ 0.

This follows from Step 3 and Proposition 2.2(i).
Because I is finite, after passing to a further subsequence and relabelling if nec-

essary, we assume that i(kn) ≡ iin. Since Ciin is closed, we have y ∈ Ciin .
We now define Iin = {i ∈ I : y ∈ Ci} and Iout = {i ∈ I : y 	∈ Ci}.
Step 5. Iout = Ø.

Suppose to the contrary that Iout 	= Ø. After passing to a further subsequence and
relabelling if necessary, we assume that {i(kn), i(kn + 1), . . . , i(kn+1− 1)} = I—this is
possible by our assumptions on the index selector i. For each n ∈ N, let

mn = min
{
kn ≤ k ≤ kn+1 − 1 : i(k) ∈ Iout

}− 1.(4.4)

The current assumptions imply that each mn is a well-defined integer in [kn, kn+1−2]
satisfying y ∈ ⋂kn≤k≤mn Ci(k). Repeated use of Step 1 thus yields

(∀n ∈ N) Df (y, ymn) ≤ Df (y, ykn).(4.5)

Using Step 4 and Proposition 2.2(v), we deduce ymn → y. After passing to a further
subsequence and relabelling if necessary, we assume that i(mn + 1) ≡ iout and that
ymn+1 = Riout

ymn → z ∈ Ciout
∩ int dom f (using Step 3 again). Now fix c ∈

C ∩ int dom f . Step 1 implies that (µi(n+1)(c, yn))n∈N is summable; in particular,

µiout(c, ymn) = µi(mn+1)(c, ymn)→ 0.(4.6)

Since Riout
is a Bregman retraction, we obtain y = z ∈ Ciout . But this in turn implies

iout ∈ Iin, which is the desired contradiction.
Last step. We have shown that (yn)n∈N is Bregman monotone with respect to

C ∩ int dom f (Step 2) and that all its cluster points lie in C ∩ int dom f (Step 4 and
Step 5). Therefore, by Proposition 2.9, the entire sequence (yn)n∈N converges to some
point in C ∩ int dom f .

Remark 4.2. The proof of Theorem 4.1 is guided by the proof of [7, Theorem 4.1]
and similar convergence results on iterating operators under such general control; see
[5], [16], and [26]. The present proof clearly shows when properties of the Bregman
distance are used, as opposed to those of the modulus. This distinction is blurred
in other proofs, because the implicit surrogates for the modulus depend on Df : see

the roles of Df (
←−
PCr(n+1)

yn, yn), DDf ((c, c), (yn,
−→
PCr(n+1)

yn)), Df (Tsz(t), z(t)), and

Dk
h(xk+1, xk) in the proofs of [5, Theorem 8.1], [7, Theorem 4.1], and [16, Theorem 3.1],

[26, Theorem 4.1], respectively.
Remark 4.3 (Bregman retractions must correspond to the same Bregman dis-

tance). It is natural to ask whether it is possible to use iterates of Bregman retractions
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coming from possibly different underlying Bregman distances to solve convex feasibil-
ity problems. Unfortunately, this approach is not successful in general. To see this,
let X = R

2, and set RC =
←−
PC =

−→
PC , where f is the negative entropy and C is as

in Example 3.8 (with J = 2). Further, let L be the straight line through the points
(0, 53

56 ) and ( 1
4 ,

7
8 ), and let RL be the orthogonal projection, i.e., the backward or for-

ward Bregman projection with respect to the energy. Then, although L ∩ int C 	= Ø,
iterating the map T = RL ◦RC may not lead to a point in C ∩ L: indeed, ( 1

4 ,
7
8 ) is a

fixed point of T outside C.

5. Applications. Continuing to work under assumptions (4.1) and (4.2), we
now discuss various sequential and parallel algorithms derived from Theorem 4.1.

5.1. Sequential algorithms.
Application 5.1 (sequential Bregman projections). For each i ∈ I, let Ri =←−

PCi . Then Theorem 4.1 coincides with [5, Theorem 8.1.(ii)]; see also [16, Theo-
rem 3.2]. For cyclic Bregman projections, see Bregman’s classical paper [8].

Application 5.2 (new method of mixed backward-forward Bregman projec-
tions). Suppose that f allows forward Bregman projections. For each i ∈ I, let either

Ri =
←−
PCi or Ri =

−→
PCi . Then Theorem 4.1 yields a convergence result on iterating a

mixture of backward and forward Bregman projections. Note: If desired, it is possible
to use both

←−
PCi and

−→
PCi for a given set Ci infinitely often, by counting this set twice.

The following three algorithms are special instances of Application 5.2.
Application 5.3 (sequential forward Bregman projections). Suppose that f al-

lows forward Bregman projections and let Ri =
−→
PCi for every i ∈ I. Then Theorem 4.1

reduces to [7, Theorem 4.1].
Application 5.4 (sequential orthogonal projections). Suppose that f = 1

2‖ · ‖2,
and let each Ri be the orthogonal projection PCi . Then Theorem 4.1 turns into a
convergence result on (chaotic or random) iterations of orthogonal projections; see
also [2], [19], and references therein.

Application 5.5 (alternating backward-forward Bregman projections). Suppose

that f allows forward Bregman projections, and let I = {1, 2}, R1 =
−→
PC1 , and R2 =←−

PC2 . Then the method of Bregman retractions (4.3) corresponds to an alternating
backward-forward Bregman projection method, which can be viewed as Csiszár and
Tusnády’s alternating minimization procedure [22] applied to Df (this covers the
Expectation-Maximization method for a specific Poisson model; see [22] and [24]).

5.2. Parallel algorithms. Various parallel algorithms arise by specializing Ap-
plication 5.2 to the product space setting of Example 3.16. Using Example 3.16
and its notation, we deduce that the sequence (Tnx0)n∈N, where x0 ∈ ∆ and T =←−
P∆ ◦←−PC, converges to some point in ∆ ∩C ∩ int dom f . The same holds true when
T ∈ {−→P∆ ◦ ←−PC,

←−
P∆ ◦ −→PC,

−→
P∆ ◦ −→PC}, provided that f allows forward Bregman pro-

jections.
Translating back to the original space X, we obtain the following four parallel

algorithms.
Application 5.6 (parallel projections à la Censor and Elfving). Given x0 ∈

int dom f , the sequence generated by

(∀n ∈ N) xn+1 = ∇f∗
(∑
i∈I

λi∇f(
←−
PCixn)

)
(5.1)

converges to a point in C ∩ int dom f . This method, which amounts to iterating
←−
P∆ ◦←−

PC in X, was first suggested implicitly in [13]; see also [5] and Remark 3.17.



ITERATING BREGMAN RETRACTIONS 1171

Application 5.7 (parallel projections à la Byrne and Censor I). Suppose that f
allows forward Bregman projections. Given x0 ∈ int dom f , the sequence generated by

(∀n ∈ N) xn+1 =
∑
i∈I

λi
←−
PCixn(5.2)

converges to a point in C ∩ int dom f . This method, which amounts to iterating
−→
P∆ ◦←−

PC in X, can be found implicitly in [11, section 4.1] (see also Remark 3.17).
Application 5.8 (parallel projections à la Byrne and Censor II). Suppose that

f allows forward Bregman projections. Given x0 ∈ int dom f , the sequence generated
by

(∀n ∈ N) xn+1 = ∇f∗
(∑
i∈I

λi∇f(
−→
PCixn)

)
(5.3)

converges to a point in C ∩ int dom f . This method, which amounts to iterating
←−
P∆ ◦−→

PC in X, can be found implicitly in [11, section 4.2] (see also Remark 3.17).
Application 5.9 (new parallel method). Suppose that f allows forward Bregman

projections. Given x0 ∈ int dom f , the sequence generated by

(∀n ∈ N) xn+1 =
∑
i∈I

λi
−→
PCixn(5.4)

converges to a point in C ∩ int dom f . This corresponds to iterating
−→
P∆ ◦ −→PC in X.

The negative entropy and the energy lead to concrete examples.
Application 5.10 (averaged entropic projections à la Butnariu, Censor, and

Reich). Let f be the negative entropy. Given x0 ∈ int dom f , the sequence generated
by

(∀n ∈ N) xn+1 =
∑
i∈I

λi
←−
PCixn(5.5)

converges to a point in C ∩ int dom f . Convergence is guaranteed by [10, Theorem 3.3],
which holds true in more general settings, or by Application 5.7.

We conclude with a classical method which can be obtained from Application 5.6,
5.7, 5.8, or 5.9 by setting f = 1

2‖ · ‖2.
Application 5.11 (parallel orthogonal projections à la Auslender). For each

i ∈ I, let PCi be the orthogonal projection onto Ci. Given x0 ∈ X, the sequence
generated by

(∀n ∈ N) xn+1 =
∑
i∈I

λiPCixn(5.6)

converges to some point in C [1] (see also [3], [18], and [23] for the case when C = Ø).
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[1] A. Auslender, Optimisation – Méthodes Numériques, Paris, Masson, 1976.
[2] H. H. Bauschke, A norm convergence result on random products of relaxed projections in

Hilbert space, Trans. Amer. Math. Soc., 347 (1995), pp. 1365–1374.



1172 HEINZ H. BAUSCHKE AND PATRICK L. COMBETTES

[3] H. H. Bauschke and J. M. Borwein, On the convergence of von Neumann’s alternating
projection algorithm for two sets, Set-Valued Anal., 1 (1993), pp. 185–212.

[4] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility
problems, SIAM Rev., 38 (1996), pp. 367–426.

[5] H. H. Bauschke and J. M. Borwein, Legendre functions and the method of random Bregman
projections, J. Convex Anal., 4 (1997), pp. 27–67.

[6] H. H. Bauschke and J. M. Borwein, Joint and separate convexity of the Bregman distance,
in Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications,
D. Butnariu, Y. Censor, and S. Reich, eds., Elsevier, Amsterdam, The Netherlands, 2001,
pp. 23–36.

[7] H. H. Bauschke and D. Noll, The method of forward projections, J. Nonlinear Convex Anal.,
3 (2002), pp. 191–205.

[8] L. M. Bregman, The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming, U.S.S.R. Comput. Math.
and Math. Phys., 7 (1967), pp. 200–217.

[9] D. Butnariu, C. Byrne, and Y. Censor, Redundant axioms in the definition of Bregman
functions, J. Convex Anal., 10 (2003), to appear.

[10] D. Butnariu, Y. Censor, and S. Reich, Iterative averaging of entropic projections for solving
stochastic convex feasibility problems, Comput. Optim. Appl., 8 (1997), pp. 21–39.

[11] C. Byrne and Y. Censor, Proximity Function Minimization Using Multiple Bregman Pro-
jections, with Applications to Entropy Optimization and Kullback-Leibler Distance Mini-
mization, unpublished research report, http://math.haifa.ac.il/yair/bc29b070699.ps (June
7, 1999).

[12] C. Byrne and Y. Censor, Proximity function minimization using multiple Bregman pro-
jections, with applications to split feasibility and Kullback-Leibler distance minimization,
Ann. Oper. Res., 105 (2001), pp. 77–98.

[13] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a
product space, Numer. Algorithms, 8 (1994), pp. 221–239.

[14] Y. Censor and G. T. Herman, Block-iterative algorithms with underrelaxed Bregman projec-
tions, SIAM J. Optim., 13 (2002), pp. 283–297.

[15] Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J.
Optim. Theory Appl., 34 (1981), pp. 321–353.

[16] Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpansive operators
with applications to feasibility and optimization, Optimization, 37 (1996), pp. 323–339.

[17] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications,
Oxford University Press, New York, 1997.

[18] P. L. Combettes, Inconsistent signal feasibility problems: Least-squares solutions in a product
space, IEEE Trans. Signal Process., 42 (1994), pp. 2955–2966.

[19] P. L. Combettes, Construction d’un point fixe commun à une famille de contractions fermes,
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1. Introduction and motivation. Nonsmooth analysis is essential for the un-
derstanding of optimization problems. In applications, nonsmoothness of functions
typically appears, not in a general way, but in a structured manner. The problem of
defining “good” structures for nonsmooth functions has been addressed by many au-
thors in various ways. A good structure should be special enough to result in smooth
behavior on manifolds but also general enough to apply to a broad class of functions.
Ideally, the structure should characterize the manifolds and associated Hessians.

In this paper, we extend primal-dual gradient (pdg) structure, first defined in [8],
to a class of not necessarily convex functions. This subclass of lower semicontinuous
functions encompasses many examples, such as extreme value functions that have an
underlying C2-structure. It is similar to the amenable class [15, p. 442] in the sense
of having desirable smooth substructure and containing functions that are pointwise
maxima of finite collections of smooth functions [6]. It is different from the amenable
class and the fully amenable subclass [15, p. 443] due to containing functions that
are not regular [15, p. 260] and containing regular ones that are not fully amenable
(for example, maximum eigenvalue functions and other functions arising from infinite
collections of smooth functions [7]). A related class that includes maximum eigenvalue
functions, as in Example 3.2 below, is introduced in [16]. However, it should be noted
that this new class does not include the first and third examples in section 3.

pdg structure is tied closely to VU-space decomposition, where V is the subspace
parallel to a function’s Clarke subdifferential [2] at a point and U is orthogonal to V.
The structure provides a finite set of vectors that span V, even though the subdifferen-
tial may have a continuum of extreme points. The U-component of the subdifferential
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is a singleton, and hence the function appears to be differentiable relative to U at the
point of definition. This VU-terminology is meant to describe the shape of a function’s
graph near the point in question. However, since in our (possibly) nonconvex setting
the corresponding V and U shapes could be inverted, it is perhaps best to call them
“sharp” and “smooth,” respectively.

For a pdg-structured function we develop second-order results depending on basic
index sets. These correspond to “active manifolds” such as those defined by active
constraints in nonlinear programming or those defined by constant eigenvalue mul-
tiplicity in eigenvalue optimization; see [5]. The structure provides us with one or
more of these sets whose associated vectors span a subspace of V and generate an
implicit function therein from which a smooth trajectory tangent to U can be defined.
This information also generates multipliers that are smooth functions of u ∈ R

dim U

and depend on the V-subspace component of a parameter vector y ∈ R
n. Combining

these elements and making a primal feasibility assumption leads to the definition of a
Lagrangian-like “primal-dual” function that is C2 in u for each y. This function then
provides expansions of second order in u for its associated pdg-structured function.
Because y need not be a subgradient at the point in question, the final expansion
contained in Theorem 5.2 below is new even for a convex function. In the nonconvex
case it is useful for obtaining the result that certain primal-dual U-Hessians associated
with a local minimizer are positive semidefinite.

Under a V-minimality assumption for a certain subgradient, the corresponding
primal-dual function becomes a U-Lagrangian, along the lines of [4], even for the
nonconvex case. In addition, we are able to give expressions for second-order epi-
derivatives [14] in U-space directions in terms of the related U-Hessians. For an
example from [5] we demonstrate below that the second-order behavior of the function
can be captured well either by using epi-derivatives, defined via complicated epi-limits,
or by ordinary second derivatives from pdg structure.

We also connect regular members of the pdg-structured family to partly smooth
functions [5] and hence identifiable surfaces [18]. An important feature of the partly
smooth class is the existence of a sensitivity theory akin to that of nonlinear pro-
gramming and of eigenvalue optimization. A partly smooth function is smooth on a
manifold in the sense that on the manifold it equals a representative function that is
C2. Our pdg structure provides expressions for these objects and for the correspond-
ing representative Hessian, in terms of a primal-dual Hessian associated with a basic
index set that satisfies both primal and dual feasibility conditions.

The paper is organized as follows. We define the pdg-structured class in section 2
and relate the structure to VU-space decomposition. Section 3 provides three example
functions. The last one, from [5], is used in subsequent sections to illustrate the
principal results. Smooth trajectories, manifolds, and associated multiplier functions
are studied in section 4. Section 5 gives second-order expansions for pdg-structured
functions. The connection between U-Hessians and second-order epi-derivatives is
made in section 6. Section 7 relates the previous results to functions that are partly
smooth and gives expressions for manifold restricted Hessians.

We use notation from [8] and the results therein which depend on the subdifferen-
tial being a convex set rather than the function being convex. Much of the additional
notation comes from [15]. For algebraic purposes we consider (sub-) gradients to be
column vectors. For a vector function v(·), its Jacobian Jv(·) is a matrix, each row of
which is the transposed gradient of the corresponding component of v(·). For a given
set Y , we denote its convex hull by conY and its linear hull by linY .
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2. Function structure and space decomposition. For variational analysis
we use the Clarke normal cone and subgradients, as defined in [15, eqs. 6(19) and
8(32)] depending on the basic normal cone [15, Def. 6.3] introduced in [11].

More precisely, for a set C ⊂ R
n and a point x ∈ C, a vector v is normal to C at

x if there are sequences xν →C x and v
ν → v such that 〈vν , z − xν〉 ≤ o(|z − xν |) for

all z ∈ C. The set of normal vectors is denoted by NC(x). The closure of its convex
hull yields the Clarke normal cone, denoted by N̄C(x).

Let f : R
n → R̄ be a lower semicontinuous (lsc) function so that its epigraph,

denoted and defined by epi f := {(x, β) ∈ R
n×R : β ≥ f(x)}, is a closed set in R

n+1.
Take x ∈ R

n, where f is finite-valued, and consider the Clarke cone normal to the
epigraph of f at (x, f(x)). The set of Clarke subgradients of f at x is denoted and
defined by

∂̄f(x) :=
{
g : (g,−1) ∈ N̄epi f (x, f(x))

}
.

When f is Lipschitz around x, from [2, Thm. 2.5.1], ∂̄f(x) is the convex hull of all
possible limits of gradients at points of differentiability of f in sequences converging
to x. When f is subdifferentially regular at x, then ∂̄f(x) equals the Mordukhovich
subdifferential [11] denoted by ∂f(x) in [15]; see page 337 and Definition 8.3 therein.
If f is convex (and hence regular) this common subdifferential is the forerunner from
convex analysis.

In order to give second-order expansions for f , it is essential to properly describe
all of the subgradients in the Clarke subdifferential ∂̄f , at least on a subset of Rn. This
is the purpose of the structure depending on a set P introduced next. In particular, the
presence of the functions ϕ� and corresponding multipliers allows the subdifferential to
be nonpolyhedral, and hence permits the class to contain functions that are not fully
amenable [15, pp. 443–444], such as the two convex example functions considered
throughout [8]. In addition, the way in which these functions enter the structure
allows for the possibility of ∂̄f being unbounded at some points.

2.1. pdg structure. In the following, P is a subset of R
n containing x̄. We say

that an lsc function f : R
n → R̄ has pdg structure at x̄ relative to P if there exists

m1 + 1 +m2 primal functions

{fi(x)}m1
i=0 and {ϕ�(x)}m2

�=1

that are C2 on a ball about x̄, denoted by B(x̄), and a dual multiplier set ∆ ⊂
R
m1+1+m2 satisfying the following conditions:
(i)

x̄ ∈
{
x ∈ B(x̄) :

{
fi(x) = f(x) for i = 0, 1, . . . ,m1

ϕ�(x) = 0 for � = 1, . . . ,m2

}
⊆ P ⊆ B(x̄);

(ii) ∆ is a closed convex set such that
(a) if α := (α0, . . . , αm1 , αm1+1, . . . , αm1+m2) ∈ ∆, then (α0, . . . , αm1) is an

element of the canonical simplex

∆1 :=

{
(α0, α1, . . . , αm1) :

m1∑
i=0

αi = 1, αi ≥ 0, i = 0, 1, . . . ,m1

}
;

(b) for each i = 0, 1, . . . ,m1, 1i+1 ∈ ∆, where 1j is the jth unit vector in
R
m1+1+m2 ;
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and
(c) for each � = 1, 2, . . . ,m2, there exists α

� ∈ ∆ such that α�m1+�
�= 0 and

α�m1+i
= 0 for i ∈ {1, 2, . . . ,m2}\{�};

(iii) for each x ∈ P,
(a) f(x) ∈ {fi(x) : i = 0, 1, . . . ,m1};
(b) g ∈ ∂̄f(x) if and only if

g =

m1∑
i=0

αi∇fi(x) +
m1+m2∑
i=m1+1

αi∇ϕi−m1(x),

where the multipliers α0, α1, . . . , αm1+m2
satisfy

complementary slackness: αi = 0 if

{
fi(x) �= f(x) for i ≤ m1,
ϕi−m1

(x) �= 0 for i > m1,

and

dual feasibility: α = (α0, α1, . . . , αm1+m2
) ∈ ∆.

As a consequence of item (iii), for all x ∈ P f is finite-valued at x and ∂̄f(x) is
a nonempty set depending on a multiplier set ∆ that is independent of x and is the
part of the structure which reflects the shape of the subdifferential.

This pdg definition is broader than its convex forerunner in [8], because the set P
considered here can be larger than the one defined there; see the first two examples
in section 3 below.

It is not difficult to show, as in [8], that this definition covers a function that is
the pointwise maximum (or minimum) value of a finite collection of C2-functions by
taking m1 + 1 to be the number of “active” functions at x̄, m2 to be 0, ∆ to be ∆1,
and P to be a ball about x̄ chosen small enough to exclude the “inactive” functions
from the local structure. Such a function can be nonconvex and for the minimum
value case can be nonregular [15, p. 260] at points of nondifferentiability and, as a
consequence, not amenable [15, pp. 442–444].

Before giving additional examples, we show the connection between pdg structure
and VU-space decomposition.

2.2. Relation to VU-decomposition. The VU-theory introduced in [4] and
further studied in [6], [8], [7], [10], is based on decomposing R

n into two orthogonal
subspaces V and U depending on a point such that V being nontrivial indicates non-
smooth behavior of the function at the point. As a result of (2.2) below, from the
U-subspace point of view, the function appears to be differentiable.

More precisely, given an lsc function f and a point x̄ ∈ R
n such that f(x̄) finite

and ∂̄f(x̄) is nonempty, let g ∈ ∂̄f(x̄) be an arbitrary subgradient and define the
orthogonal subspaces

V := lin(∂̄f(x̄)− g) and U := V⊥.(2.1)

Note that R
n = U ⊕ V. Thus, letting Ū be an orthonormal basis matrix for U , the

U-component of x ∈ R
n is given by xU := Ū�x. In particular, from (2.1), the U-

component of a subgradient g ∈ ∂̄f(x̄) is the same as that of any other subgradient
at x̄; we call it the U-gradient of f at x̄ and denote it by ḡU :

ḡU := Ū�g for any g ∈ ∂̄f(x̄).(2.2)
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In addition, note that V, depending on x̄, is independent of the particular choice
of g ∈ ∂̄f(x̄). Furthermore, when f has pdg structure it is possible to completely
characterize V in terms of the gradients of the primal functions. More precisely,
relations (4.3) and (4.5) and Lemma 4.1 in [8] imply the following.

Lemma 2.1. If f has pdg structure at x̄ relative to P, then
∇fi(x̄) ∈ ∂̄f(x̄) for i = 0, 1, . . . ,m1,∇ϕ�(x̄) ∈ V for � = 1, . . . ,m2,(2.3)

and the subspace V from (2.1) can be written as

V = lin ({∇fi(x̄)−∇f0(x̄)}m1

i=0 ∪ {∇ϕ�(x̄)}m2

�=1) .

3. Specific functions with pdg structure. In general, pdg structure is not
unique, and it is desirable to have P as large as possible in order to exhibit inter-
esting structure of a function. The following examples illustrate three different ways
to define P. The initial example shows that it is possible for P to be larger than
{x ∈ B(x̄) : ϕ�(x) = 0 for � = 1, . . . ,m2}, whereas the second example has P equal
to this set. In addition, the first example provides a function for which ∂̄f(x̄) is
unbounded.

Example 3.1. For x ∈ R let

f(x) :=

{ −x if |x| ≤ 1,
−x+√x2 − 1 if |x| ≥ 1,

and let x̄ := 1. This function from [1] is the spectral abscissa (the largest real part of
all eigenvalues) of the matrix [

0 1
−1 −2x

]
,

and x̄ = 1 is a minimizing point at which f is nondifferentiable.
Take B(x̄) := (0, 2), m1 := 0, f0(x) := −x, m2 := 1, ϕ1(x) := x

2 − 1, P :=
{x ∈ B(x̄) : ϕ1(x) ≤ 0} = (0, 1], and ∆ := {(α0, α1) : α0 = 1 , α1 ≥ 0}. Then
f0(1) = −1 = f(1), ϕ1(1) = 0, and

∂̄f(1) = {γ : −1 ≤ γ}
= {α0(−1) + α1(2) : α0 = 1 , α1 ≥ 0}
= {α0f

′
0(1) + α1ϕ

′
1(1) : (α0, α1) ∈ ∆},

V = R, and U = {0}. Finally, for x ∈ P\x̄ = (0, 1), f0(x) = −x = f(x), ϕ1(x) =
x2 − 1 �= 0, and

∂̄f(x) = {−1} = {α0f
′
0(x) + α1ϕ

′
1(x) : (α0, α1) ∈ ∆ , α1 = 0} ,

so f has the desired pdg structure.
Example 3.2. For x ∈ R

n let f(x) be the maximum eigenvalue of a symmetric
matrix whose elements are C2-functions of x. Then from the analysis in [8, sect. 3.2]
f has pdg structure at any x̄ ∈ R

n, because the subdifferential used there, from [12],
is the Clarke subdifferential for this locally Lipschitz function. At each x̄, m1 + 1 is
the multiplicity of the maximum eigenvalue and m2 = m1(m1 + 1)/2. The fi’s and
ϕ�’s depend on some C

2 vector functions that form a basis for a subspace spanned by
certain eigenvectors; see [17]. The set ∆ corresponds to a set of positive semidefinite
matrices having unit traces and P = {x ∈ B(x̄) : ϕ�(x) = 0 for � = 1, . . . ,m2}.
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Finally, we give a pdg structure for a locally Lipschitz function f : R
2 → R from

[5, sect. 7].
Example 3.3. For x = (x1, x2)

� consider the following function, defined on a
partition of R

2:

f(x) :=



f0(x) on S0 := {(x1, x2) ∈ R

2 : x2 ≤ 0},
h1(x) on S1 := {(x1, x2) ∈ R

2 : 0 < x2 < 2x
2
1},

f2(x) on S2 := {(x1, x2) ∈ R
2 : 0 < 2x2

1 ≤ x2 ≤ 4x2
1},

f3(x) on S3 := {(x1, x2) ∈ R
2 : 4x2

1 < x2},
where

f0(x) := x
2
1 − x2,

h1(x) :=
√
x4

1 + 2x
2
1x2 − x2

2,
f2(x) := 3x

2
1 − x2,

f3(x) := −5x2
1 + x2,

and the sets Si defined here correspond to the sets Si+1 in [5].
Take x̄ = (0, 0)�, and note that f(x̄) = 0. As shown in [5],

∂̄f(x̄) = con {(0,−1)�, (0, 1)�} .
Thus

V = lin{(0, 1)�} and U = lin{(1, 0)�},
and letting Ū = [10 ] gives in (2.2) ḡU = 0. Furthermore, since (0, 0)

� ∈ ∂̄f(x̄), x̄ is a
stationary point for f .

The difficulty in determining a pdg structure for f at x̄ comes from the function
h1 that is not C

1 on any ball about x̄ and yet defines f on S1. Accordingly, we omit
S1 by taking P := S0 ∪ S2 ∪ S3 and consider f ’s behavior on the regions where the
closure of S1 intersects S0 or S2, i.e., on

M1 := {(x1, x2) : x2 = 0}(3.1)

and on R := {(x1, x2) : x2 = 2x
2
1, x1 �= 0}. The gradient of h1 is given by

∇h1(x) =

(
1 + 2

x2

x2
1

−
(
x2

x2
1

)2
)−1/2(

2x1

(
1 +

x2

x2
1

)
, 1− x2

x2
1

)�

.

Since on R, ∇h1(x) = (6x1,−1)� = ∇f2(x), f has a continuous gradient and there is
no loss with respect to R from omitting h1. Thus, we replace h1 by a C

2-function f1
whose value and gradient agree with those of h1 onM1\x̄. Since

h1(x1, 0) = x
2
1 and ∇h1(x1, 0) = (2x1, 1)

�,

the desired function f1 is given by

f1(x) := x
2
1 + x2.

In order to show that f has a pdg structure at x̄ relative to P, we let the ball B(x̄)
be R

2 and consider the primal functions f0, f1, f2, f3 as defined above (so m1 = 3 and
m2 = 0). As for the dual multiplier set ∆, it is the canonical simplex ∆1 in R

4.
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We now check satisfaction of the three items defining pdg structure in section 2.1.
Items (i), (ii), and (iii)(a) follow immediately from the definition of f and those of
the structure objects fi, P, and ∆.

We conclude by demonstrating satisfaction of (iii)(b). The gradients of the primal
functions are given by

∇f0(x)=
(
2x1

−1
)
, ∇f1(x)=

(
2x1

1

)
, ∇f2(x)=

(
6x1

−1
)
, ∇f3(x)=

(−10x1

1

)
.(3.2)

First consider the case x ∈ S0, with x �= x̄ (for x = x̄, this item is easily verified).
Because ∇h1(x1, 0) = (2x1, 1)

� we have that

∂̄f(x) =

{
con ((2x1, 1)

�, (2x1,−1)�) for x2 = 0,
{(2x1,−1)�} for x2 < 0.

(3.3)

To write the subdifferential with pdg structure, the multipliers αi must satisfy com-
plementary slackness conditions, as given in the following table:

x ∈ S0\x̄ fi = f fi �= f αi = 0
x2 = 0, x1 �= 0 f0, f1 f2, f3 α2, α3

x2 < 0, x1 �= 0 f0 f1, f2, f3 α1, α2, α3

x2 < 0, x1 = 0 f0, f2 f1, f3 α1, α3

As a result, the respective convex combinations of gradients are given by

x ∈ S0\x̄
∑
i αi∇fi

x2 = 0, x1 �= 0 α0∇f0(x) + (1− α0)∇f1(x)
x2 < 0, x1 �= 0 ∇f0(x)
x2 < 0, x1 = 0 α0∇f0(x) + (1− α0)∇f2(x) = ∇f0(x)

where the last equality follows from the fact that f0 and f2 have the same gradient if
x1 = 0. Comparing these results to (3.3) via (3.2) shows that item (iii)(b) holds for
all x ∈ S0.

Similar calculations can be carried out for S2 and S3, whose closures intersect at

M2 := {(x1, x2) : x2 = 4x
2
1}.(3.4)

Table 3.1 summarizes the main results from such calculations.

Table 3.1
Results for S2 and S3.

x( �= x̄) ∂̄f(x) fi = f fi �= f αi = 0
x ∈ S2\M2 ∇f2(x) f2 f0, f1, f3 α0, α1, α3
x ∈ M2 con(∇f2(x),∇f3(x)) f2, f3 f1, f2 α1, α2
x ∈ S3 ∇f3(x) f3 f0, f1, f2 α0, α1, α2

4. Basic trajectories and multipliers. Throughout the remainder of the pa-
per we assume that f has pdg structure at x̄ relative to P. Lemma 2.1 gives a spanning
set of generators for V based on the structure. Next we consider linearly indepen-
dent subsets of these generating vectors which lead to defining associated smooth
trajectories and multiplier functions.
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4.1. Basic index sets. An index set K of the form K = Kf ∪ Kϕ ⊆ {0, 1, . . . ,
m1} ∪ {m1 + 1, . . . ,m1 +m2} with 0 ∈ Kf is called a basic index set if the (n+ 1)-
dimensional vectors{[ ∇fi(x̄)

1

]}
i∈Kf

⋃{[ ∇ϕi−m1(x̄)
0

]}
i∈Kϕ

are linearly independent.
In the theory that follows, we always suppose that K = Kf ∪Kϕ is a basic index

set and, if necessary (with the exception of Example 3.3), the fi’s are reindexed so
that the nonempty set Kf contains i = 0.

Associated with a basic index set K we define a full column rank n× (|Kf | − 1+
|Kϕ|) matrix

V̄ := [{∇fi(x̄)−∇f0(x̄)}0 �=i∈Kf ∪ {∇ϕi−m1(x̄)}i∈Kϕ ].
This is a basis matrix for the |Kf | − 1 + |Kϕ| dimensional subspace of V defined by

VK := lin
({∇fi(x̄)−∇f0(x̄)}i∈Kf ∪ {∇ϕi−m1(x̄)}i∈Kϕ

)
(4.1)

with the interpretation that if K is a singleton, then V̄ is vacuous and VK = {0}.
When K is such that VK = V, we say that K is a transversal basic index set.
Remark 4.1. Recall that Ū is an orthogonal basis matrix for U . Corresponding to

a basic index set K and its associated subspace VK ⊆ V from (4.1), if K is transversal,
then V̄ is a basis matrix for V which is not necessarily orthonormal. These basis
matrices can be used to express the identity matrix in R

n as the sum of the projections
onto the subspaces U and V = VK :

I = Ū Ū� + V̄ [V̄ �V̄ ]−1V̄ �.(4.2)

Accordingly, for any x ∈ R
n, Ū�x and [V̄ �V̄ ]−1V̄ �x are, respectively, the U and V

components of x.
Example (continuation of Example 3.3). For convenience we do not reindex the

fi’s so that index i = 0 is always in a basic index set K. Since for this function the
vectors [∇fi(x̄)1 ] are equal to 

 0
(−1)i+1

1




for i = 0, . . . , 3, there are no basic index sets with three or four elements. All of the
singleton index sets are basic, but none of them is transversal, because dimV = 1.
Finally, the only two-element sets that are basic are

{0, 1} , {0, 3} , {1, 2}, and {2, 3}.
These four sets are all transversal and for each of them we take V̄ = [ 01 ] to be the
corresponding basis matrix for V.

4.2. Smooth trajectories. The purpose of introducing basic index sets is to
identify trajectories along which f behaves in a smooth manner. Our next result shows
how to find a smooth trajectory that is tangent to U using the pdg structure of f and
an implicit function theorem to parameterize the trajectory in terms of u ∈ R

dim U .
From here on, we assume that U �= {0} so that dimU ≥ 1 and V �= R

n.
Theorem 4.2. Let f have pdg structure at x̄ relative to P, and suppose K =

Kf ∪Kϕ is a nonsingleton basic index set. For all u small enough,
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(i) the nonlinear system with variables (u, v){
fi(x̄+ Ūu+ V̄ v)− f0(x̄+ Ūu+ V̄ v) = 0, 0 �= i ∈ Kf ,
ϕi−m1(x̄+ Ūu+ V̄ v) = 0, i ∈ Kϕ,(4.3)

has a unique solution v = vK(u), where vK : R
dim U → R

dimVK is a C2-
function;

(ii) the trajectory

χ(u) := x̄+ Ūu+ V̄ vK(u),(4.4)

has a C1 Jacobian Jχ(u) = Ū − V̄ (V (u)�V̄ )−1V (u)�Ū , where

V (u) :=
[
{∇fi(χ(u))−∇f0(χ(u))}0 �=i∈Kf

⋃
{∇ϕi−m1

(χ(u))}i∈Kϕ
]
;

(iii) in particular, vK(0) = 0, χ(0) = x̄, V (0) = V̄ , JvK(0) = 0, Jχ(0) = Ū ;
(iv) vK(u) = O(|u|2) and the trajectory χ(u) is tangent to U at χ(0) = x̄.
Proof. These results follow from the asssumption that the structure functions

are C2 along the lines of [8, Thm. 5.1], by applying a second-order implicit function
theorem; see, for example, [3, p. 364].

When K is a singleton, V̄ and V (u) are vacuous. In this case, it is useful to define
V̄ vK(u) := 0 so that χ(u) = x̄+ Ūu with Jacobian Ū .

Remark 4.3. When f is a convex function (not necessarily pdg-structured)
the U-Lagrangian introduced in [4] provides an alternative way to obtain smooth tra-
jectories. More specifically, when V̄ is a basis matrix for V, trajectories χ(u) =
x̄+ Ūu+ V̄ v(u) are given by means of the following minimization problem:

v(u) ∈ Argmin
v∈RdimV

{f(x̄+ Ūu+ V̄ v)− y�V̄ v} = Argmin
v∈RdimV

{f(x̄+ Ūu+ V̄ v)− z�v},

where y ∈ ∂f(x̄) and z = V̄ �y. Such smooth trajectories give a convex function, called
the U-Lagrangian, which is defined by

LU (u; z) := f(χ(u))− z�v(u).(4.5)

When a U-Lagrangian depending on z = V̄ �y has a Hessian in u, it is possible to
obtain an expansion for f that is superlinear in u, since v(u) = o(|u|).

When f is pdg-structured (not necessarily convex) the solution of system (4.3),
depending on a basic index set K, gives vK(u) and a corresponding trajectory. In
section 5 below we give an associated “ U-Lagrangian-related” function whose defini-
tion is analogous to (4.5), except that it depends on K. This function is denoted by
LK(u; z) and is called a “primal-dual” function. From (4.5), since both LK(u; z) and
vK(u) are C

2-functions, we are able to obtain an expansion for f that is of second
order in u (rather than only superlinear as in the case without special structure); see
Theorems 5.1 and 5.2 below. When the V-minimality condition of Theorem 6.1 below
is satisfied, the function vK(u) becomes an above v(u), even for a nonconvex f; see [8,
sect. 6] for sufficient conditions for V-minimality when f is convex.

We will show in section 7 below that a pdg-structured function f is partly smooth
relative to certain manifoldsMK . More precisely, depending on a basic index set K
we consider the following smooth manifold:

MK :=

{
x ∈ B(x̄) :

{
fi(x)− f0(x) = 0, 0 �= i ∈ Kf
ϕi−m1(x) = 0, i ∈ Kϕ

}
.(4.6)
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In order to establish a relation between a manifoldMK and the function f , the set
K is required to satisfy a feasibility assumption depending on the following definition.

A basic index set K with corresponding trajectory χ(u) is primal feasible if for
all u ∈ R

dimU small enough χ(u) ∈ P and f(χ(u)) = fi(χ(u)) for some (and hence
all) i ∈ Kf .

Lemma 4.4. Let f have pdg structure at x̄ relative to P, and suppose K is a
basic index set. Then the following hold:

(i) NMK
(x̄) = VK , the subspace defined in (4.1).

(ii) If K is transversal, then for all x close enough to x̄

x ∈MK ⇐⇒ x = x̄+ Ūu(x) + V̄ vK(u(x)), where u(x) := Ū
�(x− x̄).

Furthermore, if K is also primal feasible, then for x ∈MK

(a) x ∈ P and
(b) if i ∈ {0, 1, . . . ,m1 +m2} is such that fi(x) �= f(x) or ϕi−m1(x) �= 0,

then i �∈ K.
Proof. From [15, p. 203], the subspace VK as defined in (4.1) is the normal cone

toMK at x̄, so (i) follows. Now we show that (ii) holds.
By the transversality assumption, NMK

(x̄) = V and V̄ is a basis matrix for V.
Take any x ∈MK , and define v(x) := [V̄

�V̄ ]−1V̄ �(x− x̄). From (4.2),

x− x̄ = Ū Ū�(x− x̄) + V̄ [V̄ �V̄ ]−1V̄ �(x− x̄), so x = x̄+ Ūu(x) + V̄ v(x).
With this notation, by the definition of MK in (4.6), (u, v) = (u(x), v(x)) satisfies
nonlinear system (4.3). Since the solution vK(u) is unique for a given u, v(x) =
vK(u(x)), so any x ∈ MK has the form x = x̄ + Ūu(x) + V̄ vK(u(x)). The converse
is immediate from (4.6) and Theorem 4.2(i) with u = u(x). The remaining results
follow from the assumption that K is primal feasible.

Example (continuation of Example 3.3). Although singleton basic sets could be
considered, we focus on the two-element sets that are basic and transversal, i.e., on
{0, 1}, {0, 3}, {1, 2}, and {2, 3}.

Next we perform some calculations for K = {2, 3} only and give a summary for
all four sets in Table 4.1.

Since for this example

x̄+ Ūu+ V̄ v =

(
0
0

)
+

[
1
0

]
u+

[
0
1

]
v =

(
u
v

)
,

when K = {2, 3}, system (4.3) corresponds to (recall that index 0 �∈ K here)

f2(u, v)− f3(u, v) = 0 ⇐⇒ 3u2 − v − (−5u2 + v) = 0,

Table 4.1
Trajectories for Example 3.3.

K vK(u) χ(u) ∈ Si f(χ(u)) f0(χ(u)) f1(χ(u)) f2(χ(u)) f3(χ(u))

0, 1 0

(
u
0

)
∈S0 u2 u2 u2 3u2 −5u2

0, 3 3u2
(

u
3u2

)
∈S2 0 −2u2 4u2 0 −3u2

1, 2 u2
(

u
u2

)
∈S1

√
2u2 0 2u2 2u2 −4u2

2, 3 4u2
(

u
4u2

)
∈S2 −u2 −3u2 5u2 −u2 −u2
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which is solved for v by vK(u) = 4u2. Therefore, χ(u) = (u, 4u2)�. For u �= 0,
χ(u) ∈ S2 ⊂ P, so f(χ(u)) = f2(χ(u)) = f3(χ(u)). Thus, K = {2, 3} is primal
feasible.

Note that for none of the trajectories χ(u) from Table 4.1 is f(χ(u)) equal to the
maximum or the minimum over all four functions fi(χ(u)). Also, we see that only

K1 := {0, 1} and K2 := {2, 3}(4.7)

are primal feasible basic index sets. Since they are also transversal, letting u = Ūx =
x1, the manifolds corresponding to (4.6) given via Lemma 4.4 and Table 4.1 are

{x = (x1, x2) ∈ R
2 : f0(x) = f1(x)} = {(u, 0) : u ∈ R} =M1

and

{x = (x1, x2) ∈ R
2 : f2(x) = f3(x)} = {(u, 4u2) : u ∈ R} =M2,

i.e., the smooth manifolds from (3.1) and (3.4), respectively, containing the points of
nondifferentiability of f .

4.3. Multiplier functions. So far we have developed only a primal object χ(u)
depending on the pdg structure primal functions and on a basic index set K. Now
we turn our attention to an associated dual object that is also a smooth function
of u ∈ R

dim U . It is a multiplier vector α(u) which depends on structure function
gradients, as well as on χ(u), and on an arbitrary parameter vector y that need not
be a subgradient at x̄. The next result follows along the lines of Theorem 5.2 in [8].

Theorem 4.5. Suppose f has pdg structure at x̄ with respect to P. Corresponding
to a basic index set K = Kf ∪Kϕ with trajectory χ(u) = x̄+ Ūu+ V̄ vK(u) and to a
parameter vector y ∈ R

n, for each u small enough, the linear system with variables αi

V̄ �


∑
i∈Kf

αi∇fi(χ(u)) +
∑
i∈Kϕ

αi∇ϕi−m1(χ(u))


= V̄ �y ∈ R

|K|−1,

∑
i∈Kf

αi = 1

has a unique solution α = α(u), given by

{αi(u)}0 �=i∈K = (V̄ �V (u))−1V̄ �(y −∇f0(χ(u))),

α0(u) = 1−
∑

0 �=i∈Kf
αi(u),

where V (u) is defined in Theorem 4.2(ii) if K is not a singleton and α0(u) = 1
otherwise.

Note that multipliers αi(u) depend on K and V̄ �y, so we should think of the
abbreviated vector notation α(u) as standing for something like αK(u; V̄

�y). An
expression for the Jacobian of α(u) is given in [8].

Example (continuation of Example 3.3). Table 4.2 shows the results for obtaining
multiplier functions for the basic index sets K1 and K2 defined in (4.7). The results
follow from Table 4.1, (3.2), and the choice of V̄ = [ 01 ] which implies that V̄

�y = y2.
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Table 4.2
Multipliers for Example 3.3 with V̄ � = [0 1].

K1 = {0, 1} K2 = {2, 3}
χ(u)

(
u
0

) (
u
4u2

)
∑
i∈K

αi∇fi(χ(u)) α0

(
2u
−1
)
+ α1

(
2u
1

)
α2

(
6u
−1
)
+ α3

( −10u
1

)
Linear system
in Theorem 4.5

[ −1 1
1 1

](
α0
α1

)
=

(
y2
1

)
same, except the
variables are α2, α3

α(u)
α0(u) = (1− y2)/2
α1(u) = (1 + y2)/2

α2(u) = (1− y2)/2
α3(u) = (1 + y2)/2

5. Primal-dual functions; second-order order expansions. Consider a pri-
mal feasible basic index set K with associated quantities V̄ , vK(u), and χ(u), and let
z = V̄ �y, where y is a parameter vector in R

n. In view of Remark 4.3, in particu-
lar definition (4.5), we define for u ∈ R

dimU small enough the following primal-dual
function:

LK(u; z) := f(χ(u))− z�vK(u).(5.1)

Next we show that this function is C2 and give explicit expressions for its first and
second derivatives with respect to u.

Theorem 5.1. Let f have pdg structure at x̄ with respect to P. Suppose
K = Kf ∪Kϕ is a primal feasible basic index set with corresponding trajectory χ(u)
and basis matrix V̄ . Let y ∈ R

n be a parameter vector, and consider the primal-
dual function defined in (5.1) and the multiplier functions αi(u) from Theorem 4.5
corresponding to K and to z = V̄ �y ∈ R

dimVK .
Then for all u small enough we have the following:
(i) LK(u; z) is a C

2-function of u satisfying the particular Lagrangian-like result
that

LK(u; 0) =


∑
i∈Kf

αi(u)fi(χ(u)) +
∑
i∈Kϕ

αi(u)ϕi−m1(χ(u))


 .

(ii) The gradient of LK is given by

∇LK(u; z) = Ū�gK(u; z),

where gK(u; z) is defined by

gK(u; z) :=


∑
i∈Kf

αi(u)∇fi(χ(u)) +
∑
i∈Kϕ

αi(u)∇ϕi−m1(χ(u))


 .(5.2)

(iii) The Hessian of LK is given by

∇2LK(u; z) = Jχ(u)
�MK(u; z)Jχ(u),

where MK(u; z) is the n× n matrix function defined by
MK(u; z) :=

∑
i∈Kf

αi(u)∇2fi(χ(u)) +
∑
i∈Kϕ

αi(u)∇2ϕi−m1(χ(u)),(5.3)

which depends on z via α(u) even when u = 0.
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(iv) In particular, for all z, LK(0; z) = f(x̄), ∇LK(0; z) = ḡU , the U-gradient of
f at x̄ defined in (2.2), and ∇2LK(0; z) = Ū

�MK(0; z)Ū .
Proof. Since K is primal feasible, using (5.1) with z = 0 gives

LK(u; 0) = fi(χ(u)) for all i ∈ Kf .
In addition, since

0 = ϕi−m1
(χ(u)) for all i ∈ Kϕ,

multiplying each of the above equations by the appropriate multiplier αi(u) and then
summing and recalling that

∑
i∈Kf αi(u) = 1 gives the Lagrangian-like expression in

item (i).
The result that LK is C2 in u and the next two corresponding items follow along

the lines of [8, Thm. 6.3(iii)–(iv)], with LU and ḡ therein replaced by LK and y,
respectively.

Item (iv) follows because vK(0) = 0, χ(0) = x̄, Jχ(0) = Ū ,
∑
i∈Kf αi(0) = 1, and

for each i ∈ K, by (2.3),
either ∇fi(x̄) ∈ ∂̄f(x̄) so Ū�∇fi(x̄) = ḡU
or ∇ϕi−m1(x̄) ∈ V so Ū�∇ϕi−m1

(x̄) = 0.

If K is primal feasible and y is such that z = V̄ �y = 0, we call the corre-
sponding Hessian of LK at u = 0 a basic U-Hessian for f at x̄ and denote it by
H̄K := ∇2LK(0; 0). Second-order U-derivatives are useful for specifying second-order
expansions for f and giving related necessary conditions for optimizers, as is shown
next.

Theorem 5.2. Let f have pdg structure at x̄ with respect to P. Suppose K is a
primal feasible basic index set with corresponding trajectory χ(u) = x̄+ Ūu+ V̄ vK(u).
Then for all u small enough and all y ∈ R

n

f(χ(u)) = f(x̄) + ḡ�Uu+ y
�V̄ vK(u) +

1
2u

�∇2LK(0; V̄
�y)u+ o(|u|2),

where ḡU is the U-gradient defined in (2.2).
In particular, when y = ḡ ∈ ∂̄f(x̄),
f(χ(u)) = f(x̄) + ḡ�(χ(u)− x̄) + 1

2 (χ(u)− x̄))�Ū∇2LK(0; V̄
�ḡ)Ū�(χ(u)− x̄)

+ o(|χ(u)− x̄|2),
or, when V̄ �y = 0,

f(χ(u)) = f(x̄) + ḡ�Uu+
1
2u

�H̄Ku+ o(|u|2).
Proof. The first expansion follows from expanding LK(u; z) with z = V̄

�y about
u = 0 and using (5.1) and Theorem 5.1(ii), (iii), and (iv). The second then follows
from (2.2) and the result from Theorem 4.2 that vK(u) = O(|u|2). The third expansion
is a consequence of the definition of H̄K .

Corollary 5.3. Let f have pdg structure at x̄ with respect to P, and suppose x̄
is a local minimizer of f . Then 0 ∈ ∂̄f(x̄) and for any primal feasible basic index set
K the associated basic U-Hessian H̄K is positive semidefinite.

Example (continuation of Example 3.3). To compute the primal-dual functions
and their derivatives given in Table 5.1, we substitute into (5.1) the relevant expres-
sions from Table 4.1 and differentiate with respect to u. Equivalently, we could use
the multipliers α(u) given in Table 4.2 and the formulas from Theorem 5.1. Recall
that z = V̄ �y = y2 for this example.
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Table 5.1
Primal-dual information for Example 3.3.

K1 = {0, 1} K2 = {2, 3}
LK(u; y2) u2 −u2 − 4y2u2

∇LK(u; y2) 2u −2(1 + 4y2)u

∇2LK(u; y2) 2 −2(1 + 4y2)

H̄K 2 −2

6. Link to second-order epi-derivatives. We now show that some U-Hessians
give second-order epi-derivatives for U-subspace directions. Thus, primal-dual func-
tions LK , having ordinary second derivatives, can capture much of the second-order
epi-differential behavior of a pdg-structured function.

We start by recalling the formal definition of epigraphical convergence.

6.1. Characterization of epi-limits and epi-derivatives. The epigraphical
convergence theory developed in [15, Chap. 7] includes the following useful character-
ization of epi-limits.

Proposition 7.2 and equation 7(3) in [15]. Let {qν} be a sequence of func-
tions on R

n, and let w be any point in R
n. The value q(w) is the epi-limit of the

sequence qν at w if and only if{
liminf

ν
qν(wν) ≥ q(w) for every sequence wν → w ,

limsup
ν
qν(wν) ≤ q(w) for some sequence wν → w .

Note that in the expression above the limit q(w) can be infinity.
For a function h : R

n → R and point x̄ ∈ dom h with h(x̄) finite we consider
various limits of the following first-order and second-order difference quotients:

h(x̄+ τ ·)− h(x̄)
τ

and
h(x̄+ τ ·)− h(x̄)− τy�·

1
2τ

2

for τ > 0 and y ∈ R
n.

The (first) subderivative of h at x̄ in the direction w is denoted and defined by

dh(x̄)(w) := liminf
τ↘0 ,wτ→w

h(x̄+ τwτ )− h(x̄)
τ

.

When the first-order difference quotient has an epi-limit at w as τ ↘ 0, then dh(x̄)(w)
is this limit and it is then called the first epi-derivative of h at x̄ in the direction w
and h is said to be epi-differentiable at x̄ for w.

Similarly, but for each y ∈ R
n, when the second-order difference quotient has

an epi-limit at w as τ ↘ 0, it is denoted by d2h(x̄|y)(w) and is called the second
epi-derivative of h at x̄ relative to y in the direction w. In this case

d2h(x̄|y)(w) = liminf
τ↘0 ,wτ→w

h(x̄+ τwτ )− h(x̄)− τy�wτ

1
2τ

2
,

generally called the second subderivative of h at x̄ relative to y in the direction w.
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6.2. Connection with U-Hessians. It is important to note that, in the epi-
graphical setting, the second-order epi-derivative provides a second-order approxima-
tion f(x̄+τw) ≈ f(x̄)+τy�w+ 1

2τ
2d2f(x̄|y)(w) , not in the usual sense of local uniform

convergence, but of closeness of the epigraphs of the second-order difference quotient
function and d2f(x̄|y)(·); see [13]. In contrast, primal-dual functions LK(u; V̄

�y)
provide second-order approximations in u in the classical sense. We now establish
a relation between these second-order objects when a basic index set K satisfies a
property relative to certain subgradients which for a convex function follows from the
V-optimality conditions given in [7, Section 6.1].

Theorem 6.1. Let f have pdg structure at x̄ with respect to P. Suppose K is
a transversal and primal feasible basic index set with corresponding trajectory χ(u) =
x̄+ Ūu+ V̄ vK(u) and primal-dual Hessian ∇2LK(u; z) from Theorem 5.1(iii). Let

GK :=

{
ḡ ∈ ∂̄f(x̄) :

vK(u) ∈ Argmin
v∈RdimV

{f(x̄+ Ūu+ V̄ v)− ḡ�V̄ v}
for all small enough u ∈ R

dim U

}
.(6.1)

Then for all w ∈ R
n the corresponding first and second subderivatives, respectively,

satisfy

df(x̄)(w) ≥ sup{ḡ�w : ḡ ∈ GK}
and

d2f(x̄|ḡ)(w) ≥ w�Ū∇2LK(0; V̄
�ḡ)Ū�w for all ḡ ∈ GK .

Furthermore, for all w ∈ U the corresponding first and second epi-derivatives, respec-
tively, are given by

df(x̄)(w) = ḡ�U Ū
�w

and

d2f(x̄|ḡ)(w) = w�Ū∇2LK(0; V̄
�ḡ)Ū�w for all ḡ ∈ GK .

Proof. We start by showing the second-order results. Suppose ḡ ∈ GK . Then,
for all v ∈ R

dimV , f(χ(u)) − ḡ�V̄ vK(u) ≤ f(x̄ + Ūu + V̄ v) − ḡ�V̄ v. Subtracting
f(x̄) + ḡ�Ūu from both sides of the inequality gives

f(χ(u))− f(x̄)− ḡ�(χ(u)− x̄) ≤ f(x̄+ Ūu+ V̄ v)− f(x̄)− ḡ�(Ūu+ V̄ v).
Then, since K is primal feasible, Theorem 5.2 written with y = ḡ implies that for all
u ∈ R

dim U small enough and all v ∈ R
dimV

1

2
u�∇2LK(0; V̄

�ḡ)u+ o(|u|2) ≤ f(x̄+ Ūu+ V̄ v)− f(x̄)− ḡ�(Ūu+ V̄ v).(6.2)

Take a sequence wτ → w as τ ↘ 0, and let uτ := Ū�wτ . Then, using (4.2) and the
transversality of K,

wτ = Ū Ū�wτ + V̄ [V̄ �V̄ ]−1V̄ �wτ = Ūuτ + V̄ [V̄ �V̄ ]−1V̄ �wτ .

With this notation

x̄+ τwτ = x̄+ Ū(τuτ ) + V̄ [V̄ �V̄ ]−1V̄ �(τwτ ).
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From (6.2) with u = τuτ ∈ R
dim U , τ small enough, and v = [V̄ �V̄ ]−1V̄ �(τwτ ) ∈

R
dimV we obtain

1

2
(τuτ )�∇2LK(0; V̄

�ḡ)τuτ + o(|τuτ |2) ≤ f(x̄+ τwτ )− f(x̄)− τ ḡ�wτ .(6.3)

Dividing both sides of this inequality by 1
2τ

2 yields

(uτ )�∇2LK(0; V̄
�ḡ)uτ +

o(τ2|uτ |2)
1
2τ

2
≤ f(x̄+ τw

τ )− f(x̄)− τ ḡ�wτ
1
2τ

2
.

Note that since wτ → w, the definition of uτ implies that uτ → Ū�w. Hence, passing
to the limit gives the following inequality involving the second subderivative:

w�Ū∇2LK(0; V̄
�ḡ)Ū�w ≤ d2f(x̄|ḡ)(w).

To show that the left-hand side is an epi-limit for w ∈ U we exhibit below a sequence
wτK converging to w with the property that x̄+ τwτK = χ(τu

τ ). We have just shown,
using Theorem 5.2, that the second-order difference quotient function of such a di-
rection vector wτK converges to w�Ū∇2LK(0; V̄

�ḡ)Ū�w, which therefore equals the
second-order epi-derivative (by the above definition of epi-limit, since the liminf is
greater than or equal to this limit).

Consider the sequence

wτK := Ūu
τ + V̄

1

τ
vK(τu

τ ), which implies x̄+ τwτK = χ(τu
τ ).

By Theorem 4.2(iv), the term 1
τ vK(τu

τ ) = 1
τO(τ

2|uτ |2) converges to 0 together with
τ . As a result, limτ w

τ
K = limτ Ūu

τ = limτ Ū Ū
�wτ = Ū Ū�w. The result follows by

noting from (4.2) that w ∈ U ⇐⇒ w = Ū Ū�w.
The first-order results are obtained in a similar manner, by dividing (6.3) by τ

instead of 1
2τ

2 and noting that if w ∈ U , then ḡ�w = ḡ�Ū Ū�w = ḡ�U Ū
�w from

(2.2).
Remark 6.2. When ḡ ∈ GK , then from (6.1) and the definition of the minimizer

v(u) in Remark 4.3, whether or not f is convex, LK(u; V̄
�ḡ) can be called the U-

Lagrangian relative to V̄ �ḡ, and hence ∇2LK(0; V̄
�ḡ) is the related U-Hessian of f

at x̄. A similar generalization from the convex case to the nonconvex can be made
for a fast track [10], i.e., if GK = ∂̄f(x̄), then the corresponding χ(u) can be called a
fast track. We note in passing that the dependence of the U-Lagrangian on the pair
(u; z) ∈ R

dimU×R
dimV = R

n is exploited in [10] in order to apply an implicit function
theorem to show that for a convex f proximal points are on the fast track.

Example (continuation of Example 3.3). Recall that ∂̄f(x̄) = {ḡ = (0, ḡ2) : −1 ≤
ḡ2 ≤ 1}. We will see below that for the transversal and primal feasible sets K1 and K2

from (4.7) the associated sets GK1 and GK2 from (6.1) satisfy ∂̄f(x̄) = GK1 ∪GK2 .
In view of Table 4.1, we first find values of ḡ2 ∈ [−1, 1] which correspond to

vK1
(u) = 0 or to vK2

(u) = 4u2 being in

Argmin
v∈R

{f(u, v)− ḡ2v}.(6.4)

Table 6.1 below summarizes the main results for computing the various minimizers
in (6.4). To obtain these results from the definition of f we partition R into four
v-subintervals. For all u ∈ R and ḡ2 ∈ [−1, 1], on each subinterval the objective in
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Table 6.1
Subinterval v-minimizers for Example 3.3.

Subinterval Objective in (6.4) Argmin value Objective min value
v ≤ 0 u2 − (1 + ḡ2)v v = 0 for all ḡ2 u2

0 ≤ v ≤ 2u2 h1(u, v)− ḡ2v

[
v = 0 or v = 2u2,
depending on ḡ2

min{u2, (1− 2ḡ2)u2}
2u2 ≤ v ≤ 4u2 3u2 − (1 + ḡ2)v v = 4u2 for all ḡ2 −(1 + 4ḡ2)u2

4u2 ≤ v −5u2 + (1− ḡ2)v v = 4u2 for all ḡ2 −(1 + 4ḡ2)u2

(6.4) is concave in v (actually, it is affine on three subintervals and strictly concave on

[0, 2u2], since ∂2h1

∂v2 < 0 there), and hence corresponding minimizers are at subinterval
endpoints.

From the last column in Table 6.1 the minimum objective value in (6.4) is

min{u2, (1− 2ḡ2)u2,−(1 + 4ḡ2)u2} =
{
u2 for ḡ2 ∈ [−1,−1/2],
−(1 + 4ḡ2)u2 for ḡ2 ∈ [−1/2, 1].

Combined with the third column, this implies that

GK1=
{
ḡ = (0, ḡ2)

� : ḡ2 ∈ [−1,− 1
2 ]
}
and GK2=

{
ḡ = (0, ḡ2)

� : ḡ2 ∈ [− 1
2 , 1]
}
.

Thus, from Theorem 6.1 with Ū�w = w1 and Table 5.1 with y2 = ḡ2 we find that for
all w = (w1, 0)

� ∈ U and ḡ = (0, ḡ2)
� ∈ ∂̄f(x̄) the second-order epi-derivatives are

given by

d2f(x̄|ḡ)(w) =
{

2w2
1 if ḡ2 ∈ [−1,− 1

2 ],

−2(1 + 4ḡ2)w2
1 if ḡ2 ∈ [− 1

2 , 1].
(6.5)

7. Link to partly smooth functions. The concept of partial smoothness,
introduced in [5], is closely related to VU-space decomposition and pdg structure.
The smooth and sharp (generalized U- and V-shaped, respectively) behaviors of a
function are decoupled via an active manifold as, for example, in (4.6).

More precisely (see [5, Def. 2.7]), given a setM⊂ X that contains x̄, the function
h : X → R̄ is partly smooth at x̄ relative to M ifM is a manifold around x̄ and the
following four properties hold:

(i) (restricted smoothness). The restriction h|M equals a representative function
that is C2 around x̄.

(ii) (regularity). At every point close to x̄ in M, the function h is (subdifferen-
tially) regular and has a subgradient.

(iii) (V-type sharpness). For all nonzero directions w ∈ NM(x̄) the first sub-
derivative satisfies dh(x̄)(w) > −dh(x̄)(−w).

(iv) (subgradient continuity). The subdifferential map ∂h is continuous at x̄ rel-
ative toM.

We will show that regular pdg-structured functions are partly smooth relative to
certain structure-defined manifolds. We start by showing the properties of V-type
sharpness and restricted smoothness.

Lemma 7.1. Let f have pdg structure at x̄ relative to P, and suppose K is any
basic index set with associated manifoldMK from (4.6). If f is regular at x̄, then

df(x̄)(w) > −df(x̄)(−w) for all nonzero w ∈ NMK
(x̄).
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Proof. Suppose w is a nonzero vector in V. Let ḡ be a subgradient in the relative
interior of ∂̄f(x̄), which, from (2.1), is the interior of ∂̄f(x̄) relative to the affine set
g + V for any subgradient g. Then,

ḡ + τw ∈ ∂̄f(x̄) for some τ > 0.

The regularity assumption implies, by [15, p. 337 and Thm. 8.30], that df(x̄)(w) =
sup{g�w : g ∈ ∂̄f(x̄)}. Thus, for all nonzero w ∈ V

df(x̄)(w) ≥ ḡ�w + τ |w|2 > ḡ�w = −ḡ�(−w) ≥ −df(x̄)(−w).

The proof is ended by noting, from Lemma 4.4(i), that NMK
(x̄) = VK ⊆ V.

Next we show that the richness of pdg structure allows us to exhibit a smooth
representative of f |MK

(in terms of a primal-dual function with z = 0) and to give
its first and second derivatives.

Theorem 7.2. Let f have pdg structure at x̄ with respect to P. Suppose K is a
basic index set that is primal feasible and transversal. Then the following hold:

(i) LK(u(x); 0), with u(x) := Ū
�(x − x̄), is C2 around x̄ ∈ R

n and equals f on
MK .

(ii) The gradient and Hessian of LK(u(x); 0) are given, respectively, by

Ū Ū�gK(u(x); 0) and Ū∇2LK(u(x); 0)Ū
�.

These derivatives depend on expressions in Theorem 5.1(ii) and (iii) and The-
orem 4.2(ii) with u and χ(u) therein replaced by u(x) and x, respectively.

Proof. Take x ∈MK close enough to x̄ so that u(x) is small enough for vK(u(x))
to be defined. For such x ∈ MK Lemma 4.4(ii) gives x = χ(u(x)), where χ(u)
corresponds to K. Then (5.1) with (u; z) = (u(x); 0) gives LK(u(x); 0) = f(x) for
x ∈MK close enough to x̄. Since the Jacobian of u(x) is Ū�, the results follow from
Theorem 5.1 and the chain rule.

In order to show continuity of the subdifferential onMK , we require an additional
assumption on the basic index set K.

A basic index set K = Kf ∪Kϕ is called dual feasible with respect to ḡ ∈ ∂̄f(x̄)
if there exists an ᾱ ∈ ∆ such that

ḡ =
∑
i∈Kf

ᾱi∇fi(x̄) +
∑
i∈Kϕ

ᾱi∇ϕi−m1
(x̄) and ᾱi = 0 for all i �∈ K.(7.1)

Theorem 7.3. Let f have pdg structure at x̄ with respect to P. Suppose K is a
basic index set that is dual feasible with respect to all ḡ ∈ ∂̄f(x̄). Then the following
hold:

(i) K is transversal.
(ii) If, in addition, K is primal feasible, then ∂̄f is inner semicontinous at x̄

relative toMK .
Proof. To show (i), i.e., VK = V, we need only to prove the inclusion V ⊆ VK .

Since the subgradient g used in defining V in (2.1) is arbitrary, take g = ∇f0(x̄), which
is in ∂̄f(x̄) by (2.3). Suppose v ∈ V. Then there exist scalars βj and subgradients
gj ∈ ∂̄f(x̄) such that

v =
∑
j

βj(g
j −∇f0(x̄)).(7.2)
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By the assumption that K is dual feasible for all subgradients, there exist vectors
αj ∈ ∆ such that

gj =
∑
i∈Kf

αji∇fi(x̄) +
∑
i∈Kϕ

αji∇ϕi−m1
(x̄) and αji = 0 for all i �∈ K.

Then, from the definition of ∆,
∑
i∈Kf α

j
i = 1 for each j, so

gj − 1∇f0(x̄) =
∑
i∈Kf

αji (∇fi(x̄)−∇f0(x̄)) +
∑
i∈Kϕ

αji∇ϕi−m1
(x̄).

Multiplying each of these equalities by βj , and then summing over j, and using (7.2)
gives

v =
∑
i∈Kf

γi(∇fi(x̄)−∇f0(x̄)) +
∑
i∈Kϕ

γi∇ϕi−m1(x̄),

where γi is defined by γi :=
∑
j βjα

j
i for i ∈ K. Thus, from (4.1), v ∈ VK .

To show (ii), let ḡ ∈ ∂̄f(x̄), and let ᾱ ∈ ∆ be a multiplier vector satisfying (7.1)
in the definition of dual feasibility. Let {xr} ⊂ MK be a sequence converging to x̄.
Then the sequence {gr} defined by

gr :=
∑
i∈Kf

ᾱi∇fi(xr) +
∑
i∈Kϕ

ᾱi∇ϕi−m1(x
r)

converges to ḡ by (7.1) and the continuity of the primal function gradients. To com-
plete the proof, we need to show that gr ∈ ∂̄f(xr) using condition (iii)(b) of the pdg
structure definition in section 2.1. By item (i), K is transversal, so, by Lemma 4.4(ii),
xr ∈ P and if i is such that fi(xr) �= f(xr) or ϕi−m1

(xr) �= 0, then i �∈ K. From
(7.1) ᾱi = 0 for i �∈ K, so we have the complementary slackness between xr ∈ P and
ᾱ ∈ ∆ needed to conclude from (7.1) and section 2.1(iii)(b) with x = xr and α = ᾱ
that gr ∈ ∂̄f(xr).

We are now in a position to give the main result of this section.
Theorem 7.4. Let f have pdg structure at x̄ with respect to P. Suppose K is a

primal feasible basic index set that is dual feasible with respect to all ḡ ∈ ∂̄f(x̄). If f
is regular at all x ∈MK close to x̄, then f is partly smooth at x̄ relative toMK .

Proof. Lemma 7.1 and Theorems 7.2 and 7.3 show all of the conditions for f to
be partly smooth, except for outer semicontinuity of ∂̄f at x̄ relative toMK . By the
regularity assumption, onMK ∂̄f(·) equals the outer semicontinuous map ∂f(·); see
[15, Prop. 8.7].

Example (conclusion of Example 3.3). It is shown in [5] that this example f is
subdifferentially regular everywhere. From (3.2) and (3.3) with (x1, x2) = (0, 0) and
the fact that ∆ is the canonical simplex in R

4, it is easy to show that both of the
primal feasible basic index sets K1 = {0, 1} and K2 = {2, 3} are dual feasible for
all ḡ ∈ ∂̄f(x̄). Hence, this function is partly smooth at x̄ relative to both M1 and
M2. From Theorem 7.2 with Ū� = [1 0] and Table 5.1 with y2 = 0 the respective
corresponding manifold restricted Hessians are[

2 0
0 0

]
and

[ −2 0
0 0

]
.
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8. Conclusion. In this paper we have related U-subspace second-order smooth-
ness results for the broad class of pdg-structured functions to the general concepts of
second-order epi-derivatives and partly smooth functions. The principal results given
here are the second-order expansions in u depending on a parameter y that need not
be a subgradient. They are contained in Theorem 5.2 and based on a primal-dual
function corresponding to a basic index set that is assumed only to be primal feasi-
ble. Without having to develop second-order epi-derivatives (as in Theorem 6.1) or
manifold restricted Hessians (as in Theorem 7.2) for Example 3.3 we can conclude
from Corollary 5.3 and Table 5.1 (having two basic U-Hessians of opposite sign) that
x̄ = (0, 0)� is neither a local maximizer nor a local minimizer.

Theorem 6.1 provides somewhat more second-order information, since from (6.5)
the second-order epi-derivatives for Example 3.3 vary from 2 to −10 as ḡ2, the V-
component of the subgradients, varies from −1 to 1. This is at the expense of the
additional assumption of V-minimality, which provides the important link between
primal-dual functions given here and U-Lagrangians defined earlier for convex func-
tions.

The connection to partly smooth functions in Theorem 7.4 requires a regularity
assumption as well as dual feasibility for all subgradients. This latter assumption
is important for obtaining inner semicontinuity of the subdifferential. This Theo-
rem 7.3 result and its proof may have future application for rate of convergence anal-
ysis for minimization algorithms based on approximating fast tracks as in [9]. Such
algorithms would try to exploit pdg structure implicitly without having to know it
explicitly.
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delberg, 1999, pp. 167–186.
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A GLOBALLY AND LOCALLY SUPERLINEARLY CONVERGENT
NON–INTERIOR-POINT ALGORITHM FOR P0 LCPs∗
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Abstract. Based on the concept of the regularized central path, a new non–interior-point
path-following algorithm is proposed for solving the P0 linear complementarity problem (P0 LCP).
The condition ensuring the global convergence of the algorithm for P0 LCPs is weaker than most
conditions previously used in the literature. This condition can be satisfied even when the strict
feasibility condition, which has often been assumed in most existing non–interior-point algorithms,
fails to hold. When the algorithm is applied to P∗ and monotone LCPs, the global convergence of
this method requires no assumption other than the solvability of the problem. The local superlinear
convergence of the algorithm can be achieved under a nondegeneracy assumption. The effectiveness
of the algorithm is demonstrated by our numerical experiments.

Key words. linear complementarity problem, non–interior-point algorithm, Tikhonov regular-
ization, P0 matrix, regularized central path

AMS subject classifications. 90C30, 90C33, 90C51, 65K05

PII. S1052623401384151

1. Introduction. We consider a new path-following algorithm for the linear
complementarity problem (LCP):

x ≥ 0, Mx+ d ≥ 0, xT (Mx+ d) = 0,

where M is an n by n matrix and d is a vector in Rn. This problem is said to be a
P0 LCP if M is a P0 matrix, and a P∗ LCP if M is a P∗ matrix. We recall that M
is said to be a P0 matrix (see [13]) if

max
1≤i≤n

xi(Mx)i ≥ 0 for any 0 �= x ∈ Rn.

M is said to be a P∗ matrix (see [26]) if there exists a nonnegative constant τ ≥ 0
such that

(1 + τ)
∑
i∈I+

xi(Mx)i +
∑
i∈I−

xi(Mx)i ≥ 0 for any 0 �= x ∈ Rn,

where I+ = {i : xi(Mx)i > 0} and I− = {i : xi(Mx)i < 0}.
We first give a synopsis of non–interior-point methods and related results for

complementarity problems. The first non–interior-point path-following method for
LCPs was proposed by Chen and Harker [6]. This method was improved by Kanzow
[24], who also studied other closely related methods, later called the Chen–Harker–
Kanzow–Smale (CHKS) smoothing function method (see [20]). The CHKS function
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φ : R3 → R is defined by

φ(t1, t2, µ) = t1 + t2 −
√
(t1 − t2)2 + 4µ.

Based on such a function, Hotta and Yoshise [20] studied the structural properties
of a non–interior-point trajectory and proposed a globally convergent path-following
algorithm for a class of P0 LCPs. However, no rate of convergence was reported in
these papers. The first global linear convergence result for the LCP with a P0 and R0

matrix was obtained by Burke and Xu [3], who also proposed in [4] a non–interior-point
predictor-corrector algorithm for monotone LCPs which was both globally linearly and
locally quadratically convergent under certain assumptions. Further development of
non–interior-point methods can be found in [35, 5, 40, 33, 8, 7, 21]. It is worth
mentioning that Chen and Xiu [8] and Chen and Chen [7] proposed a class of non–
interior-point methods using the Chen–Mangasarian smoothing function family [9]
that includes the CHKS smoothing function as a special case.

Since most existing non–interior-point path-following algorithms are based on the
CHKS function, these methods actually follow the central path to locate a solution
of the LCP. The central path is the set of solutions of the following system as the
parameter µ > 0 varies:

x > 0, Mx+ d > 0, X(Mx+ d) = µe,

where X = diag(x) and e = (1, . . . , 1)T . For P0 LCPs, it is shown (see [42, 43]) that
most assumptions used for non–interior-point algorithms (for instance, Condition 1.5
in [25], Condition 1.2 in Hotta and Yoshise [20], and the P0 + R0 assumption in
Burke and Xu [3], and Chen and Chen [7]) imply that the solution set of the problem
is bounded. As shown by Ravindran and Gowda in [34], the P0 complementarity
problem with a bounded solution set must have a strictly feasible point, i.e., there
exists an x0 such that Mx0 + d > 0. (This implies that a P0 LCP with no strictly
feasible point either has no solution or has an unbounded solution set.) We conclude
that the above-mentioned conditions all imply that the problem has a strictly feasible
point. Thus, for a solvable P0 LCP without a strictly feasible point (in this case, the
central path does not exist), it is unknown whether most existing non–interior-point
algorithms are globally convergent or not. An interesting problem is how to improve
these algorithms so that they are able to handle those P0 problems with unbounded
solution sets or without strictly feasible points.

Recently, Zhao and Li [42] proposed a new continuation trajectory for comple-
mentarity problems, which is defined as follows:

x > 0, Mx+ d+ θpx > 0, xi[(Mx+ d)i + θ
pxi] = θ

qai, i = 1, . . . , n,

where θ is a parameter in (0, 1]; p ∈ (0,∞) and q ∈ [1,∞) are two fixed scalars;
and a = (a1, . . . , an)

T ∈ Rn++ is a fixed vector, for example, a = e. For a P0 matrix
M, it turns out (see [42]) that the above system has a unique solution for each given
parameter θ, and this solution, denoted by x(θ), is continuously differentiable on (0,1).
Thus, the set {x(θ) : θ ∈ (0, 1]} forms a smooth path approaching the solution set of
the P0 LCP as θ tends to zero. Notice that, for a given θ, the term Mx+ d+ θpx is
the Tikhonov regularization of Mx+ d, which has been used by several authors, such
as Isac [22], Venkateswaran [36], Facchinei and Kanzow [14], Ravindran and Gowda
[34], and Zhao and Li [42], to study complementarity problems. We may refer to the
above smooth path as the regularized central path. A good feature of the regularized
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central path is that its existence and boundedness can be guaranteed under a very
weak assumption. In particular, the boundedness of the solution set and the strict
feasibility condition are not needed for the existence of this path. Combining the
CHKS function and the Tikhonov regularization method, Zhao and Li [43] extended
the results in [42] to non–interior-point methods and studied the existence as well as
the limiting behavior of a new non–interior-point smooth path.

The theoretical results established in [43] motivate us to construct a new non–
interior-point path-following algorithm for P0 LCPs. The purpose of this paper is
to provide such a practical numerical algorithm. It is worth stressing the differences
between the proposed method in this paper and previous algorithms in the literature.
(i) The proposed algorithm follows the regularized central path instead of the central
path. (ii) The condition ensuring the global convergence of the algorithm for P0

LCPs is strictly weaker than those used in most existing non–interior-point methods.
The local superlinear convergence of the algorithm can be achieved under a standard
nondegeneracy assumption that was used in many works such as [38, 39, 33]. In
particular, we also study the important special case of P∗ LCPs and derive some
stronger results than that of the P0 case.

The paper is organized as follows. In section 2, we introduce some basic results
and describe the algorithm. In section 3, we prove the global convergence of the
algorithm for a class of P0 LCPs. The local convergence analysis of the algorithm is
given in section 4. The special case of P∗ LCPs is discussed in section 5, and some
numerical results are reported in section 6.

Notation: Rn denotes the n-dimensional Euclidean space. Rn+ and Rn++ denote
the nonnegative orthant and positive orthant, respectively. A vector x ≥ 0 (x > 0)
means x ∈ Rn+ (x ∈ Rn++). All the vectors, unless otherwise stated, are column vectors.
T denotes the transpose of a vector. For any vector x, the capital X denotes the
diagonal matrix diag(x), and for any index set I ⊆ {1, . . . , n}, xI denotes the subvector
made up of the components xi for i ∈ I. The symbol e denotes the vector inRn with all
of its components equal to one. For given vectors u,w, v in Rn, the triplet (u,w, v) (the
pair (x, y)) denotes the column vector (uT , wT , vT )T ( (xT , yT )T ). For any u ∈ Rn,
the symbol up denotes the pth power of the vector u, i.e., the vector (up1, . . . , u

p
n)
T

where p > 0 is a positive scalar, and Up denotes the diagonal matrix diag(up). For
any vector x ≤ y, we denote by [x, y] the rectangular box [x1, y1]× · · · × [xn, yn].

2. A non–interior-point path-following algorithm. Let p and q be two
given positive scalars. Define the map H : Rn+ ×R2n → R3n as follows:

H(u, x, y) =

 u

x+ y −√(x− y)2 + 4uq

y − (Mx+ d+ Upx)


 , (u, x, y) ∈ Rn+ ×R2n,(2.1)

where Up = diag(up) and all the algebraic operations are performed componentwise.
The above homotopy map first appeared in [43]. Clearly, if H(u, x, y) = 0, then (x, y)
is a solution to the LCP; conversely, if (x, y) is a solution to the LCP, then (0, x, y)
is a solution to the equation H(u, x, y) = 0. Thus, an LCP can be solved by locating
a solution of the nonlinear equation H(u, x, y) = 0. From the discussion in [43], we
can conclude that it is a judicious choice to use the above version of the homotopy
formulation in order to deal with the LCP with an unbounded solution set.

Before embarking on stating the algorithm, we first introduce some results estab-
lished in [43]. Let (a, b, c) ∈ Rn++×R2n be given. Consider the following system with
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the parameter θ:

H(u, x, y) = θ(a, b, c),(2.2)

where θ ∈ (0, 1]. For P0 LCPs, it is shown in [43] that for each given θ ∈ (0, 1]
the above system has a unique solution denoted by (u(θ), x(θ), y(θ)), which is also
continuously differentiable with respect to θ. Therefore, the set

{(u(θ), x(θ), y(θ)) : H(u, x, y) = θ(a, b, c), θ ∈ (0, 1]}(2.3)

forms a smooth path. Also, in this paper, we refer to this path as the regularized
central path. The existence of such a smooth path for P0 LCPs needs no assump-
tion (see Theorem 2.1 below). An additional condition is assumed to guarantee the
boundedness of this path. We now introduce such a condition proposed in [43].

For given (a, b, c) ∈ Rn++ × R2n and θ ∈ (0, 1], we define a mapping F(a,b,c,θ) :
R2n → R2n as follows:

F(a,b,c,θ)(x, y) =

(
Xy

y −M(x+ 1
2θb)− d− θpApx− θc

)
,

where X = diag(x) and Ap = diag(ap).
Condition 2.1. For any given (a, b, c) ∈ Rn++ ×R2n and scalar t̂, there exists a

scalar θ∗ ∈ (0, 1] such that ⋃
θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ)

is bounded, where

F−1
(a,b,c,θ)(Dθ) := {(x, y) ∈ R2n

++ : F(a,b,c,θ)(x, y) ∈ Dθ}

and Dθ := [0, θaq]× [−θt̂e, θt̂e] ⊆ Rn+ ×Rn.
The following result states that Condition 2.1 is weaker than most known assump-

tions used for non–interior-point methods. An example was given in [43] to show that
Condition 2.1 can be satisfied even when the strict feasibility condition fails to hold.

Proposition 2.1 (see [43]). Let f = Mx + d, where M is a P0 matrix. If one
of the following conditions holds, then Condition 2.1 is satisfied:

(a) Condition 1.5 of Kojima, Megiddo, and Noma [25];
(b) Condition 2.2 of Hotta and Yoshise [20];
(c) Assumption 2.2 of Chen and Chen [7];
(d) f is a P0 and R0 function [3, 7];
(e) f is a P∗ function (i.e., M is a P∗ matrix) and there is a strictly feasible

point [26];
(f) f is a uniform P function, i.e., M is a P matrix [27];
(g) The solution set of the LCP is nonempty and bounded.
The converse, however, is not true; i.e., Condition 2.1 cannot imply any one of

the above conditions.
Restricted to LCPs, the main result established in [43] is summarized as follows.
Theorem 2.1 (see [43]). Let M be a P0 matrix.
(i) For each θ ∈ (0, 1], the system (2.2) has a unique solution denoted by (u(θ),

x(θ), y(θ)), which is also continuously differentiable in θ.
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(ii) If Condition 2.1 is satisfied, then the regularized central path (2.3) is bounded.
Hence, there exists a subsequence (u(θk), x(θk), y(θk)) that converges, as θk → 0, to
(0, x∗, y∗) where x∗ is a solution to the LCP.

For P∗ LCPs, the only condition for the result (ii) above is the solvability of the
problem.

Theorem 2.2 (see [43]). Let M be a P∗ matrix. Assume that the solution set of
the LCP is nonempty.

(i) If p ≤ 1 and q ∈ [1,∞), then the regularized central path (2.3) is bounded.
(ii) If p > 1, q ∈ [1,∞) and c ∈ Rn++, then the regularized central path (2.3) is

bounded.
The boundedness of the path (2.3) implies that the problem has a solution. Com-

bining this fact and the above result, we may conclude that the solvability of a P∗
LCP, roughly speaking, is a necessary and sufficient condition for the boundedness
of the regularized central path. For monotone LCPs, we have a much stronger result
than the above; i.e., the entire path (2.3) is convergent as θ → 0. The property of the
limiting point of this path, as θ → 0, depends on the choice of the scalars p and q.

Theorem 2.3 (see [43]). Let M be a positive semidefinite matrix. Assume that
the solution set of the LCP is nonempty.

(i) If p ≤ 1 and q ∈ [1,∞), then the regularized central path (2.3) converges, as
θ → 0, to the unique least N-norm solution of the LCP, where N = Ap/2.

(ii) If p > 1, q ∈ [1,∞), and c ∈ Rn++, then the regularized central path (2.3)
converges, as θ → 0, to a maximally complementary solution of the LCP.

We now introduce the algorithm. We choose the following neighborhood around
the regularized central path {(u(θ), x(θ), y(θ)) : θ ∈ (0, 1]}:

N (β) = {(u, x, y) : ‖u− θa‖ = 0, ‖H(u, x, y)− θ(a, b, c)‖ ≤ βθ, θ ∈ (0, 1]}.
Denote

Gθ(x, y) =

(
x+ y −√(x− y)2 + 4(θa)q

y − (Mx+ d+ θpApx)

)
.(2.4)

Then the above neighborhood reduces to

N (β) = {(x, y) : ‖Gθ(x, y)− θ(b, c)‖ ≤ βθ, θ ∈ (0, 1]},
where Gθ is given by (2.4). For a given θ ∈ (0, 1], we denote

N (β, θ) = {(x, y) : ‖Gθ(x, y)− θ(b, c)‖ ≤ βθ}.
Throughout the paper, ∇Gθ(x, y) denotes the Jacobian of Gθ(x, y) with respect to
(x, y). Let ε > 0 be a given tolerance. We now describe the algorithm as follows.

Algorithm 2.1. Let p ∈ (0,∞), q ∈ [1,∞), σ ∈ (0, 1), and α ∈ (0, 1) be given.
Step 1. Select (a, b, c) ∈ Rn++ × R2n, (x0, y0) ∈ R2n, θ0 ∈ (0, 1), and β > 0 such

that (x0, y0) ∈ N (β, θ0).
Step 2 (approximate Newton step). If ‖G0(x

k, yk)‖ ≤ ε, stop; otherwise, let
(dx̂k, dŷk) solve the equation

G0(x
k, yk) +∇Gθk(xk, yk)(dx, dy) = 0.(2.5)

Let

(x̂k+1, ŷk+1) = (xk, yk) + (dx̂k, dŷk).
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If ‖G0(x̂
k+1, ŷk+1)‖ ≤ ε, stop; otherwise, if

(x̂k+1, ŷk+1) ∈ N (β, (θk)2),

then set

θk+1 = (θk)2, (xk+1, yk+1) = (x̂k+1, ŷk+1).

Set k := k + 1, and repeat step 2. Otherwise, go to step 3.
Step 3 (centering step). If Gθk(x

k, yk) = θk(b, c), set (xk+1, yk+1) = (xk, yk), and
go to step 4. Otherwise, let (dxk, dyk) be the solution to the equation

Gθk(x
k, yk)− θk(b, c) +∇Gθk(xk, yk)(dx, dy) = 0.(2.6)

Let λk be the maximum among the values of 1, α, α2, . . . such that

‖Gθk(xk + λkdxk, yk + λkdyk)− θk(b, c)‖ ≤ (1− σλk)‖Gθk(xk, yk)− θk(b, c)‖.

Set

(xk+1, yk+1) = (xk, yk) + λk(dx
k, dyk).

Step 4 (reduce θk). Let γk be the maximum among the values 1, α, α2, . . . such
that

(xk+1, yk+1) ∈ N (β, (1− γk)θk),

i.e.,

‖G(1−γk)θk(x
k+1, yk+1)− (1− γk)θk(b, c)‖ ≤ β(1− γk)θk.

Set θk+1 = (1− γk)θk. Set k := k + 1 and go to step 2.
Remark 2.1. (i) To start the algorithm, we need an initial point within the

neighborhood of the regularized central path. Such an initial point can be found at
no cost for the above algorithm. For example, let (a, b, c) be an arbitrary triplet in
Rn++ × R2n, (x0, y0) be an arbitrary vector in R2n, and θ0 be an arbitrary scalar in
(0,1). Then choose β such that

β ≥ ‖Gθ0(x
0, y0)− θ0(b, c)‖
θ0

.

Clearly, this initial point satisfies (x0, y0) ∈ N (β, θ0).
(ii) The step 3 of the algorithm is a centering step in the sense that it forces the

iterate close to the regularized central path such that the iterate is always confined in
the neighborhood of the path. In the next section, we show that step 3 together with
step 4 guarantees the global convergence of the algorithm. Step 2 is an approximate
Newton step which was shown to have good local convergence properties (see, for
example, [10, 11]). This step is used to accelerate the iteration such that a local rapid
convergence can be achieved. Similar strategies were used in several works such as
[38, 39, 28, 7, 8]. We also note that linear systems (2.5) and (2.6) have the same
coefficient matrix, and thus only one matrix factorization is needed at each iteration.

We now show that the algorithm is well-defined.
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Proposition 2.2. Algorithm 2.1 is well-defined and satisfies the following prop-
erties: (i) θk is monotonically decreasing, and (ii) ‖Gθk(xk, yk)− θk(b, c)‖ ≤ βθk for
all k ≥ 0, i.e., (xk, yk) ∈ N (β, θk) for all k ≥ 0.

Proof. We verify that each step of the algorithm is well-defined. As we pointed
out in Remark 2.1, step 1 of the algorithm is well-defined. Consider the following
2n× 2n matrix:

∇Gθk(xk, yk) =
(
I − (Xk − Y k)Dk I + (Xk − Y k)Dk
−(M + (θk)pAp) I

)
,(2.7)

where Xk = diag(xk), Y k = diag(yk), and Dk = diag(dk) with dk = (dk1 , . . . , d
k
n)
T ,

where

dki =
1√

(xki − yki )2 + 4(θk)qaqi
, i = 1, 2, . . . , n.

Since a ∈ Rn++, for each given θk ∈ (0, 1) it is easy to see that I−(Xk−Y k)Dk and I+
(Xk−Y k)Dk are positive diagonal matrices for every (xk, yk) ∈ R2n. Thus, by Lemma
5.4 in Kojima, Megiddo, and Noma [25], the matrix ∇Gθk(xk, yk) is nonsingular when
M is a P0 matrix. Thus, step 2 is well-defined.

Since (dxk, dyk) is a descent direction for the function at (xk, yk)

f̃(x, y) =
1

2
‖Gθk(x, y)− θk(b, c)‖22,

the line search in step 3 is well-defined, and thus the whole step 3 is well-defined.

We finally prove that the step 4 is well-defined. For any scalar µ1 > µ2 ≥ 0,
we have

‖Gµ1(x, y)−Gµ2(x, y)‖

=

∥∥∥∥
(
x+ y −√(x− y)2 + 4µq1a

q

y − (Mx+ d+ µp1A
px)

)
−
(
x+ y −√(x− y)2 + 4µq2a

q

y − (Mx+ d+ µp2A
px)

)∥∥∥∥
=

∥∥∥∥
( √

(x− y)2 + 4µq1a
q −√(x− y)2 + 4µq2a

q

(µp1 − µp2)Apx
)∥∥∥∥

=

∥∥∥∥∥
(

4(µq1−µq2)aq√
(x−y)2+4µq1a

q+
√

(x−y)2+4µq2a
q

(µp1 − µp2)Apx

)∥∥∥∥∥
≤
∥∥∥∥∥
(

4(µq1−µq2)aq√
4µq1a

q

(µp1 − µp2)Apx

)∥∥∥∥∥
≤ max{µq/21 (1− (µ2/µ1)

q), µp1(1− (µ2/µ1)
p)}‖(2aq/2, Apx)‖.(2.8)

In particular, setting (x, y) = (xk, yk), µ1 = θk > 0, and µ2 = (1 − γ)θk with
γ ∈ (0, 1), we then have

‖Gθk(xk, yk)−G(1−γ)θk(x
k, yk)‖

≤ max{(θk)q/2(1− (1− γ)q), (θk)p(1− (1− γ)p)}‖(2aq/2, Apxk)‖.(2.9)

There are two cases to be considered.
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Case (i): Gθk(x
k, yk) = θk(b, c) in step 3. Then, (xk+1, yk+1) = (xk, yk). By (2.9),

for all sufficiently small γ we have

‖G(1−γ)θk(x
k+1, yk+1)− (1− γ)θk(b, c)‖

= ‖G(1−γ)θk(x
k, yk)−Gθk(xk, yk) + θk(b, c)− (1− γ)θk(b, c)‖

≤ ‖G(1−γ)θk(x
k, yk)−Gθk(xk, yk)‖+ γθk‖(b, c)‖

≤ max{(θk)q/2(1− (1− γ)q), (θk)p(1− (1− γ)p)}‖(2aq/2, Apxk)‖+ γθk‖(b, c)‖
≤ β(1− γ)θk.
Case (ii): Gθk(x

k, yk) �= θk(b, c) in step 3. For this case, according to step 3 we
have

‖Gθk(xk+1, yk+1)− θk(b, c)‖ ≤ (1− σλk)‖Gθk(xk, yk)− θk(b, c)‖
≤ (1− σλk)βθk.

The second inequality follows from the fact that ‖Gθk(xk, yk)−θk(b, c)‖ ≤ βθk, which
is evident from the construction of the algorithm. Notice that 1− σλk < 1. By (2.9)
and the above inequality, for all sufficiently small γ we have

‖G(1−γ)θk(x
k+1, yk+1)− (1− γ)θk(b, c)‖

≤ ‖G(1−γ)θk(x
k+1, yk+1)−Gθk(xk+1, yk+1)‖+ ‖Gθk(xk+1, yk+1)− θk(b, c)‖

+γθk‖(b, c)‖
≤ max{(θk)q/2(1− (1− γ)q), (θk)p(1− (1− γ)p)}‖(2aq/2, Apxk+1)‖
+(1− σλk)βθk + γθk‖(b, c)‖
≤ (1− γ)βθk.

Thus, the step 4 is well-defined.
We now show that all the iterates are in the neighborhood defined by the algo-

rithm. By the construction of the algorithm, it is evident that either θk+1 = (θk)2

or θk+1 = (1 − γk)θk. Thus, θk is monotonically decreasing. When k = 0, it follows
from step 1 that (x0, y0) ∈ N (β, θ0). Assume that this property holds for k, i.e.,
(xk, yk) ∈ N (β, θk). We show that it holds for k + 1. Indeed, if step 2 is accepted,
then the criterion (xk+1, yk+1) ∈ N (β, θk+1) is satisfied, where θk+1 = (θk)2. If step
2 is rejected, then (xk+1, yk+1) is created by step 3 together with step 4. It follows
from step 4 that (xk+1, yk+1) ∈ N (β, θk+1), where θk+1 = (1 − γk)θk. Thus, for all
k ≥ 0, we have that (xk, yk) ∈ N (β, θk), i.e., ‖Gθk(xk, yk)− θk(b, c)‖ ≤ βθk.

3. Global convergence for P0 LCPs. We now show that the proposed algo-
rithm is globally convergent for P0 LCPs provided that Condition 2.1 is satisfied. By
Proposition 2.2, for every k ≥ 1, the iterate (xk, yk) satisfies the following:

‖Gθk(xk, yk)− θk(b, c)‖ ≤ βθk, θk = (1− γk−1)θ
k−1 or θk = (θk−1)2.(3.1)

Let (bk, ck) ∈ R2n be two auxiliary vectors determined by

(bk, ck) =
Gθk(x

k, yk)− θk(b, c)
θk

for all k.(3.2)

Then, {(bk, ck)} is uniformly bounded. In fact, by (3.1), we have that ‖(bk, ck)‖ ≤ β,
and hence

−βe ≤ bk ≤ βe, −βe ≤ ck ≤ βe.(3.3)
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By the definition of (2.4), we can write (3.2) as

xk + yk −
√
(xk − yk)2 + 4(θk)qaq = θk(b+ bk),

yk − (Mxk + d+ (θk)pApxk) = θk(c+ ck).

By the property of the CHKS function (see Lemma 1 in [20]), the system above is
equivalent to

xk − 1

2
θk(b+ bk) > 0, yk − 1

2
θk(b+ bk) > 0,(3.4) [

Xk − 1

2
θk(B +Bk)

](
yk − 1

2
θk(b+ bk)

)
= (θk)qaq,(3.5)

yk =Mxk + d+ (θk)pApxk + θk(c+ ck),(3.6)

where Xk, B, and Bk are diagonal matrices corresponding to xk, b, and bk, respec-
tively.

Remark 3.1. The fact that all iterates generated by Algorithm 2.1 satisfy the
system (3.4)–(3.6) plays a key role in the analysis throughout the paper. By continuity,
from (3.6) it follows that {yk} is bounded if {xk} is. Thus, if the sequence (xk, yk) is
unbounded, then {xk} must be unbounded.

The following result is a minor revision of Lemma 1 in [34].
Lemma 3.1 (see [42, 44]). Let M be a P0 matrix. Let {zk} be an arbitrary

sequence with ‖zk‖ → ∞ and zk ≥ z̄ for all k, where z̄ ∈ Rn is a fixed vector. Then
there exist a subsequence of {zk}, denoted by {zkj}, and a fixed index i0 such that

z
kj
i0
→∞ and (Mzkj + d)i0 is bounded from below.

The next result shows that the iterative sequence {(xk, yk)} generated by Algo-
rithm 2.1 is bounded under Condition 2.1.

Theorem 3.1. Let M be a P0 matrix. If Condition 2.1 is satisfied, then the
iterative sequence {(xk, yk)} generated by Algorithm 2.1 is bounded.

Proof. We prove this result by contradiction. Assume that {(xk, yk)} is un-
bounded. Then {xk} is unbounded (see Remark 3.1). Without loss of generality, we
may assume that ‖xk‖ → ∞. Notice that θk < 1 and ‖bk‖ ≤ β. It follows from (3.4)
that

xk ≥ 1

2
θk(b+ bk) ≥ −1

2
(‖b‖+ β)e for all k.

Thus, by Lemma 3.1, there exist a subsequence of {xk}, denoted also by {xk}, and
an index m such that xkm → ∞ and (Mxk + d)m is bounded from below. By (3.5),
for each i we have(

xki −
1

2
θk(bi + b

k
i )

)(
yki −

1

2
θk(bi + b

k
i )

)
= (θk)qaqi ,

and thus,

ykm −
1

2
θk(bm + bkm) =

(θk)qaqm
xkm − θk(bm + bkm)/2

.

By using (3.6), the above equation can be further written as

(Mxk + d)m + θk(cm + ckm)−
1

2
θk(bm + bkm)−

(θk)qaqm
xkm − θk(bm + bkm)/2

= −(θk)papmxkm.
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Since bk and ck are bounded, xkm →∞, and (Mxk + d)m is bounded from below, we
conclude that the left-hand side of the above equation is bounded from below. This
implies that θk → 0 (since otherwise the right-hand side tends to −∞).

In what follows, we denote

x̄k = xk − 1

2
θk(b+ bk), ȳk = yk − 1

2
θk(b+ bk).(3.7)

From (3.4) and (3.5), we see that (x̄k, ȳk) > 0 for all k, and

X̄kȳk = (θk)qaq.(3.8)

Since ‖bk‖ ≤ β, it follows that∥∥∥∥M(xk − x̄k − θkb/2)
θk

∥∥∥∥ ≤ 1

2
β‖M‖.(3.9)

By using (3.6) and (3.7), we have

ȳk −M
(
x̄k +

1

2
θkb

)
− d− (θk)pApx̄k − θkc

=Mxk + d+ (θk)pApxk + θk(c+ ck)− 1

2
θk(b+ bk)

−M
(
x̄k +

1

2
θkb

)
− d− (θk)pApx̄k − θkc

= θk
(
M(xk − x̄k − θkb/2)

θk
− 1

2
(b+ bk) + ck +

1

2
(θk)pAp(b+ bk)

)
.

By (3.9) and the boundedness of θk, bk, and ck, there exists a scalar t̂ > 0 such that

−t̂e ≤ M(xk − x̄k − θkb/2)
θk

− 1

2
(b+ bk)− ck + 1

2
(θk)pAp(b+ bk) ≤ t̂e

for all k. Therefore,

ȳk −M(x̄k +
1

2
θkb)− d− (θk)pApx̄k − θkc ∈ θk[−t̂e, t̂e]

for all k. Notice that q ∈ [1,∞). Combining (3.8) and the above leads to

F(a,b,c,θk)(x̄
k, ȳk) =

(
X̄kȳk

ȳk −M(x̄k + 1
2θ
kb)− d− (θk)pApx̄k − θkc

)
∈ θk[0, aq]× θk[−t̂e, t̂e]
=: Dθk

for all k. Thus,

(x̄k, ȳk) ∈ F−1
(a,b,c,θk)

(Dθk) for all k.

By Condition 2.1, there exists a θ∗ such that⋃
θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ)
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is bounded. Since θk → 0, there exists some k0 such that for all k ≥ k0 we have
θk ≤ θ∗. Thus,

{(x̄k, ȳk)}k≥k0 ⊆
⋃

θk≤θ∗
F−1

(a,b,c,θk)
(Dθk) ⊆

⋃
θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ).

The right-hand side of the above is bounded. This contradicts the left-hand side,
which (by assumption) is an unbounded sequence.

We are ready to prove the global convergence of Algorithm 2.1 for P0 LCPs.
Theorem 3.2. Let M be a P0 matrix. Assume that Condition 2.1 is satisfied. If

(xk, yk, θk) is generated by Algorithm 2.1, then {(xk, yk)} has at least one accumula-
tion point, and

lim
k→∞

θk → 0, lim
k→∞

‖Gθk(xk, yk)‖ → 0.(3.10)

Thus, every accumulation point of (xk, yk) is a solution to the LCP.
Proof. By Theorem 3.1, the iterative sequence {(xk, yk)} generated by the algo-

rithm is bounded, and hence it has at least one accumulation point. By Proposition
2.2, we have

‖Gθk(xk, yk)‖ ≤ ‖Gθk(xk, yk)− θk(b, c)‖+ θk‖(b, c)‖
≤ θk[β + ‖(b, c)‖].

Thus, to show the second limiting property in (3.10) it is sufficient to show that
θk → 0. By the construction of the algorithm, we have either θk+1 = (1 − γk)θk or
θk+1 = (θk)2. Thus θk is monotonically decreasing, and thus there exists a scalar
1 > θ̄ ≥ 0 such that θk → θ̄. If θ̄ = 0, the desired result follows.

Assume the contrary, that θ̄ > 0. We now derive a contradiction. Since θ̄ > 0,
the algorithm eventually phases out the approximate Newton step and takes only
step 3 and step 4. In fact, if step 2 is accepted infinitely many times, then there
exists a subsequence {kj} such that θkj+1 = (θkj )2 which implies that θ̄ = θ̄2. This
is impossible since 0 < θ̄ < 1. Thus, there exists a k0 such that for all k ≥ k0, the
iterates {(xk, yk)}k≥k0 are generated only by step 3, and hence θk+1 = (1− γk)θk for
all k ≥ k0. Since θk → θ̄ > 0, it follows that γk → 0. Thus, for all sufficiently large k,
we have (xk+1, yk+1) /∈ N (β, (1− 1

αγk)θ
k, that is,∥∥∥∥G(1− 1

αγk)θk
(xk+1, yk+1)−

(
1− 1

α
γk

)
θk(b, c)

∥∥∥∥ > β
(
1− 1

α
γk

)
θk.

Since the iterate (xk+1, yk+1) is bounded, taking a subsequence if necessary we may
assume that this sequence converges to some (x̂, ŷ). Notice that γk → 0. Taking the
limit in the above inequality, we have

‖Gθ̄(x̂, ŷ)− θ̄(b, c)‖ ≥ βθ̄ > 0.

Since θ̄ > 0, the matrix ∇Gθ̄(x̂, ŷ) is nonsingular. Let (dx̂, dŷ) be the solution to

Gθ̄(x̂, ŷ)− θ̄(b, c) +∇Gθ̄(x̂, ŷ)(dx, dy) = 0.

Then (dx̂, dŷ) is a strictly descent direction for ‖Gθ̄(x, y) − θ̄(b, c)‖ at (x̂, ŷ). As a

result, the line search steplengths, λ̂ (in step 3) and γ̂ (in step 4), are both positive
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constants. SinceG and∇G are continuous in the neighborhood of (x̂, ŷ), it follows that

(dxk, dyk, λk, γk) → (dx̂, dŷ, λ̂, γ̂), and therefore λk, γk must be uniformly bounded
from below by some positive constant for all sufficiently large k. This contradicts
the fact γk → 0. Therefore, θk → 0 must hold. Assume that (x̂, ŷ) is an arbitrary
accumulation point of (xk, yk); then by (3.10),

0 = lim
k→∞

‖Gθk(xk, yk)‖ = ‖G0(x̂, ŷ)‖,

which implies that (x̂, ŷ) is a solution to the LCP.

Remark 3.2. We have pointed out that the global convergence of most existing
non–interior-point methods for P0 LCPs actually requires the boundedness assump-
tion of the solution set, in which case the P0 problem must have a strictly feasible
point. In order to relax this requirement, Chen and Ye [12] designed a big-M smooth-
ing method for P0 LCPs. They proved that if the P0 LCP has a solution and if certain
conditions such as “x̄n+2 − ȳn+2 �= −2ε̄” are satisfied at the accumulation point of
their iterative sequence, then their algorithm is globally convergent. We note that
Condition 2.1 in this paper is quite different from Chen and Ye’s. However, it is not
clear what relation is between the two conditions.

While the global convergence for P0 LCPs is proved under Condition 2.1, it should
be pointed out that this condition is not necessary for the global convergence of P∗
problems. We can prove that Algorithm 2.1 is globally convergent provided that the
P∗ LCP has a solution. Since this result cannot follow from Theorem 3.2, and since
its proof is not straightforward, we postpone the discussion for this special case until
the local convergence analysis for P0 LCPs is complete.

4. Local behavior of the algorithm. Under a nondegeneracy assumption, we
show in this section the local superlinear convergence of the algorithm when p = 2 ≤ q.
Let (x∗, y∗) be an accumulation point of the iterative sequence (xk, yk) generated by
Algorithm 2.1. We make use of the following assumption that can also be found in
[38, 39, 33].

Condition 4.1. Assume that (x∗, y∗) is strictly complementary, i.e., x∗+y∗ > 0,
where y∗ =Mx∗ + d, and the matrix MII is nonsingular, where I = {i : x∗i > 0}.

While this condition for local convergence has been used by several authors, it is
stronger than some existing non–interior-point algorithms. Let M be a P0 matrix.
Under the above condition, it is easy to verify the nonsingularity of the matrix:

∇G0(x
∗, y∗) =

(
I −W I +W
−M I

)
,(4.1)

whereW = diag(w) is a diagonal matrix with wi = 1 if x∗i > 0 and wi = −1 otherwise.
If Condition 4.1 is satisfied, it follows easily from Proposition 2.5 of Qi [32] that the
solution (x∗, y∗) is a locally isolated solution. On the other hand, it is well known that
a P0 complementarity problem has a unique solution when it has a locally isolated
solution (Jones and Gowda [23] and Gowda and Sznajder [17]). Thus, Condition 4.1
implies the uniqueness of the solution for a P0 LCP, and hence it implies Condition
2.1. By Theorem 3.2, we conclude that under Conditions 4.1 the entire sequence
(xk, yk), generated by Algorithm 2.1, converges to the unique solution of the P0 LCP,
i.e., (xk, yk) → (x∗, y∗). By continuity of ∇Gθ and nonsingularity of ∇G0(x

∗, y∗),
there exists a local neighborhood of (x∗, y∗), denoted by N(x∗, y∗), such that for all
(x, y) ∈ N(x∗, y∗) and all sufficiently small θ the matrix ∇Gθ(x, y) is nonsingular,
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and there exists a constant C and θ̂ ∈ (0, 1) such that

‖∇Gθ(x, y)−1‖ ≤ C for all (x, y) ∈ N(x∗, y∗) and θ ∈ (0, θ̂].

The following result is very useful for our local convergence analysis.
Lemma 4.1. Let M be a P0 matrix. Under Condition 4.1, there exists a neigh-

borhood N(x∗, y∗) of (x∗, y∗) such that for all (xk, yk) ∈ N(x∗, y∗) we have
(i) ‖∇Gθk(xk, yk)−∇G0(x

k, yk)‖ ≤ κmax{(θk)q, (θk)p}, where κ is a constant;
(ii) G0(x

k, yk)−G0(x
∗, y∗)−∇G0(x

k, yk)[(xk, yk)− (x∗, y∗)] = 0.
Proof. Let

I = {i : x∗i > 0}, J = {j : y∗j > 0}.

Then, by strict complementarity, I ∩ J is empty and I ∪ J = {1, 2, . . . , n}. Denote

η =
1

2
min{‖x∗I‖∞, ‖y∗J‖∞}.

We show first the following inequality:

‖W − (Xk − Y k)Dk‖ ≤ 2

η2
(θk)q‖aq‖∞ for all (xk, yk) ∈ N(x∗, y∗),(4.2)

where W is given as in (4.1) and Dk is defined as in (2.7). As we have pointed out,
under Condition 4.1 the sequence {(xk, yk)} converges to (x∗, y∗). For all (xk, yk) ∈
N(x∗, y∗), without loss of generality, we may assume that

xki − yki ≥ η > 0 for i ∈ I; −(xki − yki ) ≥ η > 0 for i ∈ J.

Hence, when k is sufficiently large, for each i ∈ I we have

|Wi − (xki − yki )dki |
= |1− (xki − yki )dki |

=
|
√
(xki − yki )2 + 4(θk)qaqi − (xki − yki )|√

(xki − yki )2 + 4(θk)qaqi

=
4(θk)qaqi√

(xki − yki )2 + 4(θk)qaqi

(√
(xki − yki )2 + 4(θk)qaqi + x

k
i − yki

)
≤ 4(θk)qaqi√

η2 + 4(θk)qaqi

(√
η2 + 4(θk)qaqi + η

)
≤ 2

η2
(θk)qaqi .(4.3)

Similarly, for j ∈ J we have

|Wj − (xkj − ykj )dkj | ≤
2

η2
(θk)qaqj ,

which together with (4.3) yields the desired inequality (4.2). On the other hand, by

strict complementarity, for every sufficiently large k it is evident that (Xk−Y k)Dk =
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W , where D
k
= diag(d̄k), where (d̄k)i = 1/

√
(xki − yki )2 (i = 1, . . . , n). Thus, for

every sufficiently large k we have

∇G0(x
k, yk)−∇G0(x

∗, y∗)

=

(
I − (Xk − Y k)Dk I + (Xk − Y k)Dk

−M I

)
−
(
I −W I +W
−M I

)

=

(
W − (Xk − Y k)Dk (Xk − Y k)Dk −W

0 0

)
= 0.(4.4)

By using (2.7), (4.2), and (4.4), for every sufficiently large k we have

‖∇Gθk(xk, yk)−∇G0(x
k, yk)‖ = ‖∇Gθk(xk, yk)−∇G0(x

∗, y∗)‖
=

∥∥∥∥
(
W − (Xk − Y k)Dk (Xk − Y k)Dk −W

−(θk)pAp O

)∥∥∥∥
≤ 2‖W − (Xk − Y k)Dk‖+ ‖(θk)pAp‖
≤ 4

η2
(θk)q‖aq‖∞ + (θk)p‖ap‖∞

≤ κmax{(θk)q, (θk)p},

where κ = (4‖aq‖∞)/η2 + ‖ap‖∞ is a constant independent of k. Result (i) is proved.
We now prove result (ii). By the strict complementarity and the definition of W ,

it is easy to see that for every sufficiently large k the following holds:

xk + yk −
√
(xk − yk)2 = (I −W )(xk − x∗) + (I +W )(yk − y∗),

yk −Mxk − d = −M(xk − x∗) + yk − y∗.

Therefore, by using (4.4) and the above two equations, we have

G0(x
k, yk)−G0(x

∗, y∗)−∇G0(x
k, yk)((xk, yk)− (x∗, y∗))

=

(
xk + yk −

√
(xk − yk)2

yk −Mxk − d
)
−
(
I −W I +W
−M I

)(
xk − x∗
yk − y∗

)
= 0,

as desired.
In the next result, we show that under Condition 4.1 the algorithm is at least

locally superlinear. The key to the proof is to show that the algorithm eventually
rejects the centering step and finally switches to step 2 when the iterate approaches
the solution set.

Theorem 4.1. Let M be a P0 matrix. Let p = 2 ≤ q and β > 2‖aq/2‖+ ‖(b, c)‖.
Assume that Condition 4.1 is satisfied. Then there exists a k0 such that θk+1 =
(θk)2 for all k ≥ k0, and

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0,

which implies that the algorithm is locally superlinearly convergent.
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Proof. Let N(x∗, y∗) be a neighborhood of (x∗, y∗) defined as in Lemma 4.1. We
first show that for all (xk, yk) ∈ N(x∗, y∗), there exists a constant δ > 0 such that

‖(x̂k+1, ŷk+1)− (x∗, y∗)‖ ≤ δmax{(θk)q, (θk)p}‖(xk, yk)− (x∗, y∗)‖.

As we have pointed out, Condition 4.1 implies that (xk, yk) → (x∗, y∗), and there

exist constants C and θ̂ such that

‖∇Gθk(xk, yk)−1‖ ≤ C

for all (xk, yk) ∈ N(x∗, y∗) and θk ∈ (0, θ̂]. Therefore, for all sufficiently large k, by
Lemma 4.1 we have

‖(x̂k+1, ŷk+1)− (x∗, y∗)‖
= ‖(xk, yk)− (x∗, y∗)−∇Gθk(xk, yk)−1G0(x

k, yk)‖
= ‖∇Gθk(xk, yk)−1{[∇Gθk(xk, yk) +∇G0(x

k, yk)]((xk, yk)− (x∗, y∗))
−G0(x

k, yk) +G0(x
∗, y∗)−∇G0(x

k, yk)((xk, yk)− (x∗, y∗))}‖
≤ ‖∇Gθk(xk, yk)−1[∇Gθk(xk, yk)−∇G0(x

k, yk)]((xk, yk)− (x∗, y∗))‖
+‖∇Gθk(xk, yk)−1[G0(x

k, yk)−G0(x
∗, y∗)−∇G0(x

k, yk)((xk, yk)− (x∗, y∗))]‖
≤ C‖∇Gθk(xk, yk)−∇G0(x

k, yk)‖‖(xk, yk)− (x∗, y∗)‖
≤ Cκmax{(θk)q, (θk)p}‖(xk, yk)− (x∗, y∗)‖.

Set δ = Cκ. The desired inequality follows. The above inequality implies that the
sequence (x̂k+1, ŷk+1) also converges to (x∗, y∗). Notice that θk → 0 (by Theorem
3.2). To show the local superlinear convergence of Algorithm 2.1, the above inequality
implies that it is sufficient to show that the algorithm eventually takes the approximate
Newton step alone.

Since (x∗, y∗) is a strictly complementary solution, G0(x, y) is continuously dif-
ferentiable in the neighborhood of (x∗, y∗), and thus it must be Lipschitzian in the
neighborhood of (x∗, y∗). Hence, there exists a constant L > 0 such that for all suffi-
ciently large k

‖G0(x̂
k+1, ŷk+1)−G0(x

∗, y∗)‖ ≤ L‖(x̂k+1, ŷk+1)− (x∗, y∗)‖
≤ Lδmax{(θk)q, (θk)p}‖(xk, yk)− (x∗, y∗)‖
= τkmax{(θk)q, (θk)p},

where τk = Lδ‖(xk, yk)− (x∗, y∗)‖ → 0 as k →∞. That is,

‖G0(x̂
k+1, ŷk+1)‖ ≤ τkmax{(θk)q, (θk)p}(4.5)

for all sufficiently large k. Setting (µ1, µ2) = (µ, 0) in (2.8), where µ ∈ (0, 1), we see
from the first inequality in (2.8) that

‖Gµ(x, y)−G0(x, y)‖ ≤ µ‖(2µq/2−1aq/2, µp−1Apx)‖ for all (x, y) ∈ R2n.(4.6)

Thus, by using (4.5) and (4.6), for all sufficiently large k we have

‖G(θk)2(x̂
k+1, ŷk+1)− (θk)2(b, c)‖

≤ ‖G(θk)2(x̂
k+1, ŷk+1)−G0(x̂

k+1, ŷk+1)‖+ ‖G0(x̂
k+1, ŷk+1)‖
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+(θk)2‖(b, c)‖
≤ (θk)2‖(2[(θk)2]q/2−1aq/2, [(θk)2]p−1Apx̂k+1‖) + τkmax{(θk)q, (θk)p}
+(θk)2‖(b, c)‖

≤ (θk)2(2‖aq/2‖+ ‖(b, c)‖+ [(θk)2]p−1‖Apx̂k+1‖) + τkmax{(θk)q, (θk)p}

= β(θk)2

[
2‖aq/2‖+ ‖(b, c)‖

β
+

[(θk)2]p−1‖Apx̂k+1‖
β

+
τkmax{(θk)q−2, (θk)p−2}

β

]

≤ β(θk)2.(4.7)

The third inequality follows from that q ≥ 2 and [(θk)2]q/2−1 ≤ 1. The last inequality
follows from the fact that p = 2 ≤ q, β > 2‖aq/2‖+ ‖(b, c)‖, τk → 0, and

lim
k→0

[(θk)2]p−1‖Apx̂k+1‖
β

= 0.

Thus, from (4.7), the approximate Newton step is accepted at the kth step provided
that k is a large number. Therefore, the next iterate (xk+1, yk+1) = (x̂k+1, ŷk+1).
Repeating the above proof, we can see that at the (k + 1)th step (xk+2, yk+2) =
(x̂k+2, ŷk+2), i.e., the approximate Newton step is still accepted at the (k + 1)th
step. By induction, we conclude that the algorithm eventually takes only the approx-
imate Newton step. Hence, for some k0, we have θk+1 = (θk)2 for all k ≥ k0, and
limk→0 ‖xk+1 − x∗‖/‖xk − x∗‖ = 0.

The proof above shows that if an iterate (xk, yk) lies in a sufficiently small neigh-
borhood of (x∗, y∗), then the next iterate still falls in this neighborhood and much
closer to the solution (x∗, y∗) than (xk, yk). Since the centering step is gradually
phased out and only approximate Newton steps are executed at the end of iteration,
the superlinear convergence of the algorithm can be achieved.

5. Special cases. In this section, we show some much deeper global convergence
results than Theorem 3.2 when the algorithm is applied to P∗ LCPs. For the special
case, the only assumption to ensure the global convergence is the nonemptiness of the
solution set. In other words, this algorithm is able to solve any P∗ LCP provided that
a solution exists. For a given LCP, we denote

I = {i : x∗i > 0 for some solution x∗},(5.1)

J = {j : (Mx∗ + d)j > 0 for some solution x∗},(5.2)

K = {k : x∗k = (Mx∗ + d)k = 0 for all solutions x∗}.(5.3)

The above partition of the set {1, 2, . . . , n} is unique for a given P∗ LCP. Consider
the affine set:

S = {(x, y) ∈ R2n : xJ∪K = 0, yI∪K = 0, y =Mx+ d}.

In fact, S is the affine hull of the solution set of the LCP, i.e., the smallest affine set
containing the solution set. For any (x̃, ỹ) ∈ S, it is easy to see that x̃iỹi = 0 for all
i = 1, . . . , n. We now prove a very useful result.



NON–INTERIOR-POINT ALGORITHM FOR P0 LCPs 1211

Lemma 5.1. Let (x̃, ỹ) be an arbitrary vector in S. Let M be a P∗ matrix. Let
{(xk, yk, θk)} be generated by Algorithm 2.1 and (x̄k, ȳk) be defined by (3.7). Then

x̃T ȳk + ỹT x̄k

≤ (θk)q(1 + τn)eTaq − τn
(

min
1≤i≤n

ρki

)

− (x̄k − x̃)T
[
(θk)pApx̄k + θk(c+ ck) +

1

2
θk(M − I + (θk)pAp)(b+ bk)

]
,(5.4)

where

ρki = x̄
k
i ỹi + x̃iȳ

k
i

+(x̄ki − x̃i)
{
(θk)papi x̄

k
i + θ

k(ci + c
k
i ) +

1

2
θk[(M − I + (θk)pAp)(b+ bk)]i

}
.

Proof. Since (x̄k, ȳk) > 0 and x̃iỹi = 0 for all i = 1, . . . , n, by (3.8) we have

(x̄ki − x̃i)(ȳki − ỹi) = x̄ki ȳki − x̄ki ỹi − x̃iȳki + x̃iỹi
= (θk)qaqi − x̄ki ỹi − x̃iȳki .

It is easy to verify that

ȳk =Mx̄k + d+ (θk)pApx̄k + θk(c+ ck) +
1

2
θk(M − I + (θk)pAp)(b+ bk).

Thus, we have

(x̄ki − x̃i)[M(x̄k − x̃)]i = (x̄ki − x̃i)[(Mx̄k + d)i − ỹi]

= (x̄ki − x̃i)
{
ȳki − (θk)papi x̄

k
i − θk(ci + cki )

−1
2
θk[(M − I + (θk)pAp)(b+ bk)]i − ỹi

}

= (x̄ki − x̃i)(ȳki − ỹi)− (x̄ki − x̃i)
{
(θk)papi x̄

k
i

+θk(ci + c
k
i ) +

1

2
θk[(M − I + (θk)pAp)(b+ bk)]i

}

≤ (θk)qaqi − x̄ki ỹi − x̃iȳki − (x̄ki − x̃i)
{
(θk)papi x̄

k
i

+θk(ci + c
k
i ) +

1

2
θk[(M − I + (θk)pAp)(b+ bk)]i

}

≤ (θk)qeTaq − min
1≤i≤n

ρki ,(5.5)

where

ρki = x̄
k
i ỹi + x̃iȳ

k
i + (x̄ki − x̃i){(θk)papi x̄ki + θk(ci + cki )

+
1

2
θk[(M − I + (θk)pAp)(b+ bk)]i}.
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Therefore, by (3.8), (5.5), and the definition of the P∗ matrix, we have

x̃T ȳk + ỹT x̄k = −(x̄k − x̃)T (ȳk − ỹ) + (x̄k)T ȳk

= −(x̄k − x̃)T
[
Mx̄k + d+ (θk)pApx̄k + θk(c+ ck)

+
1

2
θk(M − I + (θk)pAp)(b+ bk)− ỹ

]
+ (θk)qeTaq

= −(x̄k − x̃)T (Mx̄k + d− ỹ)− (x̄k − x̃)T
[
(θk)pApx̄k + θk(c+ ck)

+
1

2
θk(M − I + (θk)pAp)(b+ bk)

]
+ (θk)qeTaq

= −(x̄k − x̃)TM(x̄k − x̃)− (x̄k − x̃)T
[
(θk)pApx̄k + θk(c+ ck)

+
1

2
θk(M − I + (θk)pAp)(b+ bk)

]
+ (θk)qeTaq

≤ τ
∑
i∈I+

(x̄ki − x̃i)[M(x̄k − x̃)]i − (x̄k − x̃)T
[
(θk)pApx̄k

+θk(c+ ck) +
1

2
θk(M − I + (θk)pAp)(b+ bk)

]
+ (θk)qeTaq

≤ τn
(
(θk)qeTaq − min

1≤i≤n
ρki

)
− (x̄k − x̃)T

[
(θk)pApx̄k

+θk(c+ ck) +
1

2
θk(M − I + (θk)pAp)(b+ bk)

]
+ (θk)qeTaq

= (θk)q(1 + τn)eTaq − τn
(

min
1≤i≤n

ρki

)
− (x̄k − x̃)T

[
(θk)pApx̄k

+θk(c+ ck) +
1

2
θk(M − I + (θk)pAp)(b+ bk)

]
.

The proof is complete.
The following result shows that under a suitable choice of parameters our algo-

rithm can locate a solution of the P∗ LCP as long as a solution exists.
Theorem 5.1. Let M be a P∗ matrix. Assume that the solution set of the P∗

LCP is nonempty. If one of the following holds,
(i) p ≤ 1,

(ii) p > 1, c > 1
2‖(M − I)b‖e, and 0 < β < min1≤i≤n

ci−(1/2)‖(M−I)b‖
1+‖M−I‖/2 ,

then the sequence {(xk, yk, θk)}, generated by Algorithm 2.1, is bounded, and

lim
k→∞

θk → 0, lim
k→∞

‖Gθk(xk, yk)‖ = 0.

Therefore, any accumulation point of (xk, yk) is a solution to the LCP.
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Proof. We focus on the proof of the boundedness of {(xk, yk)}. Let (x∗, y∗) be an
arbitrary solution to the LCP. Set (x̃, ỹ) = (x∗, y∗) in Lemma 5.1. Since for this case
ȳki x

∗
i + x̄

k
i y

∗
i ≥ 0, we have that

ρki ≥ ηki := (x̄ki − x∗i )
{
(θk)papi x̄

k
i + θ

k(ci + c
k
i ) +

1

2
θk[(M − I + (θk)pAp)(b+ bk)]i

}
.

This, together with (5.4), implies that

(x∗)T ȳk + (y∗)T x̄k ≤ (θk)q(1 + τn)eTaq − τn
(

min
1≤i≤n

ηki

)
− (x̄k − x∗)T

{
(θk)pApx̄k

+θk(c+ ck) +
1

2
θk(M − I + (θk)pAp)(b+ bk)

}
.(5.6)

Dividing both sides of the above by (θk)p and noting that the left-hand side is non-
negative, we have

(x̄k − x∗)TApx̄k + τn
(

min
1≤i≤n

ηki
(θk)p

)

+(θk)1−p(x̄k − x∗)T
[
c+ ck +

1

2
(M − I + (θk)pAp)(b+ bk)

]
≤ (θk)q−p(1 + τn)eTaq.(5.7)

If p ≤ 1, the right-hand side of the above inequality is bounded since q ≥ 1 and
θk < 1. This implies that the sequence {x̄k} is bounded (otherwise the left-hand
side is unbounded from above), and thus {xk} is bounded, as is {yk} by (3.6). The
boundedness of {(xk, yk)} under (i) is proved.

We now prove the boundedness of (xk, yk) in the case (ii). Consider two subcases.

Subcase 1: θk �→ 0. In this case, there exists a constant θ̂ > 0 such that 1 > θk ≥ θ̂.
It is easy to see from (5.7) that the sequence {x̄k} is bounded, and thus (xk, yk) is
bounded.

Subcase 2: θk → 0. In this case, by the choice of p, β, and c, it is easy to see that

ci + c
k
i +

1

2
[(M − I)(b+ bk)]i > ci − β − 1

2
‖(M − I)(b+ bk)‖

≥ ci − β − 1

2
‖(M − I)b‖ − 1

2
‖(M − I)bk‖

≥ ci − 1

2
‖(M − I)b‖ − β

(
1 +

1

2
‖M − I‖

)
> 0.(5.8)

Since θk → 0, for all sufficiently large k it follows that

ci + c
k
i +

1

2
[(M − I + (θk)

pAp)(b+ bk)]i > 0.

Thus, for all sufficiently large k we have

ηki
θk
≥ −x∗i

{
(θk)p−1api x̄

k
i + ci + c

k
i +

1

2
[(M − I + (θk)pAp)(b+ bk)]i

}
≥ −(θk)p−1(x∗)TApx̄k

− max
1≤i≤n

x∗i

{
ci + c

k
i +

1

2
[(M − I + (θk)pAp)(b+ bk)]i

}
.(5.9)
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Since the left-hand side of (5.6) is nonnegative, dividing both sides of (5.6) by θk and
using (5.9), we have

0 ≤ (θk)q−1(1 + τn)eTaq − τn
(

min
1≤i≤n

ηki
θk

)
+ (θk)p−1(x∗)TApx̄k

−(x̄k − x∗)T (c+ ck)− 1

2
(x̄k − x∗)T (M − I + (θk)pAp)(b+ bk)

≤ (θk)q−1(1 + τn)eTaq + τn max
1≤i≤n

x∗i

{
ci + c

k
i +

1

2
[(M − I + (θk)pAp)(b+ bk)]i

}
+(θk)p−1(1 + τn)(x∗)TApx̄k − (x̄k − x∗)T (c+ ck)
−1
2
(x̄k − x∗)T (M − I + (θk)pAp)(b+ bk).

It follows that

(x̄k)T
[
c+ ck − (θk)p−1(1 + τn)Apx∗ +

1

2
(M − I + (θk)pAp)(b+ bk)

]
≤ (θk)q−1(1 + τn)eTaq + τn max

1≤i≤n
x∗i
{
ci + c

k
i +

1

2
[(M − I

+(θk)pAp)(b+ bk)]i

}
+ (x∗)T

[
c+ ck +

1

2
(M − I + (θk)pAp)(b+ bk)

]
.(5.10)

Since p > 1 and θk → 0, by a proof similar to (5.8), for all sufficiently large k we have

c+ ck − (θk)p−1(1 + τn)Apx∗ +
1

2
(M − I + (θk)pAp)(b+ bk)

≥ 1

2

{
c− 1

2
‖(M − I)b‖e− β

(
1 +

1

2
‖M − I‖

)
e

}
> 0.

Since the right-hand side of (5.10) is bounded and x̄k > 0, from the above inequality
and (5.10) it follows that {x̄k} is bounded, and hence (xk, yk) is bounded.

Based on the boundedness of {(xk, yk)}, repeating the proof of Theorem 3.2 we
can prove that θk → 0.

Remark 5.1. It is worth mentioning the difference between (i) and (ii) of the above
theorem. In the case (i), there is no restriction on the parameter β > 0. Thus, β can
be assigned a large number so that the neighborhood is wide enough to ensure a large
steplength at each iteration. For the case (ii), however, the parameter β is required
to be relatively small. To satisfy this requirement, the initial point of Algorithm 2.1
can be also obtained easily. For example, set x0 = 0, a ∈ Rn++, θ

0 ∈ (0, 1), and choose
y0 ∈ Rn++ to be large enough such that c > 1

2‖(M − I)b‖e, where

b =
x0 + y0 −√(x0 − y0)2 + 4(θ0)qaq

θ0
=

4(θ0)qaq

y0 +
√
(y0)2 + 4(θ0)qaq

,

c =
y0 − (f(x0) + (θ0)pApx0)

θ0
=
y0 − f(0)
θ0

.

The above choice implies that ‖Gθ0(x0, y0)‖ = 0. Thus, (x0, y0) ∈ N (β, θ0) for any
β > 0. In particular, β can be taken such that

0 < β < min
1≤i≤n

ci − (1/2)‖(M − I)b‖
1 + ‖M − I‖/2 .
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In the rest of this section, we characterize the accumulation point of the sequence
{(xk, yk)}. We first recall some concepts. Let S denote the solution set of the LCP.
An element x∗ of S is said to be the N -norm least solution, where N is a positive,
definite, symmetric matrix, if ‖N1/2x∗‖ ≤ ‖N1/2u‖ for all u ∈ S. In particular, if
N = I, the solution x∗ is called the least 2-norm solution of S. An element x∗ of S is
said to be the least element of S if x∗ ≤ u for all u ∈ S (see, for example, [30, 13]).
The solution x∗ is called a maximally complementary solution if x∗i > 0 for all i ∈ I,
(Mx∗ + d)i > 0 for all i ∈ J , and x∗i = (Mx∗ + d)i = 0 for all i ∈ K. Clearly, a
strictly complementary solution is a maximally complementary solution with K = ∅.

Theorem 5.2. Let M be a P∗ matrix. Assume that the solution set of the LCP
is nonempty.

(i) If p < 1, then every accumulation point (x̂, ŷ) of the sequence (xk, yk) satisfies
the following property: For any solution x∗, there exists a corresponding index i0 such
that

(x̂)TAp(x̂− x∗) + τnapi0 x̂i0(x̂i0 − x∗i0) ≤ 0.(5.11)

Moreover, if the least element solution exists, then the entire sequence (xk, yk) is
convergent, and its accumulation point coincides with the least element solution.

(ii) If p > 1, c > 1
2‖(M − I)b‖e, 0 < β < lim1≤i≤n

ci−(1/2)‖(M−I)b‖
1+‖M−I‖/2 , and q = 1,

then each accumulation point is a maximally complementary solution of the LCP.
Proof. For p < 1, by the result (i) of Theorem 5.1, {xk} is bounded and θk → 0.

Let (x̂, ŷ) be an arbitrary accumulation point of {(xk, yk)}. Taking the limit in (5.7)
where x∗ is an arbitrary solution of the LCP, we see that there exists an index i0 such
that

(x̂)TAp(x̂− x∗) + τnapi0 x̂i0(x̂i0 − x∗i0) ≤ 0.

Moreover, if the least element solution exists, setting x∗ to be the least element, we
conclude from the above inequality that x̂ is equal to the least element. Since such
an element is unique, the sequence {xk} is convergent.

We now consider the case (ii). By result (ii) of Theorem 5.1, the sequence (xk, yk)
is bounded, θk → 0, and each accumulation point of (xk, yk) is a solution to the LCP.
Let (x∗, y∗) be a maximally complementary solution and I, J,K be defined by (5.1)–
(5.3). Then we have

(x∗)T ȳk + (y∗)T x̄k = (x∗I)
T ȳkI + (y∗J)

T x̄kJ

= (x∗I)
T (X̄k

I )
−1X̄k

I ȳ
k
I + (y∗J)

T (Ȳ kJ )
−1Ȳ kJ x̄

k
J

= (θk)q
[
(x∗I)

T (X̄k
I )

−1aqI + (y∗J)
T (Ȳ kJ )

−1aqJ
]
.

By (5.6) and the above inequality, we have

(x∗I)
T (X̄k

I )
−1aqI + (y∗J)

T (Ȳ kJ )
−1aqJ

≤ (1 + τn)eTaq − τn
(

min
1≤i≤n

ηki
(θk)q

)
− (x̄k − x∗)T

[
(θk)p−qApx̄k

+(θk)1−q(c+ ck) +
1

2
(θk)1−q(M − I + (θk)pAp)(b+ bk)

]
.

Let (x̂, ŷ) be an arbitrary accumulation point of the iterates. Since θk → 0 and
p > 1 = q, we can see that ηki /(θ

k)q is bounded. The right-hand side of the above
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inequality is bounded. Since (x∗I , y
∗
J) > 0, we conclude that x̄kI → x̂I > 0; otherwise,

if x̂i = 0 for some i ∈ I, then x∗i /x̄i → ∞, and hence the left-hand side tends to
infinity, contradicting the boundedness of the right-hand side. In a similar way, we
have that ŷI > 0. Thus, (x̂, ŷ) is a maximally complementary solution.

Since every positive semidefinite matrix is a P∗ matrix with τ = 0, the result
(i) above can be further improved for monotone LCPs. In fact, from Theorem 2.3,
the following result is natural since the algorithm follows the regularized central path
approximately.

Theorem 5.3. Let M be a positive semidefinite matrix. Assume that the solution
set of the LCP is nonempty. For p < 1, the entire sequence (xk, yk), generated by
Algorithm 2.1, converges to (x̂, ŷ), where x̂ is the least N -norm solution with N =
Ap/2. In particular, if a = e is taken, the sequence converges to the (unique) least
2-norm solution.

Proof. For the case of p < 1, setting τ = 0 in (5.11) we have

(x̂)TAp(x̂− x∗) ≤ 0,

which implies that ‖Ap/2x̂‖ ≤ ‖Ap/2x∗‖. Since x∗ is an arbitrary solution, it follows
that the solution x̂ is the least N -norm solution where N = Ap/2. It is also easy to see
from the above inequality that the solution x̂ is unique, and thus the entire sequence
is convergent.

Remark 5.2. For P∗ LCPs, the boundedness assumption of the solution set
(or the strict feasibility condition) is not required for the global convergence of our
algorithm. Further, all results in this section can be easily extended to nonlinear P∗
complementarity problems. We notice that Ye’s homogeneous model [41] for monotone
LCPs, which was later generalized to nonlinear monotone complementarity problems
by Andersen and Ye [2], also does not require the boundedness of the solution set (or
the strict feasibility) of the original problem. However, it is unknown whether Ye’s
algorithm can be generalized to the nonlinear P∗ problems.

6. Numerical examples. Algorithm 2.1 was tested on some LCPs, nonlinear
complementarity problems (NCPs), and nonlinear programming problems (NLPs)
which can be written as complementarity problems by KKT optimality conditions. For
all test examples, common parameters and initial points were used in our algorithm.
From the analysis of section 4 and our experiments, the value of parameters p and q
should be relatively large for the sake of rapid convergence. The constant σ should
be taken relatively small such that a possible large steplength λk can be taken. The
vector (a, b, c) ∈ Rn++ × R2n and the initial point (x0, y0) ∈ R2n can be chosen
freely. In general cases, the value of β should be taken relatively large to ensure that
the neighborhood is wide enough to permit a large iterative steplength. Thus, the
parameters used in our code were set as p = 2, q = 3, σ = 0.001 and α = 0.9. The
vectors a, b, c were set as a = b = c = e. The initial values of (x0, y0, θ0) were set as
θ0 = 0.9 and x0 = y0 = e. The parameter β was given by

β =
‖Gθ0(x0, y0)− θ0(b, c)‖

θ0
+ 100.

Since G0(x
∗, y∗) = 0 if and only if (x∗, y∗) is a solution to the complementarity

problem, we use ‖G0(x
k, yk)‖ < ε as the stopping criterion, where ε > 0 is a given

tolerance. In our experiments, ε = 10−14 was taken for all numerical examples. All
results were undertaken on a DEC Alpha V4.0 workstation by Fortran 90, and all the
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arithmetic operations were performed in double precision to avoid round-off errors.
We recorded the following aspects to examine the effectiveness of the algorithm: the
dimension of problems, the total number of iterations, the total number of functions
called, the CPU time used, the final value of θk, and the residual, i.e., the final value
of ‖G0(x

k, yk)‖. All CPU times reported here include time for input and output. We
now introduce test examples and provide the numerical results for them.

Linear complementarity problems.
LCP1. This is Watson’s first problem [37].
LCP2. This is Watson’s second problem [37].
LCP3. The matrix M1 is a P∗ matrix given in (6.1), and d = −e. The solution

set is unbounded. There is no strictly feasible point for this LCP. The central path
does not exist for this problem. However, Algorithm 2.1 deals with this problem very
efficiently.

LCP4. This is a P0 LCP given by Chen and Ye [12]. The matrix M2 is given in
(6.1), and d = (0, 0, 1). The solution set is unbounded.

LCP5. This is a P0 LCP with the matrix M3 given in (6.1), and d = (0, 0, 1).
This problem has no strictly feasible point, and its solution set is unbounded:

M1 =




0 0 2 1
0 0 1 2
−2 −1 0 0
4 8 0 0


 , M2 =

(
0 1 0
0 0 1
0 −1 1

)
, M3 =

(
0 1 0
0 0 −2
0 2 1

)
.(6.1)

LCP6. This example was given by Fathi [15]. The matrix M4 is given in (6.2)
and the vector d = −e.

LCP7. This example was given by Ahn [1]. The vector d = −e, and the matrix
M5 is given in (6.2):

M4 =




1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...

...
...

. . .
...

2 6 9 · · · 4n− 3


 , M5 =




4 −2 0 · · · 0
1 4 −2 · · · 0
0 1 4 · · · 0
...

...
...

. . .
...

0 0 0 · · · 4


 .(6.2)

LCP8. This example was used by Geiger and Kanzow [16], where d = −e and
the matrix M7 is given as in (6.3).

LCP9. This LCP was given in [29]. The matrix M8 is given in (6.3) and d = −e:

M7 =




4 −1 0 0 0 · · · 0
−1 4 −1 0 0 · · · 0
0 −1 4 −1 0 · · · 0
...

....
....

....
....

....
...

0 · · · · · · · · · 0 −1 4


 , M8 =




1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1


 .(6.3)

LCP10. This example can be found in [16], where M = diag(1/n, 2/n, . . . , 1)
and d = −e.

LCP11. The matrix is obtained fromM5 by replacing the first diagonal entry by
−4, and the vector d = (0, 1, . . . , 1). This LCP has no strictly feasible point.

LCP12. The matrix is obtained fromM7 by replacing the first diagonal entry by
−4, and the vector d = (0, 0, 1, . . . , 1). This LCP has no strictly feasible point.



1218 YUN-BIN ZHAO AND DUAN LI

Table 6.1
LCPs, ε = 1e− 14.

Problems Dim.
No. of
Iter.

No. of
fun.

θk Residual
CPU
(sec.)

LCP1 10 8 9 1.4e−06 2.4e−15 0.00
LCP2 5 9 10 1.9e−12 1.6e−15 0.00
LCP3 4 8 9 1.4e−06 2.1e−16 0.00
LCP4 3 8 9 1.4e−06 5.5e−17 0.00
LCP5 3 8 9 1.4e−06 7.8e−17 0.00
LCP6 300 12 19 1.9e−16 9.9e−16 6.53
LCP6 500 12 19 1.9e−16 8.3e−16 42.75
LCP7 300 8 9 1.4e−06 2.3e−15 4.41
LCP7 500 8 9 1.4e−06 3.0e−15 29.16
LCP8 300 8 9 1.4e−06 2.7e−15 4.54
LCP8 500 8 9 1.4e−06 3.6e−15 28.52
LCP9 300 10 13 1.9e−16 0.0 5.66
LCP9 500 10 13 1.9e−16 0.0 40.12
LCP10 300 10 13 3.3e−13 5.6e−15 5.50
LCP10 500 11 16 2.2e−16 8.1e−15 40.57
LCP11 300 9 10 1.9e−12 4.4e−18 6.08
LCP11 500 9 10 1.9e−12 3.7e−18 35.83
LCP12 300 9 10 2.1e−12 2.4e−16 5.61
LCP12 500 9 10 2.0e−12 5.5e−16 34.08
LCP13 300 10 13 1.9e−16 1.4e−17 6.38
LCP13 500 10 13 1.8e−16 1.3e−17 39.50

LCP13. The matrix is obtained from M8 by replacing the last diagonal entry by
−1, and the vector d = (−1, . . . ,−1, 0). This LCP has no strictly feasible point.

Nonlinear complementarity problems.

NCP1. (Kojima–Shindo [31]) This is an NCP which is difficult to solve by the
conventional Newton-type methods.

NCP2. (Watson’s fourth problem [37]) This is an NCP representing the KKT
conditions for a convex programming problem.

NCP3. (Mathiesen’s Walrasian equilibrium model [31]) This is a 4-variable equi-
librium problem depending on three parameters (α, b2, b3). We use two sets of con-
stants: (α, b2, b3) = (0.75, 1, 0.5) and (0.75, 1, 2). In Table 6.2, NCP3a and NCP3b
denote, respectively, the problems corresponding to the above two cases.

NCP4. (invariant capital stock model [31]) This is an NCP (see [31]) formulated
from an invariant capital stock model described by Hansen and Koopmans.

NCP5. (Nash–Cournot production problem [18]) We solve this NCP problem
with γ = 1.1, and the data αi, Li, βi can be found in [18]. The 5- and 10-variable
problems were solved in our experiments. We use NCP5a and NCP5b in Table 6.2 to
denote the 5- and 10-variable problems, respectively.

For NCPs, the number of evaluations of the Jacobian ∇f(x) should be recorded.
However, by the construction of the algorithm, the total number of evaluations of the
Jacobian ∇f(x) equals to the total number of iterations, and hence it is omitted here.

Nonlinear programming problems. We also test the algorithm for some NLPs.
These examples can be found in Hock and Schittkowski [19]. We solve these examples
via the KKT conditions for these problems, which can be formulated as complemen-
tarity problems.

The computational results for LCPs are summarized in Table 6.1, those for NCPs
are reported in Table 6.2, and those for NLPs are summarized in Table 6.3, in which
the “Dim” stands for the dimension of the corresponding complementarity problems.
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Table 6.2
NCPs, ε = 1e− 14.

Problems Dim.
No. of
Iter.

No. of
fun.

θk Residual
CPU
(sec.)

NCP1 4 9 12 3.2e−09 1.3e−15 0.00
NCP2 5 16 35 4.0e−15 3.8e−16 0.00
NCP3a 4 8 9 1.4e−06 2.7e−16 0.00
NCP3b 4 8 9 1.4e−06 1.3e−16 0.00
NCP4 14 9 10 1.9e−12 5.6e−16 0.00
NCP5a 5 8 9 1.3e−06 6.9e−15 0.00
NCP5b 10 14 33 1.0e−17 9.7e−15 0.00

Table 6.3
NLPs, ε = 1e− 14.

Problems Dim.
No. of
Iter.

No. of
fun.

θk Residual
CPU
(sec.)

HS18 7 17 76 5.2e−11 6.5e−16 0.00
HS24 4 7 8 1.5e−06 2.3e−16 0.00
HS33 6 12 19 2.1e−10 9.6e−16 0.00
HS34 8 10 33 7.3e−11 1.8e−15 0.00
HS35 4 8 9 1.3e−06 1.5e−15 0.00
HS36 7 14 90 1.0e−13 8.9e−16 0.00
HS44 10 8 9 1.4e−06 1.5e−15 0.00
HS63 7 9 82 8.1e−08 6.1e−15 0.00
HS66 8 14 56 3.8e−10 1.0e−15 0.00

From the experiments, we found that the algorithm can solve all these examples
effectively. It should be pointed out that the NCP1 is difficult to solve by conventional
Newton-type methods, and as pointed out in [37] none of the standard algebraic
techniques can solve the LCP2 easily. However, the proposed algorithm deals with
the two problems very easily, and a quick convergence is observed. We also note that
the value of β has a close relation to the convergence speed of the algorithm. The
convergence speed will be slow if β is too small. In fact, a big value of β enables a
large iterative steplength to be taken such that a rapid convergence can be achieved.
This is indeed shown from our experiments.

7. Final remarks. A new non–interior-point algorithm is presented for P0 LCPs.
The global convergence of the algorithm is proved under a new condition which is dif-
ferent from ones previously used in the literature. A good feature of this condition is
that it does not imply the boundedness of the solution set of the problem. Especially
for P∗ LCPs, the algorithm is globally convergent, provided that a solution exists.
The superlinear convergence of the algorithm is also proved under a standard nonde-
generacy assumption and a suitable choice of some parameters. The effectiveness of
the algorithm was verified by our numerical experiments.

The essence of our algorithm is to follow a newly introduced regularized central
path whose existence and theoretical properties were proved in [43]. Although the
discussion in this paper was limited to LCPs, all the analysis in this paper can be
extended to nonlinear P0 complementarity problems as long as the function f is
assumed to be continuously differentiable and Lipschitzian.

Acknowledgments. The authors would like to thank the anonymous referees
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Abstract. In this paper, by means of the concept of the working set, which is an estimate of the
active set, we propose a feasible sequential linear equation algorithm for solving inequality constrained
optimization problems. At each iteration of the proposed algorithm, we first solve one system of
linear equations with a coefficient matrix of size m × m (where m is the number of constraints) to
compute the working set; we then solve a subproblem which consists of four reduced systems of linear
equations with a common coefficient matrix. Unlike existing QP-free algorithms, the subproblem is
concerned with only the constraints corresponding to the working set. The constraints not in the
working set are neglected. Consequently, the dimension of each subproblem is not of full dimension.
Without assuming the isolatedness of the stationary points, we prove that every accumulation point
of the sequence generated by the proposed algorithm is a KKT point of the problem. Moreover,
after finitely many iterations, the working set becomes independent of the iterates and is essentially
the same as the active set of the KKT point. In other words, after finitely many steps, only those
constraints which are active at the solution will be involved in the subproblem. Under some additional
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report some preliminary numerical experiments to show that the proposed algorithm is practicable
and effective for the test problems.

Key words. sequential linear equation algorithm, optimization, active set strategy, global
convergence, superlinear convergence

AMS subject classifications. 90C30, 65K10

PII. S1052623401383881

1. Introduction. We consider the nonlinear inequality constrained optimization
problem

(P) min f(x)
s.t. g(x) ≤ 0,

where f : R
n → R and g : R

n → R
m are assumed to be twice continuously differen-

tiable. We denote by

F = {x ∈ R
n | g(x) ≤ 0}

the feasible set of problem (P).
The Lagrangian function associated with problem (P) is defined by

L(x, λ) = f(x) + λT g(x).

A pair (x∗, λ∗) ∈ R
n×m is called a KKT point or a KKT pair of problem (P) if it

satisfies the following KKT conditions:

∇xL(x∗, λ∗) = 0, g(x∗) ≤ 0, λ∗ ≥ 0,
gi(x

∗)λ∗
i = 0 ∀ i ∈ I,

(1.1)
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where I := {1, . . . ,m} and

∇xL(x, λ) := ∇f(x) +
m∑
i=1

λi∇gi(x).(1.2)

Sometimes, we also call the point x∗ satisfying (1.1) a KKT point of problem (P). If
(x∗, λ∗) satisfies all conditions in (1.1) except for the inequality λ∗ ≥ 0, we call the
point x∗ a stationary point of problem (P).

Throughout the paper, we assume that the following blanket hypotheses hold.
Assumption A1. The set F is bounded.
Assumption A2. At every x ∈ F , the vectors ∇gi(x), i ∈ I0(x), are linearly

independent, where I0(x) := {i ∈ I | gi(x) = 0}.
Note that Assumption A1 is often substituted by the assumption that the level

sets of the objective function of some unconstrained optimization problem are compact
or the sequence of points generated by the algorithm is bounded, while Assumption
A2 is a common assumption in dealing with the global convergence of most algorithms
for solving problem (P).

The sequential quadratic programming (SQP) methods are a class of efficient
methods for solving nonlinearly constrained optimization problems. They have re-
ceived much attention in recent decades. We refer to a review paper [2] for a good
survey on SQP methods.

The iterative process of a typical SQP method is as follows. Let the current
iterate be xk. Compute a search direction dk by solving the following quadratic
program (QP):

min
d

1

2
〈d,Hkd〉+ 〈∇f(xk), d〉,

s.t. gi(x
k) + 〈∇gi(xk), d〉 ≤ 0 ∀ i ∈ I,

(1.3)

where Hk ∈ R
n×n is symmetric positive definite. Perform a line search to determine

a steplength tk and let the next iterate be x
k+1 = xk + tkd

k.
SQP methods possess global and superlinear convergence properties under certain

conditions. However, in a traditional SQP method, the QP subproblem (1.3) may
be inconsistent; that is, the feasible set of (1.3) may be empty. To overcome this
shortcoming, various techniques have been proposed; see, e.g., [6, 18, 21, 24, 25, 29, 31].
In particular, Panier and Tits [21] presented a feasible SQP (FSQP) algorithm in
which the generated iterates lie in the feasible region F . Under certain conditions, this
FSQP algorithm is globally convergent and locally two-step superlinearly convergent.
Further study on FSQP algorithms can be found in [17, 22, 27, 28].

FSQP methods are particularly useful for solving those problems arising from
engineering design where the objective function f might be undefined outside the
feasible region F . Another advantage of FSQP methods is that the objective function
f can be used as a merit function to avoid the use of a penalty function. However,
FSQP algorithms still require solving QP subproblems at each iteration, which is
computationally expensive. In [23], Panier, Tits, and Herskovits proposed a feasible
QP-free algorithm in which, at every iteration, only three systems of linear equations
need to be solved. Specifically, the iterative process of the QP-free algorithm is as
follows. Let (xk, λk) be the current iterate. To guarantee the feasibility of the next
iterate, they first solve two systems of linear equations of the form(

Hk ∇g(xk)
diag(µk)∇g(xk)T diag(g(xk))

)(
d
λ

)
=

( −∇f(xk)
c

)
(1.4)
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by choosing a different vector c, where Hk ∈ R
n×n is positive definite, µk ∈ R

m,
c ∈ R

m, and diag(µk) denotes the m×m diagonal matrix whose ith diagonal ele-
ment is µki . Then they further “bend” the primal search direction by solving a least
squares subproblem to avoid the Maratos effect. It has been shown in [23] that un-
der appropriate conditions, this QP-free method possesses global convergence as well
as a locally two-step superlinear convergence rate. However, the QP-free algorithm
proposed in [23] may have instability problems. The linear system (1.4) may become
very ill-conditioned if some multiplier µi corresponding to a nearly active constraint gi
becomes very small. In addition, in the global convergence theorem, there is a restric-
tive condition which requires that the number of stationary points is finite. The idea
of this QP-free algorithm has been further used by Urban, Tits, and Lawrence [34] to
develop a primal-dual logarithmic barrier interior-point method; see also [1]. Under
similar conditions, the method possesses global and fast local convergence properties.

Recently, by means of the Fischer–Burmeister function, Qi and Qi [26] presented
a new feasible QP-free algorithm for solving problem (P). At each iteration, the
subproblem of the new QP-free method consists of three systems of linear equations
of the form(

Hk ∇g(xk)
diag(ηk)∇g(xk)T −√2diag(θk)

)(
d
λ

)
=

( −∇f(xk)
c,

)
,(1.5)

where c is a suitable vector and for each i ∈ I

ηki :=
gi(x

k)√
g2
i (x

k) + (µki )
2

+ 1 and θki :=


1− µki√

g2
i (x

k) + (µki )
2


1/2

.

To avoid the Maratos effect, they also solve a least squares subproblem. Their algo-
rithm shares some advantages of the method in [23]. Moreover, the matrix in (1.5) is
nonsingular even if the strict complementarity does not hold. The method achieves
global convergence without requiring the isolatedness of the stationary points. The
local one-step superlinear convergence rate of the method has also been established.

In this paper, we propose a feasible sequential linear equation (FSLE) algorithm
for solving problem (P). At each step, we first solve three reduced systems of linear
equations with the following form:(

Hk ∇gAk(xk)
∇gAk(xk)T 0

)(
d

λAk

)
=

( −∇f(xk)
cAk

)
,(1.6)

where Ak ⊂ I is called a working set which is an estimate of the active set I0(x
k).

The calculation of the working set depends on some multiplier function which is the
solution of a system of linear equations. If xk is sufficiently close to a KKT point
x∗, then Ak is an identification of the active set I0(x

∗). The working set and the
identification of the active set have been studied by some authors [9, 10, 12, 13, 31, 32].
They are also very important in our algorithm. It is clear that the dimension of system
(1.6) is no more than the dimension of system (1.5). Moreover, as we shall show in
section 4 (see Lemma 4.1), under appropriate conditions we have Ak = I0(x

∗) for
all k sufficiently large. This means that after finitely many iterations, the inactive
constraints at x∗ will be neglected.

Like other existing feasible QP-free methods, the method proposed in this paper
also generates a sequence of iterates that are interior points in the feasible region.
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However, feasible QP-free methods are different from interior-point methods. An
interior-point method follows a central path, while a feasible QP-free method does
not.

In order to achieve a superlinear convergence rate, we solve another system of
linear equations. This system is equivalent to a least squares problem. Unlike al-
gorithms proposed in [23, 26], the coefficient matrix of the last linear system is the
same as the previous reduced ones. Furthermore, our algorithm provides a special
technique to update the working set and makes it possible to remove multiple inac-
tive constraints in one iteration. This technique for updating the working set has also
been used recently in [32].

The main advantage of the proposed algorithm lies in that it has the potential
of saving computational cost. Moreover, it reserves all the advantages of algorithms
proposed in [23, 26].

Interesting features of the proposed algorithm include the following:
• All iterates are feasible and the sequence of objective functions is decreasing.
• At each iteration, we need to solve only one m × m system of linear equa-
tions and four reduced systems of linear equations with a common coefficient
matrix.
• Under appropriate conditions, the generated direction sequences are uni-
formly bounded.
• The iterative matrices are nonsingular without the requirement of strict com-
plementarity.
• Every accumulation point of the sequence generated by the proposed algo-
rithm is a KKT point of problem (P) without assuming that the stationary
points are isolated.
• Locally two-step superlinear or Q-superlinear convergence rate is achieved.

Recently, Facchinei and Lazzari [11] presented a local feasible QP-free algorithm
for solving problem (P) with an SC1 objective function. Their algorithm possesses
some favorable properties, such as fast local convergence and feasibility of all iterates.
In addition, at each iteration, only systems of linear equations need to be solved.
Their algorithm produces a sequence {xk} according to the following formula:

xk+1 = xk + dk + d̂k.

The local structure of our algorithm is similar to theirs. In some sense, our algo-
rithm can be regarded as a globalization of their algorithm. However, compared with
their algorithm, we used quasi-Newton algorithms. Moreover, the computation of the
directions dk and d̂k is different from that in [11].

The paper is organized as follows. In the next section we introduce a multiplier
function to define the working set. We then describe the algorithm and show that
it is well defined. In section 3, we establish a global convergence theorem for the
algorithm. In section 4, we prove that under appropriate conditions the sequence
{xk} generated by the proposed algorithm is locally two-step superlinearly or Q-
superlinearly convergent. We report some preliminary numerical results in section 5.
In the last section, we give some remarks to conclude the paper.

A few words for the notation. The symbol ‖ · ‖ always stands for the Euclidean
vector norm or its associated matrix norm. Given h : R

n → R
m and a subset A of

I, we denote by hA(x) the subvector of h(x) with components hi(x), i ∈ A, and by
∇hA(x) the transpose of the Jacobian of hA(x). We use e ∈ R

m to denote the vector
of all ones, and E ∈ R

m×m is the unit matrix.
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2. Algorithm. In this section we first define the working set based on a multi-
plier function; then we present an FSLE algorithm for solving problem (P) and show
that it is well defined.

The following proposition comes from [14] and [19].
Proposition 2.1. The following statements hold.
(i) For every x ∈ F , there exists a unique minimizer λ(x) of the quadratic function

in λ,

‖∇xL(x, λ)‖2 + ‖G(x)λ‖2

over R
m, given by

λ(x) = −M−1(x)∇g(x)T∇f(x),(2.1)

where

G(x) := diag(gi(x)) and M(x) := ∇g(x)T∇g(x) +G2(x).

(ii) The multiplier function λ(x) is continuously differentiable in F .
(iii) If (x∗, λ∗) ∈ R

n × R
m is a KKT pair for problem (P), we have λ(x∗) = λ∗.

For x ∈ F , we now make the following “guess” for the active set I0(x):

A(x; ε) := {i | gi(x) + ερ(x, λ(x)) ≥ 0},

where ε is a nonnegative parameter and ρ(x, λ) :=
√‖Φ(x, λ)‖ with

Φ(x, λ) :=

( ∇xL(x, λ)
min{−g(x), λ}

)
.

It is obvious that (x∗, λ∗) is a KKT pair of problem (P) if and only if Φ(x∗, λ∗) = 0
or ρ(x∗, λ∗) = 0. Facchinei, Fischer, and Kanzow [9] showed that if the second
order sufficient condition and the Mangasarian–Fromovotz constraint qualification
hold, then for any ε > 0, when x is sufficiently close to x∗, the working set A(x; ε) is
an exact identification of I0(x

∗). It is not difficult to see from Assumption A1 and
Proposition 2.1(ii) that ρ(x, λ(x)) is bounded on F . This property will enable us to
keep the parameter ε fixed after a finite number of iterations in our algorithm. Details
will be given subsequently.

Let

V (x,H;A) =

(
H ∇gA(x)

∇gA(x)T 0

)
,

where H is an n×n positive definite matrix and A is a subset of I. We now state the
steps of our algorithm for solving problem (P).

Algorithm 2.1.
Parameters. β ∈ (0, 1), µ ∈ (0, 1/2), ν > 2, τ ∈ (2, 3), ϑ ∈ (0, 1), and σ ∈ (0, 1).
Data. x1, a strictly feasible point in F ; H1 ∈ R

n×n, a symmetric positive definite
matrix; and ε0 > 0, an initial parameter.

Set k := 1.
Step 1. Set ε := εk−1.
Step 2. Set Ak(ε) := A(xk; ε).

If ∇gAk(ε)(xk) is not of full rank, then set ε := σε and go to Step 2.
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Step 3. Set εk := ε, Ak := Ak(εk), and Vk := V (xk, Hk;A
k).

Step 4. Computation of a search direction.
(i) Compute (dk0, zk0Ak) by solving the system of linear equations in (d, zAk),

Vk

(
d

zAk

)
=

( −∇f(xk)
0

)
.(2.2)

(ii) Compute (dk1, zk1Ak) by solving the system of linear equations in (d, zAk),

Vk

(
d

zAk

)
=

( −∇f(xk)
ϕk

)
,(2.3)

where ϕk ∈ R
|Ak| is defined by

ϕki :=




zk0i if zk0i < 0,

−gi(xk) if zk0i > 0,

0 otherwise.

If dk1 = 0, stop.
(iii) Compute (dk2, zk2Ak) by solving the system of linear equations in (d, zAk),

Vk

(
d

zAk

)
=

( −∇f(xk)
ϕk − ‖dk1‖νeAk

)
.(2.4)

(iv) Compute the search direction dk and the approximate multiplier vector
zkAk according to(

dk

zkAk

)
:= (1− φk)

(
dk1

zk1Ak

)
+ φk

(
dk2

zk2Ak

)
,

where

φk := (ϑ− 1) 〈∇f(xk), dk1〉
1 + ‖dk1‖ν |∑i∈Ak z

k0
i |

.

Step 5. Compute a correction d̂k by solving the system of linear equations in (d, zAk),

Vk

(
d

zAk

)
=

(
0

−‖dk‖τeAk − gAk(x
k + dk)

)
.(2.5)

If ‖d̂k‖ > ‖dk‖, set d̂k := 0.
Step 6. Line search. Compute tk, the first number t in the sequence {1, β, β2, . . .}

satisfying

f(xk + tdk + t2d̂k) ≤ f(xk) + µt〈∇f(xk), dk〉(2.6)

and

gi(x
k + tdk + t2d̂k) < 0 ∀ i ∈ I.(2.7)

Step 7. Set xk+1 := xk+ tkd
k+ t2kd̂

k and generate a new symmetric definite positive
matrix Hk+1. Set k := k + 1 and go to Step 1.



1228 YU-FEI YANG, DONG-HUI LI, AND LIQUN QI

Remarks.
(i) It follows from Assumption A2 that there exists some δ0 > 0 such that

∇gI(x;δ)(x) is of full rank, where I(x; δ) := {i ∈ I : gi(x) ≥ −δ} and 0 ≤ δ ≤ δ0. By
the continuity of λ(x) and Assumption A1, there exists some ε̄0 > 0 such that the in-
equality ερ(x, λ(x)) ≤ δ0 holds for all ε ≤ ε̄0 and x ∈ F , and hence A(x; ε) ⊆ I(x; δ0).
This implies that ∇gA(x;ε)(x) is of full rank. Therefore, for symmetric positive definite
matrix H ∈ R

n×n, the matrix V (x,H;A(x; ε)) is nonsingular. Consequently, Vk is

nonsingular for each k. This shows that (dk0, zk0Ak), (d
k1, zk1Ak), (d

k2, zk2Ak), and d̂k are
well defined.

On the other hand, the above analysis also indicates that at Step 2 of Algorithm
2.1 the parameter ε is reduced only finitely many times. In other words, εk will remain
fixed after finitely many iterations. Without loss of generality, we assume that εk = ε̃
for all k.

(ii) In order to guarantee the feasibility of all iterates and the decrease of the
objective function at each iteration, we solve three linear systems with the same
coefficient matrix but different right vectors. This technique is similar to that in [26].
Notice that the choice of ϕk at Step 4(ii) ensures that xk is a trivial KKT point of
problem (P) whenever dk1 = 0 (see Lemma 2.2).

(iii) The role of Step 5 is to avoid the Maratos effect. It is not difficult to see that

d̂k is also the unique solution of the least squares problem in d,

min
1

2
‖d‖2Hk

s.t. gi(x
k + dk) + 〈∇gi(xk), d〉 = −‖dk‖τ ∀ i ∈ Ak.

(2.8)

An important difference between our algorithm and those in [23, 26] lies in the fact
that the coefficient matrix in (2.5) is the same as that in Step 4. Hence, our algorithm
needs fewer computational efforts. If Hk is taken to be the unit matrix for every k,
Ak = I0(x

∗), and τ = 2, then problem (2.8) reduces to the subproblem of computing

the correction direction d̂k in [11].
(iv) It is not difficult to deduce that the direction (dk, zkAk) is the unique solution

of the following system of linear equations:

Vk

(
d

zAk

)
=

( −∇f(xk)
ϕk − φk‖dk1‖νeAk

)
.(2.9)

We now analyze the updating technique for the working set. For i ∈ Ak, we obtain
from (2.5) and (2.9)

gi(x
k + tdk + t2d̂k)

= gi(x
k) + t∇gi(xk)T dk + t2∇gi(xk)T d̂k +O((t‖dk‖)2)

= gi(x
k) + t∇gi(xk)T dk − t2gi(x

k + dk) +O((t‖dk‖)2)
= (1− t2)gi(x

k) + (t− t2)∇gi(xk)T dk +O((t‖dk‖)2)
= O((t‖dk‖)2)− (t− t2)φk‖dk1‖ν

+



(1− t2)gi(x

k) + (t− t2)zk0i if zk0i < 0,

(1− t)gi(x
k) if zk0i > 0,

(1− t2)gi(x
k) otherwise.

Hence, if zk0i < 0 is not small and tk − t2k is not very small, it is likely that i /∈ Ak+1

because gi becomes strongly negative now. Thus, it is reasonable to exclude these i
from Ak+1. This technique was also used by Spellucci [32].
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For the sake of convenience, we let for each k

zk0i = zk1i = zk2i = zki = 0 ∀ i /∈ Ak.

To analyze the well-definedness and convergence of the above algorithm, we make
the following hypothesis on the choice of matrix Hk.

Assumption A3. There exist positive constants C1 and C2 such that, for all k
and d ∈ R

n,

C1‖d‖2 ≤ dTHkd ≤ C2‖d‖2.

It is not difficult to see from the discussion of Remark (i) that every limit of the
sequence {∇gAk(xk)} is also of full rank. Therefore, Assumption A3 shows that every
limit of the sequence {Vk} is nonsingular, which implies that {‖V −1

k ‖} is bounded.
We assume that ‖V −1

k ‖ ≤ M̃ for all k.

Let NAk := ∇gAk(xk). Then, by Step 2, NAk is of full rank. Since Vk is nonsin-
gular, it is clear that matrix Dk := NT

AkH
−1
k NAk is also nonsingular. Let

Bk := H−1
k NAkD

−1
k and Qk := H−1

k (E −NAkB
T
k ).

By Step 4 of the algorithm, it is not difficult to deduce the following relations:


dk0 = −Qk∇f(xk), zk0Ak = −BT
k ∇f(xk),

dk1 = dk0 +Bkϕ
k, zk1Ak = zk0Ak −D−1

k ϕk,

dk2 = dk1 − ‖dk1‖νBkeAk , zk2Ak = zk1Ak + ‖dk1‖νD−1
k eAk ,

dk = dk1 − φk‖dk1‖νBkeAk , zkAk = zk1Ak + φk‖dk1‖νD−1
k eAk .

(2.10)

Lemma 2.2. If the algorithm stops at Step 4(ii), i.e., dk1 = 0, then ∇f(xk) = 0.
Proof. If dk1 = 0, then it follows from (2.3) that{

∇f(xk) +∇gAk(xk)zk1Ak = 0,
ϕk = 0.

(2.11)

By the construction of ϕk, we have zk0Ak = 0, and hence by (2.10) zk1Ak = 0. The
assertion then follows from the first equation of (2.11).

The above lemma shows that if the algorithm stops at Step 4(ii), then xk is an
unconstrained stationary point of f . Since we always have xk ∈ F , this means that
xk is actually a KKT point of problem (P). In what follows, we assume that the
algorithm never stops at Step 4(ii). Therefore, the algorithm generates an infinite
sequence {xk}.

Lemma 2.3. (i) 〈∇f(xk), dk0〉 = −〈dk0, Hkd
k0〉.

(ii) 〈∇f(xk), dk1〉 = 〈∇f(xk), dk0〉 − 〈ϕk, zk0Ak〉 ≤ 〈∇f(xk), dk0〉.
(iii) 〈∇f(xk), dk〉 ≤ ϑ〈∇f(xk), dk1〉.
Proof. By (2.2), we deduce

〈∇f(xk), dk0〉 = −〈dk0, Hkd
k0〉 − 〈dk0,∇gAk(xk)zk0Ak〉

= −〈dk0, Hkd
k0〉 − 〈∇gAk(xk)T dk0, zk0Ak〉

= −〈dk0, Hkd
k0〉.
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This establishes (i). From (2.10), we have

〈∇f(xk), dk1〉 = 〈∇f(xk), dk0〉+ 〈∇f(xk), Bkϕk〉
= 〈∇f(xk), dk0〉+ 〈BT

k ∇f(xk), ϕk〉
= 〈∇f(xk), dk0〉 − 〈zk0Ak , ϕk〉
≤ 〈∇f(xk), dk0〉,

where the last inequality holds because by the definition of ϕk we have 〈zk0Ak , ϕk〉 ≥ 0.
This establishes (ii). We now turn to verify (iii).

It follows from (2.10) and the definition of φk that

〈∇f(xk), dk〉 = 〈∇f(xk), dk1〉 − φk‖dk1‖ν〈∇f(xk), BkeAk〉
= 〈∇f(xk), dk1〉 − φk‖dk1‖ν〈BT

k ∇f(xk), eAk〉
= 〈∇f(xk), dk1〉+ φk‖dk1‖ν

∑
i∈Ak

zk0i

≤ ϑ〈∇f(xk), dk1〉.

This establishes (iii).
Lemma 2.3 shows that the direction dk is a descent direction of the merit function

f . Similar to the proof of Proposition 3.3 in [23], we can deduce that for each k there
is a nonnegative integer j(k) such that inequalities (2.6) and (2.7) are satisfied with
tk = βj(k).

The above discussion has shown that Algorithm 2.1 is well defined.

3. Global convergence. In this section we will show that Algorithm 2.1 is
globally convergent. First, we see from Step 2 of Algorithm 2.1 and the discussion
after Assumption A3 that ‖V −1

k ‖ ≤ M̃ for all k. The following lemma is then obvious.
Lemma 3.1. The sequences {(dk0, zk0)}, {(dk1, zk1)}, and {(dk2, zk2)} are all

bounded.
Proof. By (2.2), Assumption A1, and the boundedness of {‖V −1

k ‖}, we deduce
that {(dk0, zk0)} is bounded, which implies that {(dk1, zk1)} is also bounded by (2.3).
The boundedness of {(dk2, zk2)} directly follows from (2.4) and the boundedness of
{dk1} and {zk0}.

Lemma 3.2. There exists a constant κ > 0 such that, for all k = 1, 2, . . .,

‖dk − dk1‖ ≤ κ‖dk1‖ν .

Proof. Assumption A1 and Lemma 3.1 imply that {φk} is bounded. It follows
from Step 4 of Algorithm 2.1 that(

dk − dk1

zkAk − zk1Ak

)
= V −1

k

(
0

−φk‖dk1‖νeAk
)
,

which shows that the assertion holds with κ := M̃ sup{φk}.
The following proposition gives a sufficient condition for the global convergence

of Algorithm 2.1.
Proposition 3.3. Let x∗ be an accumulation point of the sequence {xk} gener-

ated by Algorithm 2.1 and suppose that {xk}K0
→ x∗. If

{〈∇f(xk), dk1〉}K0
→ 0,(3.1)
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then x∗ is a KKT point of problem (P) and {zk0}K0
converges to the unique multiplier

vector λ∗ associated with x∗.
Proof. It follows from Assumption A3, Lemma 2.3, and (3.1) that

{dk0}K0
→ 0 and {〈ϕk, zk0Ak〉}K0

→ 0.(3.2)

Let z∗ be an arbitrary accumulation point of {zk0}K0 , and let {zk0}K1 be a
subsequence of {zk0}K0

such that {zk0}K1
→ z∗. The boundedness of {zk0} implies

that z∗ exists. From (2.2), (3.2), and the definition of ϕk, we deduce{
∇f(x∗) +∇g(x∗)z∗ = 0,
z∗i ≥ 0, z∗i gi(x

∗) = 0 ∀ i ∈ I.

It is also obvious that g(x∗) ≤ 0. Thus, x∗ is a KKT point of problem (P) and z∗

is its associated multiplier vector (i.e., z∗ = λ∗). The uniqueness of the multiplier
vector implies that {zk0}K0 → λ∗.

By Proposition 3.3, we establish a global convergence theorem for Algorithm 2.1.
Theorem 3.4. If (x∗, λ∗) is an accumulation point of the sequence {(xk, zk0)}

generated by Algorithm 2.1, then (x∗, λ∗) is a KKT pair of problem (P).
Proof. We prove the theorem by contradiction. Suppose that there is a subse-

quence {(xk, zk0)}K converging to (x∗, λ∗), but (x∗, λ∗) is not a KKT pair of problem
(P). We first prove that there must be a subset K0 of K such that (3.1) holds.
Otherwise, there exist γ > 0 and d > 0 such that

〈∇f(xk), dk1〉 ≤ −γ ∀ k ∈ K and lim inf
k∈K
‖dk1‖ ≥ d.(3.3)

By the definition of φk, Lemma 3.1, and (3.3), it follows that there exists φ̃ > 0 such
that

φk ≥ φ̃ ∀ k ∈ K.

In a way similar to the proof of Lemma 3.9 in [23], we deduce

f(xk + tdk + t2d̂k)− f(xk)− µt〈∇f(xk), dk〉

≤ t

{
sup
ξ∈[0,1]

‖∇f(xk + tξdk + t2ξd̂k)−∇f(xk)‖‖dk‖

+ 2t sup
ξ∈[0,1]

‖∇f(xk + tξdk + t2ξd̂k)‖‖d̂k‖ − (1− µ)ϑC1d
2

}
,

(3.4)

where C1 and d are specified by Assumption A3 and (3.3), respectively. We also have
for each i ∈ I

gi(x
k + tdk + t2d̂k) ≤ gi(x

k) + t{uki (t) + 〈∇gi(xk), dk〉}(3.5)

with

uki (t) := sup
ξ∈[0,1]

‖∇gi(xk + tξdk + t2ξd̂k)−∇gi(xk)‖‖dk‖

+2t sup
ξ∈[0,1]

‖∇gi(xk + tξdk + t2ξd̂k)‖‖d̂k‖.
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Hence, by (2.9), (3.3), (3.5), and the definition of ϕk, we have, for i ∈ Ak,

gi(x
k + tdk + t2d̂k)

≤ gi(x
k) + t{uki (t) + ϕki − φk‖dk1‖ν}

≤ gi(x
k) + t{uki (t) + ϕki − φ̃dν}

=




gi(x
k) + tzk0i + t{uki (t)− φ̃dν} if zk0i < 0,

(1− t)gi(x
k) + t{uki (t)− φ̃dν} if zk0i > 0,

gi(x
k) + t{uki (t)− φ̃dν} otherwise

≤ t{uki (t)− φ̃dν}.

(3.6)

On the other hand, for i /∈ Ak, gi(x
k) < −ε̃ρ(xk, λ(xk)), and hence by (3.5), we get

gi(x
k + tdk + t2d̂k) < −ε̃ρ(xk, λ(xk)) + t{uki (t) + 〈∇gi(xk), dk〉}.(3.7)

Since ρ(x∗, λ(x∗)) > 0, {xk}K → x∗, ‖d̂k‖ ≤ ‖dk‖, and {dk} is bounded, it follows
from (3.6) and (3.7) that for all i ∈ I there exists t̄i > 0, independent of k, such that,
for all t ∈ [0, t̄i] and k ∈ K sufficiently large,

gi(x
k + tdk + t2d̂k) < 0.

Moreover, (3.4) implies that there exists t̄f > 0, independent of k, such that, for
all t ∈ [0, t̄f ] and k ∈ K sufficiently large,

f(xk + tdk + t2d̂k)− f(xk)− µt〈∇f(xk), dk〉 ≤ 0.(3.8)

Let

t̄ := min{t̄f , t̄1, . . . , t̄m}.

The line search rules (2.6) and (2.7) show that tk ≥ βt̄ for all k ∈ K sufficiently large,
and hence by Lemma 2.3, (3.3), and (3.8) we deduce

f(xk + tkd
k + t2kd̂

k)− f(xk) ≤ −µβt̄ϑγ, k ∈ K.(3.9)

Since {f(xk)} is monotonically decreasing and bounded below, it converges. Taking
limits in (3.9) as k →∞ with k ∈ K yields a contradiction. The contradiction shows
that (3.1) holds for some K0 ⊆ K. It then follows from Proposition 3.3 that (x∗, λ∗)
is a KKT pair of problem (P). The proof is complete.

4. Superlinear convergence. In this section we analyze the rate of convergence
of Algorithm 2.1. Let (x∗, λ∗) be an accumulation point of the sequence {(xk, zk0)}.
Then it follows from Theorem 3.4 that (x∗, λ∗) is a KKT pair of problem (P). For
simplicity, we let I0 = I0(x

∗).
Assumption A4. The strict complementarity condition holds at (x∗, λ∗), i.e.,

λ∗ − g(x∗) > 0.
Assumption A5. The second order sufficiency condition holds at (x∗, λ∗); i.e.,

the Hessian ∇2
xxL(x

∗, λ∗) is positive definite on the space {u| 〈∇gi(x∗), u〉 = 0 for all
i ∈ I0}.

We first show that under the conditions of Assumptions A1–A3 and A5, the whole
sequence {xk} converges to x∗ and the sequence {zk} converges to λ∗. Then we prove
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that under Assumptions A1–A5, together with Assumption A6′, which will be intro-
duced later in this section, the unit steplength is accepted for all k sufficiently large,
and hence the Maratos effect does not occur. Finally, we show that the convergence
rate is two-step superlinear or even Q-superlinear.

The following lemma follows from Theorems 2.3 and 3.7 in [9] directly.
Lemma 4.1. Let x∗ be a KKT point of problem (P) and assume that Assump-

tion A5 holds. Then there exists a neighborhood of x∗ such that, for each x in this
neighborhood,

A(x; ε̃) = I0.

The above lemma indicates that the active constraints can be accurately identified
close to a KKT point even if the strict complementarity condition does not hold at
that point. To prove that the whole sequence {xk} converges to x∗, we cite another
useful result from Proposition 7 in [16]. The original version of this result is due to
Moré and Sorensen [20], which is slightly different from this version.

Lemma 4.2. Assume that ω∗ ∈ R
t is an isolated accumulation point of a sequence

{ωk} ⊂ R
t such that, for every subsequence {ωk}K converging to ω∗, there is an

infinite subset K ′ ⊆ K such that {‖ωk+1 − ωk‖}K′ → 0. Then the whole sequence
{ωk} converges to ω∗.

The next proposition claims the convergence of the whole sequence {xk}.
Proposition 4.3. Under Assumptions A1–A3 and A5, the whole sequence {xk}

converges to x∗ and the sequence {zk0} converges to λ∗.
Proof. Assumptions A2 and A5 imply that x∗ is an isolated accumulation point

of {xk} (see [30]). Let {xk}K be a subsequence converging to x∗. It is clear from
Lemma 4.1 that Ak = I0 holds for k ∈ K sufficiently large. We first prove that there
must exist an infinite subset K ′ ⊆ K such that

{‖dk‖}K′ → 0.(4.1)

Suppose by contradiction that (4.1) does not hold for any infinite subset of K. Then

lim inf
k∈K
‖dk‖ > 0,

which implies by Lemma 3.2 that

lim inf
k∈K
‖dk1‖ > 0.(4.2)

Without loss of generality, by Lemma 3.1 we assume that

{(dk0, zk0)}K → (d∗0, z∗0) and {(dk1, zk1)}K → (d∗1, z∗1).

Furthermore, we assume that {Hk}K → H∗. Taking limit in both sides of (2.2) as
k → ∞ with k ∈ K, we deduce that (d∗0, z∗0I0 ) solves the following system of linear
equations:

V∗

(
d
zI0

)
=

( −∇f(x∗)
0

)
,(4.3)

where V∗ := V (x∗, H∗; I0) is nonsingular. On the other hand, it is easy to see from the
KKT system (1.1) that (0, λ∗

I0
) is the solution of system (4.3). So, we have z∗0I0 = λ∗

I0
.
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It then follows from the definition of ϕk that {ϕk}K → 0. Taking limit in (2.3) as
k → ∞ with k ∈ K, we see that (d∗1, z∗1I0 ) also satisfies (4.3), and hence d∗1 = 0,
which contradicts (4.2). This contradiction shows that (4.1) holds for some infinite
subset K ′ ⊆ K. Therefore, we get from (4.1)

‖xk+1 − xk‖ ≤ ‖dk‖+ ‖d̂k‖ ≤ 2‖dk‖ → 0, as k →∞ with k ∈ K ′.

By means of Lemma 4.2, we claim that the whole sequence {xk} converges to x∗.
Moreover, the uniqueness of the multiplier vector λ∗ implies that {zk0} converges to
λ∗.

The following results are a direct corollary of Proposition 4.3 and will play an
important role in the analysis of the convergence rate.

Corollary 4.4. Let Assumptions A1–A3 and A5 hold. Then the equality Ak =
I0 holds for all k sufficiently large. Furthermore, we have

(i) dk → 0, dk0 → 0, dk1 → 0, as k →∞.

(ii) zk → λ∗, zk1 → λ∗, as k →∞.

(iii) If, in addition, Assumption A4 holds, then for k sufficiently large it holds
that ϕk = −gI0(xk).

Proof. We have by Lemma 4.1 and Proposition 4.3 that {zk0} → λ∗ and that
Ak = I0 holds for all k sufficiently large. It is also not difficult to see from Proposition
4.3 and the uniqueness of the solution of system (4.3) that the sequences {(dk0, zk0I0 )},
{(dk1, zk1I0 )}, and {(dk2, zk2I0 ) converge to the unique solution of system (4.3). This
shows (i) and (ii).

If Assumption A4 holds, then we have zk0I0 > 0 for all k sufficiently large. This
implies (iii).

System (2.3) and Corollary 4.4(iii) show that for k sufficiently large (dk1, zk1I0 ) is
the unique solution of the following system of linear equations:{

Hkd+∇gI0(xk)zI0 = −∇f(xk),
∇gI0(xk)T d = −gI0(xk).

(4.4)

This means that dk1 produced by (2.3) can be regarded as a quasi-Newton direction
for the equality constrained optimization problem

min f(x),
s.t. gI0(x) = 0.

(4.5)

It is interesting to note that the local algorithm proposed by Facchinei and Lazzari
[11] generates a direction dk which is a Newton direction of (4.5). In other words,
dk generated by the algorithm in [11] is the solution of (4.4) with Hk taken from
the generalized Hessian ∂2

xxL(x
k, λ(xk)). Our method is slightly different from the

method in [11] in that dk in our method is only an approximate solution of (4.4)
because we have dk = dk1 +O(‖dk1‖ν) with ν > 2 by Lemma 3.2.

We are going to prove the superlinear convergence of the proposed method. It
is well known that the Dennis and Moré condition [7] is necessary and sufficient for
superlinear convergence of a quasi-Newton method for solving nonlinear equations or
unconstrained optimization problems. Boggs, Tolle, and Wang [3] extended this result
to the quasi-Newton method for solving equality constrained optimization problems
(see also [33]). We will extend this result to our algorithm.
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Assumption A6′. The sequence of matrices {Hk} satisfies
‖Pk(Hk −∇2

xxL(x
∗, λ∗))Pkdk‖

‖dk‖ → 0,

where

Pk := E −Nk(N
T
k Nk)

−1NT
k and Nk := ∇gI0(xk).

We will show that Assumption A6′ is a sufficient condition for our algorithm to
be two-step superlinearly convergent. To this end, we first prove two lemmas.

Lemma 4.5. When k is sufficiently large, the direction dk can be decomposed into

dk = Pkd
k + d̃k

with

‖d̃k‖ = O(‖gI0(xk)‖) + o(‖dk1‖2).
Proof. It follows from (2.9) and Corollary 4.4(iii) that for k sufficiently large

〈∇gi(xk), dk〉 = ϕki − φk‖dk1‖ν
= −gi(xk)− φk‖dk1‖ν ∀ i ∈ I0.

This implies that

NT
k d

k = hk,

where

hk := −gI0(xk)− φk‖dk1‖νeI0 .
Thus, we have

dk = Pkd
k +Nk(N

T
k Nk)

−1NT
k d

k

= Pkd
k +Nk(N

T
k Nk)

−1hk

= Pkd
k + d̃k,

where

d̃k := Nk(N
T
k Nk)

−1hk

satisfies

‖d̃k‖ = O(‖hk‖) = O(‖gI0(xk)‖) + o(‖dk1‖2).
Lemma 4.6. When k is sufficiently large, the direction d̂k is determined by solving

system (2.5), and it satisfies

‖d̂k‖ = O(‖dk‖2).
Proof. It follows from (2.5) and Corollary 4.4 that when k is sufficiently large the

direction d̂k is first computed by solving the following system of linear equations:

Vk

(
d
zI0

)
=

(
0

−‖dk‖τeI0 − gI0(x
k + dk)

)
(4.6)
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with Vk = V (xk, Hk; I0).
By Taylor’s expansion, we get for each i ∈ I0

−‖dk‖τ − gi(x
k + dk)

= −‖dk‖τ − [gi(xk) + 〈∇gi(xk), dk〉+O(‖dk‖2)]
= −‖dk‖τ + φk‖dk1‖ν +O(‖dk‖2)
= O(‖dk‖2),

where the second equality follows from (2.9) and Corollary 4.4(iii), and the last equal-
ity follows from Lemma 3.2, respectively. The assertion then follows from (4.6) and
the fact that ‖V −1

k ‖ ≤ M̃ for all k.
We are now in a position to prove that a unit step is eventually accepted by

Algorithm 2.1.
Proposition 4.7. Let Assumptions A1–A5 and A6′ hold. Then when k is

sufficiently large the step tk = 1 is accepted.
Proof. By the line search rules (2.6) and (2.7), we need only to show that for k

sufficiently large the following two conditions hold:
(i) The sufficient decrease condition (2.6) on f holds for t = 1.
(ii) The strict feasibility condition (2.7) on g holds for t = 1.
It follows from Lemma 4.6 that

f(xk + dk + d̂k) = f(xk) + 〈∇f(xk), dk + d̂k〉
+
1

2
〈dk,∇2

xxf(x
k)dk〉+ o(‖dk‖2).

(4.7)

In view of (2.5), (2.9), and Corollary 4.4, for k sufficiently large

Hkd
k +∇f(xk) +

∑
i∈I0

zki ∇gi(xk) = 0,(4.8)

〈∇gi(xk), dk〉 = −gi(xk)− φk‖dk1‖ν ∀ i ∈ I0,(4.9)

and

gi(x
k + dk) + 〈∇gi(xk), d̂k〉 = −‖dk‖τ ∀ i ∈ I0.(4.10)

By (4.8) and Lemma 4.6, we have

〈∇f(xk), dk〉 = −〈dk, Hkd
k〉 −

∑
i∈I0

zki 〈∇gi(xk), dk〉(4.11)

and

〈∇f(xk), d̂k〉 = −
∑
i∈I0

zki 〈∇gi(xk), d̂k〉+ o(‖dk‖2).(4.12)

Thus, from (4.7), (4.11), and (4.12) we deduce

f(xk + dk + d̂k)

= f(xk) +
1

2
〈∇f(xk), dk〉+ 1

2
〈dk, (∇2

xxf(x
k)−Hk)d

k〉
−1
2

∑
i∈I0

zki 〈∇gi(xk), dk〉 −
∑
i∈I0

zki 〈∇gi(xk), d̂k〉+ o(‖dk‖2).
(4.13)
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Furthermore, for all i ∈ I0 it follows from (4.10) that

gi(x
k) + 〈∇gi(xk), dk + d̂k〉+ 1

2
〈dk,∇2

xxgi(x
k)dk〉 = o(‖dk‖2).(4.14)

Using (4.9), (4.14), and Lemma 3.2, we obtain

−1
2

∑
i∈I0

zki 〈∇gi(xk), dk〉 −
∑
i∈I0

zki 〈∇gi(xk), d̂k〉

=
1

2

∑
i∈I0

zki 〈∇gi(xk), dk〉 −
∑
i∈I0

zki 〈∇gi(xk), dk + d̂k〉

=
1

2

∑
i∈I0

zki gi(x
k)− 1

2

∑
i∈I0

φk‖dk1‖νzki

+
1

2

∑
i∈I0

zki 〈dk,∇2
xxgi(x

k)dk〉+ o(‖dk‖2)

=
1

2

∑
i∈I0

zki gi(x
k) +

1

2

∑
i∈I0

zki 〈dk,∇2
xxgi(x

k)dk〉+ o(‖dk‖2).(4.15)

Clearly, Assumption A4 and Corollary 4.4 imply that, for each i ∈ I0 and any k
sufficiently large, zki ≥ 0.5λ∗

i > 0; hence we get for k sufficiently large

1

2

∑
i∈I0

zki gi(x
k) + o(‖gI0(xk)‖) < 0.(4.16)

In view of (4.15)–(4.16) and Assumption A6′, we obtain from (4.13)

f(xk + dk + d̂k)

= f(xk) +
1

2
〈∇f(xk), dk〉+ 1

2

∑
i∈I0

zki gi(x
k)

+
1

2
〈dk, (∇2

xxf(x
k) +

∑
i∈I0

zki ∇2
xxgi(x

k)−Hk)d
k〉+ o(‖dk‖2)

= f(xk) +
1

2
〈∇f(xk), dk〉+ 1

2

∑
i∈I0

zki gi(x
k) + o(‖gI0(xk)‖)

+
1

2
〈dk, Pk(∇2

xxf(x
k) +

∑
i∈I0

zki ∇2
xxgi(x

k)−Hk)Pkd
k〉+ o(‖dk‖2)

≤ f(xk) +
1

2
〈∇f(xk), dk〉

+
1

2
‖dk‖‖Pk

(
∇2
xxf(x

k) +
∑
i∈I0

zki ∇2
xxgi(x

k)−Hk

)
Pkd

k‖+ o(‖dk‖2)

= f(xk) +
1

2
〈∇f(xk), dk〉+ o(‖dk‖2),(4.17)

where the second equality follows from Lemmas 4.5 and 3.2. We also have from (4.4)

〈∇f(xk), dk1〉 = −〈dk1, Hkd
k1〉 − 〈dk1,∇gI0(xk)zk1I0 〉

= −〈dk1, Hkd
k1〉+ 〈gI0(xk), zk1I0 〉

< −〈dk1, Hkd
k1〉,(4.18)
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where the last inequality is due to gI0(x
k) < 0 and for k sufficiently large zk1I0 > 0.

This, together with Lemma 2.3(iii), Assumption A3, and Lemma 3.2, implies that

〈∇f(xk), dk〉 ≤ ϑ〈∇f(xk), dk1〉
≤ −ϑ〈dk1, Hkd

k1〉
≤ −ϑC1‖dk1‖2
= −ϑC1‖dk‖2 + o(‖dk‖2).(4.19)

Due to µ < 1
2 , inequalities (4.17) and (4.19) show that for k sufficiently large

t = 1 satisfies inequality (2.6), i.e.,

f(xk + dk + d̂k) ≤ f(xk) + µ〈∇f(xk), dk〉.
This proves (i). We now turn to prove (ii).

It is clear from Corollary 4.4 and Lemma 4.6 that dk → 0 and d̂k → 0. For i /∈ I0,
gi(x

∗) < 0 implies that for k sufficiently large

gi(x
k + dk + d̂k) < 0.(4.20)

For i ∈ I0, we have from (2.5) and Lemma 4.6 that for k sufficiently large

gi(x
k + dk + d̂k) = gi(x

k + dk) + 〈∇gi(xk + dk), d̂k〉+O(‖d̂k‖2)
= gi(x

k + dk) + 〈∇gi(xk), d̂k〉+O(‖dk‖‖d̂k‖)
= −‖dk‖τ +O(‖dk‖3)
= −‖dk‖τ + o(‖dk‖τ )
≤ −1

2
‖dk‖τ < 0.

This, together with (4.20), shows (ii). This completes the proof.

Proposition 4.7 shows that the use of d̂k on the search direction makes the unit
step accepted for all k sufficiently large. Consequently, the Maratos effect does not
appear. The next theorem indicates that Algorithm 2.1 is two-step superlinearly
convergent.

Theorem 4.8. Let Assumptions A1–A5 and A6′ hold. Then the sequence {xk}
generated by Algorithm 2.1 converges two-step superlinearly, i.e.,

lim
k→∞

‖xk+2 − x∗‖
‖xk − x∗‖ = 0.

The proof of the above theorem follows step by step, with minor modifications,
that of Theorem 4.6 in [23]. The details are omitted.

Furthermore, in the following, we show the Q-superlinear convergence of Algo-
rithm 2.1 if Assumption A6′ is replaced by a stronger assumption.

Assumption A6. The sequence of matrices {Hk} satisfies
‖Pk(Hk −∇2

xxL(x
∗, λ∗))dk‖

‖dk‖ → 0.

Theorem 4.9. Let Assumptions A1–A6 hold. Then the sequence {xk} generated
by Algorithm 2.1 converges Q-superlinearly, i.e.,

‖xk+1 − x∗‖ = o(‖xk − x∗‖).
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If, in addition, supposing that ∇2f and ∇2gi, for all i ∈ I, are Lipschitz continuous
and Hk = ∇2

xxL(x
k, λ(xk)), then the convergence rate is Q-quadratic, i.e.,

‖xk+1 − x∗‖ = O(‖xk − x∗‖2).

Proof. In view of Proposition 4.7 and Lemmas 3.2 and 4.6, we have for k suffi-
ciently large

xk+1 − xk = dk + d̂k = dk1 +O(‖dk1‖2) = dk1 + o(‖dk1‖).(4.21)

For k sufficiently large, dk1 can be viewed as a quasi-Newton direction for the equal-
ity constrained optimization problem (4.5). It follows from Lemma 3.2 that dk =
dk1 + o(‖dk1‖). By the boundedness of Pk, Hk, and ∇2

xxL(x
∗, λ∗), Assumption A6 is

equivalent to

‖Pk(Hk −∇2
xxL(x

∗, λ∗))dk1‖
‖dk1‖ .

Combining this expression and the results in [33], we have

‖xk + dk1 − x∗‖ = o(‖xk − x∗‖).(4.22)

Furthermore, by the use of Lemma 3.1 in [8], we get

lim
k→∞

‖dk1‖
‖xk − x∗‖ = 1.(4.23)

So, by (4.21)–(4.23), it holds that

‖xk+1 − x∗‖ = ‖xk + dk1 + o(‖dk1‖)− x∗‖ = o(‖xk − x∗‖),

which shows that {xk} converges to x∗ Q-superlinearly.
If Hk = ∇2

xxL(x
k, λ(xk)) for k sufficiently large, we get from Theorem 3.1 in [12]

that

‖xk + dk1 − x∗‖ = O(‖xk − x∗‖2).

This, together with (4.21) and (4.23), yields

‖xk+1 − x∗‖ = ‖xk + dk1 +O(‖dk1‖2)− x∗‖ = O(‖xk − x∗‖2),

which shows that the convergence rate is Q-quadratic.

5. Numerical experiments. In this section we report the numerical results
on a test set that includes some of Hock and Schittkowski’s problems [15] as well as
several other large-scale real-world problems from the CUTE [4] and the COPS [5]
collections. The algorithm was implemented by a Matlab code. For each test problem,
we chose H1 = E as the initial guess of the Lagrangian Hessian. At each step, the
matrix Hk was updated by the damped BFGS formula from Powell [24] as in [17, 26].
Specifically, we set

Hk+1 = Hk − Hksks
T
kHk

sTkHksk
+

yky
T
k

sTk yk
,
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where

yk =

{
ŷk if ŷTk sk ≥ 0.2sTkHksk,

θkŷk + (1− θk)Hksk otherwise

and




sk = xk+1 − xk,

ŷk = ∇f(xk+1)−∇f(xk) + (∇g(xk+1)−∇g(xk))λk0,
θk = 0.8s

T
kHksk/(s

T
kHksk − sTk ŷk).

We set the parameters as follows:

β = 0.5, µ = 0.1, ν = 3.0, τ = 2.5, ϑ = 0.5, σ = 0.1, and ε0 = 3.0.

The algorithm stops if one of the following termination criteria is satisfied:

(a) ‖Φ(xk, λ(xk))‖ ≤ 10−5.
(b) ‖Φ(xk, zk0)‖ ≤ 10−5.
(c) ‖dk1‖/(1 + ‖xk‖) ≤ 10−5.

The first and second criteria state the KKT conditions for problem (P). At Step 2 of
the algorithm Φ(xk, λ(xk)) has to be computed so as to estimate the working set and
to update the parameter ε. Hence the first criterion is used here. Moreover, Lemma
2.2 implies that xk is only a trivial KKT point of problem (P) if dk1 = 0. Hence in our
implementation the second or third criterion is used at Step 4(ii) as the termination
criterion.

The check of full rankness in Step 2 is done by using the Matlab command “rank.”

We first tested some problems taken from [15]. For these test problems, we used
the initial point given in [15] if it was strictly feasible. For some problems whose initial
points given in [15] were not strictly feasible, we chose other initial points which were
strictly feasible. These initial points are listed in Table 1.

Table 1
Starting points for some HS problems.

Problem Starting point

HS25 (25, 5, 1)

HS30 (3, 2, 1)

HS31 (4, 3, -2)

HS33 (1, 3, 4)

HS34 (0.1, 1.15, 3.2)

HS65 (0, 0, 0)

HS66 (0.5, 2, 8)

The computational results are shown in Table 2, where the columns have the
following meanings:
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Table 2
Numerical results on the HS problems.

Problem n m Iter Nf Ng Fv Term Prec Final-ε Aset

HS1 2 1 36 57 59 6.662078e-14 (a) 3.862116e-06 0.3000 0

HS3 2 1 10 17 26 2.293930e-08 (a) 2.388519e-08 0.3000 1

HS4 2 2 3 4 7 2.666667 (a) 4.049708e-11 0.3000 2

HS5 2 4 5 8 8 -1.913223 (c) 6.007380e-06 0.3000 0

HS12 2 1 7 24 28 -30.000000 (c) 2.902889e-06 3.0000 1

HS24 2 5 9 13 22 -1.000000 (a) 7.192276e-08 0.3000 2

HS25 3 6 14 55 62 3.318784e-06 (c) 1.268899e-06 0.3000 0

HS29 3 1 9 28 34 -22.627417 (a) 6.168718e-06 3.0000 1

HS30 3 7 10 27 34 1.000000 (a) 6.986504e-07 0.3000 2

HS31 3 7 11 32 40 6.000000 (c) 1.925959e-06 0.3000 1

HS33 3 6 15 74 87 -4.585782 (a) 7.512854e-07 0.3000 3

HS34 3 8 17 76 92 -0.834024 (c) 1.611863e-06 0.3000 3

HS35 3 4 7 13 19 0.111111 (c) 8.006110e-06 0.3000 1

HS36 3 7 11 33 44 -3.300000e+03 (a) 6.296636e-07 0.3000 3

HS37 3 8 15 45 58 -3.456000e+03 (c) 6.947600e-06 0.3000 1

HS38 4 8 49 91 91 5.128073e-11 (c) 1.890126e-06 0.0300 0

HS43 4 3 12 36 45 -44.000000 (c) 6.631011e-06 0.3000 2

HS44 4 10 17 60 73 -14.999860 (c) 3.117109e-06 0.3000 4

HS65 3 7 8 19 22 0.953529 (a) 6.193657e-08 0.3000 1

HS66 3 8 11 24 35 0.518164 (a) 7.452867e-06 3.0000 2

HS76 4 7 9 15 23 -4.681818 (a) 8.369451e-10 0.3000 2

HS93 6 8 18 51 69 135.075964 (c) 2.708803e-06 0.3000 2

HS100 7 4 14 44 58 680.630057 (c) 6.183027e-06 3.0000 2

HS113 10 8 21 58 79 24.306209 (c) 1.424558e-06 3.0000 6

Problem: the problem number given in [15],
n: the number of variables,
m: the number of constraints (including bound constraints),
Iter: the number of iterations,
Nf: the number of function evaluations for f ,
Ng: the number of function evaluations for g,
Fv: the objective function value at the final iterate,
Term: the label of the termination criterion,
Prec: the final value of the norm function used in the termination criteria,
Final-ε: the value of the parameter ε at the final iterate,
Aset: the number of indices in the final working set.
We succeeded in solving all test problems chosen in Table 2, and for most of these

problems the number of iterations was small. The computational results illustrate
that our algorithm is competitive with those in [26, 34].

All of the problems in the Hock and Schittkowski set [15] are very small. To see
more clearly the effectiveness of our algorithm, we tested several problems from the
CUTE collection [4] and two problems from the COPS collection [5] that contained
no equality constraints. Some of these problems are larger and therefore more inter-
esting. Table 3 lists starting points of these problems, except for the last problem,
whose initial points vary with its dimension. We also succeeded in solving all these
test problems. The computational results are listed in Tables 4 and 5, where the
termination criterion (c) is changed to ‖dk1‖ ≤ 10−5.

The results reported in Tables 4 and 5 are encouraging. First, we note that here
the number of iterations and hence the number of objective function evaluations are
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Table 3
Starting points for problems in Tables 4 and 5.

Problem Starting point

Expfit x = (6, 1, 6, 0, 0)T

Ngone-k xi = 0.8 ∗ i/k, i = 1, · · · , k; yi = 0.6, i = 1, · · · , k − 1

Obstclae-k xi,j = 1, i, j = 2, · · · , k − 1

Svanberg-k xi = 0, i = 1, · · · , k
Polygon-k ri = 0.5, θi = π ∗ i/k, i = 1, · · · , k − 1

Table 4
Numerical results on the CUTE problems.

Problem n m Iter Nf Ng Fv Term Prec Final-ε Aset

Expfita 5 22 228 1758 1897 0.00113661 (a) 1.866081e-08 0.0300 4

Expfitb 5 102 157 1107 1204 0.00501937 (a) 1.159079e-08 0.0300 4

Expfitc 5 502 273 2824 2964 0.02330257 (a) 2.493369e-06 0.0003 3

Ngone-3 8 9 5 11 15 -0.500000 (c) 8.261035e-06 0.3000 2

Ngone-5 12 20 14 26 39 -0.620366 (a) 9.202883e-07 0.3000 7

Ngone-24 50 324 241 95 1199 -0.643097 (b) 8.010034e-06 0.0300 26

Ngone-49 100 1274 1414 10876 12290 -0.643421 (c) 8.811006e-06 0.0300 51

Obstclae-4 16 32 4 5 9 0.753660 (a) 5.825214e-07 3.0000 4

Obstclae-10 100 200 165 979 1144 1.397898 (a) 8.353902e-06 3.0000 29

Obstclae-23 529 1058 908 7179 8087 1.678027 (a) 7.187001e-06 3.0000 221

Obstclae-32 1024 2048 2438 22024 24462 1.748270 (a) 9.658341e-06 3.0000 472

Svanberg-10 10 30 36 227 258 15.731517 (c) 5.365582e-06 0.0300 6

Svanberg-30 30 90 101 777 864 49.142526 (c) 9.130506e-06 0.0300 22

Svanberg-50 50 150 108 881 968 82.581912 (c) 9.472167e-06 0.0300 38

Svanberg-80 80 240 190 1666 1835 132.749819 (c) 4.663239e-06 0.0300 61

Svanberg-100 100 300 178 1628 1782 166.197171 (c) 7.281111e-06 0.0300 77

Svanberg-500 500 1500 402 4020 4407 835.186918 (c) 5.299494e-06 0.0300 398

Table 5
Numerical results on the COPS problems.

Problem n m Iter Nf Ng Fv Term Prec Final-ε Aset

Polygon-4 6 17 6 17 21 -0.500000 (a) 9.911252e-09 0.3000 2

Polygon-6 10 34 13 26 38 -0.674981 (a) 1.813151e-07 0.3000 6

Polygon-10 18 80 18 31 49 -0.749137 (a) 3.669190e-06 0.3000 10

Polygon-15 28 160 43 159 199 -0.768622 (a) 7.178912e-06 0.0300 15

Polygon-20 38 265 78 348 422 -0.776859 (a) 9.648048e-06 0.0300 20

Polygon-25 48 395 96 403 494 -0.780232 (a) 9.167416e-06 0.0300 25

Polygon-30 58 550 137 739 872 -0.781674 (a) 9.128916e-06 0.0300 30

Polygon-40 78 935 416 3113 3509 -0.783069 (a) 7.798918e-06 0.0030 40

Polygon-50 98 1420 1416 14855 16192 -0.783799 (b) 8.082852e-06 0.0003 50

Cam-10 10 43 15 155 170 -43.85994 (a) 1.336130e-07 3.0e-4 10

Cam-20 20 83 14 110 124 -86.55864 (a) 3.498434e-06 3.0e-4 20

Cam-50 50 203 14 166 180 -214.6961 (b) 6.369979e-06 3.0e-6 50

Cam-100 100 403 17 244 261 -427.8899 (b) 9.198429e-06 3.0e-6 100

Cam-200 200 803 55 552 607 -855.7000 (c) 7.568989e-08 3.0e-7 200

Cam-400 400 1603 98 1207 1305 -1710.275 (c) 9.040695e-08 3.0e-8 400

generally larger than those reported in [17] for a feasible SQP method. This is un-
derstandable because the subproblems of Algorithm 2.1 are low dimensional, which
use only partial information of the problems. The number of constraint function
evaluations here is competitive with that of a feasible SQP method. On the other
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Table 6
Number of indices in the working set on the problem “Obstclae-10.”

Iteration 1 120 123 131 134 135 140 143 144 147

Working set 64 62 64 62 60 58 56 55 56 55

Iteration 148 149 150 154 156 158 161 162 163

Working set 53 39 36 35 34 33 32 31 29

hand, Tables 4 and 5 also show that the cardinality of the final working set “Aset” is
generally much smaller than the number of constraints. This means that the subprob-
lems of Algorithm 2.1 are generally much smaller than that of the full dimensional
feasible SQP methods. Moreover, as the number of constraints in problem (P) in-
creases, this benefit becomes extremely apparent. This shows the potential advantage
of our algorithm when applied to solving problems with large numbers of constraints.
Table 6 positively supports this possibility. Table 6 lists the numbers of indices in
the working set corresponding to iterations when Algorithm 2.1 is applied to solving
problem “Obstclae-10.” The results show that as iteration increases, the number of
corresponding indices in the working set exhibits the decreasing tendency.

6. Conclusion. In this paper an FSLE algorithm for inequality constrained op-
timization is proposed. The proposed algorithm is based on an efficient identification
technique of the active constraints and has some nice properties. We have proved that
every accumulation point of the sequence generated by the proposed algorithm is a
KKT point of problem (P) without requiring the isolatedness of the stationary points.
We have also established locally two-step superlinear or Q-superlinear or Q-quadratic
convergence for the proposed algorithm under mild assumptions. The preliminary
numerical experiments show that the proposed method is effective for the test prob-
lems. However, to achieve superlinear convergence of the algorithm we still need the
strict complementarity condition. Recently, Facchinei, Lucidi, and Palagi [13] pro-
posed a globally and superlinearly convergent truncated Newton method for solving
the box constrained optimization. In particular, they established superlinear conver-
gence without requiring the strict complementarity condition. How to remove this
condition for the general constrained optimization is an important topic for further
research.
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